1 /* 2 * Common Flash Interface support: 3 * Intel Extended Vendor Command Set (ID 0x0001) 4 * 5 * (C) 2000 Red Hat. GPL'd 6 * 7 * 8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> 9 * - completely revamped method functions so they are aware and 10 * independent of the flash geometry (buswidth, interleave, etc.) 11 * - scalability vs code size is completely set at compile-time 12 * (see include/linux/mtd/cfi.h for selection) 13 * - optimized write buffer method 14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> 15 * - reworked lock/unlock/erase support for var size flash 16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it> 17 * - auto unlock sectors on resume for auto locking flash on power up 18 */ 19 20 #include <linux/module.h> 21 #include <linux/types.h> 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/init.h> 25 #include <asm/io.h> 26 #include <asm/byteorder.h> 27 28 #include <linux/errno.h> 29 #include <linux/slab.h> 30 #include <linux/delay.h> 31 #include <linux/interrupt.h> 32 #include <linux/reboot.h> 33 #include <linux/bitmap.h> 34 #include <linux/mtd/xip.h> 35 #include <linux/mtd/map.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/cfi.h> 38 39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ 40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ 41 42 // debugging, turns off buffer write mode if set to 1 43 #define FORCE_WORD_WRITE 0 44 45 /* Intel chips */ 46 #define I82802AB 0x00ad 47 #define I82802AC 0x00ac 48 #define PF38F4476 0x881c 49 /* STMicroelectronics chips */ 50 #define M50LPW080 0x002F 51 #define M50FLW080A 0x0080 52 #define M50FLW080B 0x0081 53 /* Atmel chips */ 54 #define AT49BV640D 0x02de 55 #define AT49BV640DT 0x02db 56 57 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 58 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 59 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 60 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *); 61 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); 62 static void cfi_intelext_sync (struct mtd_info *); 63 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 64 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 65 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, 66 uint64_t len); 67 #ifdef CONFIG_MTD_OTP 68 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 69 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 70 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 71 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t); 72 static int cfi_intelext_get_fact_prot_info (struct mtd_info *, 73 struct otp_info *, size_t); 74 static int cfi_intelext_get_user_prot_info (struct mtd_info *, 75 struct otp_info *, size_t); 76 #endif 77 static int cfi_intelext_suspend (struct mtd_info *); 78 static void cfi_intelext_resume (struct mtd_info *); 79 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *); 80 81 static void cfi_intelext_destroy(struct mtd_info *); 82 83 struct mtd_info *cfi_cmdset_0001(struct map_info *, int); 84 85 static struct mtd_info *cfi_intelext_setup (struct mtd_info *); 86 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); 87 88 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, 89 size_t *retlen, void **virt, resource_size_t *phys); 90 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 91 92 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode); 93 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); 94 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); 95 #include "fwh_lock.h" 96 97 98 99 /* 100 * *********** SETUP AND PROBE BITS *********** 101 */ 102 103 static struct mtd_chip_driver cfi_intelext_chipdrv = { 104 .probe = NULL, /* Not usable directly */ 105 .destroy = cfi_intelext_destroy, 106 .name = "cfi_cmdset_0001", 107 .module = THIS_MODULE 108 }; 109 110 /* #define DEBUG_LOCK_BITS */ 111 /* #define DEBUG_CFI_FEATURES */ 112 113 #ifdef DEBUG_CFI_FEATURES 114 static void cfi_tell_features(struct cfi_pri_intelext *extp) 115 { 116 int i; 117 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion); 118 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); 119 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); 120 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); 121 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); 122 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); 123 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); 124 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); 125 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); 126 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); 127 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); 128 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); 129 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported"); 130 for (i=11; i<32; i++) { 131 if (extp->FeatureSupport & (1<<i)) 132 printk(" - Unknown Bit %X: supported\n", i); 133 } 134 135 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); 136 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); 137 for (i=1; i<8; i++) { 138 if (extp->SuspendCmdSupport & (1<<i)) 139 printk(" - Unknown Bit %X: supported\n", i); 140 } 141 142 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); 143 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); 144 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); 145 for (i=2; i<3; i++) { 146 if (extp->BlkStatusRegMask & (1<<i)) 147 printk(" - Unknown Bit %X Active: yes\n",i); 148 } 149 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no"); 150 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no"); 151 for (i=6; i<16; i++) { 152 if (extp->BlkStatusRegMask & (1<<i)) 153 printk(" - Unknown Bit %X Active: yes\n",i); 154 } 155 156 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 157 extp->VccOptimal >> 4, extp->VccOptimal & 0xf); 158 if (extp->VppOptimal) 159 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 160 extp->VppOptimal >> 4, extp->VppOptimal & 0xf); 161 } 162 #endif 163 164 /* Atmel chips don't use the same PRI format as Intel chips */ 165 static void fixup_convert_atmel_pri(struct mtd_info *mtd) 166 { 167 struct map_info *map = mtd->priv; 168 struct cfi_private *cfi = map->fldrv_priv; 169 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 170 struct cfi_pri_atmel atmel_pri; 171 uint32_t features = 0; 172 173 /* Reverse byteswapping */ 174 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport); 175 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask); 176 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr); 177 178 memcpy(&atmel_pri, extp, sizeof(atmel_pri)); 179 memset((char *)extp + 5, 0, sizeof(*extp) - 5); 180 181 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features); 182 183 if (atmel_pri.Features & 0x01) /* chip erase supported */ 184 features |= (1<<0); 185 if (atmel_pri.Features & 0x02) /* erase suspend supported */ 186 features |= (1<<1); 187 if (atmel_pri.Features & 0x04) /* program suspend supported */ 188 features |= (1<<2); 189 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */ 190 features |= (1<<9); 191 if (atmel_pri.Features & 0x20) /* page mode read supported */ 192 features |= (1<<7); 193 if (atmel_pri.Features & 0x40) /* queued erase supported */ 194 features |= (1<<4); 195 if (atmel_pri.Features & 0x80) /* Protection bits supported */ 196 features |= (1<<6); 197 198 extp->FeatureSupport = features; 199 200 /* burst write mode not supported */ 201 cfi->cfiq->BufWriteTimeoutTyp = 0; 202 cfi->cfiq->BufWriteTimeoutMax = 0; 203 } 204 205 static void fixup_at49bv640dx_lock(struct mtd_info *mtd) 206 { 207 struct map_info *map = mtd->priv; 208 struct cfi_private *cfi = map->fldrv_priv; 209 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 210 211 cfip->FeatureSupport |= (1 << 5); 212 mtd->flags |= MTD_POWERUP_LOCK; 213 } 214 215 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE 216 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ 217 static void fixup_intel_strataflash(struct mtd_info *mtd) 218 { 219 struct map_info *map = mtd->priv; 220 struct cfi_private *cfi = map->fldrv_priv; 221 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 222 223 printk(KERN_WARNING "cfi_cmdset_0001: Suspend " 224 "erase on write disabled.\n"); 225 extp->SuspendCmdSupport &= ~1; 226 } 227 #endif 228 229 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND 230 static void fixup_no_write_suspend(struct mtd_info *mtd) 231 { 232 struct map_info *map = mtd->priv; 233 struct cfi_private *cfi = map->fldrv_priv; 234 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 235 236 if (cfip && (cfip->FeatureSupport&4)) { 237 cfip->FeatureSupport &= ~4; 238 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); 239 } 240 } 241 #endif 242 243 static void fixup_st_m28w320ct(struct mtd_info *mtd) 244 { 245 struct map_info *map = mtd->priv; 246 struct cfi_private *cfi = map->fldrv_priv; 247 248 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ 249 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ 250 } 251 252 static void fixup_st_m28w320cb(struct mtd_info *mtd) 253 { 254 struct map_info *map = mtd->priv; 255 struct cfi_private *cfi = map->fldrv_priv; 256 257 /* Note this is done after the region info is endian swapped */ 258 cfi->cfiq->EraseRegionInfo[1] = 259 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; 260 }; 261 262 static void fixup_use_point(struct mtd_info *mtd) 263 { 264 struct map_info *map = mtd->priv; 265 if (!mtd->point && map_is_linear(map)) { 266 mtd->point = cfi_intelext_point; 267 mtd->unpoint = cfi_intelext_unpoint; 268 } 269 } 270 271 static void fixup_use_write_buffers(struct mtd_info *mtd) 272 { 273 struct map_info *map = mtd->priv; 274 struct cfi_private *cfi = map->fldrv_priv; 275 if (cfi->cfiq->BufWriteTimeoutTyp) { 276 printk(KERN_INFO "Using buffer write method\n" ); 277 mtd->write = cfi_intelext_write_buffers; 278 mtd->writev = cfi_intelext_writev; 279 } 280 } 281 282 /* 283 * Some chips power-up with all sectors locked by default. 284 */ 285 static void fixup_unlock_powerup_lock(struct mtd_info *mtd) 286 { 287 struct map_info *map = mtd->priv; 288 struct cfi_private *cfi = map->fldrv_priv; 289 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 290 291 if (cfip->FeatureSupport&32) { 292 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" ); 293 mtd->flags |= MTD_POWERUP_LOCK; 294 } 295 } 296 297 static struct cfi_fixup cfi_fixup_table[] = { 298 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, 299 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock }, 300 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock }, 301 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE 302 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash }, 303 #endif 304 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND 305 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend }, 306 #endif 307 #if !FORCE_WORD_WRITE 308 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, 309 #endif 310 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct }, 311 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb }, 312 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock }, 313 { 0, 0, NULL } 314 }; 315 316 static struct cfi_fixup jedec_fixup_table[] = { 317 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock }, 318 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock }, 319 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock }, 320 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock }, 321 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock }, 322 { 0, 0, NULL } 323 }; 324 static struct cfi_fixup fixup_table[] = { 325 /* The CFI vendor ids and the JEDEC vendor IDs appear 326 * to be common. It is like the devices id's are as 327 * well. This table is to pick all cases where 328 * we know that is the case. 329 */ 330 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point }, 331 { 0, 0, NULL } 332 }; 333 334 static void cfi_fixup_major_minor(struct cfi_private *cfi, 335 struct cfi_pri_intelext *extp) 336 { 337 if (cfi->mfr == CFI_MFR_INTEL && 338 cfi->id == PF38F4476 && extp->MinorVersion == '3') 339 extp->MinorVersion = '1'; 340 } 341 342 static inline struct cfi_pri_intelext * 343 read_pri_intelext(struct map_info *map, __u16 adr) 344 { 345 struct cfi_private *cfi = map->fldrv_priv; 346 struct cfi_pri_intelext *extp; 347 unsigned int extra_size = 0; 348 unsigned int extp_size = sizeof(*extp); 349 350 again: 351 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); 352 if (!extp) 353 return NULL; 354 355 cfi_fixup_major_minor(cfi, extp); 356 357 if (extp->MajorVersion != '1' || 358 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) { 359 printk(KERN_ERR " Unknown Intel/Sharp Extended Query " 360 "version %c.%c.\n", extp->MajorVersion, 361 extp->MinorVersion); 362 kfree(extp); 363 return NULL; 364 } 365 366 /* Do some byteswapping if necessary */ 367 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); 368 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); 369 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); 370 371 if (extp->MinorVersion >= '0') { 372 extra_size = 0; 373 374 /* Protection Register info */ 375 extra_size += (extp->NumProtectionFields - 1) * 376 sizeof(struct cfi_intelext_otpinfo); 377 } 378 379 if (extp->MinorVersion >= '1') { 380 /* Burst Read info */ 381 extra_size += 2; 382 if (extp_size < sizeof(*extp) + extra_size) 383 goto need_more; 384 extra_size += extp->extra[extra_size - 1]; 385 } 386 387 if (extp->MinorVersion >= '3') { 388 int nb_parts, i; 389 390 /* Number of hardware-partitions */ 391 extra_size += 1; 392 if (extp_size < sizeof(*extp) + extra_size) 393 goto need_more; 394 nb_parts = extp->extra[extra_size - 1]; 395 396 /* skip the sizeof(partregion) field in CFI 1.4 */ 397 if (extp->MinorVersion >= '4') 398 extra_size += 2; 399 400 for (i = 0; i < nb_parts; i++) { 401 struct cfi_intelext_regioninfo *rinfo; 402 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; 403 extra_size += sizeof(*rinfo); 404 if (extp_size < sizeof(*extp) + extra_size) 405 goto need_more; 406 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); 407 extra_size += (rinfo->NumBlockTypes - 1) 408 * sizeof(struct cfi_intelext_blockinfo); 409 } 410 411 if (extp->MinorVersion >= '4') 412 extra_size += sizeof(struct cfi_intelext_programming_regioninfo); 413 414 if (extp_size < sizeof(*extp) + extra_size) { 415 need_more: 416 extp_size = sizeof(*extp) + extra_size; 417 kfree(extp); 418 if (extp_size > 4096) { 419 printk(KERN_ERR 420 "%s: cfi_pri_intelext is too fat\n", 421 __func__); 422 return NULL; 423 } 424 goto again; 425 } 426 } 427 428 return extp; 429 } 430 431 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) 432 { 433 struct cfi_private *cfi = map->fldrv_priv; 434 struct mtd_info *mtd; 435 int i; 436 437 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 438 if (!mtd) { 439 printk(KERN_ERR "Failed to allocate memory for MTD device\n"); 440 return NULL; 441 } 442 mtd->priv = map; 443 mtd->type = MTD_NORFLASH; 444 445 /* Fill in the default mtd operations */ 446 mtd->erase = cfi_intelext_erase_varsize; 447 mtd->read = cfi_intelext_read; 448 mtd->write = cfi_intelext_write_words; 449 mtd->sync = cfi_intelext_sync; 450 mtd->lock = cfi_intelext_lock; 451 mtd->unlock = cfi_intelext_unlock; 452 mtd->is_locked = cfi_intelext_is_locked; 453 mtd->suspend = cfi_intelext_suspend; 454 mtd->resume = cfi_intelext_resume; 455 mtd->flags = MTD_CAP_NORFLASH; 456 mtd->name = map->name; 457 mtd->writesize = 1; 458 mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize; 459 460 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot; 461 462 if (cfi->cfi_mode == CFI_MODE_CFI) { 463 /* 464 * It's a real CFI chip, not one for which the probe 465 * routine faked a CFI structure. So we read the feature 466 * table from it. 467 */ 468 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; 469 struct cfi_pri_intelext *extp; 470 471 extp = read_pri_intelext(map, adr); 472 if (!extp) { 473 kfree(mtd); 474 return NULL; 475 } 476 477 /* Install our own private info structure */ 478 cfi->cmdset_priv = extp; 479 480 cfi_fixup(mtd, cfi_fixup_table); 481 482 #ifdef DEBUG_CFI_FEATURES 483 /* Tell the user about it in lots of lovely detail */ 484 cfi_tell_features(extp); 485 #endif 486 487 if(extp->SuspendCmdSupport & 1) { 488 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); 489 } 490 } 491 else if (cfi->cfi_mode == CFI_MODE_JEDEC) { 492 /* Apply jedec specific fixups */ 493 cfi_fixup(mtd, jedec_fixup_table); 494 } 495 /* Apply generic fixups */ 496 cfi_fixup(mtd, fixup_table); 497 498 for (i=0; i< cfi->numchips; i++) { 499 if (cfi->cfiq->WordWriteTimeoutTyp) 500 cfi->chips[i].word_write_time = 501 1<<cfi->cfiq->WordWriteTimeoutTyp; 502 else 503 cfi->chips[i].word_write_time = 50000; 504 505 if (cfi->cfiq->BufWriteTimeoutTyp) 506 cfi->chips[i].buffer_write_time = 507 1<<cfi->cfiq->BufWriteTimeoutTyp; 508 /* No default; if it isn't specified, we won't use it */ 509 510 if (cfi->cfiq->BlockEraseTimeoutTyp) 511 cfi->chips[i].erase_time = 512 1000<<cfi->cfiq->BlockEraseTimeoutTyp; 513 else 514 cfi->chips[i].erase_time = 2000000; 515 516 if (cfi->cfiq->WordWriteTimeoutTyp && 517 cfi->cfiq->WordWriteTimeoutMax) 518 cfi->chips[i].word_write_time_max = 519 1<<(cfi->cfiq->WordWriteTimeoutTyp + 520 cfi->cfiq->WordWriteTimeoutMax); 521 else 522 cfi->chips[i].word_write_time_max = 50000 * 8; 523 524 if (cfi->cfiq->BufWriteTimeoutTyp && 525 cfi->cfiq->BufWriteTimeoutMax) 526 cfi->chips[i].buffer_write_time_max = 527 1<<(cfi->cfiq->BufWriteTimeoutTyp + 528 cfi->cfiq->BufWriteTimeoutMax); 529 530 if (cfi->cfiq->BlockEraseTimeoutTyp && 531 cfi->cfiq->BlockEraseTimeoutMax) 532 cfi->chips[i].erase_time_max = 533 1000<<(cfi->cfiq->BlockEraseTimeoutTyp + 534 cfi->cfiq->BlockEraseTimeoutMax); 535 else 536 cfi->chips[i].erase_time_max = 2000000 * 8; 537 538 cfi->chips[i].ref_point_counter = 0; 539 init_waitqueue_head(&(cfi->chips[i].wq)); 540 } 541 542 map->fldrv = &cfi_intelext_chipdrv; 543 544 return cfi_intelext_setup(mtd); 545 } 546 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001"))); 547 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001"))); 548 EXPORT_SYMBOL_GPL(cfi_cmdset_0001); 549 EXPORT_SYMBOL_GPL(cfi_cmdset_0003); 550 EXPORT_SYMBOL_GPL(cfi_cmdset_0200); 551 552 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) 553 { 554 struct map_info *map = mtd->priv; 555 struct cfi_private *cfi = map->fldrv_priv; 556 unsigned long offset = 0; 557 int i,j; 558 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; 559 560 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); 561 562 mtd->size = devsize * cfi->numchips; 563 564 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; 565 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) 566 * mtd->numeraseregions, GFP_KERNEL); 567 if (!mtd->eraseregions) { 568 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); 569 goto setup_err; 570 } 571 572 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { 573 unsigned long ernum, ersize; 574 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; 575 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; 576 577 if (mtd->erasesize < ersize) { 578 mtd->erasesize = ersize; 579 } 580 for (j=0; j<cfi->numchips; j++) { 581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; 582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; 583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; 584 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL); 585 } 586 offset += (ersize * ernum); 587 } 588 589 if (offset != devsize) { 590 /* Argh */ 591 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); 592 goto setup_err; 593 } 594 595 for (i=0; i<mtd->numeraseregions;i++){ 596 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n", 597 i,(unsigned long long)mtd->eraseregions[i].offset, 598 mtd->eraseregions[i].erasesize, 599 mtd->eraseregions[i].numblocks); 600 } 601 602 #ifdef CONFIG_MTD_OTP 603 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; 604 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; 605 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg; 606 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; 607 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info; 608 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info; 609 #endif 610 611 /* This function has the potential to distort the reality 612 a bit and therefore should be called last. */ 613 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) 614 goto setup_err; 615 616 __module_get(THIS_MODULE); 617 register_reboot_notifier(&mtd->reboot_notifier); 618 return mtd; 619 620 setup_err: 621 kfree(mtd->eraseregions); 622 kfree(mtd); 623 kfree(cfi->cmdset_priv); 624 return NULL; 625 } 626 627 static int cfi_intelext_partition_fixup(struct mtd_info *mtd, 628 struct cfi_private **pcfi) 629 { 630 struct map_info *map = mtd->priv; 631 struct cfi_private *cfi = *pcfi; 632 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 633 634 /* 635 * Probing of multi-partition flash chips. 636 * 637 * To support multiple partitions when available, we simply arrange 638 * for each of them to have their own flchip structure even if they 639 * are on the same physical chip. This means completely recreating 640 * a new cfi_private structure right here which is a blatent code 641 * layering violation, but this is still the least intrusive 642 * arrangement at this point. This can be rearranged in the future 643 * if someone feels motivated enough. --nico 644 */ 645 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3' 646 && extp->FeatureSupport & (1 << 9)) { 647 struct cfi_private *newcfi; 648 struct flchip *chip; 649 struct flchip_shared *shared; 650 int offs, numregions, numparts, partshift, numvirtchips, i, j; 651 652 /* Protection Register info */ 653 offs = (extp->NumProtectionFields - 1) * 654 sizeof(struct cfi_intelext_otpinfo); 655 656 /* Burst Read info */ 657 offs += extp->extra[offs+1]+2; 658 659 /* Number of partition regions */ 660 numregions = extp->extra[offs]; 661 offs += 1; 662 663 /* skip the sizeof(partregion) field in CFI 1.4 */ 664 if (extp->MinorVersion >= '4') 665 offs += 2; 666 667 /* Number of hardware partitions */ 668 numparts = 0; 669 for (i = 0; i < numregions; i++) { 670 struct cfi_intelext_regioninfo *rinfo; 671 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; 672 numparts += rinfo->NumIdentPartitions; 673 offs += sizeof(*rinfo) 674 + (rinfo->NumBlockTypes - 1) * 675 sizeof(struct cfi_intelext_blockinfo); 676 } 677 678 if (!numparts) 679 numparts = 1; 680 681 /* Programming Region info */ 682 if (extp->MinorVersion >= '4') { 683 struct cfi_intelext_programming_regioninfo *prinfo; 684 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs]; 685 mtd->writesize = cfi->interleave << prinfo->ProgRegShift; 686 mtd->flags &= ~MTD_BIT_WRITEABLE; 687 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n", 688 map->name, mtd->writesize, 689 cfi->interleave * prinfo->ControlValid, 690 cfi->interleave * prinfo->ControlInvalid); 691 } 692 693 /* 694 * All functions below currently rely on all chips having 695 * the same geometry so we'll just assume that all hardware 696 * partitions are of the same size too. 697 */ 698 partshift = cfi->chipshift - __ffs(numparts); 699 700 if ((1 << partshift) < mtd->erasesize) { 701 printk( KERN_ERR 702 "%s: bad number of hw partitions (%d)\n", 703 __func__, numparts); 704 return -EINVAL; 705 } 706 707 numvirtchips = cfi->numchips * numparts; 708 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); 709 if (!newcfi) 710 return -ENOMEM; 711 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); 712 if (!shared) { 713 kfree(newcfi); 714 return -ENOMEM; 715 } 716 memcpy(newcfi, cfi, sizeof(struct cfi_private)); 717 newcfi->numchips = numvirtchips; 718 newcfi->chipshift = partshift; 719 720 chip = &newcfi->chips[0]; 721 for (i = 0; i < cfi->numchips; i++) { 722 shared[i].writing = shared[i].erasing = NULL; 723 mutex_init(&shared[i].lock); 724 for (j = 0; j < numparts; j++) { 725 *chip = cfi->chips[i]; 726 chip->start += j << partshift; 727 chip->priv = &shared[i]; 728 /* those should be reset too since 729 they create memory references. */ 730 init_waitqueue_head(&chip->wq); 731 mutex_init(&chip->mutex); 732 chip++; 733 } 734 } 735 736 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " 737 "--> %d partitions of %d KiB\n", 738 map->name, cfi->numchips, cfi->interleave, 739 newcfi->numchips, 1<<(newcfi->chipshift-10)); 740 741 map->fldrv_priv = newcfi; 742 *pcfi = newcfi; 743 kfree(cfi); 744 } 745 746 return 0; 747 } 748 749 /* 750 * *********** CHIP ACCESS FUNCTIONS *********** 751 */ 752 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode) 753 { 754 DECLARE_WAITQUEUE(wait, current); 755 struct cfi_private *cfi = map->fldrv_priv; 756 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); 757 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 758 unsigned long timeo = jiffies + HZ; 759 760 /* Prevent setting state FL_SYNCING for chip in suspended state. */ 761 if (mode == FL_SYNCING && chip->oldstate != FL_READY) 762 goto sleep; 763 764 switch (chip->state) { 765 766 case FL_STATUS: 767 for (;;) { 768 status = map_read(map, adr); 769 if (map_word_andequal(map, status, status_OK, status_OK)) 770 break; 771 772 /* At this point we're fine with write operations 773 in other partitions as they don't conflict. */ 774 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) 775 break; 776 777 mutex_unlock(&chip->mutex); 778 cfi_udelay(1); 779 mutex_lock(&chip->mutex); 780 /* Someone else might have been playing with it. */ 781 return -EAGAIN; 782 } 783 /* Fall through */ 784 case FL_READY: 785 case FL_CFI_QUERY: 786 case FL_JEDEC_QUERY: 787 return 0; 788 789 case FL_ERASING: 790 if (!cfip || 791 !(cfip->FeatureSupport & 2) || 792 !(mode == FL_READY || mode == FL_POINT || 793 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) 794 goto sleep; 795 796 797 /* Erase suspend */ 798 map_write(map, CMD(0xB0), adr); 799 800 /* If the flash has finished erasing, then 'erase suspend' 801 * appears to make some (28F320) flash devices switch to 802 * 'read' mode. Make sure that we switch to 'read status' 803 * mode so we get the right data. --rmk 804 */ 805 map_write(map, CMD(0x70), adr); 806 chip->oldstate = FL_ERASING; 807 chip->state = FL_ERASE_SUSPENDING; 808 chip->erase_suspended = 1; 809 for (;;) { 810 status = map_read(map, adr); 811 if (map_word_andequal(map, status, status_OK, status_OK)) 812 break; 813 814 if (time_after(jiffies, timeo)) { 815 /* Urgh. Resume and pretend we weren't here. */ 816 map_write(map, CMD(0xd0), adr); 817 /* Make sure we're in 'read status' mode if it had finished */ 818 map_write(map, CMD(0x70), adr); 819 chip->state = FL_ERASING; 820 chip->oldstate = FL_READY; 821 printk(KERN_ERR "%s: Chip not ready after erase " 822 "suspended: status = 0x%lx\n", map->name, status.x[0]); 823 return -EIO; 824 } 825 826 mutex_unlock(&chip->mutex); 827 cfi_udelay(1); 828 mutex_lock(&chip->mutex); 829 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. 830 So we can just loop here. */ 831 } 832 chip->state = FL_STATUS; 833 return 0; 834 835 case FL_XIP_WHILE_ERASING: 836 if (mode != FL_READY && mode != FL_POINT && 837 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) 838 goto sleep; 839 chip->oldstate = chip->state; 840 chip->state = FL_READY; 841 return 0; 842 843 case FL_SHUTDOWN: 844 /* The machine is rebooting now,so no one can get chip anymore */ 845 return -EIO; 846 case FL_POINT: 847 /* Only if there's no operation suspended... */ 848 if (mode == FL_READY && chip->oldstate == FL_READY) 849 return 0; 850 /* Fall through */ 851 default: 852 sleep: 853 set_current_state(TASK_UNINTERRUPTIBLE); 854 add_wait_queue(&chip->wq, &wait); 855 mutex_unlock(&chip->mutex); 856 schedule(); 857 remove_wait_queue(&chip->wq, &wait); 858 mutex_lock(&chip->mutex); 859 return -EAGAIN; 860 } 861 } 862 863 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) 864 { 865 int ret; 866 DECLARE_WAITQUEUE(wait, current); 867 868 retry: 869 if (chip->priv && 870 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE 871 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) { 872 /* 873 * OK. We have possibility for contention on the write/erase 874 * operations which are global to the real chip and not per 875 * partition. So let's fight it over in the partition which 876 * currently has authority on the operation. 877 * 878 * The rules are as follows: 879 * 880 * - any write operation must own shared->writing. 881 * 882 * - any erase operation must own _both_ shared->writing and 883 * shared->erasing. 884 * 885 * - contention arbitration is handled in the owner's context. 886 * 887 * The 'shared' struct can be read and/or written only when 888 * its lock is taken. 889 */ 890 struct flchip_shared *shared = chip->priv; 891 struct flchip *contender; 892 mutex_lock(&shared->lock); 893 contender = shared->writing; 894 if (contender && contender != chip) { 895 /* 896 * The engine to perform desired operation on this 897 * partition is already in use by someone else. 898 * Let's fight over it in the context of the chip 899 * currently using it. If it is possible to suspend, 900 * that other partition will do just that, otherwise 901 * it'll happily send us to sleep. In any case, when 902 * get_chip returns success we're clear to go ahead. 903 */ 904 ret = mutex_trylock(&contender->mutex); 905 mutex_unlock(&shared->lock); 906 if (!ret) 907 goto retry; 908 mutex_unlock(&chip->mutex); 909 ret = chip_ready(map, contender, contender->start, mode); 910 mutex_lock(&chip->mutex); 911 912 if (ret == -EAGAIN) { 913 mutex_unlock(&contender->mutex); 914 goto retry; 915 } 916 if (ret) { 917 mutex_unlock(&contender->mutex); 918 return ret; 919 } 920 mutex_lock(&shared->lock); 921 922 /* We should not own chip if it is already 923 * in FL_SYNCING state. Put contender and retry. */ 924 if (chip->state == FL_SYNCING) { 925 put_chip(map, contender, contender->start); 926 mutex_unlock(&contender->mutex); 927 goto retry; 928 } 929 mutex_unlock(&contender->mutex); 930 } 931 932 /* Check if we already have suspended erase 933 * on this chip. Sleep. */ 934 if (mode == FL_ERASING && shared->erasing 935 && shared->erasing->oldstate == FL_ERASING) { 936 mutex_unlock(&shared->lock); 937 set_current_state(TASK_UNINTERRUPTIBLE); 938 add_wait_queue(&chip->wq, &wait); 939 mutex_unlock(&chip->mutex); 940 schedule(); 941 remove_wait_queue(&chip->wq, &wait); 942 mutex_lock(&chip->mutex); 943 goto retry; 944 } 945 946 /* We now own it */ 947 shared->writing = chip; 948 if (mode == FL_ERASING) 949 shared->erasing = chip; 950 mutex_unlock(&shared->lock); 951 } 952 ret = chip_ready(map, chip, adr, mode); 953 if (ret == -EAGAIN) 954 goto retry; 955 956 return ret; 957 } 958 959 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) 960 { 961 struct cfi_private *cfi = map->fldrv_priv; 962 963 if (chip->priv) { 964 struct flchip_shared *shared = chip->priv; 965 mutex_lock(&shared->lock); 966 if (shared->writing == chip && chip->oldstate == FL_READY) { 967 /* We own the ability to write, but we're done */ 968 shared->writing = shared->erasing; 969 if (shared->writing && shared->writing != chip) { 970 /* give back ownership to who we loaned it from */ 971 struct flchip *loaner = shared->writing; 972 mutex_lock(&loaner->mutex); 973 mutex_unlock(&shared->lock); 974 mutex_unlock(&chip->mutex); 975 put_chip(map, loaner, loaner->start); 976 mutex_lock(&chip->mutex); 977 mutex_unlock(&loaner->mutex); 978 wake_up(&chip->wq); 979 return; 980 } 981 shared->erasing = NULL; 982 shared->writing = NULL; 983 } else if (shared->erasing == chip && shared->writing != chip) { 984 /* 985 * We own the ability to erase without the ability 986 * to write, which means the erase was suspended 987 * and some other partition is currently writing. 988 * Don't let the switch below mess things up since 989 * we don't have ownership to resume anything. 990 */ 991 mutex_unlock(&shared->lock); 992 wake_up(&chip->wq); 993 return; 994 } 995 mutex_unlock(&shared->lock); 996 } 997 998 switch(chip->oldstate) { 999 case FL_ERASING: 1000 chip->state = chip->oldstate; 1001 /* What if one interleaved chip has finished and the 1002 other hasn't? The old code would leave the finished 1003 one in READY mode. That's bad, and caused -EROFS 1004 errors to be returned from do_erase_oneblock because 1005 that's the only bit it checked for at the time. 1006 As the state machine appears to explicitly allow 1007 sending the 0x70 (Read Status) command to an erasing 1008 chip and expecting it to be ignored, that's what we 1009 do. */ 1010 map_write(map, CMD(0xd0), adr); 1011 map_write(map, CMD(0x70), adr); 1012 chip->oldstate = FL_READY; 1013 chip->state = FL_ERASING; 1014 break; 1015 1016 case FL_XIP_WHILE_ERASING: 1017 chip->state = chip->oldstate; 1018 chip->oldstate = FL_READY; 1019 break; 1020 1021 case FL_READY: 1022 case FL_STATUS: 1023 case FL_JEDEC_QUERY: 1024 /* We should really make set_vpp() count, rather than doing this */ 1025 DISABLE_VPP(map); 1026 break; 1027 default: 1028 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate); 1029 } 1030 wake_up(&chip->wq); 1031 } 1032 1033 #ifdef CONFIG_MTD_XIP 1034 1035 /* 1036 * No interrupt what so ever can be serviced while the flash isn't in array 1037 * mode. This is ensured by the xip_disable() and xip_enable() functions 1038 * enclosing any code path where the flash is known not to be in array mode. 1039 * And within a XIP disabled code path, only functions marked with __xipram 1040 * may be called and nothing else (it's a good thing to inspect generated 1041 * assembly to make sure inline functions were actually inlined and that gcc 1042 * didn't emit calls to its own support functions). Also configuring MTD CFI 1043 * support to a single buswidth and a single interleave is also recommended. 1044 */ 1045 1046 static void xip_disable(struct map_info *map, struct flchip *chip, 1047 unsigned long adr) 1048 { 1049 /* TODO: chips with no XIP use should ignore and return */ 1050 (void) map_read(map, adr); /* ensure mmu mapping is up to date */ 1051 local_irq_disable(); 1052 } 1053 1054 static void __xipram xip_enable(struct map_info *map, struct flchip *chip, 1055 unsigned long adr) 1056 { 1057 struct cfi_private *cfi = map->fldrv_priv; 1058 if (chip->state != FL_POINT && chip->state != FL_READY) { 1059 map_write(map, CMD(0xff), adr); 1060 chip->state = FL_READY; 1061 } 1062 (void) map_read(map, adr); 1063 xip_iprefetch(); 1064 local_irq_enable(); 1065 } 1066 1067 /* 1068 * When a delay is required for the flash operation to complete, the 1069 * xip_wait_for_operation() function is polling for both the given timeout 1070 * and pending (but still masked) hardware interrupts. Whenever there is an 1071 * interrupt pending then the flash erase or write operation is suspended, 1072 * array mode restored and interrupts unmasked. Task scheduling might also 1073 * happen at that point. The CPU eventually returns from the interrupt or 1074 * the call to schedule() and the suspended flash operation is resumed for 1075 * the remaining of the delay period. 1076 * 1077 * Warning: this function _will_ fool interrupt latency tracing tools. 1078 */ 1079 1080 static int __xipram xip_wait_for_operation( 1081 struct map_info *map, struct flchip *chip, 1082 unsigned long adr, unsigned int chip_op_time_max) 1083 { 1084 struct cfi_private *cfi = map->fldrv_priv; 1085 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 1086 map_word status, OK = CMD(0x80); 1087 unsigned long usec, suspended, start, done; 1088 flstate_t oldstate, newstate; 1089 1090 start = xip_currtime(); 1091 usec = chip_op_time_max; 1092 if (usec == 0) 1093 usec = 500000; 1094 done = 0; 1095 1096 do { 1097 cpu_relax(); 1098 if (xip_irqpending() && cfip && 1099 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || 1100 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && 1101 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { 1102 /* 1103 * Let's suspend the erase or write operation when 1104 * supported. Note that we currently don't try to 1105 * suspend interleaved chips if there is already 1106 * another operation suspended (imagine what happens 1107 * when one chip was already done with the current 1108 * operation while another chip suspended it, then 1109 * we resume the whole thing at once). Yes, it 1110 * can happen! 1111 */ 1112 usec -= done; 1113 map_write(map, CMD(0xb0), adr); 1114 map_write(map, CMD(0x70), adr); 1115 suspended = xip_currtime(); 1116 do { 1117 if (xip_elapsed_since(suspended) > 100000) { 1118 /* 1119 * The chip doesn't want to suspend 1120 * after waiting for 100 msecs. 1121 * This is a critical error but there 1122 * is not much we can do here. 1123 */ 1124 return -EIO; 1125 } 1126 status = map_read(map, adr); 1127 } while (!map_word_andequal(map, status, OK, OK)); 1128 1129 /* Suspend succeeded */ 1130 oldstate = chip->state; 1131 if (oldstate == FL_ERASING) { 1132 if (!map_word_bitsset(map, status, CMD(0x40))) 1133 break; 1134 newstate = FL_XIP_WHILE_ERASING; 1135 chip->erase_suspended = 1; 1136 } else { 1137 if (!map_word_bitsset(map, status, CMD(0x04))) 1138 break; 1139 newstate = FL_XIP_WHILE_WRITING; 1140 chip->write_suspended = 1; 1141 } 1142 chip->state = newstate; 1143 map_write(map, CMD(0xff), adr); 1144 (void) map_read(map, adr); 1145 xip_iprefetch(); 1146 local_irq_enable(); 1147 mutex_unlock(&chip->mutex); 1148 xip_iprefetch(); 1149 cond_resched(); 1150 1151 /* 1152 * We're back. However someone else might have 1153 * decided to go write to the chip if we are in 1154 * a suspended erase state. If so let's wait 1155 * until it's done. 1156 */ 1157 mutex_lock(&chip->mutex); 1158 while (chip->state != newstate) { 1159 DECLARE_WAITQUEUE(wait, current); 1160 set_current_state(TASK_UNINTERRUPTIBLE); 1161 add_wait_queue(&chip->wq, &wait); 1162 mutex_unlock(&chip->mutex); 1163 schedule(); 1164 remove_wait_queue(&chip->wq, &wait); 1165 mutex_lock(&chip->mutex); 1166 } 1167 /* Disallow XIP again */ 1168 local_irq_disable(); 1169 1170 /* Resume the write or erase operation */ 1171 map_write(map, CMD(0xd0), adr); 1172 map_write(map, CMD(0x70), adr); 1173 chip->state = oldstate; 1174 start = xip_currtime(); 1175 } else if (usec >= 1000000/HZ) { 1176 /* 1177 * Try to save on CPU power when waiting delay 1178 * is at least a system timer tick period. 1179 * No need to be extremely accurate here. 1180 */ 1181 xip_cpu_idle(); 1182 } 1183 status = map_read(map, adr); 1184 done = xip_elapsed_since(start); 1185 } while (!map_word_andequal(map, status, OK, OK) 1186 && done < usec); 1187 1188 return (done >= usec) ? -ETIME : 0; 1189 } 1190 1191 /* 1192 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while 1193 * the flash is actively programming or erasing since we have to poll for 1194 * the operation to complete anyway. We can't do that in a generic way with 1195 * a XIP setup so do it before the actual flash operation in this case 1196 * and stub it out from INVAL_CACHE_AND_WAIT. 1197 */ 1198 #define XIP_INVAL_CACHED_RANGE(map, from, size) \ 1199 INVALIDATE_CACHED_RANGE(map, from, size) 1200 1201 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \ 1202 xip_wait_for_operation(map, chip, cmd_adr, usec_max) 1203 1204 #else 1205 1206 #define xip_disable(map, chip, adr) 1207 #define xip_enable(map, chip, adr) 1208 #define XIP_INVAL_CACHED_RANGE(x...) 1209 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation 1210 1211 static int inval_cache_and_wait_for_operation( 1212 struct map_info *map, struct flchip *chip, 1213 unsigned long cmd_adr, unsigned long inval_adr, int inval_len, 1214 unsigned int chip_op_time, unsigned int chip_op_time_max) 1215 { 1216 struct cfi_private *cfi = map->fldrv_priv; 1217 map_word status, status_OK = CMD(0x80); 1218 int chip_state = chip->state; 1219 unsigned int timeo, sleep_time, reset_timeo; 1220 1221 mutex_unlock(&chip->mutex); 1222 if (inval_len) 1223 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len); 1224 mutex_lock(&chip->mutex); 1225 1226 timeo = chip_op_time_max; 1227 if (!timeo) 1228 timeo = 500000; 1229 reset_timeo = timeo; 1230 sleep_time = chip_op_time / 2; 1231 1232 for (;;) { 1233 status = map_read(map, cmd_adr); 1234 if (map_word_andequal(map, status, status_OK, status_OK)) 1235 break; 1236 1237 if (!timeo) { 1238 map_write(map, CMD(0x70), cmd_adr); 1239 chip->state = FL_STATUS; 1240 return -ETIME; 1241 } 1242 1243 /* OK Still waiting. Drop the lock, wait a while and retry. */ 1244 mutex_unlock(&chip->mutex); 1245 if (sleep_time >= 1000000/HZ) { 1246 /* 1247 * Half of the normal delay still remaining 1248 * can be performed with a sleeping delay instead 1249 * of busy waiting. 1250 */ 1251 msleep(sleep_time/1000); 1252 timeo -= sleep_time; 1253 sleep_time = 1000000/HZ; 1254 } else { 1255 udelay(1); 1256 cond_resched(); 1257 timeo--; 1258 } 1259 mutex_lock(&chip->mutex); 1260 1261 while (chip->state != chip_state) { 1262 /* Someone's suspended the operation: sleep */ 1263 DECLARE_WAITQUEUE(wait, current); 1264 set_current_state(TASK_UNINTERRUPTIBLE); 1265 add_wait_queue(&chip->wq, &wait); 1266 mutex_unlock(&chip->mutex); 1267 schedule(); 1268 remove_wait_queue(&chip->wq, &wait); 1269 mutex_lock(&chip->mutex); 1270 } 1271 if (chip->erase_suspended && chip_state == FL_ERASING) { 1272 /* Erase suspend occured while sleep: reset timeout */ 1273 timeo = reset_timeo; 1274 chip->erase_suspended = 0; 1275 } 1276 if (chip->write_suspended && chip_state == FL_WRITING) { 1277 /* Write suspend occured while sleep: reset timeout */ 1278 timeo = reset_timeo; 1279 chip->write_suspended = 0; 1280 } 1281 } 1282 1283 /* Done and happy. */ 1284 chip->state = FL_STATUS; 1285 return 0; 1286 } 1287 1288 #endif 1289 1290 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \ 1291 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max); 1292 1293 1294 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) 1295 { 1296 unsigned long cmd_addr; 1297 struct cfi_private *cfi = map->fldrv_priv; 1298 int ret = 0; 1299 1300 adr += chip->start; 1301 1302 /* Ensure cmd read/writes are aligned. */ 1303 cmd_addr = adr & ~(map_bankwidth(map)-1); 1304 1305 mutex_lock(&chip->mutex); 1306 1307 ret = get_chip(map, chip, cmd_addr, FL_POINT); 1308 1309 if (!ret) { 1310 if (chip->state != FL_POINT && chip->state != FL_READY) 1311 map_write(map, CMD(0xff), cmd_addr); 1312 1313 chip->state = FL_POINT; 1314 chip->ref_point_counter++; 1315 } 1316 mutex_unlock(&chip->mutex); 1317 1318 return ret; 1319 } 1320 1321 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len, 1322 size_t *retlen, void **virt, resource_size_t *phys) 1323 { 1324 struct map_info *map = mtd->priv; 1325 struct cfi_private *cfi = map->fldrv_priv; 1326 unsigned long ofs, last_end = 0; 1327 int chipnum; 1328 int ret = 0; 1329 1330 if (!map->virt || (from + len > mtd->size)) 1331 return -EINVAL; 1332 1333 /* Now lock the chip(s) to POINT state */ 1334 1335 /* ofs: offset within the first chip that the first read should start */ 1336 chipnum = (from >> cfi->chipshift); 1337 ofs = from - (chipnum << cfi->chipshift); 1338 1339 *virt = map->virt + cfi->chips[chipnum].start + ofs; 1340 *retlen = 0; 1341 if (phys) 1342 *phys = map->phys + cfi->chips[chipnum].start + ofs; 1343 1344 while (len) { 1345 unsigned long thislen; 1346 1347 if (chipnum >= cfi->numchips) 1348 break; 1349 1350 /* We cannot point across chips that are virtually disjoint */ 1351 if (!last_end) 1352 last_end = cfi->chips[chipnum].start; 1353 else if (cfi->chips[chipnum].start != last_end) 1354 break; 1355 1356 if ((len + ofs -1) >> cfi->chipshift) 1357 thislen = (1<<cfi->chipshift) - ofs; 1358 else 1359 thislen = len; 1360 1361 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); 1362 if (ret) 1363 break; 1364 1365 *retlen += thislen; 1366 len -= thislen; 1367 1368 ofs = 0; 1369 last_end += 1 << cfi->chipshift; 1370 chipnum++; 1371 } 1372 return 0; 1373 } 1374 1375 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1376 { 1377 struct map_info *map = mtd->priv; 1378 struct cfi_private *cfi = map->fldrv_priv; 1379 unsigned long ofs; 1380 int chipnum; 1381 1382 /* Now unlock the chip(s) POINT state */ 1383 1384 /* ofs: offset within the first chip that the first read should start */ 1385 chipnum = (from >> cfi->chipshift); 1386 ofs = from - (chipnum << cfi->chipshift); 1387 1388 while (len) { 1389 unsigned long thislen; 1390 struct flchip *chip; 1391 1392 chip = &cfi->chips[chipnum]; 1393 if (chipnum >= cfi->numchips) 1394 break; 1395 1396 if ((len + ofs -1) >> cfi->chipshift) 1397 thislen = (1<<cfi->chipshift) - ofs; 1398 else 1399 thislen = len; 1400 1401 mutex_lock(&chip->mutex); 1402 if (chip->state == FL_POINT) { 1403 chip->ref_point_counter--; 1404 if(chip->ref_point_counter == 0) 1405 chip->state = FL_READY; 1406 } else 1407 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */ 1408 1409 put_chip(map, chip, chip->start); 1410 mutex_unlock(&chip->mutex); 1411 1412 len -= thislen; 1413 ofs = 0; 1414 chipnum++; 1415 } 1416 } 1417 1418 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) 1419 { 1420 unsigned long cmd_addr; 1421 struct cfi_private *cfi = map->fldrv_priv; 1422 int ret; 1423 1424 adr += chip->start; 1425 1426 /* Ensure cmd read/writes are aligned. */ 1427 cmd_addr = adr & ~(map_bankwidth(map)-1); 1428 1429 mutex_lock(&chip->mutex); 1430 ret = get_chip(map, chip, cmd_addr, FL_READY); 1431 if (ret) { 1432 mutex_unlock(&chip->mutex); 1433 return ret; 1434 } 1435 1436 if (chip->state != FL_POINT && chip->state != FL_READY) { 1437 map_write(map, CMD(0xff), cmd_addr); 1438 1439 chip->state = FL_READY; 1440 } 1441 1442 map_copy_from(map, buf, adr, len); 1443 1444 put_chip(map, chip, cmd_addr); 1445 1446 mutex_unlock(&chip->mutex); 1447 return 0; 1448 } 1449 1450 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) 1451 { 1452 struct map_info *map = mtd->priv; 1453 struct cfi_private *cfi = map->fldrv_priv; 1454 unsigned long ofs; 1455 int chipnum; 1456 int ret = 0; 1457 1458 /* ofs: offset within the first chip that the first read should start */ 1459 chipnum = (from >> cfi->chipshift); 1460 ofs = from - (chipnum << cfi->chipshift); 1461 1462 *retlen = 0; 1463 1464 while (len) { 1465 unsigned long thislen; 1466 1467 if (chipnum >= cfi->numchips) 1468 break; 1469 1470 if ((len + ofs -1) >> cfi->chipshift) 1471 thislen = (1<<cfi->chipshift) - ofs; 1472 else 1473 thislen = len; 1474 1475 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); 1476 if (ret) 1477 break; 1478 1479 *retlen += thislen; 1480 len -= thislen; 1481 buf += thislen; 1482 1483 ofs = 0; 1484 chipnum++; 1485 } 1486 return ret; 1487 } 1488 1489 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, 1490 unsigned long adr, map_word datum, int mode) 1491 { 1492 struct cfi_private *cfi = map->fldrv_priv; 1493 map_word status, write_cmd; 1494 int ret=0; 1495 1496 adr += chip->start; 1497 1498 switch (mode) { 1499 case FL_WRITING: 1500 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41); 1501 break; 1502 case FL_OTP_WRITE: 1503 write_cmd = CMD(0xc0); 1504 break; 1505 default: 1506 return -EINVAL; 1507 } 1508 1509 mutex_lock(&chip->mutex); 1510 ret = get_chip(map, chip, adr, mode); 1511 if (ret) { 1512 mutex_unlock(&chip->mutex); 1513 return ret; 1514 } 1515 1516 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); 1517 ENABLE_VPP(map); 1518 xip_disable(map, chip, adr); 1519 map_write(map, write_cmd, adr); 1520 map_write(map, datum, adr); 1521 chip->state = mode; 1522 1523 ret = INVAL_CACHE_AND_WAIT(map, chip, adr, 1524 adr, map_bankwidth(map), 1525 chip->word_write_time, 1526 chip->word_write_time_max); 1527 if (ret) { 1528 xip_enable(map, chip, adr); 1529 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name); 1530 goto out; 1531 } 1532 1533 /* check for errors */ 1534 status = map_read(map, adr); 1535 if (map_word_bitsset(map, status, CMD(0x1a))) { 1536 unsigned long chipstatus = MERGESTATUS(status); 1537 1538 /* reset status */ 1539 map_write(map, CMD(0x50), adr); 1540 map_write(map, CMD(0x70), adr); 1541 xip_enable(map, chip, adr); 1542 1543 if (chipstatus & 0x02) { 1544 ret = -EROFS; 1545 } else if (chipstatus & 0x08) { 1546 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name); 1547 ret = -EIO; 1548 } else { 1549 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus); 1550 ret = -EINVAL; 1551 } 1552 1553 goto out; 1554 } 1555 1556 xip_enable(map, chip, adr); 1557 out: put_chip(map, chip, adr); 1558 mutex_unlock(&chip->mutex); 1559 return ret; 1560 } 1561 1562 1563 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) 1564 { 1565 struct map_info *map = mtd->priv; 1566 struct cfi_private *cfi = map->fldrv_priv; 1567 int ret = 0; 1568 int chipnum; 1569 unsigned long ofs; 1570 1571 *retlen = 0; 1572 if (!len) 1573 return 0; 1574 1575 chipnum = to >> cfi->chipshift; 1576 ofs = to - (chipnum << cfi->chipshift); 1577 1578 /* If it's not bus-aligned, do the first byte write */ 1579 if (ofs & (map_bankwidth(map)-1)) { 1580 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); 1581 int gap = ofs - bus_ofs; 1582 int n; 1583 map_word datum; 1584 1585 n = min_t(int, len, map_bankwidth(map)-gap); 1586 datum = map_word_ff(map); 1587 datum = map_word_load_partial(map, datum, buf, gap, n); 1588 1589 ret = do_write_oneword(map, &cfi->chips[chipnum], 1590 bus_ofs, datum, FL_WRITING); 1591 if (ret) 1592 return ret; 1593 1594 len -= n; 1595 ofs += n; 1596 buf += n; 1597 (*retlen) += n; 1598 1599 if (ofs >> cfi->chipshift) { 1600 chipnum ++; 1601 ofs = 0; 1602 if (chipnum == cfi->numchips) 1603 return 0; 1604 } 1605 } 1606 1607 while(len >= map_bankwidth(map)) { 1608 map_word datum = map_word_load(map, buf); 1609 1610 ret = do_write_oneword(map, &cfi->chips[chipnum], 1611 ofs, datum, FL_WRITING); 1612 if (ret) 1613 return ret; 1614 1615 ofs += map_bankwidth(map); 1616 buf += map_bankwidth(map); 1617 (*retlen) += map_bankwidth(map); 1618 len -= map_bankwidth(map); 1619 1620 if (ofs >> cfi->chipshift) { 1621 chipnum ++; 1622 ofs = 0; 1623 if (chipnum == cfi->numchips) 1624 return 0; 1625 } 1626 } 1627 1628 if (len & (map_bankwidth(map)-1)) { 1629 map_word datum; 1630 1631 datum = map_word_ff(map); 1632 datum = map_word_load_partial(map, datum, buf, 0, len); 1633 1634 ret = do_write_oneword(map, &cfi->chips[chipnum], 1635 ofs, datum, FL_WRITING); 1636 if (ret) 1637 return ret; 1638 1639 (*retlen) += len; 1640 } 1641 1642 return 0; 1643 } 1644 1645 1646 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, 1647 unsigned long adr, const struct kvec **pvec, 1648 unsigned long *pvec_seek, int len) 1649 { 1650 struct cfi_private *cfi = map->fldrv_priv; 1651 map_word status, write_cmd, datum; 1652 unsigned long cmd_adr; 1653 int ret, wbufsize, word_gap, words; 1654 const struct kvec *vec; 1655 unsigned long vec_seek; 1656 unsigned long initial_adr; 1657 int initial_len = len; 1658 1659 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 1660 adr += chip->start; 1661 initial_adr = adr; 1662 cmd_adr = adr & ~(wbufsize-1); 1663 1664 /* Let's determine this according to the interleave only once */ 1665 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9); 1666 1667 mutex_lock(&chip->mutex); 1668 ret = get_chip(map, chip, cmd_adr, FL_WRITING); 1669 if (ret) { 1670 mutex_unlock(&chip->mutex); 1671 return ret; 1672 } 1673 1674 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len); 1675 ENABLE_VPP(map); 1676 xip_disable(map, chip, cmd_adr); 1677 1678 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set 1679 [...], the device will not accept any more Write to Buffer commands". 1680 So we must check here and reset those bits if they're set. Otherwise 1681 we're just pissing in the wind */ 1682 if (chip->state != FL_STATUS) { 1683 map_write(map, CMD(0x70), cmd_adr); 1684 chip->state = FL_STATUS; 1685 } 1686 status = map_read(map, cmd_adr); 1687 if (map_word_bitsset(map, status, CMD(0x30))) { 1688 xip_enable(map, chip, cmd_adr); 1689 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); 1690 xip_disable(map, chip, cmd_adr); 1691 map_write(map, CMD(0x50), cmd_adr); 1692 map_write(map, CMD(0x70), cmd_adr); 1693 } 1694 1695 chip->state = FL_WRITING_TO_BUFFER; 1696 map_write(map, write_cmd, cmd_adr); 1697 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0); 1698 if (ret) { 1699 /* Argh. Not ready for write to buffer */ 1700 map_word Xstatus = map_read(map, cmd_adr); 1701 map_write(map, CMD(0x70), cmd_adr); 1702 chip->state = FL_STATUS; 1703 status = map_read(map, cmd_adr); 1704 map_write(map, CMD(0x50), cmd_adr); 1705 map_write(map, CMD(0x70), cmd_adr); 1706 xip_enable(map, chip, cmd_adr); 1707 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n", 1708 map->name, Xstatus.x[0], status.x[0]); 1709 goto out; 1710 } 1711 1712 /* Figure out the number of words to write */ 1713 word_gap = (-adr & (map_bankwidth(map)-1)); 1714 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map)); 1715 if (!word_gap) { 1716 words--; 1717 } else { 1718 word_gap = map_bankwidth(map) - word_gap; 1719 adr -= word_gap; 1720 datum = map_word_ff(map); 1721 } 1722 1723 /* Write length of data to come */ 1724 map_write(map, CMD(words), cmd_adr ); 1725 1726 /* Write data */ 1727 vec = *pvec; 1728 vec_seek = *pvec_seek; 1729 do { 1730 int n = map_bankwidth(map) - word_gap; 1731 if (n > vec->iov_len - vec_seek) 1732 n = vec->iov_len - vec_seek; 1733 if (n > len) 1734 n = len; 1735 1736 if (!word_gap && len < map_bankwidth(map)) 1737 datum = map_word_ff(map); 1738 1739 datum = map_word_load_partial(map, datum, 1740 vec->iov_base + vec_seek, 1741 word_gap, n); 1742 1743 len -= n; 1744 word_gap += n; 1745 if (!len || word_gap == map_bankwidth(map)) { 1746 map_write(map, datum, adr); 1747 adr += map_bankwidth(map); 1748 word_gap = 0; 1749 } 1750 1751 vec_seek += n; 1752 if (vec_seek == vec->iov_len) { 1753 vec++; 1754 vec_seek = 0; 1755 } 1756 } while (len); 1757 *pvec = vec; 1758 *pvec_seek = vec_seek; 1759 1760 /* GO GO GO */ 1761 map_write(map, CMD(0xd0), cmd_adr); 1762 chip->state = FL_WRITING; 1763 1764 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, 1765 initial_adr, initial_len, 1766 chip->buffer_write_time, 1767 chip->buffer_write_time_max); 1768 if (ret) { 1769 map_write(map, CMD(0x70), cmd_adr); 1770 chip->state = FL_STATUS; 1771 xip_enable(map, chip, cmd_adr); 1772 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name); 1773 goto out; 1774 } 1775 1776 /* check for errors */ 1777 status = map_read(map, cmd_adr); 1778 if (map_word_bitsset(map, status, CMD(0x1a))) { 1779 unsigned long chipstatus = MERGESTATUS(status); 1780 1781 /* reset status */ 1782 map_write(map, CMD(0x50), cmd_adr); 1783 map_write(map, CMD(0x70), cmd_adr); 1784 xip_enable(map, chip, cmd_adr); 1785 1786 if (chipstatus & 0x02) { 1787 ret = -EROFS; 1788 } else if (chipstatus & 0x08) { 1789 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name); 1790 ret = -EIO; 1791 } else { 1792 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus); 1793 ret = -EINVAL; 1794 } 1795 1796 goto out; 1797 } 1798 1799 xip_enable(map, chip, cmd_adr); 1800 out: put_chip(map, chip, cmd_adr); 1801 mutex_unlock(&chip->mutex); 1802 return ret; 1803 } 1804 1805 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs, 1806 unsigned long count, loff_t to, size_t *retlen) 1807 { 1808 struct map_info *map = mtd->priv; 1809 struct cfi_private *cfi = map->fldrv_priv; 1810 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 1811 int ret = 0; 1812 int chipnum; 1813 unsigned long ofs, vec_seek, i; 1814 size_t len = 0; 1815 1816 for (i = 0; i < count; i++) 1817 len += vecs[i].iov_len; 1818 1819 *retlen = 0; 1820 if (!len) 1821 return 0; 1822 1823 chipnum = to >> cfi->chipshift; 1824 ofs = to - (chipnum << cfi->chipshift); 1825 vec_seek = 0; 1826 1827 do { 1828 /* We must not cross write block boundaries */ 1829 int size = wbufsize - (ofs & (wbufsize-1)); 1830 1831 if (size > len) 1832 size = len; 1833 ret = do_write_buffer(map, &cfi->chips[chipnum], 1834 ofs, &vecs, &vec_seek, size); 1835 if (ret) 1836 return ret; 1837 1838 ofs += size; 1839 (*retlen) += size; 1840 len -= size; 1841 1842 if (ofs >> cfi->chipshift) { 1843 chipnum ++; 1844 ofs = 0; 1845 if (chipnum == cfi->numchips) 1846 return 0; 1847 } 1848 1849 /* Be nice and reschedule with the chip in a usable state for other 1850 processes. */ 1851 cond_resched(); 1852 1853 } while (len); 1854 1855 return 0; 1856 } 1857 1858 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, 1859 size_t len, size_t *retlen, const u_char *buf) 1860 { 1861 struct kvec vec; 1862 1863 vec.iov_base = (void *) buf; 1864 vec.iov_len = len; 1865 1866 return cfi_intelext_writev(mtd, &vec, 1, to, retlen); 1867 } 1868 1869 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, 1870 unsigned long adr, int len, void *thunk) 1871 { 1872 struct cfi_private *cfi = map->fldrv_priv; 1873 map_word status; 1874 int retries = 3; 1875 int ret; 1876 1877 adr += chip->start; 1878 1879 retry: 1880 mutex_lock(&chip->mutex); 1881 ret = get_chip(map, chip, adr, FL_ERASING); 1882 if (ret) { 1883 mutex_unlock(&chip->mutex); 1884 return ret; 1885 } 1886 1887 XIP_INVAL_CACHED_RANGE(map, adr, len); 1888 ENABLE_VPP(map); 1889 xip_disable(map, chip, adr); 1890 1891 /* Clear the status register first */ 1892 map_write(map, CMD(0x50), adr); 1893 1894 /* Now erase */ 1895 map_write(map, CMD(0x20), adr); 1896 map_write(map, CMD(0xD0), adr); 1897 chip->state = FL_ERASING; 1898 chip->erase_suspended = 0; 1899 1900 ret = INVAL_CACHE_AND_WAIT(map, chip, adr, 1901 adr, len, 1902 chip->erase_time, 1903 chip->erase_time_max); 1904 if (ret) { 1905 map_write(map, CMD(0x70), adr); 1906 chip->state = FL_STATUS; 1907 xip_enable(map, chip, adr); 1908 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name); 1909 goto out; 1910 } 1911 1912 /* We've broken this before. It doesn't hurt to be safe */ 1913 map_write(map, CMD(0x70), adr); 1914 chip->state = FL_STATUS; 1915 status = map_read(map, adr); 1916 1917 /* check for errors */ 1918 if (map_word_bitsset(map, status, CMD(0x3a))) { 1919 unsigned long chipstatus = MERGESTATUS(status); 1920 1921 /* Reset the error bits */ 1922 map_write(map, CMD(0x50), adr); 1923 map_write(map, CMD(0x70), adr); 1924 xip_enable(map, chip, adr); 1925 1926 if ((chipstatus & 0x30) == 0x30) { 1927 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus); 1928 ret = -EINVAL; 1929 } else if (chipstatus & 0x02) { 1930 /* Protection bit set */ 1931 ret = -EROFS; 1932 } else if (chipstatus & 0x8) { 1933 /* Voltage */ 1934 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name); 1935 ret = -EIO; 1936 } else if (chipstatus & 0x20 && retries--) { 1937 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus); 1938 put_chip(map, chip, adr); 1939 mutex_unlock(&chip->mutex); 1940 goto retry; 1941 } else { 1942 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus); 1943 ret = -EIO; 1944 } 1945 1946 goto out; 1947 } 1948 1949 xip_enable(map, chip, adr); 1950 out: put_chip(map, chip, adr); 1951 mutex_unlock(&chip->mutex); 1952 return ret; 1953 } 1954 1955 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) 1956 { 1957 unsigned long ofs, len; 1958 int ret; 1959 1960 ofs = instr->addr; 1961 len = instr->len; 1962 1963 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); 1964 if (ret) 1965 return ret; 1966 1967 instr->state = MTD_ERASE_DONE; 1968 mtd_erase_callback(instr); 1969 1970 return 0; 1971 } 1972 1973 static void cfi_intelext_sync (struct mtd_info *mtd) 1974 { 1975 struct map_info *map = mtd->priv; 1976 struct cfi_private *cfi = map->fldrv_priv; 1977 int i; 1978 struct flchip *chip; 1979 int ret = 0; 1980 1981 for (i=0; !ret && i<cfi->numchips; i++) { 1982 chip = &cfi->chips[i]; 1983 1984 mutex_lock(&chip->mutex); 1985 ret = get_chip(map, chip, chip->start, FL_SYNCING); 1986 1987 if (!ret) { 1988 chip->oldstate = chip->state; 1989 chip->state = FL_SYNCING; 1990 /* No need to wake_up() on this state change - 1991 * as the whole point is that nobody can do anything 1992 * with the chip now anyway. 1993 */ 1994 } 1995 mutex_unlock(&chip->mutex); 1996 } 1997 1998 /* Unlock the chips again */ 1999 2000 for (i--; i >=0; i--) { 2001 chip = &cfi->chips[i]; 2002 2003 mutex_lock(&chip->mutex); 2004 2005 if (chip->state == FL_SYNCING) { 2006 chip->state = chip->oldstate; 2007 chip->oldstate = FL_READY; 2008 wake_up(&chip->wq); 2009 } 2010 mutex_unlock(&chip->mutex); 2011 } 2012 } 2013 2014 static int __xipram do_getlockstatus_oneblock(struct map_info *map, 2015 struct flchip *chip, 2016 unsigned long adr, 2017 int len, void *thunk) 2018 { 2019 struct cfi_private *cfi = map->fldrv_priv; 2020 int status, ofs_factor = cfi->interleave * cfi->device_type; 2021 2022 adr += chip->start; 2023 xip_disable(map, chip, adr+(2*ofs_factor)); 2024 map_write(map, CMD(0x90), adr+(2*ofs_factor)); 2025 chip->state = FL_JEDEC_QUERY; 2026 status = cfi_read_query(map, adr+(2*ofs_factor)); 2027 xip_enable(map, chip, 0); 2028 return status; 2029 } 2030 2031 #ifdef DEBUG_LOCK_BITS 2032 static int __xipram do_printlockstatus_oneblock(struct map_info *map, 2033 struct flchip *chip, 2034 unsigned long adr, 2035 int len, void *thunk) 2036 { 2037 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", 2038 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk)); 2039 return 0; 2040 } 2041 #endif 2042 2043 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) 2044 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) 2045 2046 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, 2047 unsigned long adr, int len, void *thunk) 2048 { 2049 struct cfi_private *cfi = map->fldrv_priv; 2050 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2051 int udelay; 2052 int ret; 2053 2054 adr += chip->start; 2055 2056 mutex_lock(&chip->mutex); 2057 ret = get_chip(map, chip, adr, FL_LOCKING); 2058 if (ret) { 2059 mutex_unlock(&chip->mutex); 2060 return ret; 2061 } 2062 2063 ENABLE_VPP(map); 2064 xip_disable(map, chip, adr); 2065 2066 map_write(map, CMD(0x60), adr); 2067 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { 2068 map_write(map, CMD(0x01), adr); 2069 chip->state = FL_LOCKING; 2070 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { 2071 map_write(map, CMD(0xD0), adr); 2072 chip->state = FL_UNLOCKING; 2073 } else 2074 BUG(); 2075 2076 /* 2077 * If Instant Individual Block Locking supported then no need 2078 * to delay. 2079 */ 2080 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0; 2081 2082 ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100); 2083 if (ret) { 2084 map_write(map, CMD(0x70), adr); 2085 chip->state = FL_STATUS; 2086 xip_enable(map, chip, adr); 2087 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name); 2088 goto out; 2089 } 2090 2091 xip_enable(map, chip, adr); 2092 out: put_chip(map, chip, adr); 2093 mutex_unlock(&chip->mutex); 2094 return ret; 2095 } 2096 2097 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2098 { 2099 int ret; 2100 2101 #ifdef DEBUG_LOCK_BITS 2102 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", 2103 __func__, ofs, len); 2104 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 2105 ofs, len, NULL); 2106 #endif 2107 2108 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 2109 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); 2110 2111 #ifdef DEBUG_LOCK_BITS 2112 printk(KERN_DEBUG "%s: lock status after, ret=%d\n", 2113 __func__, ret); 2114 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 2115 ofs, len, NULL); 2116 #endif 2117 2118 return ret; 2119 } 2120 2121 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2122 { 2123 int ret; 2124 2125 #ifdef DEBUG_LOCK_BITS 2126 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", 2127 __func__, ofs, len); 2128 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 2129 ofs, len, NULL); 2130 #endif 2131 2132 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 2133 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); 2134 2135 #ifdef DEBUG_LOCK_BITS 2136 printk(KERN_DEBUG "%s: lock status after, ret=%d\n", 2137 __func__, ret); 2138 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 2139 ofs, len, NULL); 2140 #endif 2141 2142 return ret; 2143 } 2144 2145 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, 2146 uint64_t len) 2147 { 2148 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock, 2149 ofs, len, NULL) ? 1 : 0; 2150 } 2151 2152 #ifdef CONFIG_MTD_OTP 2153 2154 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, 2155 u_long data_offset, u_char *buf, u_int size, 2156 u_long prot_offset, u_int groupno, u_int groupsize); 2157 2158 static int __xipram 2159 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset, 2160 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 2161 { 2162 struct cfi_private *cfi = map->fldrv_priv; 2163 int ret; 2164 2165 mutex_lock(&chip->mutex); 2166 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); 2167 if (ret) { 2168 mutex_unlock(&chip->mutex); 2169 return ret; 2170 } 2171 2172 /* let's ensure we're not reading back cached data from array mode */ 2173 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); 2174 2175 xip_disable(map, chip, chip->start); 2176 if (chip->state != FL_JEDEC_QUERY) { 2177 map_write(map, CMD(0x90), chip->start); 2178 chip->state = FL_JEDEC_QUERY; 2179 } 2180 map_copy_from(map, buf, chip->start + offset, size); 2181 xip_enable(map, chip, chip->start); 2182 2183 /* then ensure we don't keep OTP data in the cache */ 2184 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); 2185 2186 put_chip(map, chip, chip->start); 2187 mutex_unlock(&chip->mutex); 2188 return 0; 2189 } 2190 2191 static int 2192 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset, 2193 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 2194 { 2195 int ret; 2196 2197 while (size) { 2198 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1); 2199 int gap = offset - bus_ofs; 2200 int n = min_t(int, size, map_bankwidth(map)-gap); 2201 map_word datum = map_word_ff(map); 2202 2203 datum = map_word_load_partial(map, datum, buf, gap, n); 2204 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); 2205 if (ret) 2206 return ret; 2207 2208 offset += n; 2209 buf += n; 2210 size -= n; 2211 } 2212 2213 return 0; 2214 } 2215 2216 static int 2217 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset, 2218 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 2219 { 2220 struct cfi_private *cfi = map->fldrv_priv; 2221 map_word datum; 2222 2223 /* make sure area matches group boundaries */ 2224 if (size != grpsz) 2225 return -EXDEV; 2226 2227 datum = map_word_ff(map); 2228 datum = map_word_clr(map, datum, CMD(1 << grpno)); 2229 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE); 2230 } 2231 2232 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, 2233 size_t *retlen, u_char *buf, 2234 otp_op_t action, int user_regs) 2235 { 2236 struct map_info *map = mtd->priv; 2237 struct cfi_private *cfi = map->fldrv_priv; 2238 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2239 struct flchip *chip; 2240 struct cfi_intelext_otpinfo *otp; 2241 u_long devsize, reg_prot_offset, data_offset; 2242 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size; 2243 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups; 2244 int ret; 2245 2246 *retlen = 0; 2247 2248 /* Check that we actually have some OTP registers */ 2249 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields) 2250 return -ENODATA; 2251 2252 /* we need real chips here not virtual ones */ 2253 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave; 2254 chip_step = devsize >> cfi->chipshift; 2255 chip_num = 0; 2256 2257 /* Some chips have OTP located in the _top_ partition only. 2258 For example: Intel 28F256L18T (T means top-parameter device) */ 2259 if (cfi->mfr == CFI_MFR_INTEL) { 2260 switch (cfi->id) { 2261 case 0x880b: 2262 case 0x880c: 2263 case 0x880d: 2264 chip_num = chip_step - 1; 2265 } 2266 } 2267 2268 for ( ; chip_num < cfi->numchips; chip_num += chip_step) { 2269 chip = &cfi->chips[chip_num]; 2270 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0]; 2271 2272 /* first OTP region */ 2273 field = 0; 2274 reg_prot_offset = extp->ProtRegAddr; 2275 reg_fact_groups = 1; 2276 reg_fact_size = 1 << extp->FactProtRegSize; 2277 reg_user_groups = 1; 2278 reg_user_size = 1 << extp->UserProtRegSize; 2279 2280 while (len > 0) { 2281 /* flash geometry fixup */ 2282 data_offset = reg_prot_offset + 1; 2283 data_offset *= cfi->interleave * cfi->device_type; 2284 reg_prot_offset *= cfi->interleave * cfi->device_type; 2285 reg_fact_size *= cfi->interleave; 2286 reg_user_size *= cfi->interleave; 2287 2288 if (user_regs) { 2289 groups = reg_user_groups; 2290 groupsize = reg_user_size; 2291 /* skip over factory reg area */ 2292 groupno = reg_fact_groups; 2293 data_offset += reg_fact_groups * reg_fact_size; 2294 } else { 2295 groups = reg_fact_groups; 2296 groupsize = reg_fact_size; 2297 groupno = 0; 2298 } 2299 2300 while (len > 0 && groups > 0) { 2301 if (!action) { 2302 /* 2303 * Special case: if action is NULL 2304 * we fill buf with otp_info records. 2305 */ 2306 struct otp_info *otpinfo; 2307 map_word lockword; 2308 len -= sizeof(struct otp_info); 2309 if (len <= 0) 2310 return -ENOSPC; 2311 ret = do_otp_read(map, chip, 2312 reg_prot_offset, 2313 (u_char *)&lockword, 2314 map_bankwidth(map), 2315 0, 0, 0); 2316 if (ret) 2317 return ret; 2318 otpinfo = (struct otp_info *)buf; 2319 otpinfo->start = from; 2320 otpinfo->length = groupsize; 2321 otpinfo->locked = 2322 !map_word_bitsset(map, lockword, 2323 CMD(1 << groupno)); 2324 from += groupsize; 2325 buf += sizeof(*otpinfo); 2326 *retlen += sizeof(*otpinfo); 2327 } else if (from >= groupsize) { 2328 from -= groupsize; 2329 data_offset += groupsize; 2330 } else { 2331 int size = groupsize; 2332 data_offset += from; 2333 size -= from; 2334 from = 0; 2335 if (size > len) 2336 size = len; 2337 ret = action(map, chip, data_offset, 2338 buf, size, reg_prot_offset, 2339 groupno, groupsize); 2340 if (ret < 0) 2341 return ret; 2342 buf += size; 2343 len -= size; 2344 *retlen += size; 2345 data_offset += size; 2346 } 2347 groupno++; 2348 groups--; 2349 } 2350 2351 /* next OTP region */ 2352 if (++field == extp->NumProtectionFields) 2353 break; 2354 reg_prot_offset = otp->ProtRegAddr; 2355 reg_fact_groups = otp->FactGroups; 2356 reg_fact_size = 1 << otp->FactProtRegSize; 2357 reg_user_groups = otp->UserGroups; 2358 reg_user_size = 1 << otp->UserProtRegSize; 2359 otp++; 2360 } 2361 } 2362 2363 return 0; 2364 } 2365 2366 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 2367 size_t len, size_t *retlen, 2368 u_char *buf) 2369 { 2370 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2371 buf, do_otp_read, 0); 2372 } 2373 2374 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 2375 size_t len, size_t *retlen, 2376 u_char *buf) 2377 { 2378 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2379 buf, do_otp_read, 1); 2380 } 2381 2382 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 2383 size_t len, size_t *retlen, 2384 u_char *buf) 2385 { 2386 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2387 buf, do_otp_write, 1); 2388 } 2389 2390 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd, 2391 loff_t from, size_t len) 2392 { 2393 size_t retlen; 2394 return cfi_intelext_otp_walk(mtd, from, len, &retlen, 2395 NULL, do_otp_lock, 1); 2396 } 2397 2398 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, 2399 struct otp_info *buf, size_t len) 2400 { 2401 size_t retlen; 2402 int ret; 2403 2404 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0); 2405 return ret ? : retlen; 2406 } 2407 2408 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, 2409 struct otp_info *buf, size_t len) 2410 { 2411 size_t retlen; 2412 int ret; 2413 2414 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1); 2415 return ret ? : retlen; 2416 } 2417 2418 #endif 2419 2420 static void cfi_intelext_save_locks(struct mtd_info *mtd) 2421 { 2422 struct mtd_erase_region_info *region; 2423 int block, status, i; 2424 unsigned long adr; 2425 size_t len; 2426 2427 for (i = 0; i < mtd->numeraseregions; i++) { 2428 region = &mtd->eraseregions[i]; 2429 if (!region->lockmap) 2430 continue; 2431 2432 for (block = 0; block < region->numblocks; block++){ 2433 len = region->erasesize; 2434 adr = region->offset + block * len; 2435 2436 status = cfi_varsize_frob(mtd, 2437 do_getlockstatus_oneblock, adr, len, NULL); 2438 if (status) 2439 set_bit(block, region->lockmap); 2440 else 2441 clear_bit(block, region->lockmap); 2442 } 2443 } 2444 } 2445 2446 static int cfi_intelext_suspend(struct mtd_info *mtd) 2447 { 2448 struct map_info *map = mtd->priv; 2449 struct cfi_private *cfi = map->fldrv_priv; 2450 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2451 int i; 2452 struct flchip *chip; 2453 int ret = 0; 2454 2455 if ((mtd->flags & MTD_POWERUP_LOCK) 2456 && extp && (extp->FeatureSupport & (1 << 5))) 2457 cfi_intelext_save_locks(mtd); 2458 2459 for (i=0; !ret && i<cfi->numchips; i++) { 2460 chip = &cfi->chips[i]; 2461 2462 mutex_lock(&chip->mutex); 2463 2464 switch (chip->state) { 2465 case FL_READY: 2466 case FL_STATUS: 2467 case FL_CFI_QUERY: 2468 case FL_JEDEC_QUERY: 2469 if (chip->oldstate == FL_READY) { 2470 /* place the chip in a known state before suspend */ 2471 map_write(map, CMD(0xFF), cfi->chips[i].start); 2472 chip->oldstate = chip->state; 2473 chip->state = FL_PM_SUSPENDED; 2474 /* No need to wake_up() on this state change - 2475 * as the whole point is that nobody can do anything 2476 * with the chip now anyway. 2477 */ 2478 } else { 2479 /* There seems to be an operation pending. We must wait for it. */ 2480 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); 2481 ret = -EAGAIN; 2482 } 2483 break; 2484 default: 2485 /* Should we actually wait? Once upon a time these routines weren't 2486 allowed to. Or should we return -EAGAIN, because the upper layers 2487 ought to have already shut down anything which was using the device 2488 anyway? The latter for now. */ 2489 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); 2490 ret = -EAGAIN; 2491 case FL_PM_SUSPENDED: 2492 break; 2493 } 2494 mutex_unlock(&chip->mutex); 2495 } 2496 2497 /* Unlock the chips again */ 2498 2499 if (ret) { 2500 for (i--; i >=0; i--) { 2501 chip = &cfi->chips[i]; 2502 2503 mutex_lock(&chip->mutex); 2504 2505 if (chip->state == FL_PM_SUSPENDED) { 2506 /* No need to force it into a known state here, 2507 because we're returning failure, and it didn't 2508 get power cycled */ 2509 chip->state = chip->oldstate; 2510 chip->oldstate = FL_READY; 2511 wake_up(&chip->wq); 2512 } 2513 mutex_unlock(&chip->mutex); 2514 } 2515 } 2516 2517 return ret; 2518 } 2519 2520 static void cfi_intelext_restore_locks(struct mtd_info *mtd) 2521 { 2522 struct mtd_erase_region_info *region; 2523 int block, i; 2524 unsigned long adr; 2525 size_t len; 2526 2527 for (i = 0; i < mtd->numeraseregions; i++) { 2528 region = &mtd->eraseregions[i]; 2529 if (!region->lockmap) 2530 continue; 2531 2532 for (block = 0; block < region->numblocks; block++) { 2533 len = region->erasesize; 2534 adr = region->offset + block * len; 2535 2536 if (!test_bit(block, region->lockmap)) 2537 cfi_intelext_unlock(mtd, adr, len); 2538 } 2539 } 2540 } 2541 2542 static void cfi_intelext_resume(struct mtd_info *mtd) 2543 { 2544 struct map_info *map = mtd->priv; 2545 struct cfi_private *cfi = map->fldrv_priv; 2546 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2547 int i; 2548 struct flchip *chip; 2549 2550 for (i=0; i<cfi->numchips; i++) { 2551 2552 chip = &cfi->chips[i]; 2553 2554 mutex_lock(&chip->mutex); 2555 2556 /* Go to known state. Chip may have been power cycled */ 2557 if (chip->state == FL_PM_SUSPENDED) { 2558 map_write(map, CMD(0xFF), cfi->chips[i].start); 2559 chip->oldstate = chip->state = FL_READY; 2560 wake_up(&chip->wq); 2561 } 2562 2563 mutex_unlock(&chip->mutex); 2564 } 2565 2566 if ((mtd->flags & MTD_POWERUP_LOCK) 2567 && extp && (extp->FeatureSupport & (1 << 5))) 2568 cfi_intelext_restore_locks(mtd); 2569 } 2570 2571 static int cfi_intelext_reset(struct mtd_info *mtd) 2572 { 2573 struct map_info *map = mtd->priv; 2574 struct cfi_private *cfi = map->fldrv_priv; 2575 int i, ret; 2576 2577 for (i=0; i < cfi->numchips; i++) { 2578 struct flchip *chip = &cfi->chips[i]; 2579 2580 /* force the completion of any ongoing operation 2581 and switch to array mode so any bootloader in 2582 flash is accessible for soft reboot. */ 2583 mutex_lock(&chip->mutex); 2584 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); 2585 if (!ret) { 2586 map_write(map, CMD(0xff), chip->start); 2587 chip->state = FL_SHUTDOWN; 2588 put_chip(map, chip, chip->start); 2589 } 2590 mutex_unlock(&chip->mutex); 2591 } 2592 2593 return 0; 2594 } 2595 2596 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val, 2597 void *v) 2598 { 2599 struct mtd_info *mtd; 2600 2601 mtd = container_of(nb, struct mtd_info, reboot_notifier); 2602 cfi_intelext_reset(mtd); 2603 return NOTIFY_DONE; 2604 } 2605 2606 static void cfi_intelext_destroy(struct mtd_info *mtd) 2607 { 2608 struct map_info *map = mtd->priv; 2609 struct cfi_private *cfi = map->fldrv_priv; 2610 struct mtd_erase_region_info *region; 2611 int i; 2612 cfi_intelext_reset(mtd); 2613 unregister_reboot_notifier(&mtd->reboot_notifier); 2614 kfree(cfi->cmdset_priv); 2615 kfree(cfi->cfiq); 2616 kfree(cfi->chips[0].priv); 2617 kfree(cfi); 2618 for (i = 0; i < mtd->numeraseregions; i++) { 2619 region = &mtd->eraseregions[i]; 2620 if (region->lockmap) 2621 kfree(region->lockmap); 2622 } 2623 kfree(mtd->eraseregions); 2624 } 2625 2626 MODULE_LICENSE("GPL"); 2627 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); 2628 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); 2629 MODULE_ALIAS("cfi_cmdset_0003"); 2630 MODULE_ALIAS("cfi_cmdset_0200"); 2631