xref: /linux/drivers/mtd/chips/cfi_cmdset_0002.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static void cfi_amdstd_destroy(struct mtd_info *);
63 
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66 
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70 
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73 
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 	.probe		= NULL, /* Not usable directly */
76 	.destroy	= cfi_amdstd_destroy,
77 	.name		= "cfi_cmdset_0002",
78 	.module		= THIS_MODULE
79 };
80 
81 
82 /* #define DEBUG_CFI_FEATURES */
83 
84 
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 	const char* erase_suspend[3] = {
89 		"Not supported", "Read only", "Read/write"
90 	};
91 	const char* top_bottom[6] = {
92 		"No WP", "8x8KiB sectors at top & bottom, no WP",
93 		"Bottom boot", "Top boot",
94 		"Uniform, Bottom WP", "Uniform, Top WP"
95 	};
96 
97 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 	printk("  Address sensitive unlock: %s\n",
99 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
100 
101 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 	else
104 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105 
106 	if (extp->BlkProt == 0)
107 		printk("  Block protection: Not supported\n");
108 	else
109 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
110 
111 
112 	printk("  Temporary block unprotect: %s\n",
113 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 	printk("  Burst mode: %s\n",
117 	       extp->BurstMode ? "Supported" : "Not supported");
118 	if (extp->PageMode == 0)
119 		printk("  Page mode: Not supported\n");
120 	else
121 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
122 
123 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 	       extp->VppMin >> 4, extp->VppMin & 0xf);
125 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 	       extp->VppMax >> 4, extp->VppMax & 0xf);
127 
128 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 	else
131 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134 
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd)
138 {
139 	struct map_info *map = mtd->priv;
140 	struct cfi_private *cfi = map->fldrv_priv;
141 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 	__u8 major = extp->MajorVersion;
143 	__u8 minor = extp->MinorVersion;
144 
145 	if (((major << 8) | minor) < 0x3131) {
146 		/* CFI version 1.0 => don't trust bootloc */
147 
148 		DEBUG(MTD_DEBUG_LEVEL1,
149 			"%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 			map->name, cfi->mfr, cfi->id);
151 
152 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
153 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 		 * These were badly detected as they have the 0x80 bit set
155 		 * so treat them as a special case.
156 		 */
157 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158 
159 			/* Macronix added CFI to their 2nd generation
160 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 			 * has CFI.
163 			 *
164 			 * Therefore also check the manufacturer.
165 			 * This reduces the risk of false detection due to
166 			 * the 8-bit device ID.
167 			 */
168 			(cfi->mfr == CFI_MFR_MACRONIX)) {
169 			DEBUG(MTD_DEBUG_LEVEL1,
170 				"%s: Macronix MX29LV400C with bottom boot block"
171 				" detected\n", map->name);
172 			extp->TopBottom = 2;	/* bottom boot */
173 		} else
174 		if (cfi->id & 0x80) {
175 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 			extp->TopBottom = 3;	/* top boot */
177 		} else {
178 			extp->TopBottom = 2;	/* bottom boot */
179 		}
180 
181 		DEBUG(MTD_DEBUG_LEVEL1,
182 			"%s: AMD CFI PRI V%c.%c has no boot block field;"
183 			" deduced %s from Device ID\n", map->name, major, minor,
184 			extp->TopBottom == 2 ? "bottom" : "top");
185 	}
186 }
187 #endif
188 
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 	struct map_info *map = mtd->priv;
192 	struct cfi_private *cfi = map->fldrv_priv;
193 	if (cfi->cfiq->BufWriteTimeoutTyp) {
194 		DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 		mtd->write = cfi_amdstd_write_buffers;
196 	}
197 }
198 
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 	struct map_info *map = mtd->priv;
203 	struct cfi_private *cfi = map->fldrv_priv;
204 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 	struct cfi_pri_atmel atmel_pri;
206 
207 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209 
210 	if (atmel_pri.Features & 0x02)
211 		extp->EraseSuspend = 2;
212 
213 	/* Some chips got it backwards... */
214 	if (cfi->id == AT49BV6416) {
215 		if (atmel_pri.BottomBoot)
216 			extp->TopBottom = 3;
217 		else
218 			extp->TopBottom = 2;
219 	} else {
220 		if (atmel_pri.BottomBoot)
221 			extp->TopBottom = 2;
222 		else
223 			extp->TopBottom = 3;
224 	}
225 
226 	/* burst write mode not supported */
227 	cfi->cfiq->BufWriteTimeoutTyp = 0;
228 	cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230 
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 	/* Setup for chips with a secsi area */
234 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237 
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 	struct map_info *map = mtd->priv;
241 	struct cfi_private *cfi = map->fldrv_priv;
242 	if ((cfi->cfiq->NumEraseRegions == 1) &&
243 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 		mtd->erase = cfi_amdstd_erase_chip;
245 	}
246 
247 }
248 
249 /*
250  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251  * locked by default.
252  */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 	mtd->lock = cfi_atmel_lock;
256 	mtd->unlock = cfi_atmel_unlock;
257 	mtd->flags |= MTD_POWERUP_LOCK;
258 }
259 
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 	struct map_info *map = mtd->priv;
263 	struct cfi_private *cfi = map->fldrv_priv;
264 
265 	/*
266 	 * These flashes report two separate eraseblock regions based on the
267 	 * sector_erase-size and block_erase-size, although they both operate on the
268 	 * same memory. This is not allowed according to CFI, so we just pick the
269 	 * sector_erase-size.
270 	 */
271 	cfi->cfiq->NumEraseRegions = 1;
272 }
273 
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	fixup_old_sst_eraseregion(mtd);
280 
281 	cfi->addr_unlock1 = 0x5555;
282 	cfi->addr_unlock2 = 0x2AAA;
283 }
284 
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 
290 	fixup_old_sst_eraseregion(mtd);
291 
292 	cfi->addr_unlock1 = 0x555;
293 	cfi->addr_unlock2 = 0x2AA;
294 
295 	cfi->sector_erase_cmd = CMD(0x50);
296 }
297 
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 	struct map_info *map = mtd->priv;
301 	struct cfi_private *cfi = map->fldrv_priv;
302 
303 	fixup_sst39vf_rev_b(mtd);
304 
305 	/*
306 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 	 * it should report a size of 8KBytes (0x0020*256).
308 	 */
309 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312 
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 	struct map_info *map = mtd->priv;
316 	struct cfi_private *cfi = map->fldrv_priv;
317 
318 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 	}
322 }
323 
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 	struct map_info *map = mtd->priv;
327 	struct cfi_private *cfi = map->fldrv_priv;
328 
329 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 	}
333 }
334 
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table[] = {
337 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 	{ 0, 0, NULL }
346 };
347 
348 static struct cfi_fixup cfi_fixup_table[] = {
349 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
350 #ifdef AMD_BOOTLOC_BUG
351 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
352 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
353 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
354 #endif
355 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
356 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
357 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
358 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
359 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
360 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
361 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
362 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
363 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
364 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
365 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
366 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
367 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
368 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
369 #if !FORCE_WORD_WRITE
370 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
371 #endif
372 	{ 0, 0, NULL }
373 };
374 static struct cfi_fixup jedec_fixup_table[] = {
375 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
376 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
377 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
378 	{ 0, 0, NULL }
379 };
380 
381 static struct cfi_fixup fixup_table[] = {
382 	/* The CFI vendor ids and the JEDEC vendor IDs appear
383 	 * to be common.  It is like the devices id's are as
384 	 * well.  This table is to pick all cases where
385 	 * we know that is the case.
386 	 */
387 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
388 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
389 	{ 0, 0, NULL }
390 };
391 
392 
393 static void cfi_fixup_major_minor(struct cfi_private *cfi,
394 				  struct cfi_pri_amdstd *extp)
395 {
396 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
397 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
398 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
399 			/*
400 			 * Samsung K8P2815UQB and K8D6x16UxM chips
401 			 * report major=0 / minor=0.
402 			 * K8D3x16UxC chips report major=3 / minor=3.
403 			 */
404 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
405 			       " Extended Query version to 1.%c\n",
406 			       extp->MinorVersion);
407 			extp->MajorVersion = '1';
408 		}
409 	}
410 
411 	/*
412 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
413 	 */
414 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
415 		extp->MajorVersion = '1';
416 		extp->MinorVersion = '0';
417 	}
418 }
419 
420 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
421 {
422 	struct cfi_private *cfi = map->fldrv_priv;
423 	struct mtd_info *mtd;
424 	int i;
425 
426 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
427 	if (!mtd) {
428 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
429 		return NULL;
430 	}
431 	mtd->priv = map;
432 	mtd->type = MTD_NORFLASH;
433 
434 	/* Fill in the default mtd operations */
435 	mtd->erase   = cfi_amdstd_erase_varsize;
436 	mtd->write   = cfi_amdstd_write_words;
437 	mtd->read    = cfi_amdstd_read;
438 	mtd->sync    = cfi_amdstd_sync;
439 	mtd->suspend = cfi_amdstd_suspend;
440 	mtd->resume  = cfi_amdstd_resume;
441 	mtd->flags   = MTD_CAP_NORFLASH;
442 	mtd->name    = map->name;
443 	mtd->writesize = 1;
444 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
445 
446 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): write buffer size %d\n",
447 		__func__, mtd->writebufsize);
448 
449 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
450 
451 	if (cfi->cfi_mode==CFI_MODE_CFI){
452 		unsigned char bootloc;
453 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
454 		struct cfi_pri_amdstd *extp;
455 
456 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
457 		if (extp) {
458 			/*
459 			 * It's a real CFI chip, not one for which the probe
460 			 * routine faked a CFI structure.
461 			 */
462 			cfi_fixup_major_minor(cfi, extp);
463 
464 			/*
465 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4
466 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
467 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
468 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
469 			 */
470 			if (extp->MajorVersion != '1' ||
471 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '4'))) {
472 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
473 				       "version %c.%c (%#02x/%#02x).\n",
474 				       extp->MajorVersion, extp->MinorVersion,
475 				       extp->MajorVersion, extp->MinorVersion);
476 				kfree(extp);
477 				kfree(mtd);
478 				return NULL;
479 			}
480 
481 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
482 			       extp->MajorVersion, extp->MinorVersion);
483 
484 			/* Install our own private info structure */
485 			cfi->cmdset_priv = extp;
486 
487 			/* Apply cfi device specific fixups */
488 			cfi_fixup(mtd, cfi_fixup_table);
489 
490 #ifdef DEBUG_CFI_FEATURES
491 			/* Tell the user about it in lots of lovely detail */
492 			cfi_tell_features(extp);
493 #endif
494 
495 			bootloc = extp->TopBottom;
496 			if ((bootloc < 2) || (bootloc > 5)) {
497 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
498 				       "bank location (%d). Assuming bottom.\n",
499 				       map->name, bootloc);
500 				bootloc = 2;
501 			}
502 
503 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
504 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
505 
506 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
507 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
508 					__u32 swap;
509 
510 					swap = cfi->cfiq->EraseRegionInfo[i];
511 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
512 					cfi->cfiq->EraseRegionInfo[j] = swap;
513 				}
514 			}
515 			/* Set the default CFI lock/unlock addresses */
516 			cfi->addr_unlock1 = 0x555;
517 			cfi->addr_unlock2 = 0x2aa;
518 		}
519 		cfi_fixup(mtd, cfi_nopri_fixup_table);
520 
521 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
522 			kfree(mtd);
523 			return NULL;
524 		}
525 
526 	} /* CFI mode */
527 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
528 		/* Apply jedec specific fixups */
529 		cfi_fixup(mtd, jedec_fixup_table);
530 	}
531 	/* Apply generic fixups */
532 	cfi_fixup(mtd, fixup_table);
533 
534 	for (i=0; i< cfi->numchips; i++) {
535 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
536 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
537 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
538 		cfi->chips[i].ref_point_counter = 0;
539 		init_waitqueue_head(&(cfi->chips[i].wq));
540 	}
541 
542 	map->fldrv = &cfi_amdstd_chipdrv;
543 
544 	return cfi_amdstd_setup(mtd);
545 }
546 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
547 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
550 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
551 
552 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
553 {
554 	struct map_info *map = mtd->priv;
555 	struct cfi_private *cfi = map->fldrv_priv;
556 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
557 	unsigned long offset = 0;
558 	int i,j;
559 
560 	printk(KERN_NOTICE "number of %s chips: %d\n",
561 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
562 	/* Select the correct geometry setup */
563 	mtd->size = devsize * cfi->numchips;
564 
565 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
566 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
567 				    * mtd->numeraseregions, GFP_KERNEL);
568 	if (!mtd->eraseregions) {
569 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
570 		goto setup_err;
571 	}
572 
573 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
574 		unsigned long ernum, ersize;
575 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
576 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
577 
578 		if (mtd->erasesize < ersize) {
579 			mtd->erasesize = ersize;
580 		}
581 		for (j=0; j<cfi->numchips; j++) {
582 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
583 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
584 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
585 		}
586 		offset += (ersize * ernum);
587 	}
588 	if (offset != devsize) {
589 		/* Argh */
590 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
591 		goto setup_err;
592 	}
593 
594 	__module_get(THIS_MODULE);
595 	register_reboot_notifier(&mtd->reboot_notifier);
596 	return mtd;
597 
598  setup_err:
599 	kfree(mtd->eraseregions);
600 	kfree(mtd);
601 	kfree(cfi->cmdset_priv);
602 	kfree(cfi->cfiq);
603 	return NULL;
604 }
605 
606 /*
607  * Return true if the chip is ready.
608  *
609  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
610  * non-suspended sector) and is indicated by no toggle bits toggling.
611  *
612  * Note that anything more complicated than checking if no bits are toggling
613  * (including checking DQ5 for an error status) is tricky to get working
614  * correctly and is therefore not done	(particularly with interleaved chips
615  * as each chip must be checked independently of the others).
616  */
617 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
618 {
619 	map_word d, t;
620 
621 	d = map_read(map, addr);
622 	t = map_read(map, addr);
623 
624 	return map_word_equal(map, d, t);
625 }
626 
627 /*
628  * Return true if the chip is ready and has the correct value.
629  *
630  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
631  * non-suspended sector) and it is indicated by no bits toggling.
632  *
633  * Error are indicated by toggling bits or bits held with the wrong value,
634  * or with bits toggling.
635  *
636  * Note that anything more complicated than checking if no bits are toggling
637  * (including checking DQ5 for an error status) is tricky to get working
638  * correctly and is therefore not done	(particularly with interleaved chips
639  * as each chip must be checked independently of the others).
640  *
641  */
642 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
643 {
644 	map_word oldd, curd;
645 
646 	oldd = map_read(map, addr);
647 	curd = map_read(map, addr);
648 
649 	return	map_word_equal(map, oldd, curd) &&
650 		map_word_equal(map, curd, expected);
651 }
652 
653 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
654 {
655 	DECLARE_WAITQUEUE(wait, current);
656 	struct cfi_private *cfi = map->fldrv_priv;
657 	unsigned long timeo;
658 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
659 
660  resettime:
661 	timeo = jiffies + HZ;
662  retry:
663 	switch (chip->state) {
664 
665 	case FL_STATUS:
666 		for (;;) {
667 			if (chip_ready(map, adr))
668 				break;
669 
670 			if (time_after(jiffies, timeo)) {
671 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
672 				return -EIO;
673 			}
674 			mutex_unlock(&chip->mutex);
675 			cfi_udelay(1);
676 			mutex_lock(&chip->mutex);
677 			/* Someone else might have been playing with it. */
678 			goto retry;
679 		}
680 
681 	case FL_READY:
682 	case FL_CFI_QUERY:
683 	case FL_JEDEC_QUERY:
684 		return 0;
685 
686 	case FL_ERASING:
687 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
688 		    !(mode == FL_READY || mode == FL_POINT ||
689 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
690 			goto sleep;
691 
692 		/* We could check to see if we're trying to access the sector
693 		 * that is currently being erased. However, no user will try
694 		 * anything like that so we just wait for the timeout. */
695 
696 		/* Erase suspend */
697 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
698 		 * commands when the erase algorithm isn't in progress. */
699 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
700 		chip->oldstate = FL_ERASING;
701 		chip->state = FL_ERASE_SUSPENDING;
702 		chip->erase_suspended = 1;
703 		for (;;) {
704 			if (chip_ready(map, adr))
705 				break;
706 
707 			if (time_after(jiffies, timeo)) {
708 				/* Should have suspended the erase by now.
709 				 * Send an Erase-Resume command as either
710 				 * there was an error (so leave the erase
711 				 * routine to recover from it) or we trying to
712 				 * use the erase-in-progress sector. */
713 				map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
714 				chip->state = FL_ERASING;
715 				chip->oldstate = FL_READY;
716 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
717 				return -EIO;
718 			}
719 
720 			mutex_unlock(&chip->mutex);
721 			cfi_udelay(1);
722 			mutex_lock(&chip->mutex);
723 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
724 			   So we can just loop here. */
725 		}
726 		chip->state = FL_READY;
727 		return 0;
728 
729 	case FL_XIP_WHILE_ERASING:
730 		if (mode != FL_READY && mode != FL_POINT &&
731 		    (!cfip || !(cfip->EraseSuspend&2)))
732 			goto sleep;
733 		chip->oldstate = chip->state;
734 		chip->state = FL_READY;
735 		return 0;
736 
737 	case FL_SHUTDOWN:
738 		/* The machine is rebooting */
739 		return -EIO;
740 
741 	case FL_POINT:
742 		/* Only if there's no operation suspended... */
743 		if (mode == FL_READY && chip->oldstate == FL_READY)
744 			return 0;
745 
746 	default:
747 	sleep:
748 		set_current_state(TASK_UNINTERRUPTIBLE);
749 		add_wait_queue(&chip->wq, &wait);
750 		mutex_unlock(&chip->mutex);
751 		schedule();
752 		remove_wait_queue(&chip->wq, &wait);
753 		mutex_lock(&chip->mutex);
754 		goto resettime;
755 	}
756 }
757 
758 
759 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
760 {
761 	struct cfi_private *cfi = map->fldrv_priv;
762 
763 	switch(chip->oldstate) {
764 	case FL_ERASING:
765 		chip->state = chip->oldstate;
766 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
767 		chip->oldstate = FL_READY;
768 		chip->state = FL_ERASING;
769 		break;
770 
771 	case FL_XIP_WHILE_ERASING:
772 		chip->state = chip->oldstate;
773 		chip->oldstate = FL_READY;
774 		break;
775 
776 	case FL_READY:
777 	case FL_STATUS:
778 		/* We should really make set_vpp() count, rather than doing this */
779 		DISABLE_VPP(map);
780 		break;
781 	default:
782 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
783 	}
784 	wake_up(&chip->wq);
785 }
786 
787 #ifdef CONFIG_MTD_XIP
788 
789 /*
790  * No interrupt what so ever can be serviced while the flash isn't in array
791  * mode.  This is ensured by the xip_disable() and xip_enable() functions
792  * enclosing any code path where the flash is known not to be in array mode.
793  * And within a XIP disabled code path, only functions marked with __xipram
794  * may be called and nothing else (it's a good thing to inspect generated
795  * assembly to make sure inline functions were actually inlined and that gcc
796  * didn't emit calls to its own support functions). Also configuring MTD CFI
797  * support to a single buswidth and a single interleave is also recommended.
798  */
799 
800 static void xip_disable(struct map_info *map, struct flchip *chip,
801 			unsigned long adr)
802 {
803 	/* TODO: chips with no XIP use should ignore and return */
804 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
805 	local_irq_disable();
806 }
807 
808 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
809 				unsigned long adr)
810 {
811 	struct cfi_private *cfi = map->fldrv_priv;
812 
813 	if (chip->state != FL_POINT && chip->state != FL_READY) {
814 		map_write(map, CMD(0xf0), adr);
815 		chip->state = FL_READY;
816 	}
817 	(void) map_read(map, adr);
818 	xip_iprefetch();
819 	local_irq_enable();
820 }
821 
822 /*
823  * When a delay is required for the flash operation to complete, the
824  * xip_udelay() function is polling for both the given timeout and pending
825  * (but still masked) hardware interrupts.  Whenever there is an interrupt
826  * pending then the flash erase operation is suspended, array mode restored
827  * and interrupts unmasked.  Task scheduling might also happen at that
828  * point.  The CPU eventually returns from the interrupt or the call to
829  * schedule() and the suspended flash operation is resumed for the remaining
830  * of the delay period.
831  *
832  * Warning: this function _will_ fool interrupt latency tracing tools.
833  */
834 
835 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
836 				unsigned long adr, int usec)
837 {
838 	struct cfi_private *cfi = map->fldrv_priv;
839 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
840 	map_word status, OK = CMD(0x80);
841 	unsigned long suspended, start = xip_currtime();
842 	flstate_t oldstate;
843 
844 	do {
845 		cpu_relax();
846 		if (xip_irqpending() && extp &&
847 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
848 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
849 			/*
850 			 * Let's suspend the erase operation when supported.
851 			 * Note that we currently don't try to suspend
852 			 * interleaved chips if there is already another
853 			 * operation suspended (imagine what happens
854 			 * when one chip was already done with the current
855 			 * operation while another chip suspended it, then
856 			 * we resume the whole thing at once).  Yes, it
857 			 * can happen!
858 			 */
859 			map_write(map, CMD(0xb0), adr);
860 			usec -= xip_elapsed_since(start);
861 			suspended = xip_currtime();
862 			do {
863 				if (xip_elapsed_since(suspended) > 100000) {
864 					/*
865 					 * The chip doesn't want to suspend
866 					 * after waiting for 100 msecs.
867 					 * This is a critical error but there
868 					 * is not much we can do here.
869 					 */
870 					return;
871 				}
872 				status = map_read(map, adr);
873 			} while (!map_word_andequal(map, status, OK, OK));
874 
875 			/* Suspend succeeded */
876 			oldstate = chip->state;
877 			if (!map_word_bitsset(map, status, CMD(0x40)))
878 				break;
879 			chip->state = FL_XIP_WHILE_ERASING;
880 			chip->erase_suspended = 1;
881 			map_write(map, CMD(0xf0), adr);
882 			(void) map_read(map, adr);
883 			xip_iprefetch();
884 			local_irq_enable();
885 			mutex_unlock(&chip->mutex);
886 			xip_iprefetch();
887 			cond_resched();
888 
889 			/*
890 			 * We're back.  However someone else might have
891 			 * decided to go write to the chip if we are in
892 			 * a suspended erase state.  If so let's wait
893 			 * until it's done.
894 			 */
895 			mutex_lock(&chip->mutex);
896 			while (chip->state != FL_XIP_WHILE_ERASING) {
897 				DECLARE_WAITQUEUE(wait, current);
898 				set_current_state(TASK_UNINTERRUPTIBLE);
899 				add_wait_queue(&chip->wq, &wait);
900 				mutex_unlock(&chip->mutex);
901 				schedule();
902 				remove_wait_queue(&chip->wq, &wait);
903 				mutex_lock(&chip->mutex);
904 			}
905 			/* Disallow XIP again */
906 			local_irq_disable();
907 
908 			/* Resume the write or erase operation */
909 			map_write(map, cfi->sector_erase_cmd, adr);
910 			chip->state = oldstate;
911 			start = xip_currtime();
912 		} else if (usec >= 1000000/HZ) {
913 			/*
914 			 * Try to save on CPU power when waiting delay
915 			 * is at least a system timer tick period.
916 			 * No need to be extremely accurate here.
917 			 */
918 			xip_cpu_idle();
919 		}
920 		status = map_read(map, adr);
921 	} while (!map_word_andequal(map, status, OK, OK)
922 		 && xip_elapsed_since(start) < usec);
923 }
924 
925 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
926 
927 /*
928  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
929  * the flash is actively programming or erasing since we have to poll for
930  * the operation to complete anyway.  We can't do that in a generic way with
931  * a XIP setup so do it before the actual flash operation in this case
932  * and stub it out from INVALIDATE_CACHE_UDELAY.
933  */
934 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
935 	INVALIDATE_CACHED_RANGE(map, from, size)
936 
937 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
938 	UDELAY(map, chip, adr, usec)
939 
940 /*
941  * Extra notes:
942  *
943  * Activating this XIP support changes the way the code works a bit.  For
944  * example the code to suspend the current process when concurrent access
945  * happens is never executed because xip_udelay() will always return with the
946  * same chip state as it was entered with.  This is why there is no care for
947  * the presence of add_wait_queue() or schedule() calls from within a couple
948  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
949  * The queueing and scheduling are always happening within xip_udelay().
950  *
951  * Similarly, get_chip() and put_chip() just happen to always be executed
952  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
953  * is in array mode, therefore never executing many cases therein and not
954  * causing any problem with XIP.
955  */
956 
957 #else
958 
959 #define xip_disable(map, chip, adr)
960 #define xip_enable(map, chip, adr)
961 #define XIP_INVAL_CACHED_RANGE(x...)
962 
963 #define UDELAY(map, chip, adr, usec)  \
964 do {  \
965 	mutex_unlock(&chip->mutex);  \
966 	cfi_udelay(usec);  \
967 	mutex_lock(&chip->mutex);  \
968 } while (0)
969 
970 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
971 do {  \
972 	mutex_unlock(&chip->mutex);  \
973 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
974 	cfi_udelay(usec);  \
975 	mutex_lock(&chip->mutex);  \
976 } while (0)
977 
978 #endif
979 
980 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
981 {
982 	unsigned long cmd_addr;
983 	struct cfi_private *cfi = map->fldrv_priv;
984 	int ret;
985 
986 	adr += chip->start;
987 
988 	/* Ensure cmd read/writes are aligned. */
989 	cmd_addr = adr & ~(map_bankwidth(map)-1);
990 
991 	mutex_lock(&chip->mutex);
992 	ret = get_chip(map, chip, cmd_addr, FL_READY);
993 	if (ret) {
994 		mutex_unlock(&chip->mutex);
995 		return ret;
996 	}
997 
998 	if (chip->state != FL_POINT && chip->state != FL_READY) {
999 		map_write(map, CMD(0xf0), cmd_addr);
1000 		chip->state = FL_READY;
1001 	}
1002 
1003 	map_copy_from(map, buf, adr, len);
1004 
1005 	put_chip(map, chip, cmd_addr);
1006 
1007 	mutex_unlock(&chip->mutex);
1008 	return 0;
1009 }
1010 
1011 
1012 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1013 {
1014 	struct map_info *map = mtd->priv;
1015 	struct cfi_private *cfi = map->fldrv_priv;
1016 	unsigned long ofs;
1017 	int chipnum;
1018 	int ret = 0;
1019 
1020 	/* ofs: offset within the first chip that the first read should start */
1021 
1022 	chipnum = (from >> cfi->chipshift);
1023 	ofs = from - (chipnum <<  cfi->chipshift);
1024 
1025 
1026 	*retlen = 0;
1027 
1028 	while (len) {
1029 		unsigned long thislen;
1030 
1031 		if (chipnum >= cfi->numchips)
1032 			break;
1033 
1034 		if ((len + ofs -1) >> cfi->chipshift)
1035 			thislen = (1<<cfi->chipshift) - ofs;
1036 		else
1037 			thislen = len;
1038 
1039 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1040 		if (ret)
1041 			break;
1042 
1043 		*retlen += thislen;
1044 		len -= thislen;
1045 		buf += thislen;
1046 
1047 		ofs = 0;
1048 		chipnum++;
1049 	}
1050 	return ret;
1051 }
1052 
1053 
1054 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1055 {
1056 	DECLARE_WAITQUEUE(wait, current);
1057 	unsigned long timeo = jiffies + HZ;
1058 	struct cfi_private *cfi = map->fldrv_priv;
1059 
1060  retry:
1061 	mutex_lock(&chip->mutex);
1062 
1063 	if (chip->state != FL_READY){
1064 		set_current_state(TASK_UNINTERRUPTIBLE);
1065 		add_wait_queue(&chip->wq, &wait);
1066 
1067 		mutex_unlock(&chip->mutex);
1068 
1069 		schedule();
1070 		remove_wait_queue(&chip->wq, &wait);
1071 		timeo = jiffies + HZ;
1072 
1073 		goto retry;
1074 	}
1075 
1076 	adr += chip->start;
1077 
1078 	chip->state = FL_READY;
1079 
1080 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1081 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1082 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1083 
1084 	map_copy_from(map, buf, adr, len);
1085 
1086 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1087 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1088 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1089 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1090 
1091 	wake_up(&chip->wq);
1092 	mutex_unlock(&chip->mutex);
1093 
1094 	return 0;
1095 }
1096 
1097 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1098 {
1099 	struct map_info *map = mtd->priv;
1100 	struct cfi_private *cfi = map->fldrv_priv;
1101 	unsigned long ofs;
1102 	int chipnum;
1103 	int ret = 0;
1104 
1105 
1106 	/* ofs: offset within the first chip that the first read should start */
1107 
1108 	/* 8 secsi bytes per chip */
1109 	chipnum=from>>3;
1110 	ofs=from & 7;
1111 
1112 
1113 	*retlen = 0;
1114 
1115 	while (len) {
1116 		unsigned long thislen;
1117 
1118 		if (chipnum >= cfi->numchips)
1119 			break;
1120 
1121 		if ((len + ofs -1) >> 3)
1122 			thislen = (1<<3) - ofs;
1123 		else
1124 			thislen = len;
1125 
1126 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1127 		if (ret)
1128 			break;
1129 
1130 		*retlen += thislen;
1131 		len -= thislen;
1132 		buf += thislen;
1133 
1134 		ofs = 0;
1135 		chipnum++;
1136 	}
1137 	return ret;
1138 }
1139 
1140 
1141 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1142 {
1143 	struct cfi_private *cfi = map->fldrv_priv;
1144 	unsigned long timeo = jiffies + HZ;
1145 	/*
1146 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1147 	 * have a max write time of a few hundreds usec). However, we should
1148 	 * use the maximum timeout value given by the chip at probe time
1149 	 * instead.  Unfortunately, struct flchip does have a field for
1150 	 * maximum timeout, only for typical which can be far too short
1151 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1152 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1153 	 */
1154 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1155 	int ret = 0;
1156 	map_word oldd;
1157 	int retry_cnt = 0;
1158 
1159 	adr += chip->start;
1160 
1161 	mutex_lock(&chip->mutex);
1162 	ret = get_chip(map, chip, adr, FL_WRITING);
1163 	if (ret) {
1164 		mutex_unlock(&chip->mutex);
1165 		return ret;
1166 	}
1167 
1168 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1169 	       __func__, adr, datum.x[0] );
1170 
1171 	/*
1172 	 * Check for a NOP for the case when the datum to write is already
1173 	 * present - it saves time and works around buggy chips that corrupt
1174 	 * data at other locations when 0xff is written to a location that
1175 	 * already contains 0xff.
1176 	 */
1177 	oldd = map_read(map, adr);
1178 	if (map_word_equal(map, oldd, datum)) {
1179 		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1180 		       __func__);
1181 		goto op_done;
1182 	}
1183 
1184 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1185 	ENABLE_VPP(map);
1186 	xip_disable(map, chip, adr);
1187  retry:
1188 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1189 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1190 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1191 	map_write(map, datum, adr);
1192 	chip->state = FL_WRITING;
1193 
1194 	INVALIDATE_CACHE_UDELAY(map, chip,
1195 				adr, map_bankwidth(map),
1196 				chip->word_write_time);
1197 
1198 	/* See comment above for timeout value. */
1199 	timeo = jiffies + uWriteTimeout;
1200 	for (;;) {
1201 		if (chip->state != FL_WRITING) {
1202 			/* Someone's suspended the write. Sleep */
1203 			DECLARE_WAITQUEUE(wait, current);
1204 
1205 			set_current_state(TASK_UNINTERRUPTIBLE);
1206 			add_wait_queue(&chip->wq, &wait);
1207 			mutex_unlock(&chip->mutex);
1208 			schedule();
1209 			remove_wait_queue(&chip->wq, &wait);
1210 			timeo = jiffies + (HZ / 2); /* FIXME */
1211 			mutex_lock(&chip->mutex);
1212 			continue;
1213 		}
1214 
1215 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1216 			xip_enable(map, chip, adr);
1217 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1218 			xip_disable(map, chip, adr);
1219 			break;
1220 		}
1221 
1222 		if (chip_ready(map, adr))
1223 			break;
1224 
1225 		/* Latency issues. Drop the lock, wait a while and retry */
1226 		UDELAY(map, chip, adr, 1);
1227 	}
1228 	/* Did we succeed? */
1229 	if (!chip_good(map, adr, datum)) {
1230 		/* reset on all failures. */
1231 		map_write( map, CMD(0xF0), chip->start );
1232 		/* FIXME - should have reset delay before continuing */
1233 
1234 		if (++retry_cnt <= MAX_WORD_RETRIES)
1235 			goto retry;
1236 
1237 		ret = -EIO;
1238 	}
1239 	xip_enable(map, chip, adr);
1240  op_done:
1241 	chip->state = FL_READY;
1242 	put_chip(map, chip, adr);
1243 	mutex_unlock(&chip->mutex);
1244 
1245 	return ret;
1246 }
1247 
1248 
1249 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1250 				  size_t *retlen, const u_char *buf)
1251 {
1252 	struct map_info *map = mtd->priv;
1253 	struct cfi_private *cfi = map->fldrv_priv;
1254 	int ret = 0;
1255 	int chipnum;
1256 	unsigned long ofs, chipstart;
1257 	DECLARE_WAITQUEUE(wait, current);
1258 
1259 	*retlen = 0;
1260 	if (!len)
1261 		return 0;
1262 
1263 	chipnum = to >> cfi->chipshift;
1264 	ofs = to  - (chipnum << cfi->chipshift);
1265 	chipstart = cfi->chips[chipnum].start;
1266 
1267 	/* If it's not bus-aligned, do the first byte write */
1268 	if (ofs & (map_bankwidth(map)-1)) {
1269 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1270 		int i = ofs - bus_ofs;
1271 		int n = 0;
1272 		map_word tmp_buf;
1273 
1274  retry:
1275 		mutex_lock(&cfi->chips[chipnum].mutex);
1276 
1277 		if (cfi->chips[chipnum].state != FL_READY) {
1278 			set_current_state(TASK_UNINTERRUPTIBLE);
1279 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1280 
1281 			mutex_unlock(&cfi->chips[chipnum].mutex);
1282 
1283 			schedule();
1284 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1285 			goto retry;
1286 		}
1287 
1288 		/* Load 'tmp_buf' with old contents of flash */
1289 		tmp_buf = map_read(map, bus_ofs+chipstart);
1290 
1291 		mutex_unlock(&cfi->chips[chipnum].mutex);
1292 
1293 		/* Number of bytes to copy from buffer */
1294 		n = min_t(int, len, map_bankwidth(map)-i);
1295 
1296 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1297 
1298 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1299 				       bus_ofs, tmp_buf);
1300 		if (ret)
1301 			return ret;
1302 
1303 		ofs += n;
1304 		buf += n;
1305 		(*retlen) += n;
1306 		len -= n;
1307 
1308 		if (ofs >> cfi->chipshift) {
1309 			chipnum ++;
1310 			ofs = 0;
1311 			if (chipnum == cfi->numchips)
1312 				return 0;
1313 		}
1314 	}
1315 
1316 	/* We are now aligned, write as much as possible */
1317 	while(len >= map_bankwidth(map)) {
1318 		map_word datum;
1319 
1320 		datum = map_word_load(map, buf);
1321 
1322 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1323 				       ofs, datum);
1324 		if (ret)
1325 			return ret;
1326 
1327 		ofs += map_bankwidth(map);
1328 		buf += map_bankwidth(map);
1329 		(*retlen) += map_bankwidth(map);
1330 		len -= map_bankwidth(map);
1331 
1332 		if (ofs >> cfi->chipshift) {
1333 			chipnum ++;
1334 			ofs = 0;
1335 			if (chipnum == cfi->numchips)
1336 				return 0;
1337 			chipstart = cfi->chips[chipnum].start;
1338 		}
1339 	}
1340 
1341 	/* Write the trailing bytes if any */
1342 	if (len & (map_bankwidth(map)-1)) {
1343 		map_word tmp_buf;
1344 
1345  retry1:
1346 		mutex_lock(&cfi->chips[chipnum].mutex);
1347 
1348 		if (cfi->chips[chipnum].state != FL_READY) {
1349 			set_current_state(TASK_UNINTERRUPTIBLE);
1350 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1351 
1352 			mutex_unlock(&cfi->chips[chipnum].mutex);
1353 
1354 			schedule();
1355 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1356 			goto retry1;
1357 		}
1358 
1359 		tmp_buf = map_read(map, ofs + chipstart);
1360 
1361 		mutex_unlock(&cfi->chips[chipnum].mutex);
1362 
1363 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1364 
1365 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1366 				ofs, tmp_buf);
1367 		if (ret)
1368 			return ret;
1369 
1370 		(*retlen) += len;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 
1377 /*
1378  * FIXME: interleaved mode not tested, and probably not supported!
1379  */
1380 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1381 				    unsigned long adr, const u_char *buf,
1382 				    int len)
1383 {
1384 	struct cfi_private *cfi = map->fldrv_priv;
1385 	unsigned long timeo = jiffies + HZ;
1386 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1387 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1388 	int ret = -EIO;
1389 	unsigned long cmd_adr;
1390 	int z, words;
1391 	map_word datum;
1392 
1393 	adr += chip->start;
1394 	cmd_adr = adr;
1395 
1396 	mutex_lock(&chip->mutex);
1397 	ret = get_chip(map, chip, adr, FL_WRITING);
1398 	if (ret) {
1399 		mutex_unlock(&chip->mutex);
1400 		return ret;
1401 	}
1402 
1403 	datum = map_word_load(map, buf);
1404 
1405 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1406 	       __func__, adr, datum.x[0] );
1407 
1408 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1409 	ENABLE_VPP(map);
1410 	xip_disable(map, chip, cmd_adr);
1411 
1412 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1413 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1414 
1415 	/* Write Buffer Load */
1416 	map_write(map, CMD(0x25), cmd_adr);
1417 
1418 	chip->state = FL_WRITING_TO_BUFFER;
1419 
1420 	/* Write length of data to come */
1421 	words = len / map_bankwidth(map);
1422 	map_write(map, CMD(words - 1), cmd_adr);
1423 	/* Write data */
1424 	z = 0;
1425 	while(z < words * map_bankwidth(map)) {
1426 		datum = map_word_load(map, buf);
1427 		map_write(map, datum, adr + z);
1428 
1429 		z += map_bankwidth(map);
1430 		buf += map_bankwidth(map);
1431 	}
1432 	z -= map_bankwidth(map);
1433 
1434 	adr += z;
1435 
1436 	/* Write Buffer Program Confirm: GO GO GO */
1437 	map_write(map, CMD(0x29), cmd_adr);
1438 	chip->state = FL_WRITING;
1439 
1440 	INVALIDATE_CACHE_UDELAY(map, chip,
1441 				adr, map_bankwidth(map),
1442 				chip->word_write_time);
1443 
1444 	timeo = jiffies + uWriteTimeout;
1445 
1446 	for (;;) {
1447 		if (chip->state != FL_WRITING) {
1448 			/* Someone's suspended the write. Sleep */
1449 			DECLARE_WAITQUEUE(wait, current);
1450 
1451 			set_current_state(TASK_UNINTERRUPTIBLE);
1452 			add_wait_queue(&chip->wq, &wait);
1453 			mutex_unlock(&chip->mutex);
1454 			schedule();
1455 			remove_wait_queue(&chip->wq, &wait);
1456 			timeo = jiffies + (HZ / 2); /* FIXME */
1457 			mutex_lock(&chip->mutex);
1458 			continue;
1459 		}
1460 
1461 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1462 			break;
1463 
1464 		if (chip_ready(map, adr)) {
1465 			xip_enable(map, chip, adr);
1466 			goto op_done;
1467 		}
1468 
1469 		/* Latency issues. Drop the lock, wait a while and retry */
1470 		UDELAY(map, chip, adr, 1);
1471 	}
1472 
1473 	/* reset on all failures. */
1474 	map_write( map, CMD(0xF0), chip->start );
1475 	xip_enable(map, chip, adr);
1476 	/* FIXME - should have reset delay before continuing */
1477 
1478 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1479 	       __func__ );
1480 
1481 	ret = -EIO;
1482  op_done:
1483 	chip->state = FL_READY;
1484 	put_chip(map, chip, adr);
1485 	mutex_unlock(&chip->mutex);
1486 
1487 	return ret;
1488 }
1489 
1490 
1491 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1492 				    size_t *retlen, const u_char *buf)
1493 {
1494 	struct map_info *map = mtd->priv;
1495 	struct cfi_private *cfi = map->fldrv_priv;
1496 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1497 	int ret = 0;
1498 	int chipnum;
1499 	unsigned long ofs;
1500 
1501 	*retlen = 0;
1502 	if (!len)
1503 		return 0;
1504 
1505 	chipnum = to >> cfi->chipshift;
1506 	ofs = to  - (chipnum << cfi->chipshift);
1507 
1508 	/* If it's not bus-aligned, do the first word write */
1509 	if (ofs & (map_bankwidth(map)-1)) {
1510 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1511 		if (local_len > len)
1512 			local_len = len;
1513 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1514 					     local_len, retlen, buf);
1515 		if (ret)
1516 			return ret;
1517 		ofs += local_len;
1518 		buf += local_len;
1519 		len -= local_len;
1520 
1521 		if (ofs >> cfi->chipshift) {
1522 			chipnum ++;
1523 			ofs = 0;
1524 			if (chipnum == cfi->numchips)
1525 				return 0;
1526 		}
1527 	}
1528 
1529 	/* Write buffer is worth it only if more than one word to write... */
1530 	while (len >= map_bankwidth(map) * 2) {
1531 		/* We must not cross write block boundaries */
1532 		int size = wbufsize - (ofs & (wbufsize-1));
1533 
1534 		if (size > len)
1535 			size = len;
1536 		if (size % map_bankwidth(map))
1537 			size -= size % map_bankwidth(map);
1538 
1539 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1540 				      ofs, buf, size);
1541 		if (ret)
1542 			return ret;
1543 
1544 		ofs += size;
1545 		buf += size;
1546 		(*retlen) += size;
1547 		len -= size;
1548 
1549 		if (ofs >> cfi->chipshift) {
1550 			chipnum ++;
1551 			ofs = 0;
1552 			if (chipnum == cfi->numchips)
1553 				return 0;
1554 		}
1555 	}
1556 
1557 	if (len) {
1558 		size_t retlen_dregs = 0;
1559 
1560 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1561 					     len, &retlen_dregs, buf);
1562 
1563 		*retlen += retlen_dregs;
1564 		return ret;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 
1571 /*
1572  * Handle devices with one erase region, that only implement
1573  * the chip erase command.
1574  */
1575 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1576 {
1577 	struct cfi_private *cfi = map->fldrv_priv;
1578 	unsigned long timeo = jiffies + HZ;
1579 	unsigned long int adr;
1580 	DECLARE_WAITQUEUE(wait, current);
1581 	int ret = 0;
1582 
1583 	adr = cfi->addr_unlock1;
1584 
1585 	mutex_lock(&chip->mutex);
1586 	ret = get_chip(map, chip, adr, FL_WRITING);
1587 	if (ret) {
1588 		mutex_unlock(&chip->mutex);
1589 		return ret;
1590 	}
1591 
1592 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1593 	       __func__, chip->start );
1594 
1595 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1596 	ENABLE_VPP(map);
1597 	xip_disable(map, chip, adr);
1598 
1599 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1600 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1601 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1603 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1604 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1605 
1606 	chip->state = FL_ERASING;
1607 	chip->erase_suspended = 0;
1608 	chip->in_progress_block_addr = adr;
1609 
1610 	INVALIDATE_CACHE_UDELAY(map, chip,
1611 				adr, map->size,
1612 				chip->erase_time*500);
1613 
1614 	timeo = jiffies + (HZ*20);
1615 
1616 	for (;;) {
1617 		if (chip->state != FL_ERASING) {
1618 			/* Someone's suspended the erase. Sleep */
1619 			set_current_state(TASK_UNINTERRUPTIBLE);
1620 			add_wait_queue(&chip->wq, &wait);
1621 			mutex_unlock(&chip->mutex);
1622 			schedule();
1623 			remove_wait_queue(&chip->wq, &wait);
1624 			mutex_lock(&chip->mutex);
1625 			continue;
1626 		}
1627 		if (chip->erase_suspended) {
1628 			/* This erase was suspended and resumed.
1629 			   Adjust the timeout */
1630 			timeo = jiffies + (HZ*20); /* FIXME */
1631 			chip->erase_suspended = 0;
1632 		}
1633 
1634 		if (chip_ready(map, adr))
1635 			break;
1636 
1637 		if (time_after(jiffies, timeo)) {
1638 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1639 				__func__ );
1640 			break;
1641 		}
1642 
1643 		/* Latency issues. Drop the lock, wait a while and retry */
1644 		UDELAY(map, chip, adr, 1000000/HZ);
1645 	}
1646 	/* Did we succeed? */
1647 	if (!chip_good(map, adr, map_word_ff(map))) {
1648 		/* reset on all failures. */
1649 		map_write( map, CMD(0xF0), chip->start );
1650 		/* FIXME - should have reset delay before continuing */
1651 
1652 		ret = -EIO;
1653 	}
1654 
1655 	chip->state = FL_READY;
1656 	xip_enable(map, chip, adr);
1657 	put_chip(map, chip, adr);
1658 	mutex_unlock(&chip->mutex);
1659 
1660 	return ret;
1661 }
1662 
1663 
1664 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1665 {
1666 	struct cfi_private *cfi = map->fldrv_priv;
1667 	unsigned long timeo = jiffies + HZ;
1668 	DECLARE_WAITQUEUE(wait, current);
1669 	int ret = 0;
1670 
1671 	adr += chip->start;
1672 
1673 	mutex_lock(&chip->mutex);
1674 	ret = get_chip(map, chip, adr, FL_ERASING);
1675 	if (ret) {
1676 		mutex_unlock(&chip->mutex);
1677 		return ret;
1678 	}
1679 
1680 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1681 	       __func__, adr );
1682 
1683 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1684 	ENABLE_VPP(map);
1685 	xip_disable(map, chip, adr);
1686 
1687 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1688 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1689 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1690 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1691 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1692 	map_write(map, cfi->sector_erase_cmd, adr);
1693 
1694 	chip->state = FL_ERASING;
1695 	chip->erase_suspended = 0;
1696 	chip->in_progress_block_addr = adr;
1697 
1698 	INVALIDATE_CACHE_UDELAY(map, chip,
1699 				adr, len,
1700 				chip->erase_time*500);
1701 
1702 	timeo = jiffies + (HZ*20);
1703 
1704 	for (;;) {
1705 		if (chip->state != FL_ERASING) {
1706 			/* Someone's suspended the erase. Sleep */
1707 			set_current_state(TASK_UNINTERRUPTIBLE);
1708 			add_wait_queue(&chip->wq, &wait);
1709 			mutex_unlock(&chip->mutex);
1710 			schedule();
1711 			remove_wait_queue(&chip->wq, &wait);
1712 			mutex_lock(&chip->mutex);
1713 			continue;
1714 		}
1715 		if (chip->erase_suspended) {
1716 			/* This erase was suspended and resumed.
1717 			   Adjust the timeout */
1718 			timeo = jiffies + (HZ*20); /* FIXME */
1719 			chip->erase_suspended = 0;
1720 		}
1721 
1722 		if (chip_ready(map, adr)) {
1723 			xip_enable(map, chip, adr);
1724 			break;
1725 		}
1726 
1727 		if (time_after(jiffies, timeo)) {
1728 			xip_enable(map, chip, adr);
1729 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1730 				__func__ );
1731 			break;
1732 		}
1733 
1734 		/* Latency issues. Drop the lock, wait a while and retry */
1735 		UDELAY(map, chip, adr, 1000000/HZ);
1736 	}
1737 	/* Did we succeed? */
1738 	if (!chip_good(map, adr, map_word_ff(map))) {
1739 		/* reset on all failures. */
1740 		map_write( map, CMD(0xF0), chip->start );
1741 		/* FIXME - should have reset delay before continuing */
1742 
1743 		ret = -EIO;
1744 	}
1745 
1746 	chip->state = FL_READY;
1747 	put_chip(map, chip, adr);
1748 	mutex_unlock(&chip->mutex);
1749 	return ret;
1750 }
1751 
1752 
1753 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1754 {
1755 	unsigned long ofs, len;
1756 	int ret;
1757 
1758 	ofs = instr->addr;
1759 	len = instr->len;
1760 
1761 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1762 	if (ret)
1763 		return ret;
1764 
1765 	instr->state = MTD_ERASE_DONE;
1766 	mtd_erase_callback(instr);
1767 
1768 	return 0;
1769 }
1770 
1771 
1772 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1773 {
1774 	struct map_info *map = mtd->priv;
1775 	struct cfi_private *cfi = map->fldrv_priv;
1776 	int ret = 0;
1777 
1778 	if (instr->addr != 0)
1779 		return -EINVAL;
1780 
1781 	if (instr->len != mtd->size)
1782 		return -EINVAL;
1783 
1784 	ret = do_erase_chip(map, &cfi->chips[0]);
1785 	if (ret)
1786 		return ret;
1787 
1788 	instr->state = MTD_ERASE_DONE;
1789 	mtd_erase_callback(instr);
1790 
1791 	return 0;
1792 }
1793 
1794 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1795 			 unsigned long adr, int len, void *thunk)
1796 {
1797 	struct cfi_private *cfi = map->fldrv_priv;
1798 	int ret;
1799 
1800 	mutex_lock(&chip->mutex);
1801 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1802 	if (ret)
1803 		goto out_unlock;
1804 	chip->state = FL_LOCKING;
1805 
1806 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1807 	      __func__, adr, len);
1808 
1809 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1810 			 cfi->device_type, NULL);
1811 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1812 			 cfi->device_type, NULL);
1813 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1814 			 cfi->device_type, NULL);
1815 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1816 			 cfi->device_type, NULL);
1817 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1818 			 cfi->device_type, NULL);
1819 	map_write(map, CMD(0x40), chip->start + adr);
1820 
1821 	chip->state = FL_READY;
1822 	put_chip(map, chip, adr + chip->start);
1823 	ret = 0;
1824 
1825 out_unlock:
1826 	mutex_unlock(&chip->mutex);
1827 	return ret;
1828 }
1829 
1830 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1831 			   unsigned long adr, int len, void *thunk)
1832 {
1833 	struct cfi_private *cfi = map->fldrv_priv;
1834 	int ret;
1835 
1836 	mutex_lock(&chip->mutex);
1837 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1838 	if (ret)
1839 		goto out_unlock;
1840 	chip->state = FL_UNLOCKING;
1841 
1842 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1843 	      __func__, adr, len);
1844 
1845 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1846 			 cfi->device_type, NULL);
1847 	map_write(map, CMD(0x70), adr);
1848 
1849 	chip->state = FL_READY;
1850 	put_chip(map, chip, adr + chip->start);
1851 	ret = 0;
1852 
1853 out_unlock:
1854 	mutex_unlock(&chip->mutex);
1855 	return ret;
1856 }
1857 
1858 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1859 {
1860 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1861 }
1862 
1863 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1864 {
1865 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1866 }
1867 
1868 
1869 static void cfi_amdstd_sync (struct mtd_info *mtd)
1870 {
1871 	struct map_info *map = mtd->priv;
1872 	struct cfi_private *cfi = map->fldrv_priv;
1873 	int i;
1874 	struct flchip *chip;
1875 	int ret = 0;
1876 	DECLARE_WAITQUEUE(wait, current);
1877 
1878 	for (i=0; !ret && i<cfi->numchips; i++) {
1879 		chip = &cfi->chips[i];
1880 
1881 	retry:
1882 		mutex_lock(&chip->mutex);
1883 
1884 		switch(chip->state) {
1885 		case FL_READY:
1886 		case FL_STATUS:
1887 		case FL_CFI_QUERY:
1888 		case FL_JEDEC_QUERY:
1889 			chip->oldstate = chip->state;
1890 			chip->state = FL_SYNCING;
1891 			/* No need to wake_up() on this state change -
1892 			 * as the whole point is that nobody can do anything
1893 			 * with the chip now anyway.
1894 			 */
1895 		case FL_SYNCING:
1896 			mutex_unlock(&chip->mutex);
1897 			break;
1898 
1899 		default:
1900 			/* Not an idle state */
1901 			set_current_state(TASK_UNINTERRUPTIBLE);
1902 			add_wait_queue(&chip->wq, &wait);
1903 
1904 			mutex_unlock(&chip->mutex);
1905 
1906 			schedule();
1907 
1908 			remove_wait_queue(&chip->wq, &wait);
1909 
1910 			goto retry;
1911 		}
1912 	}
1913 
1914 	/* Unlock the chips again */
1915 
1916 	for (i--; i >=0; i--) {
1917 		chip = &cfi->chips[i];
1918 
1919 		mutex_lock(&chip->mutex);
1920 
1921 		if (chip->state == FL_SYNCING) {
1922 			chip->state = chip->oldstate;
1923 			wake_up(&chip->wq);
1924 		}
1925 		mutex_unlock(&chip->mutex);
1926 	}
1927 }
1928 
1929 
1930 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1931 {
1932 	struct map_info *map = mtd->priv;
1933 	struct cfi_private *cfi = map->fldrv_priv;
1934 	int i;
1935 	struct flchip *chip;
1936 	int ret = 0;
1937 
1938 	for (i=0; !ret && i<cfi->numchips; i++) {
1939 		chip = &cfi->chips[i];
1940 
1941 		mutex_lock(&chip->mutex);
1942 
1943 		switch(chip->state) {
1944 		case FL_READY:
1945 		case FL_STATUS:
1946 		case FL_CFI_QUERY:
1947 		case FL_JEDEC_QUERY:
1948 			chip->oldstate = chip->state;
1949 			chip->state = FL_PM_SUSPENDED;
1950 			/* No need to wake_up() on this state change -
1951 			 * as the whole point is that nobody can do anything
1952 			 * with the chip now anyway.
1953 			 */
1954 		case FL_PM_SUSPENDED:
1955 			break;
1956 
1957 		default:
1958 			ret = -EAGAIN;
1959 			break;
1960 		}
1961 		mutex_unlock(&chip->mutex);
1962 	}
1963 
1964 	/* Unlock the chips again */
1965 
1966 	if (ret) {
1967 		for (i--; i >=0; i--) {
1968 			chip = &cfi->chips[i];
1969 
1970 			mutex_lock(&chip->mutex);
1971 
1972 			if (chip->state == FL_PM_SUSPENDED) {
1973 				chip->state = chip->oldstate;
1974 				wake_up(&chip->wq);
1975 			}
1976 			mutex_unlock(&chip->mutex);
1977 		}
1978 	}
1979 
1980 	return ret;
1981 }
1982 
1983 
1984 static void cfi_amdstd_resume(struct mtd_info *mtd)
1985 {
1986 	struct map_info *map = mtd->priv;
1987 	struct cfi_private *cfi = map->fldrv_priv;
1988 	int i;
1989 	struct flchip *chip;
1990 
1991 	for (i=0; i<cfi->numchips; i++) {
1992 
1993 		chip = &cfi->chips[i];
1994 
1995 		mutex_lock(&chip->mutex);
1996 
1997 		if (chip->state == FL_PM_SUSPENDED) {
1998 			chip->state = FL_READY;
1999 			map_write(map, CMD(0xF0), chip->start);
2000 			wake_up(&chip->wq);
2001 		}
2002 		else
2003 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2004 
2005 		mutex_unlock(&chip->mutex);
2006 	}
2007 }
2008 
2009 
2010 /*
2011  * Ensure that the flash device is put back into read array mode before
2012  * unloading the driver or rebooting.  On some systems, rebooting while
2013  * the flash is in query/program/erase mode will prevent the CPU from
2014  * fetching the bootloader code, requiring a hard reset or power cycle.
2015  */
2016 static int cfi_amdstd_reset(struct mtd_info *mtd)
2017 {
2018 	struct map_info *map = mtd->priv;
2019 	struct cfi_private *cfi = map->fldrv_priv;
2020 	int i, ret;
2021 	struct flchip *chip;
2022 
2023 	for (i = 0; i < cfi->numchips; i++) {
2024 
2025 		chip = &cfi->chips[i];
2026 
2027 		mutex_lock(&chip->mutex);
2028 
2029 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2030 		if (!ret) {
2031 			map_write(map, CMD(0xF0), chip->start);
2032 			chip->state = FL_SHUTDOWN;
2033 			put_chip(map, chip, chip->start);
2034 		}
2035 
2036 		mutex_unlock(&chip->mutex);
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 
2043 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2044 			       void *v)
2045 {
2046 	struct mtd_info *mtd;
2047 
2048 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2049 	cfi_amdstd_reset(mtd);
2050 	return NOTIFY_DONE;
2051 }
2052 
2053 
2054 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2055 {
2056 	struct map_info *map = mtd->priv;
2057 	struct cfi_private *cfi = map->fldrv_priv;
2058 
2059 	cfi_amdstd_reset(mtd);
2060 	unregister_reboot_notifier(&mtd->reboot_notifier);
2061 	kfree(cfi->cmdset_priv);
2062 	kfree(cfi->cfiq);
2063 	kfree(cfi);
2064 	kfree(mtd->eraseregions);
2065 }
2066 
2067 MODULE_LICENSE("GPL");
2068 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2069 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2070 MODULE_ALIAS("cfi_cmdset_0006");
2071 MODULE_ALIAS("cfi_cmdset_0701");
2072