xref: /linux/drivers/mtd/chips/cfi_cmdset_0002.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static void cfi_amdstd_destroy(struct mtd_info *);
63 
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66 
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70 
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73 
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 	.probe		= NULL, /* Not usable directly */
76 	.destroy	= cfi_amdstd_destroy,
77 	.name		= "cfi_cmdset_0002",
78 	.module		= THIS_MODULE
79 };
80 
81 
82 /* #define DEBUG_CFI_FEATURES */
83 
84 
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 	const char* erase_suspend[3] = {
89 		"Not supported", "Read only", "Read/write"
90 	};
91 	const char* top_bottom[6] = {
92 		"No WP", "8x8KiB sectors at top & bottom, no WP",
93 		"Bottom boot", "Top boot",
94 		"Uniform, Bottom WP", "Uniform, Top WP"
95 	};
96 
97 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 	printk("  Address sensitive unlock: %s\n",
99 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
100 
101 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 	else
104 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105 
106 	if (extp->BlkProt == 0)
107 		printk("  Block protection: Not supported\n");
108 	else
109 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
110 
111 
112 	printk("  Temporary block unprotect: %s\n",
113 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 	printk("  Burst mode: %s\n",
117 	       extp->BurstMode ? "Supported" : "Not supported");
118 	if (extp->PageMode == 0)
119 		printk("  Page mode: Not supported\n");
120 	else
121 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
122 
123 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 	       extp->VppMin >> 4, extp->VppMin & 0xf);
125 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 	       extp->VppMax >> 4, extp->VppMax & 0xf);
127 
128 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 	else
131 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134 
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
138 {
139 	struct map_info *map = mtd->priv;
140 	struct cfi_private *cfi = map->fldrv_priv;
141 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 	__u8 major = extp->MajorVersion;
143 	__u8 minor = extp->MinorVersion;
144 
145 	if (((major << 8) | minor) < 0x3131) {
146 		/* CFI version 1.0 => don't trust bootloc */
147 
148 		DEBUG(MTD_DEBUG_LEVEL1,
149 			"%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 			map->name, cfi->mfr, cfi->id);
151 
152 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
153 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 		 * These were badly detected as they have the 0x80 bit set
155 		 * so treat them as a special case.
156 		 */
157 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158 
159 			/* Macronix added CFI to their 2nd generation
160 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 			 * has CFI.
163 			 *
164 			 * Therefore also check the manufacturer.
165 			 * This reduces the risk of false detection due to
166 			 * the 8-bit device ID.
167 			 */
168 			(cfi->mfr == CFI_MFR_MACRONIX)) {
169 			DEBUG(MTD_DEBUG_LEVEL1,
170 				"%s: Macronix MX29LV400C with bottom boot block"
171 				" detected\n", map->name);
172 			extp->TopBottom = 2;	/* bottom boot */
173 		} else
174 		if (cfi->id & 0x80) {
175 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 			extp->TopBottom = 3;	/* top boot */
177 		} else {
178 			extp->TopBottom = 2;	/* bottom boot */
179 		}
180 
181 		DEBUG(MTD_DEBUG_LEVEL1,
182 			"%s: AMD CFI PRI V%c.%c has no boot block field;"
183 			" deduced %s from Device ID\n", map->name, major, minor,
184 			extp->TopBottom == 2 ? "bottom" : "top");
185 	}
186 }
187 #endif
188 
189 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
190 {
191 	struct map_info *map = mtd->priv;
192 	struct cfi_private *cfi = map->fldrv_priv;
193 	if (cfi->cfiq->BufWriteTimeoutTyp) {
194 		DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 		mtd->write = cfi_amdstd_write_buffers;
196 	}
197 }
198 
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
201 {
202 	struct map_info *map = mtd->priv;
203 	struct cfi_private *cfi = map->fldrv_priv;
204 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 	struct cfi_pri_atmel atmel_pri;
206 
207 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209 
210 	if (atmel_pri.Features & 0x02)
211 		extp->EraseSuspend = 2;
212 
213 	/* Some chips got it backwards... */
214 	if (cfi->id == AT49BV6416) {
215 		if (atmel_pri.BottomBoot)
216 			extp->TopBottom = 3;
217 		else
218 			extp->TopBottom = 2;
219 	} else {
220 		if (atmel_pri.BottomBoot)
221 			extp->TopBottom = 2;
222 		else
223 			extp->TopBottom = 3;
224 	}
225 
226 	/* burst write mode not supported */
227 	cfi->cfiq->BufWriteTimeoutTyp = 0;
228 	cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230 
231 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
232 {
233 	/* Setup for chips with a secsi area */
234 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237 
238 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
239 {
240 	struct map_info *map = mtd->priv;
241 	struct cfi_private *cfi = map->fldrv_priv;
242 	if ((cfi->cfiq->NumEraseRegions == 1) &&
243 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 		mtd->erase = cfi_amdstd_erase_chip;
245 	}
246 
247 }
248 
249 /*
250  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251  * locked by default.
252  */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
254 {
255 	mtd->lock = cfi_atmel_lock;
256 	mtd->unlock = cfi_atmel_unlock;
257 	mtd->flags |= MTD_POWERUP_LOCK;
258 }
259 
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 	struct map_info *map = mtd->priv;
263 	struct cfi_private *cfi = map->fldrv_priv;
264 
265 	/*
266 	 * These flashes report two seperate eraseblock regions based on the
267 	 * sector_erase-size and block_erase-size, although they both operate on the
268 	 * same memory. This is not allowed according to CFI, so we just pick the
269 	 * sector_erase-size.
270 	 */
271 	cfi->cfiq->NumEraseRegions = 1;
272 }
273 
274 static void fixup_sst39vf(struct mtd_info *mtd, void *param)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	fixup_old_sst_eraseregion(mtd);
280 
281 	cfi->addr_unlock1 = 0x5555;
282 	cfi->addr_unlock2 = 0x2AAA;
283 }
284 
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd, void *param)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 
290 	fixup_old_sst_eraseregion(mtd);
291 
292 	cfi->addr_unlock1 = 0x555;
293 	cfi->addr_unlock2 = 0x2AA;
294 }
295 
296 static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param)
297 {
298 	struct map_info *map = mtd->priv;
299 	struct cfi_private *cfi = map->fldrv_priv;
300 
301 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
302 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
303 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
304 	}
305 }
306 
307 static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param)
308 {
309 	struct map_info *map = mtd->priv;
310 	struct cfi_private *cfi = map->fldrv_priv;
311 
312 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
313 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
314 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
315 	}
316 }
317 
318 /* Used to fix CFI-Tables of chips without Extended Query Tables */
319 static struct cfi_fixup cfi_nopri_fixup_table[] = {
320 	{ CFI_MFR_SST, 0x234A, fixup_sst39vf, NULL, }, // SST39VF1602
321 	{ CFI_MFR_SST, 0x234B, fixup_sst39vf, NULL, }, // SST39VF1601
322 	{ CFI_MFR_SST, 0x235A, fixup_sst39vf, NULL, }, // SST39VF3202
323 	{ CFI_MFR_SST, 0x235B, fixup_sst39vf, NULL, }, // SST39VF3201
324 	{ CFI_MFR_SST, 0x235C, fixup_sst39vf_rev_b, NULL, }, // SST39VF3202B
325 	{ CFI_MFR_SST, 0x235D, fixup_sst39vf_rev_b, NULL, }, // SST39VF3201B
326 	{ CFI_MFR_SST, 0x236C, fixup_sst39vf_rev_b, NULL, }, // SST39VF6402B
327 	{ CFI_MFR_SST, 0x236D, fixup_sst39vf_rev_b, NULL, }, // SST39VF6401B
328 	{ 0, 0, NULL, NULL }
329 };
330 
331 static struct cfi_fixup cfi_fixup_table[] = {
332 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
333 #ifdef AMD_BOOTLOC_BUG
334 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
335 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL },
336 #endif
337 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
338 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
339 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
340 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
341 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
342 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
343 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, },
344 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, },
345 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, },
346 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, },
347 #if !FORCE_WORD_WRITE
348 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
349 #endif
350 	{ 0, 0, NULL, NULL }
351 };
352 static struct cfi_fixup jedec_fixup_table[] = {
353 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
354 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
355 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
356 	{ 0, 0, NULL, NULL }
357 };
358 
359 static struct cfi_fixup fixup_table[] = {
360 	/* The CFI vendor ids and the JEDEC vendor IDs appear
361 	 * to be common.  It is like the devices id's are as
362 	 * well.  This table is to pick all cases where
363 	 * we know that is the case.
364 	 */
365 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
366 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
367 	{ 0, 0, NULL, NULL }
368 };
369 
370 
371 static void cfi_fixup_major_minor(struct cfi_private *cfi,
372 				  struct cfi_pri_amdstd *extp)
373 {
374 	if (cfi->mfr == CFI_MFR_SAMSUNG && cfi->id == 0x257e &&
375 	    extp->MajorVersion == '0')
376 		extp->MajorVersion = '1';
377 }
378 
379 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
380 {
381 	struct cfi_private *cfi = map->fldrv_priv;
382 	struct mtd_info *mtd;
383 	int i;
384 
385 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
386 	if (!mtd) {
387 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
388 		return NULL;
389 	}
390 	mtd->priv = map;
391 	mtd->type = MTD_NORFLASH;
392 
393 	/* Fill in the default mtd operations */
394 	mtd->erase   = cfi_amdstd_erase_varsize;
395 	mtd->write   = cfi_amdstd_write_words;
396 	mtd->read    = cfi_amdstd_read;
397 	mtd->sync    = cfi_amdstd_sync;
398 	mtd->suspend = cfi_amdstd_suspend;
399 	mtd->resume  = cfi_amdstd_resume;
400 	mtd->flags   = MTD_CAP_NORFLASH;
401 	mtd->name    = map->name;
402 	mtd->writesize = 1;
403 
404 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
405 
406 	if (cfi->cfi_mode==CFI_MODE_CFI){
407 		unsigned char bootloc;
408 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
409 		struct cfi_pri_amdstd *extp;
410 
411 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
412 		if (extp) {
413 			/*
414 			 * It's a real CFI chip, not one for which the probe
415 			 * routine faked a CFI structure.
416 			 */
417 			cfi_fixup_major_minor(cfi, extp);
418 
419 			/*
420 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4
421 			 * see: http://www.amd.com/us-en/assets/content_type/DownloadableAssets/cfi_r20.pdf, page 19
422 			 *      http://www.amd.com/us-en/assets/content_type/DownloadableAssets/cfi_100_20011201.pdf
423 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
424 			 */
425 			if (extp->MajorVersion != '1' ||
426 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '4'))) {
427 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
428 				       "version %c.%c (%#02x/%#02x).\n",
429 				       extp->MajorVersion, extp->MinorVersion,
430 				       extp->MajorVersion, extp->MinorVersion);
431 				kfree(extp);
432 				kfree(mtd);
433 				return NULL;
434 			}
435 
436 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
437 			       extp->MajorVersion, extp->MinorVersion);
438 
439 			/* Install our own private info structure */
440 			cfi->cmdset_priv = extp;
441 
442 			/* Apply cfi device specific fixups */
443 			cfi_fixup(mtd, cfi_fixup_table);
444 
445 #ifdef DEBUG_CFI_FEATURES
446 			/* Tell the user about it in lots of lovely detail */
447 			cfi_tell_features(extp);
448 #endif
449 
450 			bootloc = extp->TopBottom;
451 			if ((bootloc < 2) || (bootloc > 5)) {
452 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
453 				       "bank location (%d). Assuming bottom.\n",
454 				       map->name, bootloc);
455 				bootloc = 2;
456 			}
457 
458 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
459 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
460 
461 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
462 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
463 					__u32 swap;
464 
465 					swap = cfi->cfiq->EraseRegionInfo[i];
466 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
467 					cfi->cfiq->EraseRegionInfo[j] = swap;
468 				}
469 			}
470 			/* Set the default CFI lock/unlock addresses */
471 			cfi->addr_unlock1 = 0x555;
472 			cfi->addr_unlock2 = 0x2aa;
473 		}
474 		cfi_fixup(mtd, cfi_nopri_fixup_table);
475 
476 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
477 			kfree(mtd);
478 			return NULL;
479 		}
480 
481 	} /* CFI mode */
482 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
483 		/* Apply jedec specific fixups */
484 		cfi_fixup(mtd, jedec_fixup_table);
485 	}
486 	/* Apply generic fixups */
487 	cfi_fixup(mtd, fixup_table);
488 
489 	for (i=0; i< cfi->numchips; i++) {
490 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
491 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
492 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
493 		cfi->chips[i].ref_point_counter = 0;
494 		init_waitqueue_head(&(cfi->chips[i].wq));
495 	}
496 
497 	map->fldrv = &cfi_amdstd_chipdrv;
498 
499 	return cfi_amdstd_setup(mtd);
500 }
501 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
502 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
503 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
504 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
505 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
506 
507 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
508 {
509 	struct map_info *map = mtd->priv;
510 	struct cfi_private *cfi = map->fldrv_priv;
511 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
512 	unsigned long offset = 0;
513 	int i,j;
514 
515 	printk(KERN_NOTICE "number of %s chips: %d\n",
516 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
517 	/* Select the correct geometry setup */
518 	mtd->size = devsize * cfi->numchips;
519 
520 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
521 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
522 				    * mtd->numeraseregions, GFP_KERNEL);
523 	if (!mtd->eraseregions) {
524 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
525 		goto setup_err;
526 	}
527 
528 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
529 		unsigned long ernum, ersize;
530 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
531 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
532 
533 		if (mtd->erasesize < ersize) {
534 			mtd->erasesize = ersize;
535 		}
536 		for (j=0; j<cfi->numchips; j++) {
537 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
538 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
539 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
540 		}
541 		offset += (ersize * ernum);
542 	}
543 	if (offset != devsize) {
544 		/* Argh */
545 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
546 		goto setup_err;
547 	}
548 #if 0
549 	// debug
550 	for (i=0; i<mtd->numeraseregions;i++){
551 		printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
552 		       i,mtd->eraseregions[i].offset,
553 		       mtd->eraseregions[i].erasesize,
554 		       mtd->eraseregions[i].numblocks);
555 	}
556 #endif
557 
558 	__module_get(THIS_MODULE);
559 	register_reboot_notifier(&mtd->reboot_notifier);
560 	return mtd;
561 
562  setup_err:
563 	kfree(mtd->eraseregions);
564 	kfree(mtd);
565 	kfree(cfi->cmdset_priv);
566 	kfree(cfi->cfiq);
567 	return NULL;
568 }
569 
570 /*
571  * Return true if the chip is ready.
572  *
573  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
574  * non-suspended sector) and is indicated by no toggle bits toggling.
575  *
576  * Note that anything more complicated than checking if no bits are toggling
577  * (including checking DQ5 for an error status) is tricky to get working
578  * correctly and is therefore not done	(particulary with interleaved chips
579  * as each chip must be checked independantly of the others).
580  */
581 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
582 {
583 	map_word d, t;
584 
585 	d = map_read(map, addr);
586 	t = map_read(map, addr);
587 
588 	return map_word_equal(map, d, t);
589 }
590 
591 /*
592  * Return true if the chip is ready and has the correct value.
593  *
594  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
595  * non-suspended sector) and it is indicated by no bits toggling.
596  *
597  * Error are indicated by toggling bits or bits held with the wrong value,
598  * or with bits toggling.
599  *
600  * Note that anything more complicated than checking if no bits are toggling
601  * (including checking DQ5 for an error status) is tricky to get working
602  * correctly and is therefore not done	(particulary with interleaved chips
603  * as each chip must be checked independantly of the others).
604  *
605  */
606 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
607 {
608 	map_word oldd, curd;
609 
610 	oldd = map_read(map, addr);
611 	curd = map_read(map, addr);
612 
613 	return	map_word_equal(map, oldd, curd) &&
614 		map_word_equal(map, curd, expected);
615 }
616 
617 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
618 {
619 	DECLARE_WAITQUEUE(wait, current);
620 	struct cfi_private *cfi = map->fldrv_priv;
621 	unsigned long timeo;
622 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
623 
624  resettime:
625 	timeo = jiffies + HZ;
626  retry:
627 	switch (chip->state) {
628 
629 	case FL_STATUS:
630 		for (;;) {
631 			if (chip_ready(map, adr))
632 				break;
633 
634 			if (time_after(jiffies, timeo)) {
635 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
636 				return -EIO;
637 			}
638 			mutex_unlock(&chip->mutex);
639 			cfi_udelay(1);
640 			mutex_lock(&chip->mutex);
641 			/* Someone else might have been playing with it. */
642 			goto retry;
643 		}
644 
645 	case FL_READY:
646 	case FL_CFI_QUERY:
647 	case FL_JEDEC_QUERY:
648 		return 0;
649 
650 	case FL_ERASING:
651 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
652 		    !(mode == FL_READY || mode == FL_POINT ||
653 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
654 			goto sleep;
655 
656 		/* We could check to see if we're trying to access the sector
657 		 * that is currently being erased. However, no user will try
658 		 * anything like that so we just wait for the timeout. */
659 
660 		/* Erase suspend */
661 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
662 		 * commands when the erase algorithm isn't in progress. */
663 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
664 		chip->oldstate = FL_ERASING;
665 		chip->state = FL_ERASE_SUSPENDING;
666 		chip->erase_suspended = 1;
667 		for (;;) {
668 			if (chip_ready(map, adr))
669 				break;
670 
671 			if (time_after(jiffies, timeo)) {
672 				/* Should have suspended the erase by now.
673 				 * Send an Erase-Resume command as either
674 				 * there was an error (so leave the erase
675 				 * routine to recover from it) or we trying to
676 				 * use the erase-in-progress sector. */
677 				map_write(map, CMD(0x30), chip->in_progress_block_addr);
678 				chip->state = FL_ERASING;
679 				chip->oldstate = FL_READY;
680 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
681 				return -EIO;
682 			}
683 
684 			mutex_unlock(&chip->mutex);
685 			cfi_udelay(1);
686 			mutex_lock(&chip->mutex);
687 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
688 			   So we can just loop here. */
689 		}
690 		chip->state = FL_READY;
691 		return 0;
692 
693 	case FL_XIP_WHILE_ERASING:
694 		if (mode != FL_READY && mode != FL_POINT &&
695 		    (!cfip || !(cfip->EraseSuspend&2)))
696 			goto sleep;
697 		chip->oldstate = chip->state;
698 		chip->state = FL_READY;
699 		return 0;
700 
701 	case FL_SHUTDOWN:
702 		/* The machine is rebooting */
703 		return -EIO;
704 
705 	case FL_POINT:
706 		/* Only if there's no operation suspended... */
707 		if (mode == FL_READY && chip->oldstate == FL_READY)
708 			return 0;
709 
710 	default:
711 	sleep:
712 		set_current_state(TASK_UNINTERRUPTIBLE);
713 		add_wait_queue(&chip->wq, &wait);
714 		mutex_unlock(&chip->mutex);
715 		schedule();
716 		remove_wait_queue(&chip->wq, &wait);
717 		mutex_lock(&chip->mutex);
718 		goto resettime;
719 	}
720 }
721 
722 
723 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
724 {
725 	struct cfi_private *cfi = map->fldrv_priv;
726 
727 	switch(chip->oldstate) {
728 	case FL_ERASING:
729 		chip->state = chip->oldstate;
730 		map_write(map, CMD(0x30), chip->in_progress_block_addr);
731 		chip->oldstate = FL_READY;
732 		chip->state = FL_ERASING;
733 		break;
734 
735 	case FL_XIP_WHILE_ERASING:
736 		chip->state = chip->oldstate;
737 		chip->oldstate = FL_READY;
738 		break;
739 
740 	case FL_READY:
741 	case FL_STATUS:
742 		/* We should really make set_vpp() count, rather than doing this */
743 		DISABLE_VPP(map);
744 		break;
745 	default:
746 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
747 	}
748 	wake_up(&chip->wq);
749 }
750 
751 #ifdef CONFIG_MTD_XIP
752 
753 /*
754  * No interrupt what so ever can be serviced while the flash isn't in array
755  * mode.  This is ensured by the xip_disable() and xip_enable() functions
756  * enclosing any code path where the flash is known not to be in array mode.
757  * And within a XIP disabled code path, only functions marked with __xipram
758  * may be called and nothing else (it's a good thing to inspect generated
759  * assembly to make sure inline functions were actually inlined and that gcc
760  * didn't emit calls to its own support functions). Also configuring MTD CFI
761  * support to a single buswidth and a single interleave is also recommended.
762  */
763 
764 static void xip_disable(struct map_info *map, struct flchip *chip,
765 			unsigned long adr)
766 {
767 	/* TODO: chips with no XIP use should ignore and return */
768 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
769 	local_irq_disable();
770 }
771 
772 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
773 				unsigned long adr)
774 {
775 	struct cfi_private *cfi = map->fldrv_priv;
776 
777 	if (chip->state != FL_POINT && chip->state != FL_READY) {
778 		map_write(map, CMD(0xf0), adr);
779 		chip->state = FL_READY;
780 	}
781 	(void) map_read(map, adr);
782 	xip_iprefetch();
783 	local_irq_enable();
784 }
785 
786 /*
787  * When a delay is required for the flash operation to complete, the
788  * xip_udelay() function is polling for both the given timeout and pending
789  * (but still masked) hardware interrupts.  Whenever there is an interrupt
790  * pending then the flash erase operation is suspended, array mode restored
791  * and interrupts unmasked.  Task scheduling might also happen at that
792  * point.  The CPU eventually returns from the interrupt or the call to
793  * schedule() and the suspended flash operation is resumed for the remaining
794  * of the delay period.
795  *
796  * Warning: this function _will_ fool interrupt latency tracing tools.
797  */
798 
799 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
800 				unsigned long adr, int usec)
801 {
802 	struct cfi_private *cfi = map->fldrv_priv;
803 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
804 	map_word status, OK = CMD(0x80);
805 	unsigned long suspended, start = xip_currtime();
806 	flstate_t oldstate;
807 
808 	do {
809 		cpu_relax();
810 		if (xip_irqpending() && extp &&
811 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
812 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
813 			/*
814 			 * Let's suspend the erase operation when supported.
815 			 * Note that we currently don't try to suspend
816 			 * interleaved chips if there is already another
817 			 * operation suspended (imagine what happens
818 			 * when one chip was already done with the current
819 			 * operation while another chip suspended it, then
820 			 * we resume the whole thing at once).  Yes, it
821 			 * can happen!
822 			 */
823 			map_write(map, CMD(0xb0), adr);
824 			usec -= xip_elapsed_since(start);
825 			suspended = xip_currtime();
826 			do {
827 				if (xip_elapsed_since(suspended) > 100000) {
828 					/*
829 					 * The chip doesn't want to suspend
830 					 * after waiting for 100 msecs.
831 					 * This is a critical error but there
832 					 * is not much we can do here.
833 					 */
834 					return;
835 				}
836 				status = map_read(map, adr);
837 			} while (!map_word_andequal(map, status, OK, OK));
838 
839 			/* Suspend succeeded */
840 			oldstate = chip->state;
841 			if (!map_word_bitsset(map, status, CMD(0x40)))
842 				break;
843 			chip->state = FL_XIP_WHILE_ERASING;
844 			chip->erase_suspended = 1;
845 			map_write(map, CMD(0xf0), adr);
846 			(void) map_read(map, adr);
847 			xip_iprefetch();
848 			local_irq_enable();
849 			mutex_unlock(&chip->mutex);
850 			xip_iprefetch();
851 			cond_resched();
852 
853 			/*
854 			 * We're back.  However someone else might have
855 			 * decided to go write to the chip if we are in
856 			 * a suspended erase state.  If so let's wait
857 			 * until it's done.
858 			 */
859 			mutex_lock(&chip->mutex);
860 			while (chip->state != FL_XIP_WHILE_ERASING) {
861 				DECLARE_WAITQUEUE(wait, current);
862 				set_current_state(TASK_UNINTERRUPTIBLE);
863 				add_wait_queue(&chip->wq, &wait);
864 				mutex_unlock(&chip->mutex);
865 				schedule();
866 				remove_wait_queue(&chip->wq, &wait);
867 				mutex_lock(&chip->mutex);
868 			}
869 			/* Disallow XIP again */
870 			local_irq_disable();
871 
872 			/* Resume the write or erase operation */
873 			map_write(map, CMD(0x30), adr);
874 			chip->state = oldstate;
875 			start = xip_currtime();
876 		} else if (usec >= 1000000/HZ) {
877 			/*
878 			 * Try to save on CPU power when waiting delay
879 			 * is at least a system timer tick period.
880 			 * No need to be extremely accurate here.
881 			 */
882 			xip_cpu_idle();
883 		}
884 		status = map_read(map, adr);
885 	} while (!map_word_andequal(map, status, OK, OK)
886 		 && xip_elapsed_since(start) < usec);
887 }
888 
889 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
890 
891 /*
892  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
893  * the flash is actively programming or erasing since we have to poll for
894  * the operation to complete anyway.  We can't do that in a generic way with
895  * a XIP setup so do it before the actual flash operation in this case
896  * and stub it out from INVALIDATE_CACHE_UDELAY.
897  */
898 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
899 	INVALIDATE_CACHED_RANGE(map, from, size)
900 
901 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
902 	UDELAY(map, chip, adr, usec)
903 
904 /*
905  * Extra notes:
906  *
907  * Activating this XIP support changes the way the code works a bit.  For
908  * example the code to suspend the current process when concurrent access
909  * happens is never executed because xip_udelay() will always return with the
910  * same chip state as it was entered with.  This is why there is no care for
911  * the presence of add_wait_queue() or schedule() calls from within a couple
912  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
913  * The queueing and scheduling are always happening within xip_udelay().
914  *
915  * Similarly, get_chip() and put_chip() just happen to always be executed
916  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
917  * is in array mode, therefore never executing many cases therein and not
918  * causing any problem with XIP.
919  */
920 
921 #else
922 
923 #define xip_disable(map, chip, adr)
924 #define xip_enable(map, chip, adr)
925 #define XIP_INVAL_CACHED_RANGE(x...)
926 
927 #define UDELAY(map, chip, adr, usec)  \
928 do {  \
929 	mutex_unlock(&chip->mutex);  \
930 	cfi_udelay(usec);  \
931 	mutex_lock(&chip->mutex);  \
932 } while (0)
933 
934 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
935 do {  \
936 	mutex_unlock(&chip->mutex);  \
937 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
938 	cfi_udelay(usec);  \
939 	mutex_lock(&chip->mutex);  \
940 } while (0)
941 
942 #endif
943 
944 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
945 {
946 	unsigned long cmd_addr;
947 	struct cfi_private *cfi = map->fldrv_priv;
948 	int ret;
949 
950 	adr += chip->start;
951 
952 	/* Ensure cmd read/writes are aligned. */
953 	cmd_addr = adr & ~(map_bankwidth(map)-1);
954 
955 	mutex_lock(&chip->mutex);
956 	ret = get_chip(map, chip, cmd_addr, FL_READY);
957 	if (ret) {
958 		mutex_unlock(&chip->mutex);
959 		return ret;
960 	}
961 
962 	if (chip->state != FL_POINT && chip->state != FL_READY) {
963 		map_write(map, CMD(0xf0), cmd_addr);
964 		chip->state = FL_READY;
965 	}
966 
967 	map_copy_from(map, buf, adr, len);
968 
969 	put_chip(map, chip, cmd_addr);
970 
971 	mutex_unlock(&chip->mutex);
972 	return 0;
973 }
974 
975 
976 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
977 {
978 	struct map_info *map = mtd->priv;
979 	struct cfi_private *cfi = map->fldrv_priv;
980 	unsigned long ofs;
981 	int chipnum;
982 	int ret = 0;
983 
984 	/* ofs: offset within the first chip that the first read should start */
985 
986 	chipnum = (from >> cfi->chipshift);
987 	ofs = from - (chipnum <<  cfi->chipshift);
988 
989 
990 	*retlen = 0;
991 
992 	while (len) {
993 		unsigned long thislen;
994 
995 		if (chipnum >= cfi->numchips)
996 			break;
997 
998 		if ((len + ofs -1) >> cfi->chipshift)
999 			thislen = (1<<cfi->chipshift) - ofs;
1000 		else
1001 			thislen = len;
1002 
1003 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1004 		if (ret)
1005 			break;
1006 
1007 		*retlen += thislen;
1008 		len -= thislen;
1009 		buf += thislen;
1010 
1011 		ofs = 0;
1012 		chipnum++;
1013 	}
1014 	return ret;
1015 }
1016 
1017 
1018 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1019 {
1020 	DECLARE_WAITQUEUE(wait, current);
1021 	unsigned long timeo = jiffies + HZ;
1022 	struct cfi_private *cfi = map->fldrv_priv;
1023 
1024  retry:
1025 	mutex_lock(&chip->mutex);
1026 
1027 	if (chip->state != FL_READY){
1028 #if 0
1029 		printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
1030 #endif
1031 		set_current_state(TASK_UNINTERRUPTIBLE);
1032 		add_wait_queue(&chip->wq, &wait);
1033 
1034 		mutex_unlock(&chip->mutex);
1035 
1036 		schedule();
1037 		remove_wait_queue(&chip->wq, &wait);
1038 #if 0
1039 		if(signal_pending(current))
1040 			return -EINTR;
1041 #endif
1042 		timeo = jiffies + HZ;
1043 
1044 		goto retry;
1045 	}
1046 
1047 	adr += chip->start;
1048 
1049 	chip->state = FL_READY;
1050 
1051 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1052 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1053 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1054 
1055 	map_copy_from(map, buf, adr, len);
1056 
1057 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1058 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1059 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1060 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1061 
1062 	wake_up(&chip->wq);
1063 	mutex_unlock(&chip->mutex);
1064 
1065 	return 0;
1066 }
1067 
1068 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1069 {
1070 	struct map_info *map = mtd->priv;
1071 	struct cfi_private *cfi = map->fldrv_priv;
1072 	unsigned long ofs;
1073 	int chipnum;
1074 	int ret = 0;
1075 
1076 
1077 	/* ofs: offset within the first chip that the first read should start */
1078 
1079 	/* 8 secsi bytes per chip */
1080 	chipnum=from>>3;
1081 	ofs=from & 7;
1082 
1083 
1084 	*retlen = 0;
1085 
1086 	while (len) {
1087 		unsigned long thislen;
1088 
1089 		if (chipnum >= cfi->numchips)
1090 			break;
1091 
1092 		if ((len + ofs -1) >> 3)
1093 			thislen = (1<<3) - ofs;
1094 		else
1095 			thislen = len;
1096 
1097 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1098 		if (ret)
1099 			break;
1100 
1101 		*retlen += thislen;
1102 		len -= thislen;
1103 		buf += thislen;
1104 
1105 		ofs = 0;
1106 		chipnum++;
1107 	}
1108 	return ret;
1109 }
1110 
1111 
1112 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1113 {
1114 	struct cfi_private *cfi = map->fldrv_priv;
1115 	unsigned long timeo = jiffies + HZ;
1116 	/*
1117 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1118 	 * have a max write time of a few hundreds usec). However, we should
1119 	 * use the maximum timeout value given by the chip at probe time
1120 	 * instead.  Unfortunately, struct flchip does have a field for
1121 	 * maximum timeout, only for typical which can be far too short
1122 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1123 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1124 	 */
1125 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1126 	int ret = 0;
1127 	map_word oldd;
1128 	int retry_cnt = 0;
1129 
1130 	adr += chip->start;
1131 
1132 	mutex_lock(&chip->mutex);
1133 	ret = get_chip(map, chip, adr, FL_WRITING);
1134 	if (ret) {
1135 		mutex_unlock(&chip->mutex);
1136 		return ret;
1137 	}
1138 
1139 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1140 	       __func__, adr, datum.x[0] );
1141 
1142 	/*
1143 	 * Check for a NOP for the case when the datum to write is already
1144 	 * present - it saves time and works around buggy chips that corrupt
1145 	 * data at other locations when 0xff is written to a location that
1146 	 * already contains 0xff.
1147 	 */
1148 	oldd = map_read(map, adr);
1149 	if (map_word_equal(map, oldd, datum)) {
1150 		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1151 		       __func__);
1152 		goto op_done;
1153 	}
1154 
1155 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1156 	ENABLE_VPP(map);
1157 	xip_disable(map, chip, adr);
1158  retry:
1159 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1160 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1161 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1162 	map_write(map, datum, adr);
1163 	chip->state = FL_WRITING;
1164 
1165 	INVALIDATE_CACHE_UDELAY(map, chip,
1166 				adr, map_bankwidth(map),
1167 				chip->word_write_time);
1168 
1169 	/* See comment above for timeout value. */
1170 	timeo = jiffies + uWriteTimeout;
1171 	for (;;) {
1172 		if (chip->state != FL_WRITING) {
1173 			/* Someone's suspended the write. Sleep */
1174 			DECLARE_WAITQUEUE(wait, current);
1175 
1176 			set_current_state(TASK_UNINTERRUPTIBLE);
1177 			add_wait_queue(&chip->wq, &wait);
1178 			mutex_unlock(&chip->mutex);
1179 			schedule();
1180 			remove_wait_queue(&chip->wq, &wait);
1181 			timeo = jiffies + (HZ / 2); /* FIXME */
1182 			mutex_lock(&chip->mutex);
1183 			continue;
1184 		}
1185 
1186 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1187 			xip_enable(map, chip, adr);
1188 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1189 			xip_disable(map, chip, adr);
1190 			break;
1191 		}
1192 
1193 		if (chip_ready(map, adr))
1194 			break;
1195 
1196 		/* Latency issues. Drop the lock, wait a while and retry */
1197 		UDELAY(map, chip, adr, 1);
1198 	}
1199 	/* Did we succeed? */
1200 	if (!chip_good(map, adr, datum)) {
1201 		/* reset on all failures. */
1202 		map_write( map, CMD(0xF0), chip->start );
1203 		/* FIXME - should have reset delay before continuing */
1204 
1205 		if (++retry_cnt <= MAX_WORD_RETRIES)
1206 			goto retry;
1207 
1208 		ret = -EIO;
1209 	}
1210 	xip_enable(map, chip, adr);
1211  op_done:
1212 	chip->state = FL_READY;
1213 	put_chip(map, chip, adr);
1214 	mutex_unlock(&chip->mutex);
1215 
1216 	return ret;
1217 }
1218 
1219 
1220 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1221 				  size_t *retlen, const u_char *buf)
1222 {
1223 	struct map_info *map = mtd->priv;
1224 	struct cfi_private *cfi = map->fldrv_priv;
1225 	int ret = 0;
1226 	int chipnum;
1227 	unsigned long ofs, chipstart;
1228 	DECLARE_WAITQUEUE(wait, current);
1229 
1230 	*retlen = 0;
1231 	if (!len)
1232 		return 0;
1233 
1234 	chipnum = to >> cfi->chipshift;
1235 	ofs = to  - (chipnum << cfi->chipshift);
1236 	chipstart = cfi->chips[chipnum].start;
1237 
1238 	/* If it's not bus-aligned, do the first byte write */
1239 	if (ofs & (map_bankwidth(map)-1)) {
1240 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1241 		int i = ofs - bus_ofs;
1242 		int n = 0;
1243 		map_word tmp_buf;
1244 
1245  retry:
1246 		mutex_lock(&cfi->chips[chipnum].mutex);
1247 
1248 		if (cfi->chips[chipnum].state != FL_READY) {
1249 #if 0
1250 			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1251 #endif
1252 			set_current_state(TASK_UNINTERRUPTIBLE);
1253 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1254 
1255 			mutex_unlock(&cfi->chips[chipnum].mutex);
1256 
1257 			schedule();
1258 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1259 #if 0
1260 			if(signal_pending(current))
1261 				return -EINTR;
1262 #endif
1263 			goto retry;
1264 		}
1265 
1266 		/* Load 'tmp_buf' with old contents of flash */
1267 		tmp_buf = map_read(map, bus_ofs+chipstart);
1268 
1269 		mutex_unlock(&cfi->chips[chipnum].mutex);
1270 
1271 		/* Number of bytes to copy from buffer */
1272 		n = min_t(int, len, map_bankwidth(map)-i);
1273 
1274 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1275 
1276 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1277 				       bus_ofs, tmp_buf);
1278 		if (ret)
1279 			return ret;
1280 
1281 		ofs += n;
1282 		buf += n;
1283 		(*retlen) += n;
1284 		len -= n;
1285 
1286 		if (ofs >> cfi->chipshift) {
1287 			chipnum ++;
1288 			ofs = 0;
1289 			if (chipnum == cfi->numchips)
1290 				return 0;
1291 		}
1292 	}
1293 
1294 	/* We are now aligned, write as much as possible */
1295 	while(len >= map_bankwidth(map)) {
1296 		map_word datum;
1297 
1298 		datum = map_word_load(map, buf);
1299 
1300 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1301 				       ofs, datum);
1302 		if (ret)
1303 			return ret;
1304 
1305 		ofs += map_bankwidth(map);
1306 		buf += map_bankwidth(map);
1307 		(*retlen) += map_bankwidth(map);
1308 		len -= map_bankwidth(map);
1309 
1310 		if (ofs >> cfi->chipshift) {
1311 			chipnum ++;
1312 			ofs = 0;
1313 			if (chipnum == cfi->numchips)
1314 				return 0;
1315 			chipstart = cfi->chips[chipnum].start;
1316 		}
1317 	}
1318 
1319 	/* Write the trailing bytes if any */
1320 	if (len & (map_bankwidth(map)-1)) {
1321 		map_word tmp_buf;
1322 
1323  retry1:
1324 		mutex_lock(&cfi->chips[chipnum].mutex);
1325 
1326 		if (cfi->chips[chipnum].state != FL_READY) {
1327 #if 0
1328 			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1329 #endif
1330 			set_current_state(TASK_UNINTERRUPTIBLE);
1331 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1332 
1333 			mutex_unlock(&cfi->chips[chipnum].mutex);
1334 
1335 			schedule();
1336 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1337 #if 0
1338 			if(signal_pending(current))
1339 				return -EINTR;
1340 #endif
1341 			goto retry1;
1342 		}
1343 
1344 		tmp_buf = map_read(map, ofs + chipstart);
1345 
1346 		mutex_unlock(&cfi->chips[chipnum].mutex);
1347 
1348 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1349 
1350 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1351 				ofs, tmp_buf);
1352 		if (ret)
1353 			return ret;
1354 
1355 		(*retlen) += len;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 
1362 /*
1363  * FIXME: interleaved mode not tested, and probably not supported!
1364  */
1365 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1366 				    unsigned long adr, const u_char *buf,
1367 				    int len)
1368 {
1369 	struct cfi_private *cfi = map->fldrv_priv;
1370 	unsigned long timeo = jiffies + HZ;
1371 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1372 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1373 	int ret = -EIO;
1374 	unsigned long cmd_adr;
1375 	int z, words;
1376 	map_word datum;
1377 
1378 	adr += chip->start;
1379 	cmd_adr = adr;
1380 
1381 	mutex_lock(&chip->mutex);
1382 	ret = get_chip(map, chip, adr, FL_WRITING);
1383 	if (ret) {
1384 		mutex_unlock(&chip->mutex);
1385 		return ret;
1386 	}
1387 
1388 	datum = map_word_load(map, buf);
1389 
1390 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1391 	       __func__, adr, datum.x[0] );
1392 
1393 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1394 	ENABLE_VPP(map);
1395 	xip_disable(map, chip, cmd_adr);
1396 
1397 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1398 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1399 	//cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1400 
1401 	/* Write Buffer Load */
1402 	map_write(map, CMD(0x25), cmd_adr);
1403 
1404 	chip->state = FL_WRITING_TO_BUFFER;
1405 
1406 	/* Write length of data to come */
1407 	words = len / map_bankwidth(map);
1408 	map_write(map, CMD(words - 1), cmd_adr);
1409 	/* Write data */
1410 	z = 0;
1411 	while(z < words * map_bankwidth(map)) {
1412 		datum = map_word_load(map, buf);
1413 		map_write(map, datum, adr + z);
1414 
1415 		z += map_bankwidth(map);
1416 		buf += map_bankwidth(map);
1417 	}
1418 	z -= map_bankwidth(map);
1419 
1420 	adr += z;
1421 
1422 	/* Write Buffer Program Confirm: GO GO GO */
1423 	map_write(map, CMD(0x29), cmd_adr);
1424 	chip->state = FL_WRITING;
1425 
1426 	INVALIDATE_CACHE_UDELAY(map, chip,
1427 				adr, map_bankwidth(map),
1428 				chip->word_write_time);
1429 
1430 	timeo = jiffies + uWriteTimeout;
1431 
1432 	for (;;) {
1433 		if (chip->state != FL_WRITING) {
1434 			/* Someone's suspended the write. Sleep */
1435 			DECLARE_WAITQUEUE(wait, current);
1436 
1437 			set_current_state(TASK_UNINTERRUPTIBLE);
1438 			add_wait_queue(&chip->wq, &wait);
1439 			mutex_unlock(&chip->mutex);
1440 			schedule();
1441 			remove_wait_queue(&chip->wq, &wait);
1442 			timeo = jiffies + (HZ / 2); /* FIXME */
1443 			mutex_lock(&chip->mutex);
1444 			continue;
1445 		}
1446 
1447 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1448 			break;
1449 
1450 		if (chip_ready(map, adr)) {
1451 			xip_enable(map, chip, adr);
1452 			goto op_done;
1453 		}
1454 
1455 		/* Latency issues. Drop the lock, wait a while and retry */
1456 		UDELAY(map, chip, adr, 1);
1457 	}
1458 
1459 	/* reset on all failures. */
1460 	map_write( map, CMD(0xF0), chip->start );
1461 	xip_enable(map, chip, adr);
1462 	/* FIXME - should have reset delay before continuing */
1463 
1464 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1465 	       __func__ );
1466 
1467 	ret = -EIO;
1468  op_done:
1469 	chip->state = FL_READY;
1470 	put_chip(map, chip, adr);
1471 	mutex_unlock(&chip->mutex);
1472 
1473 	return ret;
1474 }
1475 
1476 
1477 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1478 				    size_t *retlen, const u_char *buf)
1479 {
1480 	struct map_info *map = mtd->priv;
1481 	struct cfi_private *cfi = map->fldrv_priv;
1482 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1483 	int ret = 0;
1484 	int chipnum;
1485 	unsigned long ofs;
1486 
1487 	*retlen = 0;
1488 	if (!len)
1489 		return 0;
1490 
1491 	chipnum = to >> cfi->chipshift;
1492 	ofs = to  - (chipnum << cfi->chipshift);
1493 
1494 	/* If it's not bus-aligned, do the first word write */
1495 	if (ofs & (map_bankwidth(map)-1)) {
1496 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1497 		if (local_len > len)
1498 			local_len = len;
1499 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1500 					     local_len, retlen, buf);
1501 		if (ret)
1502 			return ret;
1503 		ofs += local_len;
1504 		buf += local_len;
1505 		len -= local_len;
1506 
1507 		if (ofs >> cfi->chipshift) {
1508 			chipnum ++;
1509 			ofs = 0;
1510 			if (chipnum == cfi->numchips)
1511 				return 0;
1512 		}
1513 	}
1514 
1515 	/* Write buffer is worth it only if more than one word to write... */
1516 	while (len >= map_bankwidth(map) * 2) {
1517 		/* We must not cross write block boundaries */
1518 		int size = wbufsize - (ofs & (wbufsize-1));
1519 
1520 		if (size > len)
1521 			size = len;
1522 		if (size % map_bankwidth(map))
1523 			size -= size % map_bankwidth(map);
1524 
1525 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1526 				      ofs, buf, size);
1527 		if (ret)
1528 			return ret;
1529 
1530 		ofs += size;
1531 		buf += size;
1532 		(*retlen) += size;
1533 		len -= size;
1534 
1535 		if (ofs >> cfi->chipshift) {
1536 			chipnum ++;
1537 			ofs = 0;
1538 			if (chipnum == cfi->numchips)
1539 				return 0;
1540 		}
1541 	}
1542 
1543 	if (len) {
1544 		size_t retlen_dregs = 0;
1545 
1546 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1547 					     len, &retlen_dregs, buf);
1548 
1549 		*retlen += retlen_dregs;
1550 		return ret;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 
1557 /*
1558  * Handle devices with one erase region, that only implement
1559  * the chip erase command.
1560  */
1561 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1562 {
1563 	struct cfi_private *cfi = map->fldrv_priv;
1564 	unsigned long timeo = jiffies + HZ;
1565 	unsigned long int adr;
1566 	DECLARE_WAITQUEUE(wait, current);
1567 	int ret = 0;
1568 
1569 	adr = cfi->addr_unlock1;
1570 
1571 	mutex_lock(&chip->mutex);
1572 	ret = get_chip(map, chip, adr, FL_WRITING);
1573 	if (ret) {
1574 		mutex_unlock(&chip->mutex);
1575 		return ret;
1576 	}
1577 
1578 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1579 	       __func__, chip->start );
1580 
1581 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1582 	ENABLE_VPP(map);
1583 	xip_disable(map, chip, adr);
1584 
1585 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1586 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1587 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1588 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1589 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1590 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1591 
1592 	chip->state = FL_ERASING;
1593 	chip->erase_suspended = 0;
1594 	chip->in_progress_block_addr = adr;
1595 
1596 	INVALIDATE_CACHE_UDELAY(map, chip,
1597 				adr, map->size,
1598 				chip->erase_time*500);
1599 
1600 	timeo = jiffies + (HZ*20);
1601 
1602 	for (;;) {
1603 		if (chip->state != FL_ERASING) {
1604 			/* Someone's suspended the erase. Sleep */
1605 			set_current_state(TASK_UNINTERRUPTIBLE);
1606 			add_wait_queue(&chip->wq, &wait);
1607 			mutex_unlock(&chip->mutex);
1608 			schedule();
1609 			remove_wait_queue(&chip->wq, &wait);
1610 			mutex_lock(&chip->mutex);
1611 			continue;
1612 		}
1613 		if (chip->erase_suspended) {
1614 			/* This erase was suspended and resumed.
1615 			   Adjust the timeout */
1616 			timeo = jiffies + (HZ*20); /* FIXME */
1617 			chip->erase_suspended = 0;
1618 		}
1619 
1620 		if (chip_ready(map, adr))
1621 			break;
1622 
1623 		if (time_after(jiffies, timeo)) {
1624 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1625 				__func__ );
1626 			break;
1627 		}
1628 
1629 		/* Latency issues. Drop the lock, wait a while and retry */
1630 		UDELAY(map, chip, adr, 1000000/HZ);
1631 	}
1632 	/* Did we succeed? */
1633 	if (!chip_good(map, adr, map_word_ff(map))) {
1634 		/* reset on all failures. */
1635 		map_write( map, CMD(0xF0), chip->start );
1636 		/* FIXME - should have reset delay before continuing */
1637 
1638 		ret = -EIO;
1639 	}
1640 
1641 	chip->state = FL_READY;
1642 	xip_enable(map, chip, adr);
1643 	put_chip(map, chip, adr);
1644 	mutex_unlock(&chip->mutex);
1645 
1646 	return ret;
1647 }
1648 
1649 
1650 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1651 {
1652 	struct cfi_private *cfi = map->fldrv_priv;
1653 	unsigned long timeo = jiffies + HZ;
1654 	DECLARE_WAITQUEUE(wait, current);
1655 	int ret = 0;
1656 
1657 	adr += chip->start;
1658 
1659 	mutex_lock(&chip->mutex);
1660 	ret = get_chip(map, chip, adr, FL_ERASING);
1661 	if (ret) {
1662 		mutex_unlock(&chip->mutex);
1663 		return ret;
1664 	}
1665 
1666 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1667 	       __func__, adr );
1668 
1669 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1670 	ENABLE_VPP(map);
1671 	xip_disable(map, chip, adr);
1672 
1673 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1674 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1675 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1676 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1677 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1678 	map_write(map, CMD(0x30), adr);
1679 
1680 	chip->state = FL_ERASING;
1681 	chip->erase_suspended = 0;
1682 	chip->in_progress_block_addr = adr;
1683 
1684 	INVALIDATE_CACHE_UDELAY(map, chip,
1685 				adr, len,
1686 				chip->erase_time*500);
1687 
1688 	timeo = jiffies + (HZ*20);
1689 
1690 	for (;;) {
1691 		if (chip->state != FL_ERASING) {
1692 			/* Someone's suspended the erase. Sleep */
1693 			set_current_state(TASK_UNINTERRUPTIBLE);
1694 			add_wait_queue(&chip->wq, &wait);
1695 			mutex_unlock(&chip->mutex);
1696 			schedule();
1697 			remove_wait_queue(&chip->wq, &wait);
1698 			mutex_lock(&chip->mutex);
1699 			continue;
1700 		}
1701 		if (chip->erase_suspended) {
1702 			/* This erase was suspended and resumed.
1703 			   Adjust the timeout */
1704 			timeo = jiffies + (HZ*20); /* FIXME */
1705 			chip->erase_suspended = 0;
1706 		}
1707 
1708 		if (chip_ready(map, adr)) {
1709 			xip_enable(map, chip, adr);
1710 			break;
1711 		}
1712 
1713 		if (time_after(jiffies, timeo)) {
1714 			xip_enable(map, chip, adr);
1715 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1716 				__func__ );
1717 			break;
1718 		}
1719 
1720 		/* Latency issues. Drop the lock, wait a while and retry */
1721 		UDELAY(map, chip, adr, 1000000/HZ);
1722 	}
1723 	/* Did we succeed? */
1724 	if (!chip_good(map, adr, map_word_ff(map))) {
1725 		/* reset on all failures. */
1726 		map_write( map, CMD(0xF0), chip->start );
1727 		/* FIXME - should have reset delay before continuing */
1728 
1729 		ret = -EIO;
1730 	}
1731 
1732 	chip->state = FL_READY;
1733 	put_chip(map, chip, adr);
1734 	mutex_unlock(&chip->mutex);
1735 	return ret;
1736 }
1737 
1738 
1739 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1740 {
1741 	unsigned long ofs, len;
1742 	int ret;
1743 
1744 	ofs = instr->addr;
1745 	len = instr->len;
1746 
1747 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1748 	if (ret)
1749 		return ret;
1750 
1751 	instr->state = MTD_ERASE_DONE;
1752 	mtd_erase_callback(instr);
1753 
1754 	return 0;
1755 }
1756 
1757 
1758 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1759 {
1760 	struct map_info *map = mtd->priv;
1761 	struct cfi_private *cfi = map->fldrv_priv;
1762 	int ret = 0;
1763 
1764 	if (instr->addr != 0)
1765 		return -EINVAL;
1766 
1767 	if (instr->len != mtd->size)
1768 		return -EINVAL;
1769 
1770 	ret = do_erase_chip(map, &cfi->chips[0]);
1771 	if (ret)
1772 		return ret;
1773 
1774 	instr->state = MTD_ERASE_DONE;
1775 	mtd_erase_callback(instr);
1776 
1777 	return 0;
1778 }
1779 
1780 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1781 			 unsigned long adr, int len, void *thunk)
1782 {
1783 	struct cfi_private *cfi = map->fldrv_priv;
1784 	int ret;
1785 
1786 	mutex_lock(&chip->mutex);
1787 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1788 	if (ret)
1789 		goto out_unlock;
1790 	chip->state = FL_LOCKING;
1791 
1792 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1793 	      __func__, adr, len);
1794 
1795 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1796 			 cfi->device_type, NULL);
1797 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1798 			 cfi->device_type, NULL);
1799 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1800 			 cfi->device_type, NULL);
1801 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1802 			 cfi->device_type, NULL);
1803 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1804 			 cfi->device_type, NULL);
1805 	map_write(map, CMD(0x40), chip->start + adr);
1806 
1807 	chip->state = FL_READY;
1808 	put_chip(map, chip, adr + chip->start);
1809 	ret = 0;
1810 
1811 out_unlock:
1812 	mutex_unlock(&chip->mutex);
1813 	return ret;
1814 }
1815 
1816 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1817 			   unsigned long adr, int len, void *thunk)
1818 {
1819 	struct cfi_private *cfi = map->fldrv_priv;
1820 	int ret;
1821 
1822 	mutex_lock(&chip->mutex);
1823 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1824 	if (ret)
1825 		goto out_unlock;
1826 	chip->state = FL_UNLOCKING;
1827 
1828 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1829 	      __func__, adr, len);
1830 
1831 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1832 			 cfi->device_type, NULL);
1833 	map_write(map, CMD(0x70), adr);
1834 
1835 	chip->state = FL_READY;
1836 	put_chip(map, chip, adr + chip->start);
1837 	ret = 0;
1838 
1839 out_unlock:
1840 	mutex_unlock(&chip->mutex);
1841 	return ret;
1842 }
1843 
1844 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1845 {
1846 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1847 }
1848 
1849 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1850 {
1851 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1852 }
1853 
1854 
1855 static void cfi_amdstd_sync (struct mtd_info *mtd)
1856 {
1857 	struct map_info *map = mtd->priv;
1858 	struct cfi_private *cfi = map->fldrv_priv;
1859 	int i;
1860 	struct flchip *chip;
1861 	int ret = 0;
1862 	DECLARE_WAITQUEUE(wait, current);
1863 
1864 	for (i=0; !ret && i<cfi->numchips; i++) {
1865 		chip = &cfi->chips[i];
1866 
1867 	retry:
1868 		mutex_lock(&chip->mutex);
1869 
1870 		switch(chip->state) {
1871 		case FL_READY:
1872 		case FL_STATUS:
1873 		case FL_CFI_QUERY:
1874 		case FL_JEDEC_QUERY:
1875 			chip->oldstate = chip->state;
1876 			chip->state = FL_SYNCING;
1877 			/* No need to wake_up() on this state change -
1878 			 * as the whole point is that nobody can do anything
1879 			 * with the chip now anyway.
1880 			 */
1881 		case FL_SYNCING:
1882 			mutex_unlock(&chip->mutex);
1883 			break;
1884 
1885 		default:
1886 			/* Not an idle state */
1887 			set_current_state(TASK_UNINTERRUPTIBLE);
1888 			add_wait_queue(&chip->wq, &wait);
1889 
1890 			mutex_unlock(&chip->mutex);
1891 
1892 			schedule();
1893 
1894 			remove_wait_queue(&chip->wq, &wait);
1895 
1896 			goto retry;
1897 		}
1898 	}
1899 
1900 	/* Unlock the chips again */
1901 
1902 	for (i--; i >=0; i--) {
1903 		chip = &cfi->chips[i];
1904 
1905 		mutex_lock(&chip->mutex);
1906 
1907 		if (chip->state == FL_SYNCING) {
1908 			chip->state = chip->oldstate;
1909 			wake_up(&chip->wq);
1910 		}
1911 		mutex_unlock(&chip->mutex);
1912 	}
1913 }
1914 
1915 
1916 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1917 {
1918 	struct map_info *map = mtd->priv;
1919 	struct cfi_private *cfi = map->fldrv_priv;
1920 	int i;
1921 	struct flchip *chip;
1922 	int ret = 0;
1923 
1924 	for (i=0; !ret && i<cfi->numchips; i++) {
1925 		chip = &cfi->chips[i];
1926 
1927 		mutex_lock(&chip->mutex);
1928 
1929 		switch(chip->state) {
1930 		case FL_READY:
1931 		case FL_STATUS:
1932 		case FL_CFI_QUERY:
1933 		case FL_JEDEC_QUERY:
1934 			chip->oldstate = chip->state;
1935 			chip->state = FL_PM_SUSPENDED;
1936 			/* No need to wake_up() on this state change -
1937 			 * as the whole point is that nobody can do anything
1938 			 * with the chip now anyway.
1939 			 */
1940 		case FL_PM_SUSPENDED:
1941 			break;
1942 
1943 		default:
1944 			ret = -EAGAIN;
1945 			break;
1946 		}
1947 		mutex_unlock(&chip->mutex);
1948 	}
1949 
1950 	/* Unlock the chips again */
1951 
1952 	if (ret) {
1953 		for (i--; i >=0; i--) {
1954 			chip = &cfi->chips[i];
1955 
1956 			mutex_lock(&chip->mutex);
1957 
1958 			if (chip->state == FL_PM_SUSPENDED) {
1959 				chip->state = chip->oldstate;
1960 				wake_up(&chip->wq);
1961 			}
1962 			mutex_unlock(&chip->mutex);
1963 		}
1964 	}
1965 
1966 	return ret;
1967 }
1968 
1969 
1970 static void cfi_amdstd_resume(struct mtd_info *mtd)
1971 {
1972 	struct map_info *map = mtd->priv;
1973 	struct cfi_private *cfi = map->fldrv_priv;
1974 	int i;
1975 	struct flchip *chip;
1976 
1977 	for (i=0; i<cfi->numchips; i++) {
1978 
1979 		chip = &cfi->chips[i];
1980 
1981 		mutex_lock(&chip->mutex);
1982 
1983 		if (chip->state == FL_PM_SUSPENDED) {
1984 			chip->state = FL_READY;
1985 			map_write(map, CMD(0xF0), chip->start);
1986 			wake_up(&chip->wq);
1987 		}
1988 		else
1989 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1990 
1991 		mutex_unlock(&chip->mutex);
1992 	}
1993 }
1994 
1995 
1996 /*
1997  * Ensure that the flash device is put back into read array mode before
1998  * unloading the driver or rebooting.  On some systems, rebooting while
1999  * the flash is in query/program/erase mode will prevent the CPU from
2000  * fetching the bootloader code, requiring a hard reset or power cycle.
2001  */
2002 static int cfi_amdstd_reset(struct mtd_info *mtd)
2003 {
2004 	struct map_info *map = mtd->priv;
2005 	struct cfi_private *cfi = map->fldrv_priv;
2006 	int i, ret;
2007 	struct flchip *chip;
2008 
2009 	for (i = 0; i < cfi->numchips; i++) {
2010 
2011 		chip = &cfi->chips[i];
2012 
2013 		mutex_lock(&chip->mutex);
2014 
2015 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2016 		if (!ret) {
2017 			map_write(map, CMD(0xF0), chip->start);
2018 			chip->state = FL_SHUTDOWN;
2019 			put_chip(map, chip, chip->start);
2020 		}
2021 
2022 		mutex_unlock(&chip->mutex);
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 
2029 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2030 			       void *v)
2031 {
2032 	struct mtd_info *mtd;
2033 
2034 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2035 	cfi_amdstd_reset(mtd);
2036 	return NOTIFY_DONE;
2037 }
2038 
2039 
2040 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2041 {
2042 	struct map_info *map = mtd->priv;
2043 	struct cfi_private *cfi = map->fldrv_priv;
2044 
2045 	cfi_amdstd_reset(mtd);
2046 	unregister_reboot_notifier(&mtd->reboot_notifier);
2047 	kfree(cfi->cmdset_priv);
2048 	kfree(cfi->cfiq);
2049 	kfree(cfi);
2050 	kfree(mtd->eraseregions);
2051 }
2052 
2053 MODULE_LICENSE("GPL");
2054 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2055 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2056 MODULE_ALIAS("cfi_cmdset_0006");
2057 MODULE_ALIAS("cfi_cmdset_0701");
2058