xref: /linux/drivers/mmc/host/sunxi-mmc.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for sunxi SD/MMC host controllers
4  * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
5  * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
6  * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
7  * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
8  * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
9  * (C) Copyright 2017 Sootech SA
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk/sunxi-ng.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/core.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/sdio.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/module.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/reset.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 
40 /* register offset definitions */
41 #define SDXC_REG_GCTRL	(0x00) /* SMC Global Control Register */
42 #define SDXC_REG_CLKCR	(0x04) /* SMC Clock Control Register */
43 #define SDXC_REG_TMOUT	(0x08) /* SMC Time Out Register */
44 #define SDXC_REG_WIDTH	(0x0C) /* SMC Bus Width Register */
45 #define SDXC_REG_BLKSZ	(0x10) /* SMC Block Size Register */
46 #define SDXC_REG_BCNTR	(0x14) /* SMC Byte Count Register */
47 #define SDXC_REG_CMDR	(0x18) /* SMC Command Register */
48 #define SDXC_REG_CARG	(0x1C) /* SMC Argument Register */
49 #define SDXC_REG_RESP0	(0x20) /* SMC Response Register 0 */
50 #define SDXC_REG_RESP1	(0x24) /* SMC Response Register 1 */
51 #define SDXC_REG_RESP2	(0x28) /* SMC Response Register 2 */
52 #define SDXC_REG_RESP3	(0x2C) /* SMC Response Register 3 */
53 #define SDXC_REG_IMASK	(0x30) /* SMC Interrupt Mask Register */
54 #define SDXC_REG_MISTA	(0x34) /* SMC Masked Interrupt Status Register */
55 #define SDXC_REG_RINTR	(0x38) /* SMC Raw Interrupt Status Register */
56 #define SDXC_REG_STAS	(0x3C) /* SMC Status Register */
57 #define SDXC_REG_FTRGL	(0x40) /* SMC FIFO Threshold Watermark Registe */
58 #define SDXC_REG_FUNS	(0x44) /* SMC Function Select Register */
59 #define SDXC_REG_CBCR	(0x48) /* SMC CIU Byte Count Register */
60 #define SDXC_REG_BBCR	(0x4C) /* SMC BIU Byte Count Register */
61 #define SDXC_REG_DBGC	(0x50) /* SMC Debug Enable Register */
62 #define SDXC_REG_HWRST	(0x78) /* SMC Card Hardware Reset for Register */
63 #define SDXC_REG_DMAC	(0x80) /* SMC IDMAC Control Register */
64 #define SDXC_REG_DLBA	(0x84) /* SMC IDMAC Descriptor List Base Addre */
65 #define SDXC_REG_IDST	(0x88) /* SMC IDMAC Status Register */
66 #define SDXC_REG_IDIE	(0x8C) /* SMC IDMAC Interrupt Enable Register */
67 #define SDXC_REG_CHDA	(0x90)
68 #define SDXC_REG_CBDA	(0x94)
69 
70 /* New registers introduced in A64 */
71 #define SDXC_REG_A12A		0x058 /* SMC Auto Command 12 Register */
72 #define SDXC_REG_SD_NTSR	0x05C /* SMC New Timing Set Register */
73 #define SDXC_REG_DRV_DL		0x140 /* Drive Delay Control Register */
74 #define SDXC_REG_SAMP_DL_REG	0x144 /* SMC sample delay control */
75 #define SDXC_REG_DS_DL_REG	0x148 /* SMC data strobe delay control */
76 
77 #define mmc_readl(host, reg) \
78 	readl((host)->reg_base + SDXC_##reg)
79 #define mmc_writel(host, reg, value) \
80 	writel((value), (host)->reg_base + SDXC_##reg)
81 
82 /* global control register bits */
83 #define SDXC_SOFT_RESET			BIT(0)
84 #define SDXC_FIFO_RESET			BIT(1)
85 #define SDXC_DMA_RESET			BIT(2)
86 #define SDXC_INTERRUPT_ENABLE_BIT	BIT(4)
87 #define SDXC_DMA_ENABLE_BIT		BIT(5)
88 #define SDXC_DEBOUNCE_ENABLE_BIT	BIT(8)
89 #define SDXC_POSEDGE_LATCH_DATA		BIT(9)
90 #define SDXC_DDR_MODE			BIT(10)
91 #define SDXC_MEMORY_ACCESS_DONE		BIT(29)
92 #define SDXC_ACCESS_DONE_DIRECT		BIT(30)
93 #define SDXC_ACCESS_BY_AHB		BIT(31)
94 #define SDXC_ACCESS_BY_DMA		(0 << 31)
95 #define SDXC_HARDWARE_RESET \
96 	(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
97 
98 /* clock control bits */
99 #define SDXC_MASK_DATA0			BIT(31)
100 #define SDXC_CARD_CLOCK_ON		BIT(16)
101 #define SDXC_LOW_POWER_ON		BIT(17)
102 
103 /* bus width */
104 #define SDXC_WIDTH1			0
105 #define SDXC_WIDTH4			1
106 #define SDXC_WIDTH8			2
107 
108 /* smc command bits */
109 #define SDXC_RESP_EXPIRE		BIT(6)
110 #define SDXC_LONG_RESPONSE		BIT(7)
111 #define SDXC_CHECK_RESPONSE_CRC		BIT(8)
112 #define SDXC_DATA_EXPIRE		BIT(9)
113 #define SDXC_WRITE			BIT(10)
114 #define SDXC_SEQUENCE_MODE		BIT(11)
115 #define SDXC_SEND_AUTO_STOP		BIT(12)
116 #define SDXC_WAIT_PRE_OVER		BIT(13)
117 #define SDXC_STOP_ABORT_CMD		BIT(14)
118 #define SDXC_SEND_INIT_SEQUENCE		BIT(15)
119 #define SDXC_UPCLK_ONLY			BIT(21)
120 #define SDXC_READ_CEATA_DEV		BIT(22)
121 #define SDXC_CCS_EXPIRE			BIT(23)
122 #define SDXC_ENABLE_BIT_BOOT		BIT(24)
123 #define SDXC_ALT_BOOT_OPTIONS		BIT(25)
124 #define SDXC_BOOT_ACK_EXPIRE		BIT(26)
125 #define SDXC_BOOT_ABORT			BIT(27)
126 #define SDXC_VOLTAGE_SWITCH	        BIT(28)
127 #define SDXC_USE_HOLD_REGISTER	        BIT(29)
128 #define SDXC_START			BIT(31)
129 
130 /* interrupt bits */
131 #define SDXC_RESP_ERROR			BIT(1)
132 #define SDXC_COMMAND_DONE		BIT(2)
133 #define SDXC_DATA_OVER			BIT(3)
134 #define SDXC_TX_DATA_REQUEST		BIT(4)
135 #define SDXC_RX_DATA_REQUEST		BIT(5)
136 #define SDXC_RESP_CRC_ERROR		BIT(6)
137 #define SDXC_DATA_CRC_ERROR		BIT(7)
138 #define SDXC_RESP_TIMEOUT		BIT(8)
139 #define SDXC_DATA_TIMEOUT		BIT(9)
140 #define SDXC_VOLTAGE_CHANGE_DONE	BIT(10)
141 #define SDXC_FIFO_RUN_ERROR		BIT(11)
142 #define SDXC_HARD_WARE_LOCKED		BIT(12)
143 #define SDXC_START_BIT_ERROR		BIT(13)
144 #define SDXC_AUTO_COMMAND_DONE		BIT(14)
145 #define SDXC_END_BIT_ERROR		BIT(15)
146 #define SDXC_SDIO_INTERRUPT		BIT(16)
147 #define SDXC_CARD_INSERT		BIT(30)
148 #define SDXC_CARD_REMOVE		BIT(31)
149 #define SDXC_INTERRUPT_ERROR_BIT \
150 	(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
151 	 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
152 	 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
153 #define SDXC_INTERRUPT_DONE_BIT \
154 	(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
155 	 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
156 
157 /* status */
158 #define SDXC_RXWL_FLAG			BIT(0)
159 #define SDXC_TXWL_FLAG			BIT(1)
160 #define SDXC_FIFO_EMPTY			BIT(2)
161 #define SDXC_FIFO_FULL			BIT(3)
162 #define SDXC_CARD_PRESENT		BIT(8)
163 #define SDXC_CARD_DATA_BUSY		BIT(9)
164 #define SDXC_DATA_FSM_BUSY		BIT(10)
165 #define SDXC_DMA_REQUEST		BIT(31)
166 #define SDXC_FIFO_SIZE			16
167 
168 /* Function select */
169 #define SDXC_CEATA_ON			(0xceaa << 16)
170 #define SDXC_SEND_IRQ_RESPONSE		BIT(0)
171 #define SDXC_SDIO_READ_WAIT		BIT(1)
172 #define SDXC_ABORT_READ_DATA		BIT(2)
173 #define SDXC_SEND_CCSD			BIT(8)
174 #define SDXC_SEND_AUTO_STOPCCSD		BIT(9)
175 #define SDXC_CEATA_DEV_IRQ_ENABLE	BIT(10)
176 
177 /* IDMA controller bus mod bit field */
178 #define SDXC_IDMAC_SOFT_RESET		BIT(0)
179 #define SDXC_IDMAC_FIX_BURST		BIT(1)
180 #define SDXC_IDMAC_IDMA_ON		BIT(7)
181 #define SDXC_IDMAC_REFETCH_DES		BIT(31)
182 
183 /* IDMA status bit field */
184 #define SDXC_IDMAC_TRANSMIT_INTERRUPT		BIT(0)
185 #define SDXC_IDMAC_RECEIVE_INTERRUPT		BIT(1)
186 #define SDXC_IDMAC_FATAL_BUS_ERROR		BIT(2)
187 #define SDXC_IDMAC_DESTINATION_INVALID		BIT(4)
188 #define SDXC_IDMAC_CARD_ERROR_SUM		BIT(5)
189 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM		BIT(8)
190 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM	BIT(9)
191 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT		BIT(10)
192 #define SDXC_IDMAC_IDLE				(0 << 13)
193 #define SDXC_IDMAC_SUSPEND			(1 << 13)
194 #define SDXC_IDMAC_DESC_READ			(2 << 13)
195 #define SDXC_IDMAC_DESC_CHECK			(3 << 13)
196 #define SDXC_IDMAC_READ_REQUEST_WAIT		(4 << 13)
197 #define SDXC_IDMAC_WRITE_REQUEST_WAIT		(5 << 13)
198 #define SDXC_IDMAC_READ				(6 << 13)
199 #define SDXC_IDMAC_WRITE			(7 << 13)
200 #define SDXC_IDMAC_DESC_CLOSE			(8 << 13)
201 
202 /*
203 * If the idma-des-size-bits of property is ie 13, bufsize bits are:
204 *  Bits  0-12: buf1 size
205 *  Bits 13-25: buf2 size
206 *  Bits 26-31: not used
207 * Since we only ever set buf1 size, we can simply store it directly.
208 */
209 #define SDXC_IDMAC_DES0_DIC	BIT(1)  /* disable interrupt on completion */
210 #define SDXC_IDMAC_DES0_LD	BIT(2)  /* last descriptor */
211 #define SDXC_IDMAC_DES0_FD	BIT(3)  /* first descriptor */
212 #define SDXC_IDMAC_DES0_CH	BIT(4)  /* chain mode */
213 #define SDXC_IDMAC_DES0_ER	BIT(5)  /* end of ring */
214 #define SDXC_IDMAC_DES0_CES	BIT(30) /* card error summary */
215 #define SDXC_IDMAC_DES0_OWN	BIT(31) /* 1-idma owns it, 0-host owns it */
216 
217 #define SDXC_CLK_400K		0
218 #define SDXC_CLK_25M		1
219 #define SDXC_CLK_50M		2
220 #define SDXC_CLK_50M_DDR	3
221 #define SDXC_CLK_50M_DDR_8BIT	4
222 
223 #define SDXC_2X_TIMING_MODE	BIT(31)
224 
225 #define SDXC_CAL_START		BIT(15)
226 #define SDXC_CAL_DONE		BIT(14)
227 #define SDXC_CAL_DL_SHIFT	8
228 #define SDXC_CAL_DL_SW_EN	BIT(7)
229 #define SDXC_CAL_DL_SW_SHIFT	0
230 #define SDXC_CAL_DL_MASK	0x3f
231 
232 #define SDXC_CAL_TIMEOUT	3	/* in seconds, 3s is enough*/
233 
234 struct sunxi_mmc_clk_delay {
235 	u32 output;
236 	u32 sample;
237 };
238 
239 struct sunxi_idma_des {
240 	__le32 config;
241 	__le32 buf_size;
242 	__le32 buf_addr_ptr1;
243 	__le32 buf_addr_ptr2;
244 };
245 
246 struct sunxi_mmc_cfg {
247 	u32 idma_des_size_bits;
248 	const struct sunxi_mmc_clk_delay *clk_delays;
249 
250 	/* does the IP block support autocalibration? */
251 	bool can_calibrate;
252 
253 	/* Does DATA0 needs to be masked while the clock is updated */
254 	bool mask_data0;
255 
256 	/*
257 	 * hardware only supports new timing mode, either due to lack of
258 	 * a mode switch in the clock controller, or the mmc controller
259 	 * is permanently configured in the new timing mode, without the
260 	 * NTSR mode switch.
261 	 */
262 	bool needs_new_timings;
263 
264 	/* clock hardware can switch between old and new timing modes */
265 	bool ccu_has_timings_switch;
266 };
267 
268 struct sunxi_mmc_host {
269 	struct device *dev;
270 	struct mmc_host	*mmc;
271 	struct reset_control *reset;
272 	const struct sunxi_mmc_cfg *cfg;
273 
274 	/* IO mapping base */
275 	void __iomem	*reg_base;
276 
277 	/* clock management */
278 	struct clk	*clk_ahb;
279 	struct clk	*clk_mmc;
280 	struct clk	*clk_sample;
281 	struct clk	*clk_output;
282 
283 	/* irq */
284 	spinlock_t	lock;
285 	int		irq;
286 	u32		int_sum;
287 	u32		sdio_imask;
288 
289 	/* dma */
290 	dma_addr_t	sg_dma;
291 	void		*sg_cpu;
292 	bool		wait_dma;
293 
294 	struct mmc_request *mrq;
295 	struct mmc_request *manual_stop_mrq;
296 	int		ferror;
297 
298 	/* vqmmc */
299 	bool		vqmmc_enabled;
300 
301 	/* timings */
302 	bool		use_new_timings;
303 };
304 
305 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
306 {
307 	unsigned long expire = jiffies + msecs_to_jiffies(250);
308 	u32 rval;
309 
310 	mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
311 	do {
312 		rval = mmc_readl(host, REG_GCTRL);
313 	} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
314 
315 	if (rval & SDXC_HARDWARE_RESET) {
316 		dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
317 		return -EIO;
318 	}
319 
320 	return 0;
321 }
322 
323 static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
324 {
325 	u32 rval;
326 
327 	if (sunxi_mmc_reset_host(host))
328 		return -EIO;
329 
330 	/*
331 	 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
332 	 *
333 	 * TODO: sun9i has a larger FIFO and supports higher trigger values
334 	 */
335 	mmc_writel(host, REG_FTRGL, 0x20070008);
336 	/* Maximum timeout value */
337 	mmc_writel(host, REG_TMOUT, 0xffffffff);
338 	/* Unmask SDIO interrupt if needed */
339 	mmc_writel(host, REG_IMASK, host->sdio_imask);
340 	/* Clear all pending interrupts */
341 	mmc_writel(host, REG_RINTR, 0xffffffff);
342 	/* Debug register? undocumented */
343 	mmc_writel(host, REG_DBGC, 0xdeb);
344 	/* Enable CEATA support */
345 	mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
346 	/* Set DMA descriptor list base address */
347 	mmc_writel(host, REG_DLBA, host->sg_dma);
348 
349 	rval = mmc_readl(host, REG_GCTRL);
350 	rval |= SDXC_INTERRUPT_ENABLE_BIT;
351 	/* Undocumented, but found in Allwinner code */
352 	rval &= ~SDXC_ACCESS_DONE_DIRECT;
353 	mmc_writel(host, REG_GCTRL, rval);
354 
355 	return 0;
356 }
357 
358 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
359 				    struct mmc_data *data)
360 {
361 	struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
362 	dma_addr_t next_desc = host->sg_dma;
363 	int i, max_len = (1 << host->cfg->idma_des_size_bits);
364 
365 	for (i = 0; i < data->sg_len; i++) {
366 		pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
367 					     SDXC_IDMAC_DES0_OWN |
368 					     SDXC_IDMAC_DES0_DIC);
369 
370 		if (data->sg[i].length == max_len)
371 			pdes[i].buf_size = 0; /* 0 == max_len */
372 		else
373 			pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
374 
375 		next_desc += sizeof(struct sunxi_idma_des);
376 		pdes[i].buf_addr_ptr1 =
377 			cpu_to_le32(sg_dma_address(&data->sg[i]));
378 		pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
379 	}
380 
381 	pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
382 	pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
383 					  SDXC_IDMAC_DES0_ER);
384 	pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
385 	pdes[i - 1].buf_addr_ptr2 = 0;
386 
387 	/*
388 	 * Avoid the io-store starting the idmac hitting io-mem before the
389 	 * descriptors hit the main-mem.
390 	 */
391 	wmb();
392 }
393 
394 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
395 			     struct mmc_data *data)
396 {
397 	u32 i, dma_len;
398 	struct scatterlist *sg;
399 
400 	dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
401 			     mmc_get_dma_dir(data));
402 	if (dma_len == 0) {
403 		dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
404 		return -ENOMEM;
405 	}
406 
407 	for_each_sg(data->sg, sg, data->sg_len, i) {
408 		if (sg->offset & 3 || sg->length & 3) {
409 			dev_err(mmc_dev(host->mmc),
410 				"unaligned scatterlist: os %x length %d\n",
411 				sg->offset, sg->length);
412 			return -EINVAL;
413 		}
414 	}
415 
416 	return 0;
417 }
418 
419 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
420 				struct mmc_data *data)
421 {
422 	u32 rval;
423 
424 	sunxi_mmc_init_idma_des(host, data);
425 
426 	rval = mmc_readl(host, REG_GCTRL);
427 	rval |= SDXC_DMA_ENABLE_BIT;
428 	mmc_writel(host, REG_GCTRL, rval);
429 	rval |= SDXC_DMA_RESET;
430 	mmc_writel(host, REG_GCTRL, rval);
431 
432 	mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
433 
434 	if (!(data->flags & MMC_DATA_WRITE))
435 		mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
436 
437 	mmc_writel(host, REG_DMAC,
438 		   SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
439 }
440 
441 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
442 				       struct mmc_request *req)
443 {
444 	u32 arg, cmd_val, ri;
445 	unsigned long expire = jiffies + msecs_to_jiffies(1000);
446 
447 	cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
448 		  SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
449 
450 	if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
451 		cmd_val |= SD_IO_RW_DIRECT;
452 		arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
453 		      ((req->cmd->arg >> 28) & 0x7);
454 	} else {
455 		cmd_val |= MMC_STOP_TRANSMISSION;
456 		arg = 0;
457 	}
458 
459 	mmc_writel(host, REG_CARG, arg);
460 	mmc_writel(host, REG_CMDR, cmd_val);
461 
462 	do {
463 		ri = mmc_readl(host, REG_RINTR);
464 	} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
465 		 time_before(jiffies, expire));
466 
467 	if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
468 		dev_err(mmc_dev(host->mmc), "send stop command failed\n");
469 		if (req->stop)
470 			req->stop->resp[0] = -ETIMEDOUT;
471 	} else {
472 		if (req->stop)
473 			req->stop->resp[0] = mmc_readl(host, REG_RESP0);
474 	}
475 
476 	mmc_writel(host, REG_RINTR, 0xffff);
477 }
478 
479 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
480 {
481 	struct mmc_command *cmd = host->mrq->cmd;
482 	struct mmc_data *data = host->mrq->data;
483 
484 	/* For some cmds timeout is normal with sd/mmc cards */
485 	if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
486 		SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
487 				      cmd->opcode == SD_IO_RW_DIRECT))
488 		return;
489 
490 	dev_dbg(mmc_dev(host->mmc),
491 		"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
492 		host->mmc->index, cmd->opcode,
493 		data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
494 		host->int_sum & SDXC_RESP_ERROR     ? " RE"     : "",
495 		host->int_sum & SDXC_RESP_CRC_ERROR  ? " RCE"    : "",
496 		host->int_sum & SDXC_DATA_CRC_ERROR  ? " DCE"    : "",
497 		host->int_sum & SDXC_RESP_TIMEOUT ? " RTO"    : "",
498 		host->int_sum & SDXC_DATA_TIMEOUT ? " DTO"    : "",
499 		host->int_sum & SDXC_FIFO_RUN_ERROR  ? " FE"     : "",
500 		host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL"     : "",
501 		host->int_sum & SDXC_START_BIT_ERROR ? " SBE"    : "",
502 		host->int_sum & SDXC_END_BIT_ERROR   ? " EBE"    : ""
503 		);
504 }
505 
506 /* Called in interrupt context! */
507 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
508 {
509 	struct mmc_request *mrq = host->mrq;
510 	struct mmc_data *data = mrq->data;
511 	u32 rval;
512 
513 	mmc_writel(host, REG_IMASK, host->sdio_imask);
514 	mmc_writel(host, REG_IDIE, 0);
515 
516 	if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
517 		sunxi_mmc_dump_errinfo(host);
518 		mrq->cmd->error = -ETIMEDOUT;
519 
520 		if (data) {
521 			data->error = -ETIMEDOUT;
522 			host->manual_stop_mrq = mrq;
523 		}
524 
525 		if (mrq->stop)
526 			mrq->stop->error = -ETIMEDOUT;
527 	} else {
528 		if (mrq->cmd->flags & MMC_RSP_136) {
529 			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
530 			mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
531 			mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
532 			mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
533 		} else {
534 			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
535 		}
536 
537 		if (data)
538 			data->bytes_xfered = data->blocks * data->blksz;
539 	}
540 
541 	if (data) {
542 		mmc_writel(host, REG_IDST, 0x337);
543 		mmc_writel(host, REG_DMAC, 0);
544 		rval = mmc_readl(host, REG_GCTRL);
545 		rval |= SDXC_DMA_RESET;
546 		mmc_writel(host, REG_GCTRL, rval);
547 		rval &= ~SDXC_DMA_ENABLE_BIT;
548 		mmc_writel(host, REG_GCTRL, rval);
549 		rval |= SDXC_FIFO_RESET;
550 		mmc_writel(host, REG_GCTRL, rval);
551 		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
552 			     mmc_get_dma_dir(data));
553 	}
554 
555 	mmc_writel(host, REG_RINTR, 0xffff);
556 
557 	host->mrq = NULL;
558 	host->int_sum = 0;
559 	host->wait_dma = false;
560 
561 	return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
562 }
563 
564 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
565 {
566 	struct sunxi_mmc_host *host = dev_id;
567 	struct mmc_request *mrq;
568 	u32 msk_int, idma_int;
569 	bool finalize = false;
570 	bool sdio_int = false;
571 	irqreturn_t ret = IRQ_HANDLED;
572 
573 	spin_lock(&host->lock);
574 
575 	idma_int  = mmc_readl(host, REG_IDST);
576 	msk_int   = mmc_readl(host, REG_MISTA);
577 
578 	dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
579 		host->mrq, msk_int, idma_int);
580 
581 	mrq = host->mrq;
582 	if (mrq) {
583 		if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
584 			host->wait_dma = false;
585 
586 		host->int_sum |= msk_int;
587 
588 		/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
589 		if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
590 				!(host->int_sum & SDXC_COMMAND_DONE))
591 			mmc_writel(host, REG_IMASK,
592 				   host->sdio_imask | SDXC_COMMAND_DONE);
593 		/* Don't wait for dma on error */
594 		else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
595 			finalize = true;
596 		else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
597 				!host->wait_dma)
598 			finalize = true;
599 	}
600 
601 	if (msk_int & SDXC_SDIO_INTERRUPT)
602 		sdio_int = true;
603 
604 	mmc_writel(host, REG_RINTR, msk_int);
605 	mmc_writel(host, REG_IDST, idma_int);
606 
607 	if (finalize)
608 		ret = sunxi_mmc_finalize_request(host);
609 
610 	spin_unlock(&host->lock);
611 
612 	if (finalize && ret == IRQ_HANDLED)
613 		mmc_request_done(host->mmc, mrq);
614 
615 	if (sdio_int)
616 		mmc_signal_sdio_irq(host->mmc);
617 
618 	return ret;
619 }
620 
621 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
622 {
623 	struct sunxi_mmc_host *host = dev_id;
624 	struct mmc_request *mrq;
625 	unsigned long iflags;
626 
627 	spin_lock_irqsave(&host->lock, iflags);
628 	mrq = host->manual_stop_mrq;
629 	spin_unlock_irqrestore(&host->lock, iflags);
630 
631 	if (!mrq) {
632 		dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
633 		return IRQ_HANDLED;
634 	}
635 
636 	dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
637 
638 	/*
639 	 * We will never have more than one outstanding request,
640 	 * and we do not complete the request until after
641 	 * we've cleared host->manual_stop_mrq so we do not need to
642 	 * spin lock this function.
643 	 * Additionally we have wait states within this function
644 	 * so having it in a lock is a very bad idea.
645 	 */
646 	sunxi_mmc_send_manual_stop(host, mrq);
647 
648 	spin_lock_irqsave(&host->lock, iflags);
649 	host->manual_stop_mrq = NULL;
650 	spin_unlock_irqrestore(&host->lock, iflags);
651 
652 	mmc_request_done(host->mmc, mrq);
653 
654 	return IRQ_HANDLED;
655 }
656 
657 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
658 {
659 	unsigned long expire = jiffies + msecs_to_jiffies(750);
660 	u32 rval;
661 
662 	dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
663 		oclk_en ? "en" : "dis");
664 
665 	rval = mmc_readl(host, REG_CLKCR);
666 	rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
667 
668 	if (oclk_en)
669 		rval |= SDXC_CARD_CLOCK_ON;
670 	if (host->cfg->mask_data0)
671 		rval |= SDXC_MASK_DATA0;
672 
673 	mmc_writel(host, REG_CLKCR, rval);
674 
675 	rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
676 	mmc_writel(host, REG_CMDR, rval);
677 
678 	do {
679 		rval = mmc_readl(host, REG_CMDR);
680 	} while (time_before(jiffies, expire) && (rval & SDXC_START));
681 
682 	/* clear irq status bits set by the command */
683 	mmc_writel(host, REG_RINTR,
684 		   mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
685 
686 	if (rval & SDXC_START) {
687 		dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
688 		return -EIO;
689 	}
690 
691 	if (host->cfg->mask_data0) {
692 		rval = mmc_readl(host, REG_CLKCR);
693 		mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
694 	}
695 
696 	return 0;
697 }
698 
699 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
700 {
701 	if (!host->cfg->can_calibrate)
702 		return 0;
703 
704 	/*
705 	 * FIXME:
706 	 * This is not clear how the calibration is supposed to work
707 	 * yet. The best rate have been obtained by simply setting the
708 	 * delay to 0, as Allwinner does in its BSP.
709 	 *
710 	 * The only mode that doesn't have such a delay is HS400, that
711 	 * is in itself a TODO.
712 	 */
713 	writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
714 
715 	return 0;
716 }
717 
718 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
719 				   struct mmc_ios *ios, u32 rate)
720 {
721 	int index;
722 
723 	/* clk controller delays not used under new timings mode */
724 	if (host->use_new_timings)
725 		return 0;
726 
727 	/* some old controllers don't support delays */
728 	if (!host->cfg->clk_delays)
729 		return 0;
730 
731 	/* determine delays */
732 	if (rate <= 400000) {
733 		index = SDXC_CLK_400K;
734 	} else if (rate <= 25000000) {
735 		index = SDXC_CLK_25M;
736 	} else if (rate <= 52000000) {
737 		if (ios->timing != MMC_TIMING_UHS_DDR50 &&
738 		    ios->timing != MMC_TIMING_MMC_DDR52) {
739 			index = SDXC_CLK_50M;
740 		} else if (ios->bus_width == MMC_BUS_WIDTH_8) {
741 			index = SDXC_CLK_50M_DDR_8BIT;
742 		} else {
743 			index = SDXC_CLK_50M_DDR;
744 		}
745 	} else {
746 		dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
747 		return -EINVAL;
748 	}
749 
750 	clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
751 	clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
752 
753 	return 0;
754 }
755 
756 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
757 				  struct mmc_ios *ios)
758 {
759 	struct mmc_host *mmc = host->mmc;
760 	long rate;
761 	u32 rval, clock = ios->clock, div = 1;
762 	int ret;
763 
764 	ret = sunxi_mmc_oclk_onoff(host, 0);
765 	if (ret)
766 		return ret;
767 
768 	/* Our clock is gated now */
769 	mmc->actual_clock = 0;
770 
771 	if (!ios->clock)
772 		return 0;
773 
774 	/*
775 	 * Under the old timing mode, 8 bit DDR requires the module
776 	 * clock to be double the card clock. Under the new timing
777 	 * mode, all DDR modes require a doubled module clock.
778 	 *
779 	 * We currently only support the standard MMC DDR52 mode.
780 	 * This block should be updated once support for other DDR
781 	 * modes is added.
782 	 */
783 	if (ios->timing == MMC_TIMING_MMC_DDR52 &&
784 	    (host->use_new_timings ||
785 	     ios->bus_width == MMC_BUS_WIDTH_8)) {
786 		div = 2;
787 		clock <<= 1;
788 	}
789 
790 	if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
791 		ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
792 		if (ret) {
793 			dev_err(mmc_dev(mmc),
794 				"error setting new timing mode\n");
795 			return ret;
796 		}
797 	}
798 
799 	rate = clk_round_rate(host->clk_mmc, clock);
800 	if (rate < 0) {
801 		dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
802 			clock, rate);
803 		return rate;
804 	}
805 	dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
806 		clock, rate);
807 
808 	/* setting clock rate */
809 	ret = clk_set_rate(host->clk_mmc, rate);
810 	if (ret) {
811 		dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
812 			rate, ret);
813 		return ret;
814 	}
815 
816 	/* set internal divider */
817 	rval = mmc_readl(host, REG_CLKCR);
818 	rval &= ~0xff;
819 	rval |= div - 1;
820 	mmc_writel(host, REG_CLKCR, rval);
821 
822 	/* update card clock rate to account for internal divider */
823 	rate /= div;
824 
825 	/*
826 	 * Configure the controller to use the new timing mode if needed.
827 	 * On controllers that only support the new timing mode, such as
828 	 * the eMMC controller on the A64, this register does not exist,
829 	 * and any writes to it are ignored.
830 	 */
831 	if (host->use_new_timings) {
832 		/* Don't touch the delay bits */
833 		rval = mmc_readl(host, REG_SD_NTSR);
834 		rval |= SDXC_2X_TIMING_MODE;
835 		mmc_writel(host, REG_SD_NTSR, rval);
836 	}
837 
838 	/* sunxi_mmc_clk_set_phase expects the actual card clock rate */
839 	ret = sunxi_mmc_clk_set_phase(host, ios, rate);
840 	if (ret)
841 		return ret;
842 
843 	ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
844 	if (ret)
845 		return ret;
846 
847 	/*
848 	 * FIXME:
849 	 *
850 	 * In HS400 we'll also need to calibrate the data strobe
851 	 * signal. This should only happen on the MMC2 controller (at
852 	 * least on the A64).
853 	 */
854 
855 	ret = sunxi_mmc_oclk_onoff(host, 1);
856 	if (ret)
857 		return ret;
858 
859 	/* And we just enabled our clock back */
860 	mmc->actual_clock = rate;
861 
862 	return 0;
863 }
864 
865 static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
866 				   unsigned char width)
867 {
868 	switch (width) {
869 	case MMC_BUS_WIDTH_1:
870 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
871 		break;
872 	case MMC_BUS_WIDTH_4:
873 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
874 		break;
875 	case MMC_BUS_WIDTH_8:
876 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
877 		break;
878 	}
879 }
880 
881 static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
882 {
883 	u32 rval;
884 
885 	/* set ddr mode */
886 	rval = mmc_readl(host, REG_GCTRL);
887 	if (ios->timing == MMC_TIMING_UHS_DDR50 ||
888 	    ios->timing == MMC_TIMING_MMC_DDR52)
889 		rval |= SDXC_DDR_MODE;
890 	else
891 		rval &= ~SDXC_DDR_MODE;
892 	mmc_writel(host, REG_GCTRL, rval);
893 
894 	host->ferror = sunxi_mmc_clk_set_rate(host, ios);
895 	/* Android code had a usleep_range(50000, 55000); here */
896 }
897 
898 static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
899 				 struct mmc_ios *ios)
900 {
901 	struct mmc_host *mmc = host->mmc;
902 
903 	switch (ios->power_mode) {
904 	case MMC_POWER_UP:
905 		dev_dbg(mmc_dev(mmc), "Powering card up\n");
906 
907 		if (!IS_ERR(mmc->supply.vmmc)) {
908 			host->ferror = mmc_regulator_set_ocr(mmc,
909 							     mmc->supply.vmmc,
910 							     ios->vdd);
911 			if (host->ferror)
912 				return;
913 		}
914 
915 		if (!IS_ERR(mmc->supply.vqmmc)) {
916 			host->ferror = regulator_enable(mmc->supply.vqmmc);
917 			if (host->ferror) {
918 				dev_err(mmc_dev(mmc),
919 					"failed to enable vqmmc\n");
920 				return;
921 			}
922 			host->vqmmc_enabled = true;
923 		}
924 		break;
925 
926 	case MMC_POWER_OFF:
927 		dev_dbg(mmc_dev(mmc), "Powering card off\n");
928 
929 		if (!IS_ERR(mmc->supply.vmmc))
930 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
931 
932 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
933 			regulator_disable(mmc->supply.vqmmc);
934 
935 		host->vqmmc_enabled = false;
936 		break;
937 
938 	default:
939 		dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
940 		break;
941 	}
942 }
943 
944 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
945 {
946 	struct sunxi_mmc_host *host = mmc_priv(mmc);
947 
948 	sunxi_mmc_card_power(host, ios);
949 	sunxi_mmc_set_bus_width(host, ios->bus_width);
950 	sunxi_mmc_set_clk(host, ios);
951 }
952 
953 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
954 {
955 	int ret;
956 
957 	/* vqmmc regulator is available */
958 	if (!IS_ERR(mmc->supply.vqmmc)) {
959 		ret = mmc_regulator_set_vqmmc(mmc, ios);
960 		return ret < 0 ? ret : 0;
961 	}
962 
963 	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
964 	if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
965 		return 0;
966 
967 	return -EINVAL;
968 }
969 
970 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
971 {
972 	struct sunxi_mmc_host *host = mmc_priv(mmc);
973 	unsigned long flags;
974 	u32 imask;
975 
976 	if (enable)
977 		pm_runtime_get_noresume(host->dev);
978 
979 	spin_lock_irqsave(&host->lock, flags);
980 
981 	imask = mmc_readl(host, REG_IMASK);
982 	if (enable) {
983 		host->sdio_imask = SDXC_SDIO_INTERRUPT;
984 		imask |= SDXC_SDIO_INTERRUPT;
985 	} else {
986 		host->sdio_imask = 0;
987 		imask &= ~SDXC_SDIO_INTERRUPT;
988 	}
989 	mmc_writel(host, REG_IMASK, imask);
990 	spin_unlock_irqrestore(&host->lock, flags);
991 
992 	if (!enable)
993 		pm_runtime_put_noidle(host->mmc->parent);
994 }
995 
996 static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
997 {
998 	struct sunxi_mmc_host *host = mmc_priv(mmc);
999 	mmc_writel(host, REG_HWRST, 0);
1000 	udelay(10);
1001 	mmc_writel(host, REG_HWRST, 1);
1002 	udelay(300);
1003 }
1004 
1005 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
1006 {
1007 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1008 	struct mmc_command *cmd = mrq->cmd;
1009 	struct mmc_data *data = mrq->data;
1010 	unsigned long iflags;
1011 	u32 imask = SDXC_INTERRUPT_ERROR_BIT;
1012 	u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
1013 	bool wait_dma = host->wait_dma;
1014 	int ret;
1015 
1016 	/* Check for set_ios errors (should never happen) */
1017 	if (host->ferror) {
1018 		mrq->cmd->error = host->ferror;
1019 		mmc_request_done(mmc, mrq);
1020 		return;
1021 	}
1022 
1023 	if (data) {
1024 		ret = sunxi_mmc_map_dma(host, data);
1025 		if (ret < 0) {
1026 			dev_err(mmc_dev(mmc), "map DMA failed\n");
1027 			cmd->error = ret;
1028 			data->error = ret;
1029 			mmc_request_done(mmc, mrq);
1030 			return;
1031 		}
1032 	}
1033 
1034 	if (cmd->opcode == MMC_GO_IDLE_STATE) {
1035 		cmd_val |= SDXC_SEND_INIT_SEQUENCE;
1036 		imask |= SDXC_COMMAND_DONE;
1037 	}
1038 
1039 	if (cmd->flags & MMC_RSP_PRESENT) {
1040 		cmd_val |= SDXC_RESP_EXPIRE;
1041 		if (cmd->flags & MMC_RSP_136)
1042 			cmd_val |= SDXC_LONG_RESPONSE;
1043 		if (cmd->flags & MMC_RSP_CRC)
1044 			cmd_val |= SDXC_CHECK_RESPONSE_CRC;
1045 
1046 		if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
1047 			cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
1048 
1049 			if (cmd->data->stop) {
1050 				imask |= SDXC_AUTO_COMMAND_DONE;
1051 				cmd_val |= SDXC_SEND_AUTO_STOP;
1052 			} else {
1053 				imask |= SDXC_DATA_OVER;
1054 			}
1055 
1056 			if (cmd->data->flags & MMC_DATA_WRITE)
1057 				cmd_val |= SDXC_WRITE;
1058 			else
1059 				wait_dma = true;
1060 		} else {
1061 			imask |= SDXC_COMMAND_DONE;
1062 		}
1063 	} else {
1064 		imask |= SDXC_COMMAND_DONE;
1065 	}
1066 
1067 	dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
1068 		cmd_val & 0x3f, cmd_val, cmd->arg, imask,
1069 		mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
1070 
1071 	spin_lock_irqsave(&host->lock, iflags);
1072 
1073 	if (host->mrq || host->manual_stop_mrq) {
1074 		spin_unlock_irqrestore(&host->lock, iflags);
1075 
1076 		if (data)
1077 			dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
1078 				     mmc_get_dma_dir(data));
1079 
1080 		dev_err(mmc_dev(mmc), "request already pending\n");
1081 		mrq->cmd->error = -EBUSY;
1082 		mmc_request_done(mmc, mrq);
1083 		return;
1084 	}
1085 
1086 	if (data) {
1087 		mmc_writel(host, REG_BLKSZ, data->blksz);
1088 		mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
1089 		sunxi_mmc_start_dma(host, data);
1090 	}
1091 
1092 	host->mrq = mrq;
1093 	host->wait_dma = wait_dma;
1094 	mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
1095 	mmc_writel(host, REG_CARG, cmd->arg);
1096 	mmc_writel(host, REG_CMDR, cmd_val);
1097 
1098 	spin_unlock_irqrestore(&host->lock, iflags);
1099 }
1100 
1101 static int sunxi_mmc_card_busy(struct mmc_host *mmc)
1102 {
1103 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1104 
1105 	return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
1106 }
1107 
1108 static const struct mmc_host_ops sunxi_mmc_ops = {
1109 	.request	 = sunxi_mmc_request,
1110 	.set_ios	 = sunxi_mmc_set_ios,
1111 	.get_ro		 = mmc_gpio_get_ro,
1112 	.get_cd		 = mmc_gpio_get_cd,
1113 	.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
1114 	.start_signal_voltage_switch = sunxi_mmc_volt_switch,
1115 	.hw_reset	 = sunxi_mmc_hw_reset,
1116 	.card_busy	 = sunxi_mmc_card_busy,
1117 };
1118 
1119 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
1120 	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1121 	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1122 	[SDXC_CLK_50M]		= { .output =  90, .sample = 120 },
1123 	[SDXC_CLK_50M_DDR]	= { .output =  60, .sample = 120 },
1124 	/* Value from A83T "new timing mode". Works but might not be right. */
1125 	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  90, .sample = 180 },
1126 };
1127 
1128 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
1129 	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1130 	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1131 	[SDXC_CLK_50M]		= { .output = 150, .sample = 120 },
1132 	[SDXC_CLK_50M_DDR]	= { .output =  54, .sample =  36 },
1133 	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  72, .sample =  72 },
1134 };
1135 
1136 static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
1137 	.idma_des_size_bits = 13,
1138 	.clk_delays = NULL,
1139 	.can_calibrate = false,
1140 };
1141 
1142 static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
1143 	.idma_des_size_bits = 16,
1144 	.clk_delays = NULL,
1145 	.can_calibrate = false,
1146 };
1147 
1148 static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
1149 	.idma_des_size_bits = 16,
1150 	.clk_delays = sunxi_mmc_clk_delays,
1151 	.can_calibrate = false,
1152 };
1153 
1154 static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
1155 	.idma_des_size_bits = 16,
1156 	.clk_delays = sunxi_mmc_clk_delays,
1157 	.can_calibrate = false,
1158 	.ccu_has_timings_switch = true,
1159 };
1160 
1161 static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
1162 	.idma_des_size_bits = 16,
1163 	.clk_delays = sun9i_mmc_clk_delays,
1164 	.can_calibrate = false,
1165 };
1166 
1167 static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
1168 	.idma_des_size_bits = 16,
1169 	.clk_delays = NULL,
1170 	.can_calibrate = true,
1171 	.mask_data0 = true,
1172 	.needs_new_timings = true,
1173 };
1174 
1175 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
1176 	.idma_des_size_bits = 13,
1177 	.clk_delays = NULL,
1178 	.can_calibrate = true,
1179 	.needs_new_timings = true,
1180 };
1181 
1182 static const struct of_device_id sunxi_mmc_of_match[] = {
1183 	{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
1184 	{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
1185 	{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
1186 	{ .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
1187 	{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
1188 	{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
1189 	{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
1190 	{ /* sentinel */ }
1191 };
1192 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
1193 
1194 static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
1195 {
1196 	int ret;
1197 
1198 	if (!IS_ERR(host->reset)) {
1199 		ret = reset_control_reset(host->reset);
1200 		if (ret) {
1201 			dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
1202 				ret);
1203 			return ret;
1204 		}
1205 	}
1206 
1207 	ret = clk_prepare_enable(host->clk_ahb);
1208 	if (ret) {
1209 		dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
1210 		goto error_assert_reset;
1211 	}
1212 
1213 	ret = clk_prepare_enable(host->clk_mmc);
1214 	if (ret) {
1215 		dev_err(host->dev, "Enable mmc clk err %d\n", ret);
1216 		goto error_disable_clk_ahb;
1217 	}
1218 
1219 	ret = clk_prepare_enable(host->clk_output);
1220 	if (ret) {
1221 		dev_err(host->dev, "Enable output clk err %d\n", ret);
1222 		goto error_disable_clk_mmc;
1223 	}
1224 
1225 	ret = clk_prepare_enable(host->clk_sample);
1226 	if (ret) {
1227 		dev_err(host->dev, "Enable sample clk err %d\n", ret);
1228 		goto error_disable_clk_output;
1229 	}
1230 
1231 	/*
1232 	 * Sometimes the controller asserts the irq on boot for some reason,
1233 	 * make sure the controller is in a sane state before enabling irqs.
1234 	 */
1235 	ret = sunxi_mmc_reset_host(host);
1236 	if (ret)
1237 		goto error_disable_clk_sample;
1238 
1239 	return 0;
1240 
1241 error_disable_clk_sample:
1242 	clk_disable_unprepare(host->clk_sample);
1243 error_disable_clk_output:
1244 	clk_disable_unprepare(host->clk_output);
1245 error_disable_clk_mmc:
1246 	clk_disable_unprepare(host->clk_mmc);
1247 error_disable_clk_ahb:
1248 	clk_disable_unprepare(host->clk_ahb);
1249 error_assert_reset:
1250 	if (!IS_ERR(host->reset))
1251 		reset_control_assert(host->reset);
1252 	return ret;
1253 }
1254 
1255 static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
1256 {
1257 	sunxi_mmc_reset_host(host);
1258 
1259 	clk_disable_unprepare(host->clk_sample);
1260 	clk_disable_unprepare(host->clk_output);
1261 	clk_disable_unprepare(host->clk_mmc);
1262 	clk_disable_unprepare(host->clk_ahb);
1263 
1264 	if (!IS_ERR(host->reset))
1265 		reset_control_assert(host->reset);
1266 }
1267 
1268 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
1269 				      struct platform_device *pdev)
1270 {
1271 	int ret;
1272 
1273 	host->cfg = of_device_get_match_data(&pdev->dev);
1274 	if (!host->cfg)
1275 		return -EINVAL;
1276 
1277 	ret = mmc_regulator_get_supply(host->mmc);
1278 	if (ret)
1279 		return ret;
1280 
1281 	host->reg_base = devm_platform_ioremap_resource(pdev, 0);
1282 	if (IS_ERR(host->reg_base))
1283 		return PTR_ERR(host->reg_base);
1284 
1285 	host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1286 	if (IS_ERR(host->clk_ahb)) {
1287 		dev_err(&pdev->dev, "Could not get ahb clock\n");
1288 		return PTR_ERR(host->clk_ahb);
1289 	}
1290 
1291 	host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
1292 	if (IS_ERR(host->clk_mmc)) {
1293 		dev_err(&pdev->dev, "Could not get mmc clock\n");
1294 		return PTR_ERR(host->clk_mmc);
1295 	}
1296 
1297 	if (host->cfg->clk_delays) {
1298 		host->clk_output = devm_clk_get(&pdev->dev, "output");
1299 		if (IS_ERR(host->clk_output)) {
1300 			dev_err(&pdev->dev, "Could not get output clock\n");
1301 			return PTR_ERR(host->clk_output);
1302 		}
1303 
1304 		host->clk_sample = devm_clk_get(&pdev->dev, "sample");
1305 		if (IS_ERR(host->clk_sample)) {
1306 			dev_err(&pdev->dev, "Could not get sample clock\n");
1307 			return PTR_ERR(host->clk_sample);
1308 		}
1309 	}
1310 
1311 	host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
1312 								"ahb");
1313 	if (PTR_ERR(host->reset) == -EPROBE_DEFER)
1314 		return PTR_ERR(host->reset);
1315 
1316 	ret = sunxi_mmc_enable(host);
1317 	if (ret)
1318 		return ret;
1319 
1320 	host->irq = platform_get_irq(pdev, 0);
1321 	if (host->irq <= 0) {
1322 		ret = -EINVAL;
1323 		goto error_disable_mmc;
1324 	}
1325 
1326 	return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
1327 			sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
1328 
1329 error_disable_mmc:
1330 	sunxi_mmc_disable(host);
1331 	return ret;
1332 }
1333 
1334 static int sunxi_mmc_probe(struct platform_device *pdev)
1335 {
1336 	struct sunxi_mmc_host *host;
1337 	struct mmc_host *mmc;
1338 	int ret;
1339 
1340 	mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
1341 	if (!mmc) {
1342 		dev_err(&pdev->dev, "mmc alloc host failed\n");
1343 		return -ENOMEM;
1344 	}
1345 	platform_set_drvdata(pdev, mmc);
1346 
1347 	host = mmc_priv(mmc);
1348 	host->dev = &pdev->dev;
1349 	host->mmc = mmc;
1350 	spin_lock_init(&host->lock);
1351 
1352 	ret = sunxi_mmc_resource_request(host, pdev);
1353 	if (ret)
1354 		goto error_free_host;
1355 
1356 	host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
1357 					  &host->sg_dma, GFP_KERNEL);
1358 	if (!host->sg_cpu) {
1359 		dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
1360 		ret = -ENOMEM;
1361 		goto error_free_host;
1362 	}
1363 
1364 	if (host->cfg->ccu_has_timings_switch) {
1365 		/*
1366 		 * Supports both old and new timing modes.
1367 		 * Try setting the clk to new timing mode.
1368 		 */
1369 		sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
1370 
1371 		/* And check the result */
1372 		ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
1373 		if (ret < 0) {
1374 			/*
1375 			 * For whatever reason we were not able to get
1376 			 * the current active mode. Default to old mode.
1377 			 */
1378 			dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
1379 			host->use_new_timings = false;
1380 		} else {
1381 			host->use_new_timings = !!ret;
1382 		}
1383 	} else if (host->cfg->needs_new_timings) {
1384 		/* Supports new timing mode only */
1385 		host->use_new_timings = true;
1386 	}
1387 
1388 	mmc->ops		= &sunxi_mmc_ops;
1389 	mmc->max_blk_count	= 8192;
1390 	mmc->max_blk_size	= 4096;
1391 	mmc->max_segs		= PAGE_SIZE / sizeof(struct sunxi_idma_des);
1392 	mmc->max_seg_size	= (1 << host->cfg->idma_des_size_bits);
1393 	mmc->max_req_size	= mmc->max_seg_size * mmc->max_segs;
1394 	/* 400kHz ~ 52MHz */
1395 	mmc->f_min		=   400000;
1396 	mmc->f_max		= 52000000;
1397 	mmc->caps	       |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1398 				  MMC_CAP_SDIO_IRQ;
1399 
1400 	/*
1401 	 * Some H5 devices do not have signal traces precise enough to
1402 	 * use HS DDR mode for their eMMC chips.
1403 	 *
1404 	 * We still enable HS DDR modes for all the other controller
1405 	 * variants that support them.
1406 	 */
1407 	if ((host->cfg->clk_delays || host->use_new_timings) &&
1408 	    !of_device_is_compatible(pdev->dev.of_node,
1409 				     "allwinner,sun50i-h5-emmc"))
1410 		mmc->caps      |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
1411 
1412 	ret = mmc_of_parse(mmc);
1413 	if (ret)
1414 		goto error_free_dma;
1415 
1416 	/*
1417 	 * If we don't support delay chains in the SoC, we can't use any
1418 	 * of the higher speed modes. Mask them out in case the device
1419 	 * tree specifies the properties for them, which gets added to
1420 	 * the caps by mmc_of_parse() above.
1421 	 */
1422 	if (!(host->cfg->clk_delays || host->use_new_timings)) {
1423 		mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
1424 			       MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
1425 		mmc->caps2 &= ~MMC_CAP2_HS200;
1426 	}
1427 
1428 	/* TODO: This driver doesn't support HS400 mode yet */
1429 	mmc->caps2 &= ~MMC_CAP2_HS400;
1430 
1431 	ret = sunxi_mmc_init_host(host);
1432 	if (ret)
1433 		goto error_free_dma;
1434 
1435 	pm_runtime_set_active(&pdev->dev);
1436 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1437 	pm_runtime_use_autosuspend(&pdev->dev);
1438 	pm_runtime_enable(&pdev->dev);
1439 
1440 	ret = mmc_add_host(mmc);
1441 	if (ret)
1442 		goto error_free_dma;
1443 
1444 	dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
1445 		 mmc->max_req_size >> 10,
1446 		 host->use_new_timings ? ", uses new timings mode" : "");
1447 
1448 	return 0;
1449 
1450 error_free_dma:
1451 	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1452 error_free_host:
1453 	mmc_free_host(mmc);
1454 	return ret;
1455 }
1456 
1457 static int sunxi_mmc_remove(struct platform_device *pdev)
1458 {
1459 	struct mmc_host	*mmc = platform_get_drvdata(pdev);
1460 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1461 
1462 	mmc_remove_host(mmc);
1463 	pm_runtime_force_suspend(&pdev->dev);
1464 	disable_irq(host->irq);
1465 	sunxi_mmc_disable(host);
1466 	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1467 	mmc_free_host(mmc);
1468 
1469 	return 0;
1470 }
1471 
1472 #ifdef CONFIG_PM
1473 static int sunxi_mmc_runtime_resume(struct device *dev)
1474 {
1475 	struct mmc_host	*mmc = dev_get_drvdata(dev);
1476 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1477 	int ret;
1478 
1479 	ret = sunxi_mmc_enable(host);
1480 	if (ret)
1481 		return ret;
1482 
1483 	sunxi_mmc_init_host(host);
1484 	sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
1485 	sunxi_mmc_set_clk(host, &mmc->ios);
1486 	enable_irq(host->irq);
1487 
1488 	return 0;
1489 }
1490 
1491 static int sunxi_mmc_runtime_suspend(struct device *dev)
1492 {
1493 	struct mmc_host	*mmc = dev_get_drvdata(dev);
1494 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1495 
1496 	/*
1497 	 * When clocks are off, it's possible receiving
1498 	 * fake interrupts, which will stall the system.
1499 	 * Disabling the irq  will prevent this.
1500 	 */
1501 	disable_irq(host->irq);
1502 	sunxi_mmc_reset_host(host);
1503 	sunxi_mmc_disable(host);
1504 
1505 	return 0;
1506 }
1507 #endif
1508 
1509 static const struct dev_pm_ops sunxi_mmc_pm_ops = {
1510 	SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
1511 			   sunxi_mmc_runtime_resume,
1512 			   NULL)
1513 };
1514 
1515 static struct platform_driver sunxi_mmc_driver = {
1516 	.driver = {
1517 		.name	= "sunxi-mmc",
1518 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1519 		.of_match_table = sunxi_mmc_of_match,
1520 		.pm = &sunxi_mmc_pm_ops,
1521 	},
1522 	.probe		= sunxi_mmc_probe,
1523 	.remove		= sunxi_mmc_remove,
1524 };
1525 module_platform_driver(sunxi_mmc_driver);
1526 
1527 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
1528 MODULE_LICENSE("GPL v2");
1529 MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
1530 MODULE_ALIAS("platform:sunxi-mmc");
1531