xref: /linux/drivers/mtd/chips/cfi_cmdset_0002.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
17  *
18  * This code is GPL
19  *
20  * $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <asm/io.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/errno.h>
33 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/interrupt.h>
36 #include <linux/mtd/compatmac.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41 
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44 
45 #define MAX_WORD_RETRIES 3
46 
47 #define MANUFACTURER_AMD	0x0001
48 #define MANUFACTURER_ATMEL	0x001F
49 #define MANUFACTURER_SST	0x00BF
50 #define SST49LF004B	        0x0060
51 #define SST49LF040B	        0x0050
52 #define SST49LF008A		0x005a
53 #define AT49BV6416		0x00d6
54 
55 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
59 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_amdstd_sync (struct mtd_info *);
61 static int cfi_amdstd_suspend (struct mtd_info *);
62 static void cfi_amdstd_resume (struct mtd_info *);
63 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
64 
65 static void cfi_amdstd_destroy(struct mtd_info *);
66 
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69 
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
73 
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
76 
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 	.probe		= NULL, /* Not usable directly */
79 	.destroy	= cfi_amdstd_destroy,
80 	.name		= "cfi_cmdset_0002",
81 	.module		= THIS_MODULE
82 };
83 
84 
85 /* #define DEBUG_CFI_FEATURES */
86 
87 
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90 {
91 	const char* erase_suspend[3] = {
92 		"Not supported", "Read only", "Read/write"
93 	};
94 	const char* top_bottom[6] = {
95 		"No WP", "8x8KiB sectors at top & bottom, no WP",
96 		"Bottom boot", "Top boot",
97 		"Uniform, Bottom WP", "Uniform, Top WP"
98 	};
99 
100 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 	printk("  Address sensitive unlock: %s\n",
102 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
103 
104 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 	else
107 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108 
109 	if (extp->BlkProt == 0)
110 		printk("  Block protection: Not supported\n");
111 	else
112 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
113 
114 
115 	printk("  Temporary block unprotect: %s\n",
116 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 	printk("  Burst mode: %s\n",
120 	       extp->BurstMode ? "Supported" : "Not supported");
121 	if (extp->PageMode == 0)
122 		printk("  Page mode: Not supported\n");
123 	else
124 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
125 
126 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 	       extp->VppMin >> 4, extp->VppMin & 0xf);
128 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 	       extp->VppMax >> 4, extp->VppMax & 0xf);
130 
131 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 	else
134 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135 }
136 #endif
137 
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
141 {
142 	struct map_info *map = mtd->priv;
143 	struct cfi_private *cfi = map->fldrv_priv;
144 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 	__u8 major = extp->MajorVersion;
146 	__u8 minor = extp->MinorVersion;
147 
148 	if (((major << 8) | minor) < 0x3131) {
149 		/* CFI version 1.0 => don't trust bootloc */
150 		if (cfi->id & 0x80) {
151 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
152 			extp->TopBottom = 3;	/* top boot */
153 		} else {
154 			extp->TopBottom = 2;	/* bottom boot */
155 		}
156 	}
157 }
158 #endif
159 
160 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
161 {
162 	struct map_info *map = mtd->priv;
163 	struct cfi_private *cfi = map->fldrv_priv;
164 	if (cfi->cfiq->BufWriteTimeoutTyp) {
165 		DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
166 		mtd->write = cfi_amdstd_write_buffers;
167 	}
168 }
169 
170 /* Atmel chips don't use the same PRI format as AMD chips */
171 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
172 {
173 	struct map_info *map = mtd->priv;
174 	struct cfi_private *cfi = map->fldrv_priv;
175 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
176 	struct cfi_pri_atmel atmel_pri;
177 
178 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
179 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
180 
181 	if (atmel_pri.Features & 0x02)
182 		extp->EraseSuspend = 2;
183 
184 	if (atmel_pri.BottomBoot)
185 		extp->TopBottom = 2;
186 	else
187 		extp->TopBottom = 3;
188 
189 	/* burst write mode not supported */
190 	cfi->cfiq->BufWriteTimeoutTyp = 0;
191 	cfi->cfiq->BufWriteTimeoutMax = 0;
192 }
193 
194 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
195 {
196 	/* Setup for chips with a secsi area */
197 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
198 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
199 }
200 
201 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
202 {
203 	struct map_info *map = mtd->priv;
204 	struct cfi_private *cfi = map->fldrv_priv;
205 	if ((cfi->cfiq->NumEraseRegions == 1) &&
206 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
207 		mtd->erase = cfi_amdstd_erase_chip;
208 	}
209 
210 }
211 
212 /*
213  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
214  * locked by default.
215  */
216 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
217 {
218 	mtd->lock = cfi_atmel_lock;
219 	mtd->unlock = cfi_atmel_unlock;
220 	mtd->flags |= MTD_POWERUP_LOCK;
221 }
222 
223 static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param)
224 {
225 	struct map_info *map = mtd->priv;
226 	struct cfi_private *cfi = map->fldrv_priv;
227 
228 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
229 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
230 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
231 	}
232 }
233 
234 static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param)
235 {
236 	struct map_info *map = mtd->priv;
237 	struct cfi_private *cfi = map->fldrv_priv;
238 
239 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
240 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
241 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
242 	}
243 }
244 
245 static struct cfi_fixup cfi_fixup_table[] = {
246 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
247 #ifdef AMD_BOOTLOC_BUG
248 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
249 #endif
250 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
251 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
252 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
253 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
254 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
255 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
256 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, },
257 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, },
258 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, },
259 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, },
260 #if !FORCE_WORD_WRITE
261 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
262 #endif
263 	{ 0, 0, NULL, NULL }
264 };
265 static struct cfi_fixup jedec_fixup_table[] = {
266 	{ MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
267 	{ MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
268 	{ MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
269 	{ 0, 0, NULL, NULL }
270 };
271 
272 static struct cfi_fixup fixup_table[] = {
273 	/* The CFI vendor ids and the JEDEC vendor IDs appear
274 	 * to be common.  It is like the devices id's are as
275 	 * well.  This table is to pick all cases where
276 	 * we know that is the case.
277 	 */
278 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
279 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
280 	{ 0, 0, NULL, NULL }
281 };
282 
283 
284 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
285 {
286 	struct cfi_private *cfi = map->fldrv_priv;
287 	struct mtd_info *mtd;
288 	int i;
289 
290 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
291 	if (!mtd) {
292 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
293 		return NULL;
294 	}
295 	mtd->priv = map;
296 	mtd->type = MTD_NORFLASH;
297 
298 	/* Fill in the default mtd operations */
299 	mtd->erase   = cfi_amdstd_erase_varsize;
300 	mtd->write   = cfi_amdstd_write_words;
301 	mtd->read    = cfi_amdstd_read;
302 	mtd->sync    = cfi_amdstd_sync;
303 	mtd->suspend = cfi_amdstd_suspend;
304 	mtd->resume  = cfi_amdstd_resume;
305 	mtd->flags   = MTD_CAP_NORFLASH;
306 	mtd->name    = map->name;
307 	mtd->writesize = 1;
308 
309 	if (cfi->cfi_mode==CFI_MODE_CFI){
310 		unsigned char bootloc;
311 		/*
312 		 * It's a real CFI chip, not one for which the probe
313 		 * routine faked a CFI structure. So we read the feature
314 		 * table from it.
315 		 */
316 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
317 		struct cfi_pri_amdstd *extp;
318 
319 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
320 		if (!extp) {
321 			kfree(mtd);
322 			return NULL;
323 		}
324 
325 		if (extp->MajorVersion != '1' ||
326 		    (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
327 			printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
328 			       "version %c.%c.\n",  extp->MajorVersion,
329 			       extp->MinorVersion);
330 			kfree(extp);
331 			kfree(mtd);
332 			return NULL;
333 		}
334 
335 		/* Install our own private info structure */
336 		cfi->cmdset_priv = extp;
337 
338 		/* Apply cfi device specific fixups */
339 		cfi_fixup(mtd, cfi_fixup_table);
340 
341 #ifdef DEBUG_CFI_FEATURES
342 		/* Tell the user about it in lots of lovely detail */
343 		cfi_tell_features(extp);
344 #endif
345 
346 		bootloc = extp->TopBottom;
347 		if ((bootloc != 2) && (bootloc != 3)) {
348 			printk(KERN_WARNING "%s: CFI does not contain boot "
349 			       "bank location. Assuming top.\n", map->name);
350 			bootloc = 2;
351 		}
352 
353 		if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
354 			printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
355 
356 			for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
357 				int j = (cfi->cfiq->NumEraseRegions-1)-i;
358 				__u32 swap;
359 
360 				swap = cfi->cfiq->EraseRegionInfo[i];
361 				cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
362 				cfi->cfiq->EraseRegionInfo[j] = swap;
363 			}
364 		}
365 		/* Set the default CFI lock/unlock addresses */
366 		cfi->addr_unlock1 = 0x555;
367 		cfi->addr_unlock2 = 0x2aa;
368 		/* Modify the unlock address if we are in compatibility mode */
369 		if (	/* x16 in x8 mode */
370 			((cfi->device_type == CFI_DEVICETYPE_X8) &&
371 				(cfi->cfiq->InterfaceDesc ==
372 					CFI_INTERFACE_X8_BY_X16_ASYNC)) ||
373 			/* x32 in x16 mode */
374 			((cfi->device_type == CFI_DEVICETYPE_X16) &&
375 				(cfi->cfiq->InterfaceDesc ==
376 					CFI_INTERFACE_X16_BY_X32_ASYNC)))
377 		{
378 			cfi->addr_unlock1 = 0xaaa;
379 			cfi->addr_unlock2 = 0x555;
380 		}
381 
382 	} /* CFI mode */
383 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
384 		/* Apply jedec specific fixups */
385 		cfi_fixup(mtd, jedec_fixup_table);
386 	}
387 	/* Apply generic fixups */
388 	cfi_fixup(mtd, fixup_table);
389 
390 	for (i=0; i< cfi->numchips; i++) {
391 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
392 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
393 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
394 		cfi->chips[i].ref_point_counter = 0;
395 		init_waitqueue_head(&(cfi->chips[i].wq));
396 	}
397 
398 	map->fldrv = &cfi_amdstd_chipdrv;
399 
400 	return cfi_amdstd_setup(mtd);
401 }
402 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
403 
404 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
405 {
406 	struct map_info *map = mtd->priv;
407 	struct cfi_private *cfi = map->fldrv_priv;
408 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
409 	unsigned long offset = 0;
410 	int i,j;
411 
412 	printk(KERN_NOTICE "number of %s chips: %d\n",
413 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
414 	/* Select the correct geometry setup */
415 	mtd->size = devsize * cfi->numchips;
416 
417 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
418 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
419 				    * mtd->numeraseregions, GFP_KERNEL);
420 	if (!mtd->eraseregions) {
421 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
422 		goto setup_err;
423 	}
424 
425 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
426 		unsigned long ernum, ersize;
427 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
428 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
429 
430 		if (mtd->erasesize < ersize) {
431 			mtd->erasesize = ersize;
432 		}
433 		for (j=0; j<cfi->numchips; j++) {
434 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
435 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
436 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
437 		}
438 		offset += (ersize * ernum);
439 	}
440 	if (offset != devsize) {
441 		/* Argh */
442 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
443 		goto setup_err;
444 	}
445 #if 0
446 	// debug
447 	for (i=0; i<mtd->numeraseregions;i++){
448 		printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
449 		       i,mtd->eraseregions[i].offset,
450 		       mtd->eraseregions[i].erasesize,
451 		       mtd->eraseregions[i].numblocks);
452 	}
453 #endif
454 
455 	/* FIXME: erase-suspend-program is broken.  See
456 	   http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
457 	printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
458 
459 	__module_get(THIS_MODULE);
460 	return mtd;
461 
462  setup_err:
463 	if(mtd) {
464 		kfree(mtd->eraseregions);
465 		kfree(mtd);
466 	}
467 	kfree(cfi->cmdset_priv);
468 	kfree(cfi->cfiq);
469 	return NULL;
470 }
471 
472 /*
473  * Return true if the chip is ready.
474  *
475  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
476  * non-suspended sector) and is indicated by no toggle bits toggling.
477  *
478  * Note that anything more complicated than checking if no bits are toggling
479  * (including checking DQ5 for an error status) is tricky to get working
480  * correctly and is therefore not done	(particulary with interleaved chips
481  * as each chip must be checked independantly of the others).
482  */
483 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
484 {
485 	map_word d, t;
486 
487 	d = map_read(map, addr);
488 	t = map_read(map, addr);
489 
490 	return map_word_equal(map, d, t);
491 }
492 
493 /*
494  * Return true if the chip is ready and has the correct value.
495  *
496  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
497  * non-suspended sector) and it is indicated by no bits toggling.
498  *
499  * Error are indicated by toggling bits or bits held with the wrong value,
500  * or with bits toggling.
501  *
502  * Note that anything more complicated than checking if no bits are toggling
503  * (including checking DQ5 for an error status) is tricky to get working
504  * correctly and is therefore not done	(particulary with interleaved chips
505  * as each chip must be checked independantly of the others).
506  *
507  */
508 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
509 {
510 	map_word oldd, curd;
511 
512 	oldd = map_read(map, addr);
513 	curd = map_read(map, addr);
514 
515 	return	map_word_equal(map, oldd, curd) &&
516 		map_word_equal(map, curd, expected);
517 }
518 
519 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
520 {
521 	DECLARE_WAITQUEUE(wait, current);
522 	struct cfi_private *cfi = map->fldrv_priv;
523 	unsigned long timeo;
524 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
525 
526  resettime:
527 	timeo = jiffies + HZ;
528  retry:
529 	switch (chip->state) {
530 
531 	case FL_STATUS:
532 		for (;;) {
533 			if (chip_ready(map, adr))
534 				break;
535 
536 			if (time_after(jiffies, timeo)) {
537 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
538 				spin_unlock(chip->mutex);
539 				return -EIO;
540 			}
541 			spin_unlock(chip->mutex);
542 			cfi_udelay(1);
543 			spin_lock(chip->mutex);
544 			/* Someone else might have been playing with it. */
545 			goto retry;
546 		}
547 
548 	case FL_READY:
549 	case FL_CFI_QUERY:
550 	case FL_JEDEC_QUERY:
551 		return 0;
552 
553 	case FL_ERASING:
554 		if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
555 			goto sleep;
556 
557 		if (!(   mode == FL_READY
558 		      || mode == FL_POINT
559 		      || !cfip
560 		      || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
561 		      || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)
562 		    )))
563 			goto sleep;
564 
565 		/* We could check to see if we're trying to access the sector
566 		 * that is currently being erased. However, no user will try
567 		 * anything like that so we just wait for the timeout. */
568 
569 		/* Erase suspend */
570 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
571 		 * commands when the erase algorithm isn't in progress. */
572 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
573 		chip->oldstate = FL_ERASING;
574 		chip->state = FL_ERASE_SUSPENDING;
575 		chip->erase_suspended = 1;
576 		for (;;) {
577 			if (chip_ready(map, adr))
578 				break;
579 
580 			if (time_after(jiffies, timeo)) {
581 				/* Should have suspended the erase by now.
582 				 * Send an Erase-Resume command as either
583 				 * there was an error (so leave the erase
584 				 * routine to recover from it) or we trying to
585 				 * use the erase-in-progress sector. */
586 				map_write(map, CMD(0x30), chip->in_progress_block_addr);
587 				chip->state = FL_ERASING;
588 				chip->oldstate = FL_READY;
589 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
590 				return -EIO;
591 			}
592 
593 			spin_unlock(chip->mutex);
594 			cfi_udelay(1);
595 			spin_lock(chip->mutex);
596 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
597 			   So we can just loop here. */
598 		}
599 		chip->state = FL_READY;
600 		return 0;
601 
602 	case FL_XIP_WHILE_ERASING:
603 		if (mode != FL_READY && mode != FL_POINT &&
604 		    (!cfip || !(cfip->EraseSuspend&2)))
605 			goto sleep;
606 		chip->oldstate = chip->state;
607 		chip->state = FL_READY;
608 		return 0;
609 
610 	case FL_POINT:
611 		/* Only if there's no operation suspended... */
612 		if (mode == FL_READY && chip->oldstate == FL_READY)
613 			return 0;
614 
615 	default:
616 	sleep:
617 		set_current_state(TASK_UNINTERRUPTIBLE);
618 		add_wait_queue(&chip->wq, &wait);
619 		spin_unlock(chip->mutex);
620 		schedule();
621 		remove_wait_queue(&chip->wq, &wait);
622 		spin_lock(chip->mutex);
623 		goto resettime;
624 	}
625 }
626 
627 
628 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
629 {
630 	struct cfi_private *cfi = map->fldrv_priv;
631 
632 	switch(chip->oldstate) {
633 	case FL_ERASING:
634 		chip->state = chip->oldstate;
635 		map_write(map, CMD(0x30), chip->in_progress_block_addr);
636 		chip->oldstate = FL_READY;
637 		chip->state = FL_ERASING;
638 		break;
639 
640 	case FL_XIP_WHILE_ERASING:
641 		chip->state = chip->oldstate;
642 		chip->oldstate = FL_READY;
643 		break;
644 
645 	case FL_READY:
646 	case FL_STATUS:
647 		/* We should really make set_vpp() count, rather than doing this */
648 		DISABLE_VPP(map);
649 		break;
650 	default:
651 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
652 	}
653 	wake_up(&chip->wq);
654 }
655 
656 #ifdef CONFIG_MTD_XIP
657 
658 /*
659  * No interrupt what so ever can be serviced while the flash isn't in array
660  * mode.  This is ensured by the xip_disable() and xip_enable() functions
661  * enclosing any code path where the flash is known not to be in array mode.
662  * And within a XIP disabled code path, only functions marked with __xipram
663  * may be called and nothing else (it's a good thing to inspect generated
664  * assembly to make sure inline functions were actually inlined and that gcc
665  * didn't emit calls to its own support functions). Also configuring MTD CFI
666  * support to a single buswidth and a single interleave is also recommended.
667  */
668 
669 static void xip_disable(struct map_info *map, struct flchip *chip,
670 			unsigned long adr)
671 {
672 	/* TODO: chips with no XIP use should ignore and return */
673 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
674 	local_irq_disable();
675 }
676 
677 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
678 				unsigned long adr)
679 {
680 	struct cfi_private *cfi = map->fldrv_priv;
681 
682 	if (chip->state != FL_POINT && chip->state != FL_READY) {
683 		map_write(map, CMD(0xf0), adr);
684 		chip->state = FL_READY;
685 	}
686 	(void) map_read(map, adr);
687 	xip_iprefetch();
688 	local_irq_enable();
689 }
690 
691 /*
692  * When a delay is required for the flash operation to complete, the
693  * xip_udelay() function is polling for both the given timeout and pending
694  * (but still masked) hardware interrupts.  Whenever there is an interrupt
695  * pending then the flash erase operation is suspended, array mode restored
696  * and interrupts unmasked.  Task scheduling might also happen at that
697  * point.  The CPU eventually returns from the interrupt or the call to
698  * schedule() and the suspended flash operation is resumed for the remaining
699  * of the delay period.
700  *
701  * Warning: this function _will_ fool interrupt latency tracing tools.
702  */
703 
704 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
705 				unsigned long adr, int usec)
706 {
707 	struct cfi_private *cfi = map->fldrv_priv;
708 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
709 	map_word status, OK = CMD(0x80);
710 	unsigned long suspended, start = xip_currtime();
711 	flstate_t oldstate;
712 
713 	do {
714 		cpu_relax();
715 		if (xip_irqpending() && extp &&
716 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
717 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
718 			/*
719 			 * Let's suspend the erase operation when supported.
720 			 * Note that we currently don't try to suspend
721 			 * interleaved chips if there is already another
722 			 * operation suspended (imagine what happens
723 			 * when one chip was already done with the current
724 			 * operation while another chip suspended it, then
725 			 * we resume the whole thing at once).  Yes, it
726 			 * can happen!
727 			 */
728 			map_write(map, CMD(0xb0), adr);
729 			usec -= xip_elapsed_since(start);
730 			suspended = xip_currtime();
731 			do {
732 				if (xip_elapsed_since(suspended) > 100000) {
733 					/*
734 					 * The chip doesn't want to suspend
735 					 * after waiting for 100 msecs.
736 					 * This is a critical error but there
737 					 * is not much we can do here.
738 					 */
739 					return;
740 				}
741 				status = map_read(map, adr);
742 			} while (!map_word_andequal(map, status, OK, OK));
743 
744 			/* Suspend succeeded */
745 			oldstate = chip->state;
746 			if (!map_word_bitsset(map, status, CMD(0x40)))
747 				break;
748 			chip->state = FL_XIP_WHILE_ERASING;
749 			chip->erase_suspended = 1;
750 			map_write(map, CMD(0xf0), adr);
751 			(void) map_read(map, adr);
752 			xip_iprefetch();
753 			local_irq_enable();
754 			spin_unlock(chip->mutex);
755 			xip_iprefetch();
756 			cond_resched();
757 
758 			/*
759 			 * We're back.  However someone else might have
760 			 * decided to go write to the chip if we are in
761 			 * a suspended erase state.  If so let's wait
762 			 * until it's done.
763 			 */
764 			spin_lock(chip->mutex);
765 			while (chip->state != FL_XIP_WHILE_ERASING) {
766 				DECLARE_WAITQUEUE(wait, current);
767 				set_current_state(TASK_UNINTERRUPTIBLE);
768 				add_wait_queue(&chip->wq, &wait);
769 				spin_unlock(chip->mutex);
770 				schedule();
771 				remove_wait_queue(&chip->wq, &wait);
772 				spin_lock(chip->mutex);
773 			}
774 			/* Disallow XIP again */
775 			local_irq_disable();
776 
777 			/* Resume the write or erase operation */
778 			map_write(map, CMD(0x30), adr);
779 			chip->state = oldstate;
780 			start = xip_currtime();
781 		} else if (usec >= 1000000/HZ) {
782 			/*
783 			 * Try to save on CPU power when waiting delay
784 			 * is at least a system timer tick period.
785 			 * No need to be extremely accurate here.
786 			 */
787 			xip_cpu_idle();
788 		}
789 		status = map_read(map, adr);
790 	} while (!map_word_andequal(map, status, OK, OK)
791 		 && xip_elapsed_since(start) < usec);
792 }
793 
794 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
795 
796 /*
797  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
798  * the flash is actively programming or erasing since we have to poll for
799  * the operation to complete anyway.  We can't do that in a generic way with
800  * a XIP setup so do it before the actual flash operation in this case
801  * and stub it out from INVALIDATE_CACHE_UDELAY.
802  */
803 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
804 	INVALIDATE_CACHED_RANGE(map, from, size)
805 
806 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
807 	UDELAY(map, chip, adr, usec)
808 
809 /*
810  * Extra notes:
811  *
812  * Activating this XIP support changes the way the code works a bit.  For
813  * example the code to suspend the current process when concurrent access
814  * happens is never executed because xip_udelay() will always return with the
815  * same chip state as it was entered with.  This is why there is no care for
816  * the presence of add_wait_queue() or schedule() calls from within a couple
817  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
818  * The queueing and scheduling are always happening within xip_udelay().
819  *
820  * Similarly, get_chip() and put_chip() just happen to always be executed
821  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
822  * is in array mode, therefore never executing many cases therein and not
823  * causing any problem with XIP.
824  */
825 
826 #else
827 
828 #define xip_disable(map, chip, adr)
829 #define xip_enable(map, chip, adr)
830 #define XIP_INVAL_CACHED_RANGE(x...)
831 
832 #define UDELAY(map, chip, adr, usec)  \
833 do {  \
834 	spin_unlock(chip->mutex);  \
835 	cfi_udelay(usec);  \
836 	spin_lock(chip->mutex);  \
837 } while (0)
838 
839 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
840 do {  \
841 	spin_unlock(chip->mutex);  \
842 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
843 	cfi_udelay(usec);  \
844 	spin_lock(chip->mutex);  \
845 } while (0)
846 
847 #endif
848 
849 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
850 {
851 	unsigned long cmd_addr;
852 	struct cfi_private *cfi = map->fldrv_priv;
853 	int ret;
854 
855 	adr += chip->start;
856 
857 	/* Ensure cmd read/writes are aligned. */
858 	cmd_addr = adr & ~(map_bankwidth(map)-1);
859 
860 	spin_lock(chip->mutex);
861 	ret = get_chip(map, chip, cmd_addr, FL_READY);
862 	if (ret) {
863 		spin_unlock(chip->mutex);
864 		return ret;
865 	}
866 
867 	if (chip->state != FL_POINT && chip->state != FL_READY) {
868 		map_write(map, CMD(0xf0), cmd_addr);
869 		chip->state = FL_READY;
870 	}
871 
872 	map_copy_from(map, buf, adr, len);
873 
874 	put_chip(map, chip, cmd_addr);
875 
876 	spin_unlock(chip->mutex);
877 	return 0;
878 }
879 
880 
881 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
882 {
883 	struct map_info *map = mtd->priv;
884 	struct cfi_private *cfi = map->fldrv_priv;
885 	unsigned long ofs;
886 	int chipnum;
887 	int ret = 0;
888 
889 	/* ofs: offset within the first chip that the first read should start */
890 
891 	chipnum = (from >> cfi->chipshift);
892 	ofs = from - (chipnum <<  cfi->chipshift);
893 
894 
895 	*retlen = 0;
896 
897 	while (len) {
898 		unsigned long thislen;
899 
900 		if (chipnum >= cfi->numchips)
901 			break;
902 
903 		if ((len + ofs -1) >> cfi->chipshift)
904 			thislen = (1<<cfi->chipshift) - ofs;
905 		else
906 			thislen = len;
907 
908 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
909 		if (ret)
910 			break;
911 
912 		*retlen += thislen;
913 		len -= thislen;
914 		buf += thislen;
915 
916 		ofs = 0;
917 		chipnum++;
918 	}
919 	return ret;
920 }
921 
922 
923 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
924 {
925 	DECLARE_WAITQUEUE(wait, current);
926 	unsigned long timeo = jiffies + HZ;
927 	struct cfi_private *cfi = map->fldrv_priv;
928 
929  retry:
930 	spin_lock(chip->mutex);
931 
932 	if (chip->state != FL_READY){
933 #if 0
934 		printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
935 #endif
936 		set_current_state(TASK_UNINTERRUPTIBLE);
937 		add_wait_queue(&chip->wq, &wait);
938 
939 		spin_unlock(chip->mutex);
940 
941 		schedule();
942 		remove_wait_queue(&chip->wq, &wait);
943 #if 0
944 		if(signal_pending(current))
945 			return -EINTR;
946 #endif
947 		timeo = jiffies + HZ;
948 
949 		goto retry;
950 	}
951 
952 	adr += chip->start;
953 
954 	chip->state = FL_READY;
955 
956 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
957 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
958 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
959 
960 	map_copy_from(map, buf, adr, len);
961 
962 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
963 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
964 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
965 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
966 
967 	wake_up(&chip->wq);
968 	spin_unlock(chip->mutex);
969 
970 	return 0;
971 }
972 
973 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
974 {
975 	struct map_info *map = mtd->priv;
976 	struct cfi_private *cfi = map->fldrv_priv;
977 	unsigned long ofs;
978 	int chipnum;
979 	int ret = 0;
980 
981 
982 	/* ofs: offset within the first chip that the first read should start */
983 
984 	/* 8 secsi bytes per chip */
985 	chipnum=from>>3;
986 	ofs=from & 7;
987 
988 
989 	*retlen = 0;
990 
991 	while (len) {
992 		unsigned long thislen;
993 
994 		if (chipnum >= cfi->numchips)
995 			break;
996 
997 		if ((len + ofs -1) >> 3)
998 			thislen = (1<<3) - ofs;
999 		else
1000 			thislen = len;
1001 
1002 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1003 		if (ret)
1004 			break;
1005 
1006 		*retlen += thislen;
1007 		len -= thislen;
1008 		buf += thislen;
1009 
1010 		ofs = 0;
1011 		chipnum++;
1012 	}
1013 	return ret;
1014 }
1015 
1016 
1017 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1018 {
1019 	struct cfi_private *cfi = map->fldrv_priv;
1020 	unsigned long timeo = jiffies + HZ;
1021 	/*
1022 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1023 	 * have a max write time of a few hundreds usec). However, we should
1024 	 * use the maximum timeout value given by the chip at probe time
1025 	 * instead.  Unfortunately, struct flchip does have a field for
1026 	 * maximum timeout, only for typical which can be far too short
1027 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1028 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1029 	 */
1030 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1031 	int ret = 0;
1032 	map_word oldd;
1033 	int retry_cnt = 0;
1034 
1035 	adr += chip->start;
1036 
1037 	spin_lock(chip->mutex);
1038 	ret = get_chip(map, chip, adr, FL_WRITING);
1039 	if (ret) {
1040 		spin_unlock(chip->mutex);
1041 		return ret;
1042 	}
1043 
1044 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1045 	       __func__, adr, datum.x[0] );
1046 
1047 	/*
1048 	 * Check for a NOP for the case when the datum to write is already
1049 	 * present - it saves time and works around buggy chips that corrupt
1050 	 * data at other locations when 0xff is written to a location that
1051 	 * already contains 0xff.
1052 	 */
1053 	oldd = map_read(map, adr);
1054 	if (map_word_equal(map, oldd, datum)) {
1055 		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1056 		       __func__);
1057 		goto op_done;
1058 	}
1059 
1060 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1061 	ENABLE_VPP(map);
1062 	xip_disable(map, chip, adr);
1063  retry:
1064 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1065 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1066 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1067 	map_write(map, datum, adr);
1068 	chip->state = FL_WRITING;
1069 
1070 	INVALIDATE_CACHE_UDELAY(map, chip,
1071 				adr, map_bankwidth(map),
1072 				chip->word_write_time);
1073 
1074 	/* See comment above for timeout value. */
1075 	timeo = jiffies + uWriteTimeout;
1076 	for (;;) {
1077 		if (chip->state != FL_WRITING) {
1078 			/* Someone's suspended the write. Sleep */
1079 			DECLARE_WAITQUEUE(wait, current);
1080 
1081 			set_current_state(TASK_UNINTERRUPTIBLE);
1082 			add_wait_queue(&chip->wq, &wait);
1083 			spin_unlock(chip->mutex);
1084 			schedule();
1085 			remove_wait_queue(&chip->wq, &wait);
1086 			timeo = jiffies + (HZ / 2); /* FIXME */
1087 			spin_lock(chip->mutex);
1088 			continue;
1089 		}
1090 
1091 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1092 			xip_enable(map, chip, adr);
1093 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1094 			xip_disable(map, chip, adr);
1095 			break;
1096 		}
1097 
1098 		if (chip_ready(map, adr))
1099 			break;
1100 
1101 		/* Latency issues. Drop the lock, wait a while and retry */
1102 		UDELAY(map, chip, adr, 1);
1103 	}
1104 	/* Did we succeed? */
1105 	if (!chip_good(map, adr, datum)) {
1106 		/* reset on all failures. */
1107 		map_write( map, CMD(0xF0), chip->start );
1108 		/* FIXME - should have reset delay before continuing */
1109 
1110 		if (++retry_cnt <= MAX_WORD_RETRIES)
1111 			goto retry;
1112 
1113 		ret = -EIO;
1114 	}
1115 	xip_enable(map, chip, adr);
1116  op_done:
1117 	chip->state = FL_READY;
1118 	put_chip(map, chip, adr);
1119 	spin_unlock(chip->mutex);
1120 
1121 	return ret;
1122 }
1123 
1124 
1125 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1126 				  size_t *retlen, const u_char *buf)
1127 {
1128 	struct map_info *map = mtd->priv;
1129 	struct cfi_private *cfi = map->fldrv_priv;
1130 	int ret = 0;
1131 	int chipnum;
1132 	unsigned long ofs, chipstart;
1133 	DECLARE_WAITQUEUE(wait, current);
1134 
1135 	*retlen = 0;
1136 	if (!len)
1137 		return 0;
1138 
1139 	chipnum = to >> cfi->chipshift;
1140 	ofs = to  - (chipnum << cfi->chipshift);
1141 	chipstart = cfi->chips[chipnum].start;
1142 
1143 	/* If it's not bus-aligned, do the first byte write */
1144 	if (ofs & (map_bankwidth(map)-1)) {
1145 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1146 		int i = ofs - bus_ofs;
1147 		int n = 0;
1148 		map_word tmp_buf;
1149 
1150  retry:
1151 		spin_lock(cfi->chips[chipnum].mutex);
1152 
1153 		if (cfi->chips[chipnum].state != FL_READY) {
1154 #if 0
1155 			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1156 #endif
1157 			set_current_state(TASK_UNINTERRUPTIBLE);
1158 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1159 
1160 			spin_unlock(cfi->chips[chipnum].mutex);
1161 
1162 			schedule();
1163 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1164 #if 0
1165 			if(signal_pending(current))
1166 				return -EINTR;
1167 #endif
1168 			goto retry;
1169 		}
1170 
1171 		/* Load 'tmp_buf' with old contents of flash */
1172 		tmp_buf = map_read(map, bus_ofs+chipstart);
1173 
1174 		spin_unlock(cfi->chips[chipnum].mutex);
1175 
1176 		/* Number of bytes to copy from buffer */
1177 		n = min_t(int, len, map_bankwidth(map)-i);
1178 
1179 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1180 
1181 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1182 				       bus_ofs, tmp_buf);
1183 		if (ret)
1184 			return ret;
1185 
1186 		ofs += n;
1187 		buf += n;
1188 		(*retlen) += n;
1189 		len -= n;
1190 
1191 		if (ofs >> cfi->chipshift) {
1192 			chipnum ++;
1193 			ofs = 0;
1194 			if (chipnum == cfi->numchips)
1195 				return 0;
1196 		}
1197 	}
1198 
1199 	/* We are now aligned, write as much as possible */
1200 	while(len >= map_bankwidth(map)) {
1201 		map_word datum;
1202 
1203 		datum = map_word_load(map, buf);
1204 
1205 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1206 				       ofs, datum);
1207 		if (ret)
1208 			return ret;
1209 
1210 		ofs += map_bankwidth(map);
1211 		buf += map_bankwidth(map);
1212 		(*retlen) += map_bankwidth(map);
1213 		len -= map_bankwidth(map);
1214 
1215 		if (ofs >> cfi->chipshift) {
1216 			chipnum ++;
1217 			ofs = 0;
1218 			if (chipnum == cfi->numchips)
1219 				return 0;
1220 			chipstart = cfi->chips[chipnum].start;
1221 		}
1222 	}
1223 
1224 	/* Write the trailing bytes if any */
1225 	if (len & (map_bankwidth(map)-1)) {
1226 		map_word tmp_buf;
1227 
1228  retry1:
1229 		spin_lock(cfi->chips[chipnum].mutex);
1230 
1231 		if (cfi->chips[chipnum].state != FL_READY) {
1232 #if 0
1233 			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1234 #endif
1235 			set_current_state(TASK_UNINTERRUPTIBLE);
1236 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1237 
1238 			spin_unlock(cfi->chips[chipnum].mutex);
1239 
1240 			schedule();
1241 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1242 #if 0
1243 			if(signal_pending(current))
1244 				return -EINTR;
1245 #endif
1246 			goto retry1;
1247 		}
1248 
1249 		tmp_buf = map_read(map, ofs + chipstart);
1250 
1251 		spin_unlock(cfi->chips[chipnum].mutex);
1252 
1253 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1254 
1255 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1256 				ofs, tmp_buf);
1257 		if (ret)
1258 			return ret;
1259 
1260 		(*retlen) += len;
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 
1267 /*
1268  * FIXME: interleaved mode not tested, and probably not supported!
1269  */
1270 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1271 				    unsigned long adr, const u_char *buf,
1272 				    int len)
1273 {
1274 	struct cfi_private *cfi = map->fldrv_priv;
1275 	unsigned long timeo = jiffies + HZ;
1276 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1277 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1278 	int ret = -EIO;
1279 	unsigned long cmd_adr;
1280 	int z, words;
1281 	map_word datum;
1282 
1283 	adr += chip->start;
1284 	cmd_adr = adr;
1285 
1286 	spin_lock(chip->mutex);
1287 	ret = get_chip(map, chip, adr, FL_WRITING);
1288 	if (ret) {
1289 		spin_unlock(chip->mutex);
1290 		return ret;
1291 	}
1292 
1293 	datum = map_word_load(map, buf);
1294 
1295 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1296 	       __func__, adr, datum.x[0] );
1297 
1298 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1299 	ENABLE_VPP(map);
1300 	xip_disable(map, chip, cmd_adr);
1301 
1302 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1303 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1304 	//cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1305 
1306 	/* Write Buffer Load */
1307 	map_write(map, CMD(0x25), cmd_adr);
1308 
1309 	chip->state = FL_WRITING_TO_BUFFER;
1310 
1311 	/* Write length of data to come */
1312 	words = len / map_bankwidth(map);
1313 	map_write(map, CMD(words - 1), cmd_adr);
1314 	/* Write data */
1315 	z = 0;
1316 	while(z < words * map_bankwidth(map)) {
1317 		datum = map_word_load(map, buf);
1318 		map_write(map, datum, adr + z);
1319 
1320 		z += map_bankwidth(map);
1321 		buf += map_bankwidth(map);
1322 	}
1323 	z -= map_bankwidth(map);
1324 
1325 	adr += z;
1326 
1327 	/* Write Buffer Program Confirm: GO GO GO */
1328 	map_write(map, CMD(0x29), cmd_adr);
1329 	chip->state = FL_WRITING;
1330 
1331 	INVALIDATE_CACHE_UDELAY(map, chip,
1332 				adr, map_bankwidth(map),
1333 				chip->word_write_time);
1334 
1335 	timeo = jiffies + uWriteTimeout;
1336 
1337 	for (;;) {
1338 		if (chip->state != FL_WRITING) {
1339 			/* Someone's suspended the write. Sleep */
1340 			DECLARE_WAITQUEUE(wait, current);
1341 
1342 			set_current_state(TASK_UNINTERRUPTIBLE);
1343 			add_wait_queue(&chip->wq, &wait);
1344 			spin_unlock(chip->mutex);
1345 			schedule();
1346 			remove_wait_queue(&chip->wq, &wait);
1347 			timeo = jiffies + (HZ / 2); /* FIXME */
1348 			spin_lock(chip->mutex);
1349 			continue;
1350 		}
1351 
1352 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1353 			break;
1354 
1355 		if (chip_ready(map, adr)) {
1356 			xip_enable(map, chip, adr);
1357 			goto op_done;
1358 		}
1359 
1360 		/* Latency issues. Drop the lock, wait a while and retry */
1361 		UDELAY(map, chip, adr, 1);
1362 	}
1363 
1364 	/* reset on all failures. */
1365 	map_write( map, CMD(0xF0), chip->start );
1366 	xip_enable(map, chip, adr);
1367 	/* FIXME - should have reset delay before continuing */
1368 
1369 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1370 	       __func__ );
1371 
1372 	ret = -EIO;
1373  op_done:
1374 	chip->state = FL_READY;
1375 	put_chip(map, chip, adr);
1376 	spin_unlock(chip->mutex);
1377 
1378 	return ret;
1379 }
1380 
1381 
1382 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1383 				    size_t *retlen, const u_char *buf)
1384 {
1385 	struct map_info *map = mtd->priv;
1386 	struct cfi_private *cfi = map->fldrv_priv;
1387 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1388 	int ret = 0;
1389 	int chipnum;
1390 	unsigned long ofs;
1391 
1392 	*retlen = 0;
1393 	if (!len)
1394 		return 0;
1395 
1396 	chipnum = to >> cfi->chipshift;
1397 	ofs = to  - (chipnum << cfi->chipshift);
1398 
1399 	/* If it's not bus-aligned, do the first word write */
1400 	if (ofs & (map_bankwidth(map)-1)) {
1401 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1402 		if (local_len > len)
1403 			local_len = len;
1404 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1405 					     local_len, retlen, buf);
1406 		if (ret)
1407 			return ret;
1408 		ofs += local_len;
1409 		buf += local_len;
1410 		len -= local_len;
1411 
1412 		if (ofs >> cfi->chipshift) {
1413 			chipnum ++;
1414 			ofs = 0;
1415 			if (chipnum == cfi->numchips)
1416 				return 0;
1417 		}
1418 	}
1419 
1420 	/* Write buffer is worth it only if more than one word to write... */
1421 	while (len >= map_bankwidth(map) * 2) {
1422 		/* We must not cross write block boundaries */
1423 		int size = wbufsize - (ofs & (wbufsize-1));
1424 
1425 		if (size > len)
1426 			size = len;
1427 		if (size % map_bankwidth(map))
1428 			size -= size % map_bankwidth(map);
1429 
1430 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1431 				      ofs, buf, size);
1432 		if (ret)
1433 			return ret;
1434 
1435 		ofs += size;
1436 		buf += size;
1437 		(*retlen) += size;
1438 		len -= size;
1439 
1440 		if (ofs >> cfi->chipshift) {
1441 			chipnum ++;
1442 			ofs = 0;
1443 			if (chipnum == cfi->numchips)
1444 				return 0;
1445 		}
1446 	}
1447 
1448 	if (len) {
1449 		size_t retlen_dregs = 0;
1450 
1451 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1452 					     len, &retlen_dregs, buf);
1453 
1454 		*retlen += retlen_dregs;
1455 		return ret;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
1461 
1462 /*
1463  * Handle devices with one erase region, that only implement
1464  * the chip erase command.
1465  */
1466 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1467 {
1468 	struct cfi_private *cfi = map->fldrv_priv;
1469 	unsigned long timeo = jiffies + HZ;
1470 	unsigned long int adr;
1471 	DECLARE_WAITQUEUE(wait, current);
1472 	int ret = 0;
1473 
1474 	adr = cfi->addr_unlock1;
1475 
1476 	spin_lock(chip->mutex);
1477 	ret = get_chip(map, chip, adr, FL_WRITING);
1478 	if (ret) {
1479 		spin_unlock(chip->mutex);
1480 		return ret;
1481 	}
1482 
1483 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1484 	       __func__, chip->start );
1485 
1486 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1487 	ENABLE_VPP(map);
1488 	xip_disable(map, chip, adr);
1489 
1490 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1491 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1492 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1493 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1494 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1495 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1496 
1497 	chip->state = FL_ERASING;
1498 	chip->erase_suspended = 0;
1499 	chip->in_progress_block_addr = adr;
1500 
1501 	INVALIDATE_CACHE_UDELAY(map, chip,
1502 				adr, map->size,
1503 				chip->erase_time*500);
1504 
1505 	timeo = jiffies + (HZ*20);
1506 
1507 	for (;;) {
1508 		if (chip->state != FL_ERASING) {
1509 			/* Someone's suspended the erase. Sleep */
1510 			set_current_state(TASK_UNINTERRUPTIBLE);
1511 			add_wait_queue(&chip->wq, &wait);
1512 			spin_unlock(chip->mutex);
1513 			schedule();
1514 			remove_wait_queue(&chip->wq, &wait);
1515 			spin_lock(chip->mutex);
1516 			continue;
1517 		}
1518 		if (chip->erase_suspended) {
1519 			/* This erase was suspended and resumed.
1520 			   Adjust the timeout */
1521 			timeo = jiffies + (HZ*20); /* FIXME */
1522 			chip->erase_suspended = 0;
1523 		}
1524 
1525 		if (chip_ready(map, adr))
1526 			break;
1527 
1528 		if (time_after(jiffies, timeo)) {
1529 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1530 				__func__ );
1531 			break;
1532 		}
1533 
1534 		/* Latency issues. Drop the lock, wait a while and retry */
1535 		UDELAY(map, chip, adr, 1000000/HZ);
1536 	}
1537 	/* Did we succeed? */
1538 	if (!chip_good(map, adr, map_word_ff(map))) {
1539 		/* reset on all failures. */
1540 		map_write( map, CMD(0xF0), chip->start );
1541 		/* FIXME - should have reset delay before continuing */
1542 
1543 		ret = -EIO;
1544 	}
1545 
1546 	chip->state = FL_READY;
1547 	xip_enable(map, chip, adr);
1548 	put_chip(map, chip, adr);
1549 	spin_unlock(chip->mutex);
1550 
1551 	return ret;
1552 }
1553 
1554 
1555 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1556 {
1557 	struct cfi_private *cfi = map->fldrv_priv;
1558 	unsigned long timeo = jiffies + HZ;
1559 	DECLARE_WAITQUEUE(wait, current);
1560 	int ret = 0;
1561 
1562 	adr += chip->start;
1563 
1564 	spin_lock(chip->mutex);
1565 	ret = get_chip(map, chip, adr, FL_ERASING);
1566 	if (ret) {
1567 		spin_unlock(chip->mutex);
1568 		return ret;
1569 	}
1570 
1571 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1572 	       __func__, adr );
1573 
1574 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1575 	ENABLE_VPP(map);
1576 	xip_disable(map, chip, adr);
1577 
1578 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1579 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1580 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1581 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1582 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1583 	map_write(map, CMD(0x30), adr);
1584 
1585 	chip->state = FL_ERASING;
1586 	chip->erase_suspended = 0;
1587 	chip->in_progress_block_addr = adr;
1588 
1589 	INVALIDATE_CACHE_UDELAY(map, chip,
1590 				adr, len,
1591 				chip->erase_time*500);
1592 
1593 	timeo = jiffies + (HZ*20);
1594 
1595 	for (;;) {
1596 		if (chip->state != FL_ERASING) {
1597 			/* Someone's suspended the erase. Sleep */
1598 			set_current_state(TASK_UNINTERRUPTIBLE);
1599 			add_wait_queue(&chip->wq, &wait);
1600 			spin_unlock(chip->mutex);
1601 			schedule();
1602 			remove_wait_queue(&chip->wq, &wait);
1603 			spin_lock(chip->mutex);
1604 			continue;
1605 		}
1606 		if (chip->erase_suspended) {
1607 			/* This erase was suspended and resumed.
1608 			   Adjust the timeout */
1609 			timeo = jiffies + (HZ*20); /* FIXME */
1610 			chip->erase_suspended = 0;
1611 		}
1612 
1613 		if (chip_ready(map, adr)) {
1614 			xip_enable(map, chip, adr);
1615 			break;
1616 		}
1617 
1618 		if (time_after(jiffies, timeo)) {
1619 			xip_enable(map, chip, adr);
1620 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1621 				__func__ );
1622 			break;
1623 		}
1624 
1625 		/* Latency issues. Drop the lock, wait a while and retry */
1626 		UDELAY(map, chip, adr, 1000000/HZ);
1627 	}
1628 	/* Did we succeed? */
1629 	if (!chip_good(map, adr, map_word_ff(map))) {
1630 		/* reset on all failures. */
1631 		map_write( map, CMD(0xF0), chip->start );
1632 		/* FIXME - should have reset delay before continuing */
1633 
1634 		ret = -EIO;
1635 	}
1636 
1637 	chip->state = FL_READY;
1638 	put_chip(map, chip, adr);
1639 	spin_unlock(chip->mutex);
1640 	return ret;
1641 }
1642 
1643 
1644 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1645 {
1646 	unsigned long ofs, len;
1647 	int ret;
1648 
1649 	ofs = instr->addr;
1650 	len = instr->len;
1651 
1652 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1653 	if (ret)
1654 		return ret;
1655 
1656 	instr->state = MTD_ERASE_DONE;
1657 	mtd_erase_callback(instr);
1658 
1659 	return 0;
1660 }
1661 
1662 
1663 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1664 {
1665 	struct map_info *map = mtd->priv;
1666 	struct cfi_private *cfi = map->fldrv_priv;
1667 	int ret = 0;
1668 
1669 	if (instr->addr != 0)
1670 		return -EINVAL;
1671 
1672 	if (instr->len != mtd->size)
1673 		return -EINVAL;
1674 
1675 	ret = do_erase_chip(map, &cfi->chips[0]);
1676 	if (ret)
1677 		return ret;
1678 
1679 	instr->state = MTD_ERASE_DONE;
1680 	mtd_erase_callback(instr);
1681 
1682 	return 0;
1683 }
1684 
1685 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1686 			 unsigned long adr, int len, void *thunk)
1687 {
1688 	struct cfi_private *cfi = map->fldrv_priv;
1689 	int ret;
1690 
1691 	spin_lock(chip->mutex);
1692 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1693 	if (ret)
1694 		goto out_unlock;
1695 	chip->state = FL_LOCKING;
1696 
1697 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1698 	      __func__, adr, len);
1699 
1700 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1701 			 cfi->device_type, NULL);
1702 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1703 			 cfi->device_type, NULL);
1704 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1705 			 cfi->device_type, NULL);
1706 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1707 			 cfi->device_type, NULL);
1708 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1709 			 cfi->device_type, NULL);
1710 	map_write(map, CMD(0x40), chip->start + adr);
1711 
1712 	chip->state = FL_READY;
1713 	put_chip(map, chip, adr + chip->start);
1714 	ret = 0;
1715 
1716 out_unlock:
1717 	spin_unlock(chip->mutex);
1718 	return ret;
1719 }
1720 
1721 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1722 			   unsigned long adr, int len, void *thunk)
1723 {
1724 	struct cfi_private *cfi = map->fldrv_priv;
1725 	int ret;
1726 
1727 	spin_lock(chip->mutex);
1728 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1729 	if (ret)
1730 		goto out_unlock;
1731 	chip->state = FL_UNLOCKING;
1732 
1733 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1734 	      __func__, adr, len);
1735 
1736 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1737 			 cfi->device_type, NULL);
1738 	map_write(map, CMD(0x70), adr);
1739 
1740 	chip->state = FL_READY;
1741 	put_chip(map, chip, adr + chip->start);
1742 	ret = 0;
1743 
1744 out_unlock:
1745 	spin_unlock(chip->mutex);
1746 	return ret;
1747 }
1748 
1749 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1750 {
1751 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1752 }
1753 
1754 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1755 {
1756 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1757 }
1758 
1759 
1760 static void cfi_amdstd_sync (struct mtd_info *mtd)
1761 {
1762 	struct map_info *map = mtd->priv;
1763 	struct cfi_private *cfi = map->fldrv_priv;
1764 	int i;
1765 	struct flchip *chip;
1766 	int ret = 0;
1767 	DECLARE_WAITQUEUE(wait, current);
1768 
1769 	for (i=0; !ret && i<cfi->numchips; i++) {
1770 		chip = &cfi->chips[i];
1771 
1772 	retry:
1773 		spin_lock(chip->mutex);
1774 
1775 		switch(chip->state) {
1776 		case FL_READY:
1777 		case FL_STATUS:
1778 		case FL_CFI_QUERY:
1779 		case FL_JEDEC_QUERY:
1780 			chip->oldstate = chip->state;
1781 			chip->state = FL_SYNCING;
1782 			/* No need to wake_up() on this state change -
1783 			 * as the whole point is that nobody can do anything
1784 			 * with the chip now anyway.
1785 			 */
1786 		case FL_SYNCING:
1787 			spin_unlock(chip->mutex);
1788 			break;
1789 
1790 		default:
1791 			/* Not an idle state */
1792 			set_current_state(TASK_UNINTERRUPTIBLE);
1793 			add_wait_queue(&chip->wq, &wait);
1794 
1795 			spin_unlock(chip->mutex);
1796 
1797 			schedule();
1798 
1799 			remove_wait_queue(&chip->wq, &wait);
1800 
1801 			goto retry;
1802 		}
1803 	}
1804 
1805 	/* Unlock the chips again */
1806 
1807 	for (i--; i >=0; i--) {
1808 		chip = &cfi->chips[i];
1809 
1810 		spin_lock(chip->mutex);
1811 
1812 		if (chip->state == FL_SYNCING) {
1813 			chip->state = chip->oldstate;
1814 			wake_up(&chip->wq);
1815 		}
1816 		spin_unlock(chip->mutex);
1817 	}
1818 }
1819 
1820 
1821 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1822 {
1823 	struct map_info *map = mtd->priv;
1824 	struct cfi_private *cfi = map->fldrv_priv;
1825 	int i;
1826 	struct flchip *chip;
1827 	int ret = 0;
1828 
1829 	for (i=0; !ret && i<cfi->numchips; i++) {
1830 		chip = &cfi->chips[i];
1831 
1832 		spin_lock(chip->mutex);
1833 
1834 		switch(chip->state) {
1835 		case FL_READY:
1836 		case FL_STATUS:
1837 		case FL_CFI_QUERY:
1838 		case FL_JEDEC_QUERY:
1839 			chip->oldstate = chip->state;
1840 			chip->state = FL_PM_SUSPENDED;
1841 			/* No need to wake_up() on this state change -
1842 			 * as the whole point is that nobody can do anything
1843 			 * with the chip now anyway.
1844 			 */
1845 		case FL_PM_SUSPENDED:
1846 			break;
1847 
1848 		default:
1849 			ret = -EAGAIN;
1850 			break;
1851 		}
1852 		spin_unlock(chip->mutex);
1853 	}
1854 
1855 	/* Unlock the chips again */
1856 
1857 	if (ret) {
1858 		for (i--; i >=0; i--) {
1859 			chip = &cfi->chips[i];
1860 
1861 			spin_lock(chip->mutex);
1862 
1863 			if (chip->state == FL_PM_SUSPENDED) {
1864 				chip->state = chip->oldstate;
1865 				wake_up(&chip->wq);
1866 			}
1867 			spin_unlock(chip->mutex);
1868 		}
1869 	}
1870 
1871 	return ret;
1872 }
1873 
1874 
1875 static void cfi_amdstd_resume(struct mtd_info *mtd)
1876 {
1877 	struct map_info *map = mtd->priv;
1878 	struct cfi_private *cfi = map->fldrv_priv;
1879 	int i;
1880 	struct flchip *chip;
1881 
1882 	for (i=0; i<cfi->numchips; i++) {
1883 
1884 		chip = &cfi->chips[i];
1885 
1886 		spin_lock(chip->mutex);
1887 
1888 		if (chip->state == FL_PM_SUSPENDED) {
1889 			chip->state = FL_READY;
1890 			map_write(map, CMD(0xF0), chip->start);
1891 			wake_up(&chip->wq);
1892 		}
1893 		else
1894 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1895 
1896 		spin_unlock(chip->mutex);
1897 	}
1898 }
1899 
1900 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1901 {
1902 	struct map_info *map = mtd->priv;
1903 	struct cfi_private *cfi = map->fldrv_priv;
1904 
1905 	kfree(cfi->cmdset_priv);
1906 	kfree(cfi->cfiq);
1907 	kfree(cfi);
1908 	kfree(mtd->eraseregions);
1909 }
1910 
1911 MODULE_LICENSE("GPL");
1912 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1913 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
1914