xref: /linux/drivers/mtd/chips/cfi_cmdset_0001.c (revision c9895ed5a84dc3cbc86a9d6d5656d8c187f53380)
1 /*
2  * Common Flash Interface support:
3  *   Intel Extended Vendor Command Set (ID 0x0001)
4  *
5  * (C) 2000 Red Hat. GPL'd
6  *
7  *
8  * 10/10/2000	Nicolas Pitre <nico@fluxnic.net>
9  * 	- completely revamped method functions so they are aware and
10  * 	  independent of the flash geometry (buswidth, interleave, etc.)
11  * 	- scalability vs code size is completely set at compile-time
12  * 	  (see include/linux/mtd/cfi.h for selection)
13  *	- optimized write buffer method
14  * 02/05/2002	Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15  *	- reworked lock/unlock/erase support for var size flash
16  * 21/03/2007   Rodolfo Giometti <giometti@linux.it>
17  * 	- auto unlock sectors on resume for auto locking flash on power up
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
27 
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/cfi.h>
38 
39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
41 
42 // debugging, turns off buffer write mode if set to 1
43 #define FORCE_WORD_WRITE 0
44 
45 /* Intel chips */
46 #define I82802AB	0x00ad
47 #define I82802AC	0x00ac
48 #define PF38F4476	0x881c
49 /* STMicroelectronics chips */
50 #define M50LPW080       0x002F
51 #define M50FLW080A	0x0080
52 #define M50FLW080B	0x0081
53 /* Atmel chips */
54 #define AT49BV640D	0x02de
55 #define AT49BV640DT	0x02db
56 
57 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
58 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
59 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
60 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
61 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
62 static void cfi_intelext_sync (struct mtd_info *);
63 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
64 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
65 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
66 				  uint64_t len);
67 #ifdef CONFIG_MTD_OTP
68 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
69 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
70 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
71 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
72 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
73 					    struct otp_info *, size_t);
74 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
75 					    struct otp_info *, size_t);
76 #endif
77 static int cfi_intelext_suspend (struct mtd_info *);
78 static void cfi_intelext_resume (struct mtd_info *);
79 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
80 
81 static void cfi_intelext_destroy(struct mtd_info *);
82 
83 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
84 
85 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
86 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
87 
88 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
89 		     size_t *retlen, void **virt, resource_size_t *phys);
90 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
91 
92 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
93 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
94 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
95 #include "fwh_lock.h"
96 
97 
98 
99 /*
100  *  *********** SETUP AND PROBE BITS  ***********
101  */
102 
103 static struct mtd_chip_driver cfi_intelext_chipdrv = {
104 	.probe		= NULL, /* Not usable directly */
105 	.destroy	= cfi_intelext_destroy,
106 	.name		= "cfi_cmdset_0001",
107 	.module		= THIS_MODULE
108 };
109 
110 /* #define DEBUG_LOCK_BITS */
111 /* #define DEBUG_CFI_FEATURES */
112 
113 #ifdef DEBUG_CFI_FEATURES
114 static void cfi_tell_features(struct cfi_pri_intelext *extp)
115 {
116 	int i;
117 	printk("  Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
118 	printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
119 	printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
120 	printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
121 	printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
122 	printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
123 	printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
124 	printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
125 	printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
126 	printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
127 	printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
128 	printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
129 	printk("     - Extended Flash Array:    %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
130 	for (i=11; i<32; i++) {
131 		if (extp->FeatureSupport & (1<<i))
132 			printk("     - Unknown Bit %X:      supported\n", i);
133 	}
134 
135 	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
136 	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
137 	for (i=1; i<8; i++) {
138 		if (extp->SuspendCmdSupport & (1<<i))
139 			printk("     - Unknown Bit %X:               supported\n", i);
140 	}
141 
142 	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
143 	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
144 	printk("     - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
145 	for (i=2; i<3; i++) {
146 		if (extp->BlkStatusRegMask & (1<<i))
147 			printk("     - Unknown Bit %X Active: yes\n",i);
148 	}
149 	printk("     - EFA Lock Bit:         %s\n", extp->BlkStatusRegMask&16?"yes":"no");
150 	printk("     - EFA Lock-Down Bit:    %s\n", extp->BlkStatusRegMask&32?"yes":"no");
151 	for (i=6; i<16; i++) {
152 		if (extp->BlkStatusRegMask & (1<<i))
153 			printk("     - Unknown Bit %X Active: yes\n",i);
154 	}
155 
156 	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
157 	       extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
158 	if (extp->VppOptimal)
159 		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
160 		       extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
161 }
162 #endif
163 
164 /* Atmel chips don't use the same PRI format as Intel chips */
165 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
166 {
167 	struct map_info *map = mtd->priv;
168 	struct cfi_private *cfi = map->fldrv_priv;
169 	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
170 	struct cfi_pri_atmel atmel_pri;
171 	uint32_t features = 0;
172 
173 	/* Reverse byteswapping */
174 	extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
175 	extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
176 	extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
177 
178 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
179 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
180 
181 	printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
182 
183 	if (atmel_pri.Features & 0x01) /* chip erase supported */
184 		features |= (1<<0);
185 	if (atmel_pri.Features & 0x02) /* erase suspend supported */
186 		features |= (1<<1);
187 	if (atmel_pri.Features & 0x04) /* program suspend supported */
188 		features |= (1<<2);
189 	if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
190 		features |= (1<<9);
191 	if (atmel_pri.Features & 0x20) /* page mode read supported */
192 		features |= (1<<7);
193 	if (atmel_pri.Features & 0x40) /* queued erase supported */
194 		features |= (1<<4);
195 	if (atmel_pri.Features & 0x80) /* Protection bits supported */
196 		features |= (1<<6);
197 
198 	extp->FeatureSupport = features;
199 
200 	/* burst write mode not supported */
201 	cfi->cfiq->BufWriteTimeoutTyp = 0;
202 	cfi->cfiq->BufWriteTimeoutMax = 0;
203 }
204 
205 static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
206 {
207 	struct map_info *map = mtd->priv;
208 	struct cfi_private *cfi = map->fldrv_priv;
209 	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
210 
211 	cfip->FeatureSupport |= (1 << 5);
212 	mtd->flags |= MTD_POWERUP_LOCK;
213 }
214 
215 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
216 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
217 static void fixup_intel_strataflash(struct mtd_info *mtd)
218 {
219 	struct map_info *map = mtd->priv;
220 	struct cfi_private *cfi = map->fldrv_priv;
221 	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
222 
223 	printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
224 	                    "erase on write disabled.\n");
225 	extp->SuspendCmdSupport &= ~1;
226 }
227 #endif
228 
229 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
230 static void fixup_no_write_suspend(struct mtd_info *mtd)
231 {
232 	struct map_info *map = mtd->priv;
233 	struct cfi_private *cfi = map->fldrv_priv;
234 	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
235 
236 	if (cfip && (cfip->FeatureSupport&4)) {
237 		cfip->FeatureSupport &= ~4;
238 		printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
239 	}
240 }
241 #endif
242 
243 static void fixup_st_m28w320ct(struct mtd_info *mtd)
244 {
245 	struct map_info *map = mtd->priv;
246 	struct cfi_private *cfi = map->fldrv_priv;
247 
248 	cfi->cfiq->BufWriteTimeoutTyp = 0;	/* Not supported */
249 	cfi->cfiq->BufWriteTimeoutMax = 0;	/* Not supported */
250 }
251 
252 static void fixup_st_m28w320cb(struct mtd_info *mtd)
253 {
254 	struct map_info *map = mtd->priv;
255 	struct cfi_private *cfi = map->fldrv_priv;
256 
257 	/* Note this is done after the region info is endian swapped */
258 	cfi->cfiq->EraseRegionInfo[1] =
259 		(cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
260 };
261 
262 static void fixup_use_point(struct mtd_info *mtd)
263 {
264 	struct map_info *map = mtd->priv;
265 	if (!mtd->point && map_is_linear(map)) {
266 		mtd->point   = cfi_intelext_point;
267 		mtd->unpoint = cfi_intelext_unpoint;
268 	}
269 }
270 
271 static void fixup_use_write_buffers(struct mtd_info *mtd)
272 {
273 	struct map_info *map = mtd->priv;
274 	struct cfi_private *cfi = map->fldrv_priv;
275 	if (cfi->cfiq->BufWriteTimeoutTyp) {
276 		printk(KERN_INFO "Using buffer write method\n" );
277 		mtd->write = cfi_intelext_write_buffers;
278 		mtd->writev = cfi_intelext_writev;
279 	}
280 }
281 
282 /*
283  * Some chips power-up with all sectors locked by default.
284  */
285 static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
290 
291 	if (cfip->FeatureSupport&32) {
292 		printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
293 		mtd->flags |= MTD_POWERUP_LOCK;
294 	}
295 }
296 
297 static struct cfi_fixup cfi_fixup_table[] = {
298 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
299 	{ CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
300 	{ CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
301 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
302 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
303 #endif
304 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
305 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
306 #endif
307 #if !FORCE_WORD_WRITE
308 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
309 #endif
310 	{ CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
311 	{ CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
312 	{ CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
313 	{ 0, 0, NULL }
314 };
315 
316 static struct cfi_fixup jedec_fixup_table[] = {
317 	{ CFI_MFR_INTEL, I82802AB,   fixup_use_fwh_lock },
318 	{ CFI_MFR_INTEL, I82802AC,   fixup_use_fwh_lock },
319 	{ CFI_MFR_ST,    M50LPW080,  fixup_use_fwh_lock },
320 	{ CFI_MFR_ST,    M50FLW080A, fixup_use_fwh_lock },
321 	{ CFI_MFR_ST,    M50FLW080B, fixup_use_fwh_lock },
322 	{ 0, 0, NULL }
323 };
324 static struct cfi_fixup fixup_table[] = {
325 	/* The CFI vendor ids and the JEDEC vendor IDs appear
326 	 * to be common.  It is like the devices id's are as
327 	 * well.  This table is to pick all cases where
328 	 * we know that is the case.
329 	 */
330 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
331 	{ 0, 0, NULL }
332 };
333 
334 static void cfi_fixup_major_minor(struct cfi_private *cfi,
335 						struct cfi_pri_intelext *extp)
336 {
337 	if (cfi->mfr == CFI_MFR_INTEL &&
338 			cfi->id == PF38F4476 && extp->MinorVersion == '3')
339 		extp->MinorVersion = '1';
340 }
341 
342 static inline struct cfi_pri_intelext *
343 read_pri_intelext(struct map_info *map, __u16 adr)
344 {
345 	struct cfi_private *cfi = map->fldrv_priv;
346 	struct cfi_pri_intelext *extp;
347 	unsigned int extra_size = 0;
348 	unsigned int extp_size = sizeof(*extp);
349 
350  again:
351 	extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
352 	if (!extp)
353 		return NULL;
354 
355 	cfi_fixup_major_minor(cfi, extp);
356 
357 	if (extp->MajorVersion != '1' ||
358 	    (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
359 		printk(KERN_ERR "  Unknown Intel/Sharp Extended Query "
360 		       "version %c.%c.\n",  extp->MajorVersion,
361 		       extp->MinorVersion);
362 		kfree(extp);
363 		return NULL;
364 	}
365 
366 	/* Do some byteswapping if necessary */
367 	extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
368 	extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
369 	extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
370 
371 	if (extp->MinorVersion >= '0') {
372 		extra_size = 0;
373 
374 		/* Protection Register info */
375 		extra_size += (extp->NumProtectionFields - 1) *
376 			      sizeof(struct cfi_intelext_otpinfo);
377 	}
378 
379 	if (extp->MinorVersion >= '1') {
380 		/* Burst Read info */
381 		extra_size += 2;
382 		if (extp_size < sizeof(*extp) + extra_size)
383 			goto need_more;
384 		extra_size += extp->extra[extra_size - 1];
385 	}
386 
387 	if (extp->MinorVersion >= '3') {
388 		int nb_parts, i;
389 
390 		/* Number of hardware-partitions */
391 		extra_size += 1;
392 		if (extp_size < sizeof(*extp) + extra_size)
393 			goto need_more;
394 		nb_parts = extp->extra[extra_size - 1];
395 
396 		/* skip the sizeof(partregion) field in CFI 1.4 */
397 		if (extp->MinorVersion >= '4')
398 			extra_size += 2;
399 
400 		for (i = 0; i < nb_parts; i++) {
401 			struct cfi_intelext_regioninfo *rinfo;
402 			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
403 			extra_size += sizeof(*rinfo);
404 			if (extp_size < sizeof(*extp) + extra_size)
405 				goto need_more;
406 			rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
407 			extra_size += (rinfo->NumBlockTypes - 1)
408 				      * sizeof(struct cfi_intelext_blockinfo);
409 		}
410 
411 		if (extp->MinorVersion >= '4')
412 			extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
413 
414 		if (extp_size < sizeof(*extp) + extra_size) {
415 			need_more:
416 			extp_size = sizeof(*extp) + extra_size;
417 			kfree(extp);
418 			if (extp_size > 4096) {
419 				printk(KERN_ERR
420 					"%s: cfi_pri_intelext is too fat\n",
421 					__func__);
422 				return NULL;
423 			}
424 			goto again;
425 		}
426 	}
427 
428 	return extp;
429 }
430 
431 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
432 {
433 	struct cfi_private *cfi = map->fldrv_priv;
434 	struct mtd_info *mtd;
435 	int i;
436 
437 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
438 	if (!mtd) {
439 		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
440 		return NULL;
441 	}
442 	mtd->priv = map;
443 	mtd->type = MTD_NORFLASH;
444 
445 	/* Fill in the default mtd operations */
446 	mtd->erase   = cfi_intelext_erase_varsize;
447 	mtd->read    = cfi_intelext_read;
448 	mtd->write   = cfi_intelext_write_words;
449 	mtd->sync    = cfi_intelext_sync;
450 	mtd->lock    = cfi_intelext_lock;
451 	mtd->unlock  = cfi_intelext_unlock;
452 	mtd->is_locked = cfi_intelext_is_locked;
453 	mtd->suspend = cfi_intelext_suspend;
454 	mtd->resume  = cfi_intelext_resume;
455 	mtd->flags   = MTD_CAP_NORFLASH;
456 	mtd->name    = map->name;
457 	mtd->writesize = 1;
458 	mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize;
459 
460 	mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
461 
462 	if (cfi->cfi_mode == CFI_MODE_CFI) {
463 		/*
464 		 * It's a real CFI chip, not one for which the probe
465 		 * routine faked a CFI structure. So we read the feature
466 		 * table from it.
467 		 */
468 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
469 		struct cfi_pri_intelext *extp;
470 
471 		extp = read_pri_intelext(map, adr);
472 		if (!extp) {
473 			kfree(mtd);
474 			return NULL;
475 		}
476 
477 		/* Install our own private info structure */
478 		cfi->cmdset_priv = extp;
479 
480 		cfi_fixup(mtd, cfi_fixup_table);
481 
482 #ifdef DEBUG_CFI_FEATURES
483 		/* Tell the user about it in lots of lovely detail */
484 		cfi_tell_features(extp);
485 #endif
486 
487 		if(extp->SuspendCmdSupport & 1) {
488 			printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
489 		}
490 	}
491 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
492 		/* Apply jedec specific fixups */
493 		cfi_fixup(mtd, jedec_fixup_table);
494 	}
495 	/* Apply generic fixups */
496 	cfi_fixup(mtd, fixup_table);
497 
498 	for (i=0; i< cfi->numchips; i++) {
499 		if (cfi->cfiq->WordWriteTimeoutTyp)
500 			cfi->chips[i].word_write_time =
501 				1<<cfi->cfiq->WordWriteTimeoutTyp;
502 		else
503 			cfi->chips[i].word_write_time = 50000;
504 
505 		if (cfi->cfiq->BufWriteTimeoutTyp)
506 			cfi->chips[i].buffer_write_time =
507 				1<<cfi->cfiq->BufWriteTimeoutTyp;
508 		/* No default; if it isn't specified, we won't use it */
509 
510 		if (cfi->cfiq->BlockEraseTimeoutTyp)
511 			cfi->chips[i].erase_time =
512 				1000<<cfi->cfiq->BlockEraseTimeoutTyp;
513 		else
514 			cfi->chips[i].erase_time = 2000000;
515 
516 		if (cfi->cfiq->WordWriteTimeoutTyp &&
517 		    cfi->cfiq->WordWriteTimeoutMax)
518 			cfi->chips[i].word_write_time_max =
519 				1<<(cfi->cfiq->WordWriteTimeoutTyp +
520 				    cfi->cfiq->WordWriteTimeoutMax);
521 		else
522 			cfi->chips[i].word_write_time_max = 50000 * 8;
523 
524 		if (cfi->cfiq->BufWriteTimeoutTyp &&
525 		    cfi->cfiq->BufWriteTimeoutMax)
526 			cfi->chips[i].buffer_write_time_max =
527 				1<<(cfi->cfiq->BufWriteTimeoutTyp +
528 				    cfi->cfiq->BufWriteTimeoutMax);
529 
530 		if (cfi->cfiq->BlockEraseTimeoutTyp &&
531 		    cfi->cfiq->BlockEraseTimeoutMax)
532 			cfi->chips[i].erase_time_max =
533 				1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
534 				       cfi->cfiq->BlockEraseTimeoutMax);
535 		else
536 			cfi->chips[i].erase_time_max = 2000000 * 8;
537 
538 		cfi->chips[i].ref_point_counter = 0;
539 		init_waitqueue_head(&(cfi->chips[i].wq));
540 	}
541 
542 	map->fldrv = &cfi_intelext_chipdrv;
543 
544 	return cfi_intelext_setup(mtd);
545 }
546 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
547 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
550 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
551 
552 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
553 {
554 	struct map_info *map = mtd->priv;
555 	struct cfi_private *cfi = map->fldrv_priv;
556 	unsigned long offset = 0;
557 	int i,j;
558 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
559 
560 	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
561 
562 	mtd->size = devsize * cfi->numchips;
563 
564 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
565 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
566 			* mtd->numeraseregions, GFP_KERNEL);
567 	if (!mtd->eraseregions) {
568 		printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
569 		goto setup_err;
570 	}
571 
572 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
573 		unsigned long ernum, ersize;
574 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
575 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
576 
577 		if (mtd->erasesize < ersize) {
578 			mtd->erasesize = ersize;
579 		}
580 		for (j=0; j<cfi->numchips; j++) {
581 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
582 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
583 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
584 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
585 		}
586 		offset += (ersize * ernum);
587 	}
588 
589 	if (offset != devsize) {
590 		/* Argh */
591 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
592 		goto setup_err;
593 	}
594 
595 	for (i=0; i<mtd->numeraseregions;i++){
596 		printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
597 		       i,(unsigned long long)mtd->eraseregions[i].offset,
598 		       mtd->eraseregions[i].erasesize,
599 		       mtd->eraseregions[i].numblocks);
600 	}
601 
602 #ifdef CONFIG_MTD_OTP
603 	mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
604 	mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
605 	mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
606 	mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
607 	mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
608 	mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
609 #endif
610 
611 	/* This function has the potential to distort the reality
612 	   a bit and therefore should be called last. */
613 	if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
614 		goto setup_err;
615 
616 	__module_get(THIS_MODULE);
617 	register_reboot_notifier(&mtd->reboot_notifier);
618 	return mtd;
619 
620  setup_err:
621 	kfree(mtd->eraseregions);
622 	kfree(mtd);
623 	kfree(cfi->cmdset_priv);
624 	return NULL;
625 }
626 
627 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
628 					struct cfi_private **pcfi)
629 {
630 	struct map_info *map = mtd->priv;
631 	struct cfi_private *cfi = *pcfi;
632 	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
633 
634 	/*
635 	 * Probing of multi-partition flash chips.
636 	 *
637 	 * To support multiple partitions when available, we simply arrange
638 	 * for each of them to have their own flchip structure even if they
639 	 * are on the same physical chip.  This means completely recreating
640 	 * a new cfi_private structure right here which is a blatent code
641 	 * layering violation, but this is still the least intrusive
642 	 * arrangement at this point. This can be rearranged in the future
643 	 * if someone feels motivated enough.  --nico
644 	 */
645 	if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
646 	    && extp->FeatureSupport & (1 << 9)) {
647 		struct cfi_private *newcfi;
648 		struct flchip *chip;
649 		struct flchip_shared *shared;
650 		int offs, numregions, numparts, partshift, numvirtchips, i, j;
651 
652 		/* Protection Register info */
653 		offs = (extp->NumProtectionFields - 1) *
654 		       sizeof(struct cfi_intelext_otpinfo);
655 
656 		/* Burst Read info */
657 		offs += extp->extra[offs+1]+2;
658 
659 		/* Number of partition regions */
660 		numregions = extp->extra[offs];
661 		offs += 1;
662 
663 		/* skip the sizeof(partregion) field in CFI 1.4 */
664 		if (extp->MinorVersion >= '4')
665 			offs += 2;
666 
667 		/* Number of hardware partitions */
668 		numparts = 0;
669 		for (i = 0; i < numregions; i++) {
670 			struct cfi_intelext_regioninfo *rinfo;
671 			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
672 			numparts += rinfo->NumIdentPartitions;
673 			offs += sizeof(*rinfo)
674 				+ (rinfo->NumBlockTypes - 1) *
675 				  sizeof(struct cfi_intelext_blockinfo);
676 		}
677 
678 		if (!numparts)
679 			numparts = 1;
680 
681 		/* Programming Region info */
682 		if (extp->MinorVersion >= '4') {
683 			struct cfi_intelext_programming_regioninfo *prinfo;
684 			prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
685 			mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
686 			mtd->flags &= ~MTD_BIT_WRITEABLE;
687 			printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
688 			       map->name, mtd->writesize,
689 			       cfi->interleave * prinfo->ControlValid,
690 			       cfi->interleave * prinfo->ControlInvalid);
691 		}
692 
693 		/*
694 		 * All functions below currently rely on all chips having
695 		 * the same geometry so we'll just assume that all hardware
696 		 * partitions are of the same size too.
697 		 */
698 		partshift = cfi->chipshift - __ffs(numparts);
699 
700 		if ((1 << partshift) < mtd->erasesize) {
701 			printk( KERN_ERR
702 				"%s: bad number of hw partitions (%d)\n",
703 				__func__, numparts);
704 			return -EINVAL;
705 		}
706 
707 		numvirtchips = cfi->numchips * numparts;
708 		newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
709 		if (!newcfi)
710 			return -ENOMEM;
711 		shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
712 		if (!shared) {
713 			kfree(newcfi);
714 			return -ENOMEM;
715 		}
716 		memcpy(newcfi, cfi, sizeof(struct cfi_private));
717 		newcfi->numchips = numvirtchips;
718 		newcfi->chipshift = partshift;
719 
720 		chip = &newcfi->chips[0];
721 		for (i = 0; i < cfi->numchips; i++) {
722 			shared[i].writing = shared[i].erasing = NULL;
723 			mutex_init(&shared[i].lock);
724 			for (j = 0; j < numparts; j++) {
725 				*chip = cfi->chips[i];
726 				chip->start += j << partshift;
727 				chip->priv = &shared[i];
728 				/* those should be reset too since
729 				   they create memory references. */
730 				init_waitqueue_head(&chip->wq);
731 				mutex_init(&chip->mutex);
732 				chip++;
733 			}
734 		}
735 
736 		printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
737 				  "--> %d partitions of %d KiB\n",
738 				  map->name, cfi->numchips, cfi->interleave,
739 				  newcfi->numchips, 1<<(newcfi->chipshift-10));
740 
741 		map->fldrv_priv = newcfi;
742 		*pcfi = newcfi;
743 		kfree(cfi);
744 	}
745 
746 	return 0;
747 }
748 
749 /*
750  *  *********** CHIP ACCESS FUNCTIONS ***********
751  */
752 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
753 {
754 	DECLARE_WAITQUEUE(wait, current);
755 	struct cfi_private *cfi = map->fldrv_priv;
756 	map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
757 	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
758 	unsigned long timeo = jiffies + HZ;
759 
760 	/* Prevent setting state FL_SYNCING for chip in suspended state. */
761 	if (mode == FL_SYNCING && chip->oldstate != FL_READY)
762 		goto sleep;
763 
764 	switch (chip->state) {
765 
766 	case FL_STATUS:
767 		for (;;) {
768 			status = map_read(map, adr);
769 			if (map_word_andequal(map, status, status_OK, status_OK))
770 				break;
771 
772 			/* At this point we're fine with write operations
773 			   in other partitions as they don't conflict. */
774 			if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
775 				break;
776 
777 			mutex_unlock(&chip->mutex);
778 			cfi_udelay(1);
779 			mutex_lock(&chip->mutex);
780 			/* Someone else might have been playing with it. */
781 			return -EAGAIN;
782 		}
783 		/* Fall through */
784 	case FL_READY:
785 	case FL_CFI_QUERY:
786 	case FL_JEDEC_QUERY:
787 		return 0;
788 
789 	case FL_ERASING:
790 		if (!cfip ||
791 		    !(cfip->FeatureSupport & 2) ||
792 		    !(mode == FL_READY || mode == FL_POINT ||
793 		     (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
794 			goto sleep;
795 
796 
797 		/* Erase suspend */
798 		map_write(map, CMD(0xB0), adr);
799 
800 		/* If the flash has finished erasing, then 'erase suspend'
801 		 * appears to make some (28F320) flash devices switch to
802 		 * 'read' mode.  Make sure that we switch to 'read status'
803 		 * mode so we get the right data. --rmk
804 		 */
805 		map_write(map, CMD(0x70), adr);
806 		chip->oldstate = FL_ERASING;
807 		chip->state = FL_ERASE_SUSPENDING;
808 		chip->erase_suspended = 1;
809 		for (;;) {
810 			status = map_read(map, adr);
811 			if (map_word_andequal(map, status, status_OK, status_OK))
812 			        break;
813 
814 			if (time_after(jiffies, timeo)) {
815 				/* Urgh. Resume and pretend we weren't here.  */
816 				map_write(map, CMD(0xd0), adr);
817 				/* Make sure we're in 'read status' mode if it had finished */
818 				map_write(map, CMD(0x70), adr);
819 				chip->state = FL_ERASING;
820 				chip->oldstate = FL_READY;
821 				printk(KERN_ERR "%s: Chip not ready after erase "
822 				       "suspended: status = 0x%lx\n", map->name, status.x[0]);
823 				return -EIO;
824 			}
825 
826 			mutex_unlock(&chip->mutex);
827 			cfi_udelay(1);
828 			mutex_lock(&chip->mutex);
829 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
830 			   So we can just loop here. */
831 		}
832 		chip->state = FL_STATUS;
833 		return 0;
834 
835 	case FL_XIP_WHILE_ERASING:
836 		if (mode != FL_READY && mode != FL_POINT &&
837 		    (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
838 			goto sleep;
839 		chip->oldstate = chip->state;
840 		chip->state = FL_READY;
841 		return 0;
842 
843 	case FL_SHUTDOWN:
844 		/* The machine is rebooting now,so no one can get chip anymore */
845 		return -EIO;
846 	case FL_POINT:
847 		/* Only if there's no operation suspended... */
848 		if (mode == FL_READY && chip->oldstate == FL_READY)
849 			return 0;
850 		/* Fall through */
851 	default:
852 	sleep:
853 		set_current_state(TASK_UNINTERRUPTIBLE);
854 		add_wait_queue(&chip->wq, &wait);
855 		mutex_unlock(&chip->mutex);
856 		schedule();
857 		remove_wait_queue(&chip->wq, &wait);
858 		mutex_lock(&chip->mutex);
859 		return -EAGAIN;
860 	}
861 }
862 
863 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
864 {
865 	int ret;
866 	DECLARE_WAITQUEUE(wait, current);
867 
868  retry:
869 	if (chip->priv &&
870 	    (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
871 	    || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
872 		/*
873 		 * OK. We have possibility for contention on the write/erase
874 		 * operations which are global to the real chip and not per
875 		 * partition.  So let's fight it over in the partition which
876 		 * currently has authority on the operation.
877 		 *
878 		 * The rules are as follows:
879 		 *
880 		 * - any write operation must own shared->writing.
881 		 *
882 		 * - any erase operation must own _both_ shared->writing and
883 		 *   shared->erasing.
884 		 *
885 		 * - contention arbitration is handled in the owner's context.
886 		 *
887 		 * The 'shared' struct can be read and/or written only when
888 		 * its lock is taken.
889 		 */
890 		struct flchip_shared *shared = chip->priv;
891 		struct flchip *contender;
892 		mutex_lock(&shared->lock);
893 		contender = shared->writing;
894 		if (contender && contender != chip) {
895 			/*
896 			 * The engine to perform desired operation on this
897 			 * partition is already in use by someone else.
898 			 * Let's fight over it in the context of the chip
899 			 * currently using it.  If it is possible to suspend,
900 			 * that other partition will do just that, otherwise
901 			 * it'll happily send us to sleep.  In any case, when
902 			 * get_chip returns success we're clear to go ahead.
903 			 */
904 			ret = mutex_trylock(&contender->mutex);
905 			mutex_unlock(&shared->lock);
906 			if (!ret)
907 				goto retry;
908 			mutex_unlock(&chip->mutex);
909 			ret = chip_ready(map, contender, contender->start, mode);
910 			mutex_lock(&chip->mutex);
911 
912 			if (ret == -EAGAIN) {
913 				mutex_unlock(&contender->mutex);
914 				goto retry;
915 			}
916 			if (ret) {
917 				mutex_unlock(&contender->mutex);
918 				return ret;
919 			}
920 			mutex_lock(&shared->lock);
921 
922 			/* We should not own chip if it is already
923 			 * in FL_SYNCING state. Put contender and retry. */
924 			if (chip->state == FL_SYNCING) {
925 				put_chip(map, contender, contender->start);
926 				mutex_unlock(&contender->mutex);
927 				goto retry;
928 			}
929 			mutex_unlock(&contender->mutex);
930 		}
931 
932 		/* Check if we already have suspended erase
933 		 * on this chip. Sleep. */
934 		if (mode == FL_ERASING && shared->erasing
935 		    && shared->erasing->oldstate == FL_ERASING) {
936 			mutex_unlock(&shared->lock);
937 			set_current_state(TASK_UNINTERRUPTIBLE);
938 			add_wait_queue(&chip->wq, &wait);
939 			mutex_unlock(&chip->mutex);
940 			schedule();
941 			remove_wait_queue(&chip->wq, &wait);
942 			mutex_lock(&chip->mutex);
943 			goto retry;
944 		}
945 
946 		/* We now own it */
947 		shared->writing = chip;
948 		if (mode == FL_ERASING)
949 			shared->erasing = chip;
950 		mutex_unlock(&shared->lock);
951 	}
952 	ret = chip_ready(map, chip, adr, mode);
953 	if (ret == -EAGAIN)
954 		goto retry;
955 
956 	return ret;
957 }
958 
959 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
960 {
961 	struct cfi_private *cfi = map->fldrv_priv;
962 
963 	if (chip->priv) {
964 		struct flchip_shared *shared = chip->priv;
965 		mutex_lock(&shared->lock);
966 		if (shared->writing == chip && chip->oldstate == FL_READY) {
967 			/* We own the ability to write, but we're done */
968 			shared->writing = shared->erasing;
969 			if (shared->writing && shared->writing != chip) {
970 				/* give back ownership to who we loaned it from */
971 				struct flchip *loaner = shared->writing;
972 				mutex_lock(&loaner->mutex);
973 				mutex_unlock(&shared->lock);
974 				mutex_unlock(&chip->mutex);
975 				put_chip(map, loaner, loaner->start);
976 				mutex_lock(&chip->mutex);
977 				mutex_unlock(&loaner->mutex);
978 				wake_up(&chip->wq);
979 				return;
980 			}
981 			shared->erasing = NULL;
982 			shared->writing = NULL;
983 		} else if (shared->erasing == chip && shared->writing != chip) {
984 			/*
985 			 * We own the ability to erase without the ability
986 			 * to write, which means the erase was suspended
987 			 * and some other partition is currently writing.
988 			 * Don't let the switch below mess things up since
989 			 * we don't have ownership to resume anything.
990 			 */
991 			mutex_unlock(&shared->lock);
992 			wake_up(&chip->wq);
993 			return;
994 		}
995 		mutex_unlock(&shared->lock);
996 	}
997 
998 	switch(chip->oldstate) {
999 	case FL_ERASING:
1000 		chip->state = chip->oldstate;
1001 		/* What if one interleaved chip has finished and the
1002 		   other hasn't? The old code would leave the finished
1003 		   one in READY mode. That's bad, and caused -EROFS
1004 		   errors to be returned from do_erase_oneblock because
1005 		   that's the only bit it checked for at the time.
1006 		   As the state machine appears to explicitly allow
1007 		   sending the 0x70 (Read Status) command to an erasing
1008 		   chip and expecting it to be ignored, that's what we
1009 		   do. */
1010 		map_write(map, CMD(0xd0), adr);
1011 		map_write(map, CMD(0x70), adr);
1012 		chip->oldstate = FL_READY;
1013 		chip->state = FL_ERASING;
1014 		break;
1015 
1016 	case FL_XIP_WHILE_ERASING:
1017 		chip->state = chip->oldstate;
1018 		chip->oldstate = FL_READY;
1019 		break;
1020 
1021 	case FL_READY:
1022 	case FL_STATUS:
1023 	case FL_JEDEC_QUERY:
1024 		/* We should really make set_vpp() count, rather than doing this */
1025 		DISABLE_VPP(map);
1026 		break;
1027 	default:
1028 		printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1029 	}
1030 	wake_up(&chip->wq);
1031 }
1032 
1033 #ifdef CONFIG_MTD_XIP
1034 
1035 /*
1036  * No interrupt what so ever can be serviced while the flash isn't in array
1037  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1038  * enclosing any code path where the flash is known not to be in array mode.
1039  * And within a XIP disabled code path, only functions marked with __xipram
1040  * may be called and nothing else (it's a good thing to inspect generated
1041  * assembly to make sure inline functions were actually inlined and that gcc
1042  * didn't emit calls to its own support functions). Also configuring MTD CFI
1043  * support to a single buswidth and a single interleave is also recommended.
1044  */
1045 
1046 static void xip_disable(struct map_info *map, struct flchip *chip,
1047 			unsigned long adr)
1048 {
1049 	/* TODO: chips with no XIP use should ignore and return */
1050 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
1051 	local_irq_disable();
1052 }
1053 
1054 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1055 				unsigned long adr)
1056 {
1057 	struct cfi_private *cfi = map->fldrv_priv;
1058 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1059 		map_write(map, CMD(0xff), adr);
1060 		chip->state = FL_READY;
1061 	}
1062 	(void) map_read(map, adr);
1063 	xip_iprefetch();
1064 	local_irq_enable();
1065 }
1066 
1067 /*
1068  * When a delay is required for the flash operation to complete, the
1069  * xip_wait_for_operation() function is polling for both the given timeout
1070  * and pending (but still masked) hardware interrupts.  Whenever there is an
1071  * interrupt pending then the flash erase or write operation is suspended,
1072  * array mode restored and interrupts unmasked.  Task scheduling might also
1073  * happen at that point.  The CPU eventually returns from the interrupt or
1074  * the call to schedule() and the suspended flash operation is resumed for
1075  * the remaining of the delay period.
1076  *
1077  * Warning: this function _will_ fool interrupt latency tracing tools.
1078  */
1079 
1080 static int __xipram xip_wait_for_operation(
1081 		struct map_info *map, struct flchip *chip,
1082 		unsigned long adr, unsigned int chip_op_time_max)
1083 {
1084 	struct cfi_private *cfi = map->fldrv_priv;
1085 	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1086 	map_word status, OK = CMD(0x80);
1087 	unsigned long usec, suspended, start, done;
1088 	flstate_t oldstate, newstate;
1089 
1090        	start = xip_currtime();
1091 	usec = chip_op_time_max;
1092 	if (usec == 0)
1093 		usec = 500000;
1094 	done = 0;
1095 
1096 	do {
1097 		cpu_relax();
1098 		if (xip_irqpending() && cfip &&
1099 		    ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1100 		     (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1101 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1102 			/*
1103 			 * Let's suspend the erase or write operation when
1104 			 * supported.  Note that we currently don't try to
1105 			 * suspend interleaved chips if there is already
1106 			 * another operation suspended (imagine what happens
1107 			 * when one chip was already done with the current
1108 			 * operation while another chip suspended it, then
1109 			 * we resume the whole thing at once).  Yes, it
1110 			 * can happen!
1111 			 */
1112 			usec -= done;
1113 			map_write(map, CMD(0xb0), adr);
1114 			map_write(map, CMD(0x70), adr);
1115 			suspended = xip_currtime();
1116 			do {
1117 				if (xip_elapsed_since(suspended) > 100000) {
1118 					/*
1119 					 * The chip doesn't want to suspend
1120 					 * after waiting for 100 msecs.
1121 					 * This is a critical error but there
1122 					 * is not much we can do here.
1123 					 */
1124 					return -EIO;
1125 				}
1126 				status = map_read(map, adr);
1127 			} while (!map_word_andequal(map, status, OK, OK));
1128 
1129 			/* Suspend succeeded */
1130 			oldstate = chip->state;
1131 			if (oldstate == FL_ERASING) {
1132 				if (!map_word_bitsset(map, status, CMD(0x40)))
1133 					break;
1134 				newstate = FL_XIP_WHILE_ERASING;
1135 				chip->erase_suspended = 1;
1136 			} else {
1137 				if (!map_word_bitsset(map, status, CMD(0x04)))
1138 					break;
1139 				newstate = FL_XIP_WHILE_WRITING;
1140 				chip->write_suspended = 1;
1141 			}
1142 			chip->state = newstate;
1143 			map_write(map, CMD(0xff), adr);
1144 			(void) map_read(map, adr);
1145 			xip_iprefetch();
1146 			local_irq_enable();
1147 			mutex_unlock(&chip->mutex);
1148 			xip_iprefetch();
1149 			cond_resched();
1150 
1151 			/*
1152 			 * We're back.  However someone else might have
1153 			 * decided to go write to the chip if we are in
1154 			 * a suspended erase state.  If so let's wait
1155 			 * until it's done.
1156 			 */
1157 			mutex_lock(&chip->mutex);
1158 			while (chip->state != newstate) {
1159 				DECLARE_WAITQUEUE(wait, current);
1160 				set_current_state(TASK_UNINTERRUPTIBLE);
1161 				add_wait_queue(&chip->wq, &wait);
1162 				mutex_unlock(&chip->mutex);
1163 				schedule();
1164 				remove_wait_queue(&chip->wq, &wait);
1165 				mutex_lock(&chip->mutex);
1166 			}
1167 			/* Disallow XIP again */
1168 			local_irq_disable();
1169 
1170 			/* Resume the write or erase operation */
1171 			map_write(map, CMD(0xd0), adr);
1172 			map_write(map, CMD(0x70), adr);
1173 			chip->state = oldstate;
1174 			start = xip_currtime();
1175 		} else if (usec >= 1000000/HZ) {
1176 			/*
1177 			 * Try to save on CPU power when waiting delay
1178 			 * is at least a system timer tick period.
1179 			 * No need to be extremely accurate here.
1180 			 */
1181 			xip_cpu_idle();
1182 		}
1183 		status = map_read(map, adr);
1184 		done = xip_elapsed_since(start);
1185 	} while (!map_word_andequal(map, status, OK, OK)
1186 		 && done < usec);
1187 
1188 	return (done >= usec) ? -ETIME : 0;
1189 }
1190 
1191 /*
1192  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1193  * the flash is actively programming or erasing since we have to poll for
1194  * the operation to complete anyway.  We can't do that in a generic way with
1195  * a XIP setup so do it before the actual flash operation in this case
1196  * and stub it out from INVAL_CACHE_AND_WAIT.
1197  */
1198 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1199 	INVALIDATE_CACHED_RANGE(map, from, size)
1200 
1201 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1202 	xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1203 
1204 #else
1205 
1206 #define xip_disable(map, chip, adr)
1207 #define xip_enable(map, chip, adr)
1208 #define XIP_INVAL_CACHED_RANGE(x...)
1209 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1210 
1211 static int inval_cache_and_wait_for_operation(
1212 		struct map_info *map, struct flchip *chip,
1213 		unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1214 		unsigned int chip_op_time, unsigned int chip_op_time_max)
1215 {
1216 	struct cfi_private *cfi = map->fldrv_priv;
1217 	map_word status, status_OK = CMD(0x80);
1218 	int chip_state = chip->state;
1219 	unsigned int timeo, sleep_time, reset_timeo;
1220 
1221 	mutex_unlock(&chip->mutex);
1222 	if (inval_len)
1223 		INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1224 	mutex_lock(&chip->mutex);
1225 
1226 	timeo = chip_op_time_max;
1227 	if (!timeo)
1228 		timeo = 500000;
1229 	reset_timeo = timeo;
1230 	sleep_time = chip_op_time / 2;
1231 
1232 	for (;;) {
1233 		status = map_read(map, cmd_adr);
1234 		if (map_word_andequal(map, status, status_OK, status_OK))
1235 			break;
1236 
1237 		if (!timeo) {
1238 			map_write(map, CMD(0x70), cmd_adr);
1239 			chip->state = FL_STATUS;
1240 			return -ETIME;
1241 		}
1242 
1243 		/* OK Still waiting. Drop the lock, wait a while and retry. */
1244 		mutex_unlock(&chip->mutex);
1245 		if (sleep_time >= 1000000/HZ) {
1246 			/*
1247 			 * Half of the normal delay still remaining
1248 			 * can be performed with a sleeping delay instead
1249 			 * of busy waiting.
1250 			 */
1251 			msleep(sleep_time/1000);
1252 			timeo -= sleep_time;
1253 			sleep_time = 1000000/HZ;
1254 		} else {
1255 			udelay(1);
1256 			cond_resched();
1257 			timeo--;
1258 		}
1259 		mutex_lock(&chip->mutex);
1260 
1261 		while (chip->state != chip_state) {
1262 			/* Someone's suspended the operation: sleep */
1263 			DECLARE_WAITQUEUE(wait, current);
1264 			set_current_state(TASK_UNINTERRUPTIBLE);
1265 			add_wait_queue(&chip->wq, &wait);
1266 			mutex_unlock(&chip->mutex);
1267 			schedule();
1268 			remove_wait_queue(&chip->wq, &wait);
1269 			mutex_lock(&chip->mutex);
1270 		}
1271 		if (chip->erase_suspended && chip_state == FL_ERASING)  {
1272 			/* Erase suspend occured while sleep: reset timeout */
1273 			timeo = reset_timeo;
1274 			chip->erase_suspended = 0;
1275 		}
1276 		if (chip->write_suspended && chip_state == FL_WRITING)  {
1277 			/* Write suspend occured while sleep: reset timeout */
1278 			timeo = reset_timeo;
1279 			chip->write_suspended = 0;
1280 		}
1281 	}
1282 
1283 	/* Done and happy. */
1284  	chip->state = FL_STATUS;
1285 	return 0;
1286 }
1287 
1288 #endif
1289 
1290 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1291 	INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1292 
1293 
1294 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1295 {
1296 	unsigned long cmd_addr;
1297 	struct cfi_private *cfi = map->fldrv_priv;
1298 	int ret = 0;
1299 
1300 	adr += chip->start;
1301 
1302 	/* Ensure cmd read/writes are aligned. */
1303 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1304 
1305 	mutex_lock(&chip->mutex);
1306 
1307 	ret = get_chip(map, chip, cmd_addr, FL_POINT);
1308 
1309 	if (!ret) {
1310 		if (chip->state != FL_POINT && chip->state != FL_READY)
1311 			map_write(map, CMD(0xff), cmd_addr);
1312 
1313 		chip->state = FL_POINT;
1314 		chip->ref_point_counter++;
1315 	}
1316 	mutex_unlock(&chip->mutex);
1317 
1318 	return ret;
1319 }
1320 
1321 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1322 		size_t *retlen, void **virt, resource_size_t *phys)
1323 {
1324 	struct map_info *map = mtd->priv;
1325 	struct cfi_private *cfi = map->fldrv_priv;
1326 	unsigned long ofs, last_end = 0;
1327 	int chipnum;
1328 	int ret = 0;
1329 
1330 	if (!map->virt || (from + len > mtd->size))
1331 		return -EINVAL;
1332 
1333 	/* Now lock the chip(s) to POINT state */
1334 
1335 	/* ofs: offset within the first chip that the first read should start */
1336 	chipnum = (from >> cfi->chipshift);
1337 	ofs = from - (chipnum << cfi->chipshift);
1338 
1339 	*virt = map->virt + cfi->chips[chipnum].start + ofs;
1340 	*retlen = 0;
1341 	if (phys)
1342 		*phys = map->phys + cfi->chips[chipnum].start + ofs;
1343 
1344 	while (len) {
1345 		unsigned long thislen;
1346 
1347 		if (chipnum >= cfi->numchips)
1348 			break;
1349 
1350 		/* We cannot point across chips that are virtually disjoint */
1351 		if (!last_end)
1352 			last_end = cfi->chips[chipnum].start;
1353 		else if (cfi->chips[chipnum].start != last_end)
1354 			break;
1355 
1356 		if ((len + ofs -1) >> cfi->chipshift)
1357 			thislen = (1<<cfi->chipshift) - ofs;
1358 		else
1359 			thislen = len;
1360 
1361 		ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1362 		if (ret)
1363 			break;
1364 
1365 		*retlen += thislen;
1366 		len -= thislen;
1367 
1368 		ofs = 0;
1369 		last_end += 1 << cfi->chipshift;
1370 		chipnum++;
1371 	}
1372 	return 0;
1373 }
1374 
1375 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1376 {
1377 	struct map_info *map = mtd->priv;
1378 	struct cfi_private *cfi = map->fldrv_priv;
1379 	unsigned long ofs;
1380 	int chipnum;
1381 
1382 	/* Now unlock the chip(s) POINT state */
1383 
1384 	/* ofs: offset within the first chip that the first read should start */
1385 	chipnum = (from >> cfi->chipshift);
1386 	ofs = from - (chipnum <<  cfi->chipshift);
1387 
1388 	while (len) {
1389 		unsigned long thislen;
1390 		struct flchip *chip;
1391 
1392 		chip = &cfi->chips[chipnum];
1393 		if (chipnum >= cfi->numchips)
1394 			break;
1395 
1396 		if ((len + ofs -1) >> cfi->chipshift)
1397 			thislen = (1<<cfi->chipshift) - ofs;
1398 		else
1399 			thislen = len;
1400 
1401 		mutex_lock(&chip->mutex);
1402 		if (chip->state == FL_POINT) {
1403 			chip->ref_point_counter--;
1404 			if(chip->ref_point_counter == 0)
1405 				chip->state = FL_READY;
1406 		} else
1407 			printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1408 
1409 		put_chip(map, chip, chip->start);
1410 		mutex_unlock(&chip->mutex);
1411 
1412 		len -= thislen;
1413 		ofs = 0;
1414 		chipnum++;
1415 	}
1416 }
1417 
1418 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1419 {
1420 	unsigned long cmd_addr;
1421 	struct cfi_private *cfi = map->fldrv_priv;
1422 	int ret;
1423 
1424 	adr += chip->start;
1425 
1426 	/* Ensure cmd read/writes are aligned. */
1427 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1428 
1429 	mutex_lock(&chip->mutex);
1430 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1431 	if (ret) {
1432 		mutex_unlock(&chip->mutex);
1433 		return ret;
1434 	}
1435 
1436 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1437 		map_write(map, CMD(0xff), cmd_addr);
1438 
1439 		chip->state = FL_READY;
1440 	}
1441 
1442 	map_copy_from(map, buf, adr, len);
1443 
1444 	put_chip(map, chip, cmd_addr);
1445 
1446 	mutex_unlock(&chip->mutex);
1447 	return 0;
1448 }
1449 
1450 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1451 {
1452 	struct map_info *map = mtd->priv;
1453 	struct cfi_private *cfi = map->fldrv_priv;
1454 	unsigned long ofs;
1455 	int chipnum;
1456 	int ret = 0;
1457 
1458 	/* ofs: offset within the first chip that the first read should start */
1459 	chipnum = (from >> cfi->chipshift);
1460 	ofs = from - (chipnum <<  cfi->chipshift);
1461 
1462 	*retlen = 0;
1463 
1464 	while (len) {
1465 		unsigned long thislen;
1466 
1467 		if (chipnum >= cfi->numchips)
1468 			break;
1469 
1470 		if ((len + ofs -1) >> cfi->chipshift)
1471 			thislen = (1<<cfi->chipshift) - ofs;
1472 		else
1473 			thislen = len;
1474 
1475 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1476 		if (ret)
1477 			break;
1478 
1479 		*retlen += thislen;
1480 		len -= thislen;
1481 		buf += thislen;
1482 
1483 		ofs = 0;
1484 		chipnum++;
1485 	}
1486 	return ret;
1487 }
1488 
1489 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1490 				     unsigned long adr, map_word datum, int mode)
1491 {
1492 	struct cfi_private *cfi = map->fldrv_priv;
1493 	map_word status, write_cmd;
1494 	int ret=0;
1495 
1496 	adr += chip->start;
1497 
1498 	switch (mode) {
1499 	case FL_WRITING:
1500 		write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
1501 		break;
1502 	case FL_OTP_WRITE:
1503 		write_cmd = CMD(0xc0);
1504 		break;
1505 	default:
1506 		return -EINVAL;
1507 	}
1508 
1509 	mutex_lock(&chip->mutex);
1510 	ret = get_chip(map, chip, adr, mode);
1511 	if (ret) {
1512 		mutex_unlock(&chip->mutex);
1513 		return ret;
1514 	}
1515 
1516 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1517 	ENABLE_VPP(map);
1518 	xip_disable(map, chip, adr);
1519 	map_write(map, write_cmd, adr);
1520 	map_write(map, datum, adr);
1521 	chip->state = mode;
1522 
1523 	ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1524 				   adr, map_bankwidth(map),
1525 				   chip->word_write_time,
1526 				   chip->word_write_time_max);
1527 	if (ret) {
1528 		xip_enable(map, chip, adr);
1529 		printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1530 		goto out;
1531 	}
1532 
1533 	/* check for errors */
1534 	status = map_read(map, adr);
1535 	if (map_word_bitsset(map, status, CMD(0x1a))) {
1536 		unsigned long chipstatus = MERGESTATUS(status);
1537 
1538 		/* reset status */
1539 		map_write(map, CMD(0x50), adr);
1540 		map_write(map, CMD(0x70), adr);
1541 		xip_enable(map, chip, adr);
1542 
1543 		if (chipstatus & 0x02) {
1544 			ret = -EROFS;
1545 		} else if (chipstatus & 0x08) {
1546 			printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1547 			ret = -EIO;
1548 		} else {
1549 			printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1550 			ret = -EINVAL;
1551 		}
1552 
1553 		goto out;
1554 	}
1555 
1556 	xip_enable(map, chip, adr);
1557  out:	put_chip(map, chip, adr);
1558 	mutex_unlock(&chip->mutex);
1559 	return ret;
1560 }
1561 
1562 
1563 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1564 {
1565 	struct map_info *map = mtd->priv;
1566 	struct cfi_private *cfi = map->fldrv_priv;
1567 	int ret = 0;
1568 	int chipnum;
1569 	unsigned long ofs;
1570 
1571 	*retlen = 0;
1572 	if (!len)
1573 		return 0;
1574 
1575 	chipnum = to >> cfi->chipshift;
1576 	ofs = to  - (chipnum << cfi->chipshift);
1577 
1578 	/* If it's not bus-aligned, do the first byte write */
1579 	if (ofs & (map_bankwidth(map)-1)) {
1580 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1581 		int gap = ofs - bus_ofs;
1582 		int n;
1583 		map_word datum;
1584 
1585 		n = min_t(int, len, map_bankwidth(map)-gap);
1586 		datum = map_word_ff(map);
1587 		datum = map_word_load_partial(map, datum, buf, gap, n);
1588 
1589 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1590 					       bus_ofs, datum, FL_WRITING);
1591 		if (ret)
1592 			return ret;
1593 
1594 		len -= n;
1595 		ofs += n;
1596 		buf += n;
1597 		(*retlen) += n;
1598 
1599 		if (ofs >> cfi->chipshift) {
1600 			chipnum ++;
1601 			ofs = 0;
1602 			if (chipnum == cfi->numchips)
1603 				return 0;
1604 		}
1605 	}
1606 
1607 	while(len >= map_bankwidth(map)) {
1608 		map_word datum = map_word_load(map, buf);
1609 
1610 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1611 				       ofs, datum, FL_WRITING);
1612 		if (ret)
1613 			return ret;
1614 
1615 		ofs += map_bankwidth(map);
1616 		buf += map_bankwidth(map);
1617 		(*retlen) += map_bankwidth(map);
1618 		len -= map_bankwidth(map);
1619 
1620 		if (ofs >> cfi->chipshift) {
1621 			chipnum ++;
1622 			ofs = 0;
1623 			if (chipnum == cfi->numchips)
1624 				return 0;
1625 		}
1626 	}
1627 
1628 	if (len & (map_bankwidth(map)-1)) {
1629 		map_word datum;
1630 
1631 		datum = map_word_ff(map);
1632 		datum = map_word_load_partial(map, datum, buf, 0, len);
1633 
1634 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1635 				       ofs, datum, FL_WRITING);
1636 		if (ret)
1637 			return ret;
1638 
1639 		(*retlen) += len;
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 
1646 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1647 				    unsigned long adr, const struct kvec **pvec,
1648 				    unsigned long *pvec_seek, int len)
1649 {
1650 	struct cfi_private *cfi = map->fldrv_priv;
1651 	map_word status, write_cmd, datum;
1652 	unsigned long cmd_adr;
1653 	int ret, wbufsize, word_gap, words;
1654 	const struct kvec *vec;
1655 	unsigned long vec_seek;
1656 	unsigned long initial_adr;
1657 	int initial_len = len;
1658 
1659 	wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1660 	adr += chip->start;
1661 	initial_adr = adr;
1662 	cmd_adr = adr & ~(wbufsize-1);
1663 
1664 	/* Let's determine this according to the interleave only once */
1665 	write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
1666 
1667 	mutex_lock(&chip->mutex);
1668 	ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1669 	if (ret) {
1670 		mutex_unlock(&chip->mutex);
1671 		return ret;
1672 	}
1673 
1674 	XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1675 	ENABLE_VPP(map);
1676 	xip_disable(map, chip, cmd_adr);
1677 
1678 	/* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1679 	   [...], the device will not accept any more Write to Buffer commands".
1680 	   So we must check here and reset those bits if they're set. Otherwise
1681 	   we're just pissing in the wind */
1682 	if (chip->state != FL_STATUS) {
1683 		map_write(map, CMD(0x70), cmd_adr);
1684 		chip->state = FL_STATUS;
1685 	}
1686 	status = map_read(map, cmd_adr);
1687 	if (map_word_bitsset(map, status, CMD(0x30))) {
1688 		xip_enable(map, chip, cmd_adr);
1689 		printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1690 		xip_disable(map, chip, cmd_adr);
1691 		map_write(map, CMD(0x50), cmd_adr);
1692 		map_write(map, CMD(0x70), cmd_adr);
1693 	}
1694 
1695 	chip->state = FL_WRITING_TO_BUFFER;
1696 	map_write(map, write_cmd, cmd_adr);
1697 	ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1698 	if (ret) {
1699 		/* Argh. Not ready for write to buffer */
1700 		map_word Xstatus = map_read(map, cmd_adr);
1701 		map_write(map, CMD(0x70), cmd_adr);
1702 		chip->state = FL_STATUS;
1703 		status = map_read(map, cmd_adr);
1704 		map_write(map, CMD(0x50), cmd_adr);
1705 		map_write(map, CMD(0x70), cmd_adr);
1706 		xip_enable(map, chip, cmd_adr);
1707 		printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1708 				map->name, Xstatus.x[0], status.x[0]);
1709 		goto out;
1710 	}
1711 
1712 	/* Figure out the number of words to write */
1713 	word_gap = (-adr & (map_bankwidth(map)-1));
1714 	words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1715 	if (!word_gap) {
1716 		words--;
1717 	} else {
1718 		word_gap = map_bankwidth(map) - word_gap;
1719 		adr -= word_gap;
1720 		datum = map_word_ff(map);
1721 	}
1722 
1723 	/* Write length of data to come */
1724 	map_write(map, CMD(words), cmd_adr );
1725 
1726 	/* Write data */
1727 	vec = *pvec;
1728 	vec_seek = *pvec_seek;
1729 	do {
1730 		int n = map_bankwidth(map) - word_gap;
1731 		if (n > vec->iov_len - vec_seek)
1732 			n = vec->iov_len - vec_seek;
1733 		if (n > len)
1734 			n = len;
1735 
1736 		if (!word_gap && len < map_bankwidth(map))
1737 			datum = map_word_ff(map);
1738 
1739 		datum = map_word_load_partial(map, datum,
1740 					      vec->iov_base + vec_seek,
1741 					      word_gap, n);
1742 
1743 		len -= n;
1744 		word_gap += n;
1745 		if (!len || word_gap == map_bankwidth(map)) {
1746 			map_write(map, datum, adr);
1747 			adr += map_bankwidth(map);
1748 			word_gap = 0;
1749 		}
1750 
1751 		vec_seek += n;
1752 		if (vec_seek == vec->iov_len) {
1753 			vec++;
1754 			vec_seek = 0;
1755 		}
1756 	} while (len);
1757 	*pvec = vec;
1758 	*pvec_seek = vec_seek;
1759 
1760 	/* GO GO GO */
1761 	map_write(map, CMD(0xd0), cmd_adr);
1762 	chip->state = FL_WRITING;
1763 
1764 	ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1765 				   initial_adr, initial_len,
1766 				   chip->buffer_write_time,
1767 				   chip->buffer_write_time_max);
1768 	if (ret) {
1769 		map_write(map, CMD(0x70), cmd_adr);
1770 		chip->state = FL_STATUS;
1771 		xip_enable(map, chip, cmd_adr);
1772 		printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1773 		goto out;
1774 	}
1775 
1776 	/* check for errors */
1777 	status = map_read(map, cmd_adr);
1778 	if (map_word_bitsset(map, status, CMD(0x1a))) {
1779 		unsigned long chipstatus = MERGESTATUS(status);
1780 
1781 		/* reset status */
1782 		map_write(map, CMD(0x50), cmd_adr);
1783 		map_write(map, CMD(0x70), cmd_adr);
1784 		xip_enable(map, chip, cmd_adr);
1785 
1786 		if (chipstatus & 0x02) {
1787 			ret = -EROFS;
1788 		} else if (chipstatus & 0x08) {
1789 			printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1790 			ret = -EIO;
1791 		} else {
1792 			printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1793 			ret = -EINVAL;
1794 		}
1795 
1796 		goto out;
1797 	}
1798 
1799 	xip_enable(map, chip, cmd_adr);
1800  out:	put_chip(map, chip, cmd_adr);
1801 	mutex_unlock(&chip->mutex);
1802 	return ret;
1803 }
1804 
1805 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1806 				unsigned long count, loff_t to, size_t *retlen)
1807 {
1808 	struct map_info *map = mtd->priv;
1809 	struct cfi_private *cfi = map->fldrv_priv;
1810 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1811 	int ret = 0;
1812 	int chipnum;
1813 	unsigned long ofs, vec_seek, i;
1814 	size_t len = 0;
1815 
1816 	for (i = 0; i < count; i++)
1817 		len += vecs[i].iov_len;
1818 
1819 	*retlen = 0;
1820 	if (!len)
1821 		return 0;
1822 
1823 	chipnum = to >> cfi->chipshift;
1824 	ofs = to - (chipnum << cfi->chipshift);
1825 	vec_seek = 0;
1826 
1827 	do {
1828 		/* We must not cross write block boundaries */
1829 		int size = wbufsize - (ofs & (wbufsize-1));
1830 
1831 		if (size > len)
1832 			size = len;
1833 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1834 				      ofs, &vecs, &vec_seek, size);
1835 		if (ret)
1836 			return ret;
1837 
1838 		ofs += size;
1839 		(*retlen) += size;
1840 		len -= size;
1841 
1842 		if (ofs >> cfi->chipshift) {
1843 			chipnum ++;
1844 			ofs = 0;
1845 			if (chipnum == cfi->numchips)
1846 				return 0;
1847 		}
1848 
1849 		/* Be nice and reschedule with the chip in a usable state for other
1850 		   processes. */
1851 		cond_resched();
1852 
1853 	} while (len);
1854 
1855 	return 0;
1856 }
1857 
1858 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1859 				       size_t len, size_t *retlen, const u_char *buf)
1860 {
1861 	struct kvec vec;
1862 
1863 	vec.iov_base = (void *) buf;
1864 	vec.iov_len = len;
1865 
1866 	return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1867 }
1868 
1869 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1870 				      unsigned long adr, int len, void *thunk)
1871 {
1872 	struct cfi_private *cfi = map->fldrv_priv;
1873 	map_word status;
1874 	int retries = 3;
1875 	int ret;
1876 
1877 	adr += chip->start;
1878 
1879  retry:
1880 	mutex_lock(&chip->mutex);
1881 	ret = get_chip(map, chip, adr, FL_ERASING);
1882 	if (ret) {
1883 		mutex_unlock(&chip->mutex);
1884 		return ret;
1885 	}
1886 
1887 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1888 	ENABLE_VPP(map);
1889 	xip_disable(map, chip, adr);
1890 
1891 	/* Clear the status register first */
1892 	map_write(map, CMD(0x50), adr);
1893 
1894 	/* Now erase */
1895 	map_write(map, CMD(0x20), adr);
1896 	map_write(map, CMD(0xD0), adr);
1897 	chip->state = FL_ERASING;
1898 	chip->erase_suspended = 0;
1899 
1900 	ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1901 				   adr, len,
1902 				   chip->erase_time,
1903 				   chip->erase_time_max);
1904 	if (ret) {
1905 		map_write(map, CMD(0x70), adr);
1906 		chip->state = FL_STATUS;
1907 		xip_enable(map, chip, adr);
1908 		printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1909 		goto out;
1910 	}
1911 
1912 	/* We've broken this before. It doesn't hurt to be safe */
1913 	map_write(map, CMD(0x70), adr);
1914 	chip->state = FL_STATUS;
1915 	status = map_read(map, adr);
1916 
1917 	/* check for errors */
1918 	if (map_word_bitsset(map, status, CMD(0x3a))) {
1919 		unsigned long chipstatus = MERGESTATUS(status);
1920 
1921 		/* Reset the error bits */
1922 		map_write(map, CMD(0x50), adr);
1923 		map_write(map, CMD(0x70), adr);
1924 		xip_enable(map, chip, adr);
1925 
1926 		if ((chipstatus & 0x30) == 0x30) {
1927 			printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1928 			ret = -EINVAL;
1929 		} else if (chipstatus & 0x02) {
1930 			/* Protection bit set */
1931 			ret = -EROFS;
1932 		} else if (chipstatus & 0x8) {
1933 			/* Voltage */
1934 			printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1935 			ret = -EIO;
1936 		} else if (chipstatus & 0x20 && retries--) {
1937 			printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1938 			put_chip(map, chip, adr);
1939 			mutex_unlock(&chip->mutex);
1940 			goto retry;
1941 		} else {
1942 			printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1943 			ret = -EIO;
1944 		}
1945 
1946 		goto out;
1947 	}
1948 
1949 	xip_enable(map, chip, adr);
1950  out:	put_chip(map, chip, adr);
1951 	mutex_unlock(&chip->mutex);
1952 	return ret;
1953 }
1954 
1955 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1956 {
1957 	unsigned long ofs, len;
1958 	int ret;
1959 
1960 	ofs = instr->addr;
1961 	len = instr->len;
1962 
1963 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1964 	if (ret)
1965 		return ret;
1966 
1967 	instr->state = MTD_ERASE_DONE;
1968 	mtd_erase_callback(instr);
1969 
1970 	return 0;
1971 }
1972 
1973 static void cfi_intelext_sync (struct mtd_info *mtd)
1974 {
1975 	struct map_info *map = mtd->priv;
1976 	struct cfi_private *cfi = map->fldrv_priv;
1977 	int i;
1978 	struct flchip *chip;
1979 	int ret = 0;
1980 
1981 	for (i=0; !ret && i<cfi->numchips; i++) {
1982 		chip = &cfi->chips[i];
1983 
1984 		mutex_lock(&chip->mutex);
1985 		ret = get_chip(map, chip, chip->start, FL_SYNCING);
1986 
1987 		if (!ret) {
1988 			chip->oldstate = chip->state;
1989 			chip->state = FL_SYNCING;
1990 			/* No need to wake_up() on this state change -
1991 			 * as the whole point is that nobody can do anything
1992 			 * with the chip now anyway.
1993 			 */
1994 		}
1995 		mutex_unlock(&chip->mutex);
1996 	}
1997 
1998 	/* Unlock the chips again */
1999 
2000 	for (i--; i >=0; i--) {
2001 		chip = &cfi->chips[i];
2002 
2003 		mutex_lock(&chip->mutex);
2004 
2005 		if (chip->state == FL_SYNCING) {
2006 			chip->state = chip->oldstate;
2007 			chip->oldstate = FL_READY;
2008 			wake_up(&chip->wq);
2009 		}
2010 		mutex_unlock(&chip->mutex);
2011 	}
2012 }
2013 
2014 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2015 						struct flchip *chip,
2016 						unsigned long adr,
2017 						int len, void *thunk)
2018 {
2019 	struct cfi_private *cfi = map->fldrv_priv;
2020 	int status, ofs_factor = cfi->interleave * cfi->device_type;
2021 
2022 	adr += chip->start;
2023 	xip_disable(map, chip, adr+(2*ofs_factor));
2024 	map_write(map, CMD(0x90), adr+(2*ofs_factor));
2025 	chip->state = FL_JEDEC_QUERY;
2026 	status = cfi_read_query(map, adr+(2*ofs_factor));
2027 	xip_enable(map, chip, 0);
2028 	return status;
2029 }
2030 
2031 #ifdef DEBUG_LOCK_BITS
2032 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2033 						struct flchip *chip,
2034 						unsigned long adr,
2035 						int len, void *thunk)
2036 {
2037 	printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2038 	       adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2039 	return 0;
2040 }
2041 #endif
2042 
2043 #define DO_XXLOCK_ONEBLOCK_LOCK		((void *) 1)
2044 #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *) 2)
2045 
2046 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2047 				       unsigned long adr, int len, void *thunk)
2048 {
2049 	struct cfi_private *cfi = map->fldrv_priv;
2050 	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2051 	int udelay;
2052 	int ret;
2053 
2054 	adr += chip->start;
2055 
2056 	mutex_lock(&chip->mutex);
2057 	ret = get_chip(map, chip, adr, FL_LOCKING);
2058 	if (ret) {
2059 		mutex_unlock(&chip->mutex);
2060 		return ret;
2061 	}
2062 
2063 	ENABLE_VPP(map);
2064 	xip_disable(map, chip, adr);
2065 
2066 	map_write(map, CMD(0x60), adr);
2067 	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2068 		map_write(map, CMD(0x01), adr);
2069 		chip->state = FL_LOCKING;
2070 	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2071 		map_write(map, CMD(0xD0), adr);
2072 		chip->state = FL_UNLOCKING;
2073 	} else
2074 		BUG();
2075 
2076 	/*
2077 	 * If Instant Individual Block Locking supported then no need
2078 	 * to delay.
2079 	 */
2080 	udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
2081 
2082 	ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100);
2083 	if (ret) {
2084 		map_write(map, CMD(0x70), adr);
2085 		chip->state = FL_STATUS;
2086 		xip_enable(map, chip, adr);
2087 		printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2088 		goto out;
2089 	}
2090 
2091 	xip_enable(map, chip, adr);
2092 out:	put_chip(map, chip, adr);
2093 	mutex_unlock(&chip->mutex);
2094 	return ret;
2095 }
2096 
2097 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2098 {
2099 	int ret;
2100 
2101 #ifdef DEBUG_LOCK_BITS
2102 	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2103 	       __func__, ofs, len);
2104 	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2105 		ofs, len, NULL);
2106 #endif
2107 
2108 	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2109 		ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2110 
2111 #ifdef DEBUG_LOCK_BITS
2112 	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2113 	       __func__, ret);
2114 	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2115 		ofs, len, NULL);
2116 #endif
2117 
2118 	return ret;
2119 }
2120 
2121 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2122 {
2123 	int ret;
2124 
2125 #ifdef DEBUG_LOCK_BITS
2126 	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2127 	       __func__, ofs, len);
2128 	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2129 		ofs, len, NULL);
2130 #endif
2131 
2132 	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2133 					ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2134 
2135 #ifdef DEBUG_LOCK_BITS
2136 	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2137 	       __func__, ret);
2138 	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2139 		ofs, len, NULL);
2140 #endif
2141 
2142 	return ret;
2143 }
2144 
2145 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2146 				  uint64_t len)
2147 {
2148 	return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2149 				ofs, len, NULL) ? 1 : 0;
2150 }
2151 
2152 #ifdef CONFIG_MTD_OTP
2153 
2154 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2155 			u_long data_offset, u_char *buf, u_int size,
2156 			u_long prot_offset, u_int groupno, u_int groupsize);
2157 
2158 static int __xipram
2159 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2160 	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2161 {
2162 	struct cfi_private *cfi = map->fldrv_priv;
2163 	int ret;
2164 
2165 	mutex_lock(&chip->mutex);
2166 	ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2167 	if (ret) {
2168 		mutex_unlock(&chip->mutex);
2169 		return ret;
2170 	}
2171 
2172 	/* let's ensure we're not reading back cached data from array mode */
2173 	INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2174 
2175 	xip_disable(map, chip, chip->start);
2176 	if (chip->state != FL_JEDEC_QUERY) {
2177 		map_write(map, CMD(0x90), chip->start);
2178 		chip->state = FL_JEDEC_QUERY;
2179 	}
2180 	map_copy_from(map, buf, chip->start + offset, size);
2181 	xip_enable(map, chip, chip->start);
2182 
2183 	/* then ensure we don't keep OTP data in the cache */
2184 	INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2185 
2186 	put_chip(map, chip, chip->start);
2187 	mutex_unlock(&chip->mutex);
2188 	return 0;
2189 }
2190 
2191 static int
2192 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2193 	     u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2194 {
2195 	int ret;
2196 
2197 	while (size) {
2198 		unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2199 		int gap = offset - bus_ofs;
2200 		int n = min_t(int, size, map_bankwidth(map)-gap);
2201 		map_word datum = map_word_ff(map);
2202 
2203 		datum = map_word_load_partial(map, datum, buf, gap, n);
2204 		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2205 		if (ret)
2206 			return ret;
2207 
2208 		offset += n;
2209 		buf += n;
2210 		size -= n;
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 static int
2217 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2218 	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2219 {
2220 	struct cfi_private *cfi = map->fldrv_priv;
2221 	map_word datum;
2222 
2223 	/* make sure area matches group boundaries */
2224 	if (size != grpsz)
2225 		return -EXDEV;
2226 
2227 	datum = map_word_ff(map);
2228 	datum = map_word_clr(map, datum, CMD(1 << grpno));
2229 	return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2230 }
2231 
2232 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2233 				 size_t *retlen, u_char *buf,
2234 				 otp_op_t action, int user_regs)
2235 {
2236 	struct map_info *map = mtd->priv;
2237 	struct cfi_private *cfi = map->fldrv_priv;
2238 	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2239 	struct flchip *chip;
2240 	struct cfi_intelext_otpinfo *otp;
2241 	u_long devsize, reg_prot_offset, data_offset;
2242 	u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2243 	u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2244 	int ret;
2245 
2246 	*retlen = 0;
2247 
2248 	/* Check that we actually have some OTP registers */
2249 	if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2250 		return -ENODATA;
2251 
2252 	/* we need real chips here not virtual ones */
2253 	devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2254 	chip_step = devsize >> cfi->chipshift;
2255 	chip_num = 0;
2256 
2257 	/* Some chips have OTP located in the _top_ partition only.
2258 	   For example: Intel 28F256L18T (T means top-parameter device) */
2259 	if (cfi->mfr == CFI_MFR_INTEL) {
2260 		switch (cfi->id) {
2261 		case 0x880b:
2262 		case 0x880c:
2263 		case 0x880d:
2264 			chip_num = chip_step - 1;
2265 		}
2266 	}
2267 
2268 	for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2269 		chip = &cfi->chips[chip_num];
2270 		otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2271 
2272 		/* first OTP region */
2273 		field = 0;
2274 		reg_prot_offset = extp->ProtRegAddr;
2275 		reg_fact_groups = 1;
2276 		reg_fact_size = 1 << extp->FactProtRegSize;
2277 		reg_user_groups = 1;
2278 		reg_user_size = 1 << extp->UserProtRegSize;
2279 
2280 		while (len > 0) {
2281 			/* flash geometry fixup */
2282 			data_offset = reg_prot_offset + 1;
2283 			data_offset *= cfi->interleave * cfi->device_type;
2284 			reg_prot_offset *= cfi->interleave * cfi->device_type;
2285 			reg_fact_size *= cfi->interleave;
2286 			reg_user_size *= cfi->interleave;
2287 
2288 			if (user_regs) {
2289 				groups = reg_user_groups;
2290 				groupsize = reg_user_size;
2291 				/* skip over factory reg area */
2292 				groupno = reg_fact_groups;
2293 				data_offset += reg_fact_groups * reg_fact_size;
2294 			} else {
2295 				groups = reg_fact_groups;
2296 				groupsize = reg_fact_size;
2297 				groupno = 0;
2298 			}
2299 
2300 			while (len > 0 && groups > 0) {
2301 				if (!action) {
2302 					/*
2303 					 * Special case: if action is NULL
2304 					 * we fill buf with otp_info records.
2305 					 */
2306 					struct otp_info *otpinfo;
2307 					map_word lockword;
2308 					len -= sizeof(struct otp_info);
2309 					if (len <= 0)
2310 						return -ENOSPC;
2311 					ret = do_otp_read(map, chip,
2312 							  reg_prot_offset,
2313 							  (u_char *)&lockword,
2314 							  map_bankwidth(map),
2315 							  0, 0,  0);
2316 					if (ret)
2317 						return ret;
2318 					otpinfo = (struct otp_info *)buf;
2319 					otpinfo->start = from;
2320 					otpinfo->length = groupsize;
2321 					otpinfo->locked =
2322 					   !map_word_bitsset(map, lockword,
2323 							     CMD(1 << groupno));
2324 					from += groupsize;
2325 					buf += sizeof(*otpinfo);
2326 					*retlen += sizeof(*otpinfo);
2327 				} else if (from >= groupsize) {
2328 					from -= groupsize;
2329 					data_offset += groupsize;
2330 				} else {
2331 					int size = groupsize;
2332 					data_offset += from;
2333 					size -= from;
2334 					from = 0;
2335 					if (size > len)
2336 						size = len;
2337 					ret = action(map, chip, data_offset,
2338 						     buf, size, reg_prot_offset,
2339 						     groupno, groupsize);
2340 					if (ret < 0)
2341 						return ret;
2342 					buf += size;
2343 					len -= size;
2344 					*retlen += size;
2345 					data_offset += size;
2346 				}
2347 				groupno++;
2348 				groups--;
2349 			}
2350 
2351 			/* next OTP region */
2352 			if (++field == extp->NumProtectionFields)
2353 				break;
2354 			reg_prot_offset = otp->ProtRegAddr;
2355 			reg_fact_groups = otp->FactGroups;
2356 			reg_fact_size = 1 << otp->FactProtRegSize;
2357 			reg_user_groups = otp->UserGroups;
2358 			reg_user_size = 1 << otp->UserProtRegSize;
2359 			otp++;
2360 		}
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2367 					   size_t len, size_t *retlen,
2368 					    u_char *buf)
2369 {
2370 	return cfi_intelext_otp_walk(mtd, from, len, retlen,
2371 				     buf, do_otp_read, 0);
2372 }
2373 
2374 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2375 					   size_t len, size_t *retlen,
2376 					    u_char *buf)
2377 {
2378 	return cfi_intelext_otp_walk(mtd, from, len, retlen,
2379 				     buf, do_otp_read, 1);
2380 }
2381 
2382 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2383 					    size_t len, size_t *retlen,
2384 					     u_char *buf)
2385 {
2386 	return cfi_intelext_otp_walk(mtd, from, len, retlen,
2387 				     buf, do_otp_write, 1);
2388 }
2389 
2390 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2391 					   loff_t from, size_t len)
2392 {
2393 	size_t retlen;
2394 	return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2395 				     NULL, do_otp_lock, 1);
2396 }
2397 
2398 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2399 					   struct otp_info *buf, size_t len)
2400 {
2401 	size_t retlen;
2402 	int ret;
2403 
2404 	ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2405 	return ret ? : retlen;
2406 }
2407 
2408 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2409 					   struct otp_info *buf, size_t len)
2410 {
2411 	size_t retlen;
2412 	int ret;
2413 
2414 	ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2415 	return ret ? : retlen;
2416 }
2417 
2418 #endif
2419 
2420 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2421 {
2422 	struct mtd_erase_region_info *region;
2423 	int block, status, i;
2424 	unsigned long adr;
2425 	size_t len;
2426 
2427 	for (i = 0; i < mtd->numeraseregions; i++) {
2428 		region = &mtd->eraseregions[i];
2429 		if (!region->lockmap)
2430 			continue;
2431 
2432 		for (block = 0; block < region->numblocks; block++){
2433 			len = region->erasesize;
2434 			adr = region->offset + block * len;
2435 
2436 			status = cfi_varsize_frob(mtd,
2437 					do_getlockstatus_oneblock, adr, len, NULL);
2438 			if (status)
2439 				set_bit(block, region->lockmap);
2440 			else
2441 				clear_bit(block, region->lockmap);
2442 		}
2443 	}
2444 }
2445 
2446 static int cfi_intelext_suspend(struct mtd_info *mtd)
2447 {
2448 	struct map_info *map = mtd->priv;
2449 	struct cfi_private *cfi = map->fldrv_priv;
2450 	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2451 	int i;
2452 	struct flchip *chip;
2453 	int ret = 0;
2454 
2455 	if ((mtd->flags & MTD_POWERUP_LOCK)
2456 	    && extp && (extp->FeatureSupport & (1 << 5)))
2457 		cfi_intelext_save_locks(mtd);
2458 
2459 	for (i=0; !ret && i<cfi->numchips; i++) {
2460 		chip = &cfi->chips[i];
2461 
2462 		mutex_lock(&chip->mutex);
2463 
2464 		switch (chip->state) {
2465 		case FL_READY:
2466 		case FL_STATUS:
2467 		case FL_CFI_QUERY:
2468 		case FL_JEDEC_QUERY:
2469 			if (chip->oldstate == FL_READY) {
2470 				/* place the chip in a known state before suspend */
2471 				map_write(map, CMD(0xFF), cfi->chips[i].start);
2472 				chip->oldstate = chip->state;
2473 				chip->state = FL_PM_SUSPENDED;
2474 				/* No need to wake_up() on this state change -
2475 				 * as the whole point is that nobody can do anything
2476 				 * with the chip now anyway.
2477 				 */
2478 			} else {
2479 				/* There seems to be an operation pending. We must wait for it. */
2480 				printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2481 				ret = -EAGAIN;
2482 			}
2483 			break;
2484 		default:
2485 			/* Should we actually wait? Once upon a time these routines weren't
2486 			   allowed to. Or should we return -EAGAIN, because the upper layers
2487 			   ought to have already shut down anything which was using the device
2488 			   anyway? The latter for now. */
2489 			printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2490 			ret = -EAGAIN;
2491 		case FL_PM_SUSPENDED:
2492 			break;
2493 		}
2494 		mutex_unlock(&chip->mutex);
2495 	}
2496 
2497 	/* Unlock the chips again */
2498 
2499 	if (ret) {
2500 		for (i--; i >=0; i--) {
2501 			chip = &cfi->chips[i];
2502 
2503 			mutex_lock(&chip->mutex);
2504 
2505 			if (chip->state == FL_PM_SUSPENDED) {
2506 				/* No need to force it into a known state here,
2507 				   because we're returning failure, and it didn't
2508 				   get power cycled */
2509 				chip->state = chip->oldstate;
2510 				chip->oldstate = FL_READY;
2511 				wake_up(&chip->wq);
2512 			}
2513 			mutex_unlock(&chip->mutex);
2514 		}
2515 	}
2516 
2517 	return ret;
2518 }
2519 
2520 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2521 {
2522 	struct mtd_erase_region_info *region;
2523 	int block, i;
2524 	unsigned long adr;
2525 	size_t len;
2526 
2527 	for (i = 0; i < mtd->numeraseregions; i++) {
2528 		region = &mtd->eraseregions[i];
2529 		if (!region->lockmap)
2530 			continue;
2531 
2532 		for (block = 0; block < region->numblocks; block++) {
2533 			len = region->erasesize;
2534 			adr = region->offset + block * len;
2535 
2536 			if (!test_bit(block, region->lockmap))
2537 				cfi_intelext_unlock(mtd, adr, len);
2538 		}
2539 	}
2540 }
2541 
2542 static void cfi_intelext_resume(struct mtd_info *mtd)
2543 {
2544 	struct map_info *map = mtd->priv;
2545 	struct cfi_private *cfi = map->fldrv_priv;
2546 	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2547 	int i;
2548 	struct flchip *chip;
2549 
2550 	for (i=0; i<cfi->numchips; i++) {
2551 
2552 		chip = &cfi->chips[i];
2553 
2554 		mutex_lock(&chip->mutex);
2555 
2556 		/* Go to known state. Chip may have been power cycled */
2557 		if (chip->state == FL_PM_SUSPENDED) {
2558 			map_write(map, CMD(0xFF), cfi->chips[i].start);
2559 			chip->oldstate = chip->state = FL_READY;
2560 			wake_up(&chip->wq);
2561 		}
2562 
2563 		mutex_unlock(&chip->mutex);
2564 	}
2565 
2566 	if ((mtd->flags & MTD_POWERUP_LOCK)
2567 	    && extp && (extp->FeatureSupport & (1 << 5)))
2568 		cfi_intelext_restore_locks(mtd);
2569 }
2570 
2571 static int cfi_intelext_reset(struct mtd_info *mtd)
2572 {
2573 	struct map_info *map = mtd->priv;
2574 	struct cfi_private *cfi = map->fldrv_priv;
2575 	int i, ret;
2576 
2577 	for (i=0; i < cfi->numchips; i++) {
2578 		struct flchip *chip = &cfi->chips[i];
2579 
2580 		/* force the completion of any ongoing operation
2581 		   and switch to array mode so any bootloader in
2582 		   flash is accessible for soft reboot. */
2583 		mutex_lock(&chip->mutex);
2584 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2585 		if (!ret) {
2586 			map_write(map, CMD(0xff), chip->start);
2587 			chip->state = FL_SHUTDOWN;
2588 			put_chip(map, chip, chip->start);
2589 		}
2590 		mutex_unlock(&chip->mutex);
2591 	}
2592 
2593 	return 0;
2594 }
2595 
2596 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2597 			       void *v)
2598 {
2599 	struct mtd_info *mtd;
2600 
2601 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2602 	cfi_intelext_reset(mtd);
2603 	return NOTIFY_DONE;
2604 }
2605 
2606 static void cfi_intelext_destroy(struct mtd_info *mtd)
2607 {
2608 	struct map_info *map = mtd->priv;
2609 	struct cfi_private *cfi = map->fldrv_priv;
2610 	struct mtd_erase_region_info *region;
2611 	int i;
2612 	cfi_intelext_reset(mtd);
2613 	unregister_reboot_notifier(&mtd->reboot_notifier);
2614 	kfree(cfi->cmdset_priv);
2615 	kfree(cfi->cfiq);
2616 	kfree(cfi->chips[0].priv);
2617 	kfree(cfi);
2618 	for (i = 0; i < mtd->numeraseregions; i++) {
2619 		region = &mtd->eraseregions[i];
2620 		if (region->lockmap)
2621 			kfree(region->lockmap);
2622 	}
2623 	kfree(mtd->eraseregions);
2624 }
2625 
2626 MODULE_LICENSE("GPL");
2627 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2628 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2629 MODULE_ALIAS("cfi_cmdset_0003");
2630 MODULE_ALIAS("cfi_cmdset_0200");
2631