xref: /linux/drivers/mmc/host/sh_mmcif.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8 
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34 
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/pagemap.h>
50 #include <linux/platform_data/sh_mmcif.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/sh_dma.h>
55 #include <linux/spinlock.h>
56 #include <linux/module.h>
57 
58 #define DRIVER_NAME	"sh_mmcif"
59 
60 /* CE_CMD_SET */
61 #define CMD_MASK		0x3f000000
62 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
63 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
65 #define CMD_SET_RBSY		(1 << 21) /* R1b */
66 #define CMD_SET_CCSEN		(1 << 20)
67 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
68 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
69 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
70 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
71 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
72 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
73 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
74 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
75 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
76 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
78 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
79 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
80 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
81 #define CMD_SET_CCSH		(1 << 5)
82 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
83 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
84 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
85 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
86 
87 /* CE_CMD_CTRL */
88 #define CMD_CTRL_BREAK		(1 << 0)
89 
90 /* CE_BLOCK_SET */
91 #define BLOCK_SIZE_MASK		0x0000ffff
92 
93 /* CE_INT */
94 #define INT_CCSDE		(1 << 29)
95 #define INT_CMD12DRE		(1 << 26)
96 #define INT_CMD12RBE		(1 << 25)
97 #define INT_CMD12CRE		(1 << 24)
98 #define INT_DTRANE		(1 << 23)
99 #define INT_BUFRE		(1 << 22)
100 #define INT_BUFWEN		(1 << 21)
101 #define INT_BUFREN		(1 << 20)
102 #define INT_CCSRCV		(1 << 19)
103 #define INT_RBSYE		(1 << 17)
104 #define INT_CRSPE		(1 << 16)
105 #define INT_CMDVIO		(1 << 15)
106 #define INT_BUFVIO		(1 << 14)
107 #define INT_WDATERR		(1 << 11)
108 #define INT_RDATERR		(1 << 10)
109 #define INT_RIDXERR		(1 << 9)
110 #define INT_RSPERR		(1 << 8)
111 #define INT_CCSTO		(1 << 5)
112 #define INT_CRCSTO		(1 << 4)
113 #define INT_WDATTO		(1 << 3)
114 #define INT_RDATTO		(1 << 2)
115 #define INT_RBSYTO		(1 << 1)
116 #define INT_RSPTO		(1 << 0)
117 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
118 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
120 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
121 
122 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
123 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
125 
126 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
127 
128 /* CE_INT_MASK */
129 #define MASK_ALL		0x00000000
130 #define MASK_MCCSDE		(1 << 29)
131 #define MASK_MCMD12DRE		(1 << 26)
132 #define MASK_MCMD12RBE		(1 << 25)
133 #define MASK_MCMD12CRE		(1 << 24)
134 #define MASK_MDTRANE		(1 << 23)
135 #define MASK_MBUFRE		(1 << 22)
136 #define MASK_MBUFWEN		(1 << 21)
137 #define MASK_MBUFREN		(1 << 20)
138 #define MASK_MCCSRCV		(1 << 19)
139 #define MASK_MRBSYE		(1 << 17)
140 #define MASK_MCRSPE		(1 << 16)
141 #define MASK_MCMDVIO		(1 << 15)
142 #define MASK_MBUFVIO		(1 << 14)
143 #define MASK_MWDATERR		(1 << 11)
144 #define MASK_MRDATERR		(1 << 10)
145 #define MASK_MRIDXERR		(1 << 9)
146 #define MASK_MRSPERR		(1 << 8)
147 #define MASK_MCCSTO		(1 << 5)
148 #define MASK_MCRCSTO		(1 << 4)
149 #define MASK_MWDATTO		(1 << 3)
150 #define MASK_MRDATTO		(1 << 2)
151 #define MASK_MRBSYTO		(1 << 1)
152 #define MASK_MRSPTO		(1 << 0)
153 
154 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 				 MASK_MCRCSTO | MASK_MWDATTO | \
157 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158 
159 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
160 				 MASK_MBUFREN | MASK_MBUFWEN |			\
161 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
162 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
163 
164 /* CE_HOST_STS1 */
165 #define STS1_CMDSEQ		(1 << 31)
166 
167 /* CE_HOST_STS2 */
168 #define STS2_CRCSTE		(1 << 31)
169 #define STS2_CRC16E		(1 << 30)
170 #define STS2_AC12CRCE		(1 << 29)
171 #define STS2_RSPCRC7E		(1 << 28)
172 #define STS2_CRCSTEBE		(1 << 27)
173 #define STS2_RDATEBE		(1 << 26)
174 #define STS2_AC12REBE		(1 << 25)
175 #define STS2_RSPEBE		(1 << 24)
176 #define STS2_AC12IDXE		(1 << 23)
177 #define STS2_RSPIDXE		(1 << 22)
178 #define STS2_CCSTO		(1 << 15)
179 #define STS2_RDATTO		(1 << 14)
180 #define STS2_DATBSYTO		(1 << 13)
181 #define STS2_CRCSTTO		(1 << 12)
182 #define STS2_AC12BSYTO		(1 << 11)
183 #define STS2_RSPBSYTO		(1 << 10)
184 #define STS2_AC12RSPTO		(1 << 9)
185 #define STS2_RSPTO		(1 << 8)
186 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
187 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
189 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
190 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
191 				 STS2_AC12RSPTO | STS2_RSPTO)
192 
193 #define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
194 #define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
195 #define CLKDEV_INIT		400000   /* 400 kHz */
196 
197 enum sh_mmcif_state {
198 	STATE_IDLE,
199 	STATE_REQUEST,
200 	STATE_IOS,
201 	STATE_TIMEOUT,
202 };
203 
204 enum sh_mmcif_wait_for {
205 	MMCIF_WAIT_FOR_REQUEST,
206 	MMCIF_WAIT_FOR_CMD,
207 	MMCIF_WAIT_FOR_MREAD,
208 	MMCIF_WAIT_FOR_MWRITE,
209 	MMCIF_WAIT_FOR_READ,
210 	MMCIF_WAIT_FOR_WRITE,
211 	MMCIF_WAIT_FOR_READ_END,
212 	MMCIF_WAIT_FOR_WRITE_END,
213 	MMCIF_WAIT_FOR_STOP,
214 };
215 
216 /*
217  * difference for each SoC
218  */
219 struct sh_mmcif_host {
220 	struct mmc_host *mmc;
221 	struct mmc_request *mrq;
222 	struct platform_device *pd;
223 	struct clk *clk;
224 	int bus_width;
225 	unsigned char timing;
226 	bool sd_error;
227 	bool dying;
228 	long timeout;
229 	void __iomem *addr;
230 	spinlock_t lock;		/* protect sh_mmcif_host::state */
231 	enum sh_mmcif_state state;
232 	enum sh_mmcif_wait_for wait_for;
233 	struct delayed_work timeout_work;
234 	size_t blocksize;
235 	struct sg_mapping_iter sg_miter;
236 	bool power;
237 	bool ccs_enable;		/* Command Completion Signal support */
238 	bool clk_ctrl2_enable;
239 	struct mutex thread_lock;
240 	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
241 
242 	/* DMA support */
243 	struct dma_chan		*chan_rx;
244 	struct dma_chan		*chan_tx;
245 	struct completion	dma_complete;
246 	bool			dma_active;
247 };
248 
249 static const struct of_device_id sh_mmcif_of_match[] = {
250 	{ .compatible = "renesas,sh-mmcif" },
251 	{ }
252 };
253 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
254 
255 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
256 
257 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
258 					unsigned int reg, u32 val)
259 {
260 	writel(val | readl(host->addr + reg), host->addr + reg);
261 }
262 
263 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
264 					unsigned int reg, u32 val)
265 {
266 	writel(~val & readl(host->addr + reg), host->addr + reg);
267 }
268 
269 static void sh_mmcif_dma_complete(void *arg)
270 {
271 	struct sh_mmcif_host *host = arg;
272 	struct mmc_request *mrq = host->mrq;
273 	struct device *dev = sh_mmcif_host_to_dev(host);
274 
275 	dev_dbg(dev, "Command completed\n");
276 
277 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
278 		 dev_name(dev)))
279 		return;
280 
281 	complete(&host->dma_complete);
282 }
283 
284 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
285 {
286 	struct mmc_data *data = host->mrq->data;
287 	struct scatterlist *sg = data->sg;
288 	struct dma_async_tx_descriptor *desc = NULL;
289 	struct dma_chan *chan = host->chan_rx;
290 	struct device *dev = sh_mmcif_host_to_dev(host);
291 	dma_cookie_t cookie = -EINVAL;
292 	int ret;
293 
294 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
295 			 DMA_FROM_DEVICE);
296 	if (ret > 0) {
297 		host->dma_active = true;
298 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
299 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
300 	}
301 
302 	if (desc) {
303 		desc->callback = sh_mmcif_dma_complete;
304 		desc->callback_param = host;
305 		cookie = dmaengine_submit(desc);
306 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
307 		dma_async_issue_pending(chan);
308 	}
309 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
310 		__func__, data->sg_len, ret, cookie);
311 
312 	if (!desc) {
313 		/* DMA failed, fall back to PIO */
314 		if (ret >= 0)
315 			ret = -EIO;
316 		host->chan_rx = NULL;
317 		host->dma_active = false;
318 		dma_release_channel(chan);
319 		/* Free the Tx channel too */
320 		chan = host->chan_tx;
321 		if (chan) {
322 			host->chan_tx = NULL;
323 			dma_release_channel(chan);
324 		}
325 		dev_warn(dev,
326 			 "DMA failed: %d, falling back to PIO\n", ret);
327 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
328 	}
329 
330 	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
331 		desc, cookie, data->sg_len);
332 }
333 
334 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
335 {
336 	struct mmc_data *data = host->mrq->data;
337 	struct scatterlist *sg = data->sg;
338 	struct dma_async_tx_descriptor *desc = NULL;
339 	struct dma_chan *chan = host->chan_tx;
340 	struct device *dev = sh_mmcif_host_to_dev(host);
341 	dma_cookie_t cookie = -EINVAL;
342 	int ret;
343 
344 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 			 DMA_TO_DEVICE);
346 	if (ret > 0) {
347 		host->dma_active = true;
348 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350 	}
351 
352 	if (desc) {
353 		desc->callback = sh_mmcif_dma_complete;
354 		desc->callback_param = host;
355 		cookie = dmaengine_submit(desc);
356 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 		dma_async_issue_pending(chan);
358 	}
359 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
360 		__func__, data->sg_len, ret, cookie);
361 
362 	if (!desc) {
363 		/* DMA failed, fall back to PIO */
364 		if (ret >= 0)
365 			ret = -EIO;
366 		host->chan_tx = NULL;
367 		host->dma_active = false;
368 		dma_release_channel(chan);
369 		/* Free the Rx channel too */
370 		chan = host->chan_rx;
371 		if (chan) {
372 			host->chan_rx = NULL;
373 			dma_release_channel(chan);
374 		}
375 		dev_warn(dev,
376 			 "DMA failed: %d, falling back to PIO\n", ret);
377 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378 	}
379 
380 	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
381 		desc, cookie);
382 }
383 
384 static struct dma_chan *
385 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
386 {
387 	dma_cap_mask_t mask;
388 
389 	dma_cap_zero(mask);
390 	dma_cap_set(DMA_SLAVE, mask);
391 	if (slave_id <= 0)
392 		return NULL;
393 
394 	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
395 }
396 
397 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
398 				     struct dma_chan *chan,
399 				     enum dma_transfer_direction direction)
400 {
401 	struct resource *res;
402 	struct dma_slave_config cfg = { 0, };
403 
404 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
405 	if (!res)
406 		return -EINVAL;
407 
408 	cfg.direction = direction;
409 
410 	if (direction == DMA_DEV_TO_MEM) {
411 		cfg.src_addr = res->start + MMCIF_CE_DATA;
412 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413 	} else {
414 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
415 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416 	}
417 
418 	return dmaengine_slave_config(chan, &cfg);
419 }
420 
421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422 {
423 	struct device *dev = sh_mmcif_host_to_dev(host);
424 	host->dma_active = false;
425 
426 	/* We can only either use DMA for both Tx and Rx or not use it at all */
427 	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428 		struct sh_mmcif_plat_data *pdata = dev->platform_data;
429 
430 		host->chan_tx = sh_mmcif_request_dma_pdata(host,
431 							pdata->slave_id_tx);
432 		host->chan_rx = sh_mmcif_request_dma_pdata(host,
433 							pdata->slave_id_rx);
434 	} else {
435 		host->chan_tx = dma_request_chan(dev, "tx");
436 		if (IS_ERR(host->chan_tx))
437 			host->chan_tx = NULL;
438 		host->chan_rx = dma_request_chan(dev, "rx");
439 		if (IS_ERR(host->chan_rx))
440 			host->chan_rx = NULL;
441 	}
442 
443 	if (!host->chan_tx || !host->chan_rx ||
444 	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
445 	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
446 		goto error;
447 
448 	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
449 		host->chan_rx);
450 
451 	return;
452 
453 error:
454 	if (host->chan_tx)
455 		dma_release_channel(host->chan_tx);
456 	if (host->chan_rx)
457 		dma_release_channel(host->chan_rx);
458 	host->chan_tx = host->chan_rx = NULL;
459 }
460 
461 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
462 {
463 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
464 	/* Descriptors are freed automatically */
465 	if (host->chan_tx) {
466 		struct dma_chan *chan = host->chan_tx;
467 		host->chan_tx = NULL;
468 		dma_release_channel(chan);
469 	}
470 	if (host->chan_rx) {
471 		struct dma_chan *chan = host->chan_rx;
472 		host->chan_rx = NULL;
473 		dma_release_channel(chan);
474 	}
475 
476 	host->dma_active = false;
477 }
478 
479 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
480 {
481 	struct device *dev = sh_mmcif_host_to_dev(host);
482 	struct sh_mmcif_plat_data *p = dev->platform_data;
483 	bool sup_pclk = p ? p->sup_pclk : false;
484 	unsigned int current_clk = clk_get_rate(host->clk);
485 	unsigned int clkdiv;
486 
487 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
488 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
489 
490 	if (!clk)
491 		return;
492 
493 	if (host->clkdiv_map) {
494 		unsigned int freq, best_freq, myclk, div, diff_min, diff;
495 		int i;
496 
497 		clkdiv = 0;
498 		diff_min = ~0;
499 		best_freq = 0;
500 		for (i = 31; i >= 0; i--) {
501 			if (!((1 << i) & host->clkdiv_map))
502 				continue;
503 
504 			/*
505 			 * clk = parent_freq / div
506 			 * -> parent_freq = clk x div
507 			 */
508 
509 			div = 1 << (i + 1);
510 			freq = clk_round_rate(host->clk, clk * div);
511 			myclk = freq / div;
512 			diff = (myclk > clk) ? myclk - clk : clk - myclk;
513 
514 			if (diff <= diff_min) {
515 				best_freq = freq;
516 				clkdiv = i;
517 				diff_min = diff;
518 			}
519 		}
520 
521 		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
522 			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
523 
524 		clk_set_rate(host->clk, best_freq);
525 		clkdiv = clkdiv << 16;
526 	} else if (sup_pclk && clk == current_clk) {
527 		clkdiv = CLK_SUP_PCLK;
528 	} else {
529 		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
530 	}
531 
532 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
533 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
534 }
535 
536 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
537 {
538 	u32 tmp;
539 
540 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
541 
542 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
543 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
544 	if (host->ccs_enable)
545 		tmp |= SCCSTO_29;
546 	if (host->clk_ctrl2_enable)
547 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
548 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
549 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
550 	/* byte swap on */
551 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
552 }
553 
554 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
555 {
556 	struct device *dev = sh_mmcif_host_to_dev(host);
557 	u32 state1, state2;
558 	int ret, timeout;
559 
560 	host->sd_error = false;
561 
562 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
563 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
564 	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
565 	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
566 
567 	if (state1 & STS1_CMDSEQ) {
568 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
569 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
570 		for (timeout = 10000; timeout; timeout--) {
571 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
572 			      & STS1_CMDSEQ))
573 				break;
574 			mdelay(1);
575 		}
576 		if (!timeout) {
577 			dev_err(dev,
578 				"Forced end of command sequence timeout err\n");
579 			return -EIO;
580 		}
581 		sh_mmcif_sync_reset(host);
582 		dev_dbg(dev, "Forced end of command sequence\n");
583 		return -EIO;
584 	}
585 
586 	if (state2 & STS2_CRC_ERR) {
587 		dev_err(dev, " CRC error: state %u, wait %u\n",
588 			host->state, host->wait_for);
589 		ret = -EIO;
590 	} else if (state2 & STS2_TIMEOUT_ERR) {
591 		dev_err(dev, " Timeout: state %u, wait %u\n",
592 			host->state, host->wait_for);
593 		ret = -ETIMEDOUT;
594 	} else {
595 		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
596 			host->state, host->wait_for);
597 		ret = -EIO;
598 	}
599 	return ret;
600 }
601 
602 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
603 				 struct mmc_request *mrq)
604 {
605 	struct mmc_data *data = mrq->data;
606 
607 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
608 			   BLOCK_SIZE_MASK) + 3;
609 
610 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
611 		       SG_MITER_TO_SG);
612 
613 	host->wait_for = MMCIF_WAIT_FOR_READ;
614 
615 	/* buf read enable */
616 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
617 }
618 
619 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
620 {
621 	struct sg_mapping_iter *sgm = &host->sg_miter;
622 	struct device *dev = sh_mmcif_host_to_dev(host);
623 	struct mmc_data *data = host->mrq->data;
624 	u32 *p;
625 	int i;
626 
627 	if (host->sd_error) {
628 		sg_miter_stop(sgm);
629 		data->error = sh_mmcif_error_manage(host);
630 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
631 		return false;
632 	}
633 
634 	if (!sg_miter_next(sgm)) {
635 		/* This should not happen on single blocks */
636 		sg_miter_stop(sgm);
637 		return false;
638 	}
639 
640 	p = sgm->addr;
641 
642 	for (i = 0; i < host->blocksize / 4; i++)
643 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
644 
645 	sg_miter_stop(&host->sg_miter);
646 
647 	/* buffer read end */
648 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
649 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
650 
651 	return true;
652 }
653 
654 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
655 				struct mmc_request *mrq)
656 {
657 	struct sg_mapping_iter *sgm = &host->sg_miter;
658 	struct mmc_data *data = mrq->data;
659 
660 	if (!data->sg_len || !data->sg->length)
661 		return;
662 
663 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664 		BLOCK_SIZE_MASK;
665 
666 	sg_miter_start(sgm, data->sg, data->sg_len,
667 		       SG_MITER_TO_SG);
668 
669 	/* Advance to the first sglist entry */
670 	if (!sg_miter_next(sgm)) {
671 		sg_miter_stop(sgm);
672 		return;
673 	}
674 
675 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
676 
677 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
678 }
679 
680 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
681 {
682 	struct sg_mapping_iter *sgm = &host->sg_miter;
683 	struct device *dev = sh_mmcif_host_to_dev(host);
684 	struct mmc_data *data = host->mrq->data;
685 	u32 *p;
686 	int i;
687 
688 	if (host->sd_error) {
689 		sg_miter_stop(sgm);
690 		data->error = sh_mmcif_error_manage(host);
691 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
692 		return false;
693 	}
694 
695 	p = sgm->addr;
696 
697 	for (i = 0; i < host->blocksize / 4; i++)
698 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
699 
700 	sgm->consumed = host->blocksize;
701 
702 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
703 
704 	if (!sg_miter_next(sgm)) {
705 		sg_miter_stop(sgm);
706 		return false;
707 	}
708 
709 	return true;
710 }
711 
712 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
713 					struct mmc_request *mrq)
714 {
715 	struct mmc_data *data = mrq->data;
716 
717 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
718 			   BLOCK_SIZE_MASK) + 3;
719 
720 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
721 		       SG_MITER_FROM_SG);
722 
723 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
724 
725 	/* buf write enable */
726 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
727 }
728 
729 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
730 {
731 	struct sg_mapping_iter *sgm = &host->sg_miter;
732 	struct device *dev = sh_mmcif_host_to_dev(host);
733 	struct mmc_data *data = host->mrq->data;
734 	u32 *p;
735 	int i;
736 
737 	if (host->sd_error) {
738 		sg_miter_stop(sgm);
739 		data->error = sh_mmcif_error_manage(host);
740 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
741 		return false;
742 	}
743 
744 	if (!sg_miter_next(sgm)) {
745 		/* This should not happen on single blocks */
746 		sg_miter_stop(sgm);
747 		return false;
748 	}
749 
750 	p = sgm->addr;
751 
752 	for (i = 0; i < host->blocksize / 4; i++)
753 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
754 
755 	sg_miter_stop(&host->sg_miter);
756 
757 	/* buffer write end */
758 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
759 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
760 
761 	return true;
762 }
763 
764 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
765 				struct mmc_request *mrq)
766 {
767 	struct sg_mapping_iter *sgm = &host->sg_miter;
768 	struct mmc_data *data = mrq->data;
769 
770 	if (!data->sg_len || !data->sg->length)
771 		return;
772 
773 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
774 		BLOCK_SIZE_MASK;
775 
776 	sg_miter_start(sgm, data->sg, data->sg_len,
777 		       SG_MITER_FROM_SG);
778 
779 	/* Advance to the first sglist entry */
780 	if (!sg_miter_next(sgm)) {
781 		sg_miter_stop(sgm);
782 		return;
783 	}
784 
785 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
786 
787 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
788 }
789 
790 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
791 {
792 	struct sg_mapping_iter *sgm = &host->sg_miter;
793 	struct device *dev = sh_mmcif_host_to_dev(host);
794 	struct mmc_data *data = host->mrq->data;
795 	u32 *p;
796 	int i;
797 
798 	if (host->sd_error) {
799 		sg_miter_stop(sgm);
800 		data->error = sh_mmcif_error_manage(host);
801 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
802 		return false;
803 	}
804 
805 	p = sgm->addr;
806 
807 	for (i = 0; i < host->blocksize / 4; i++)
808 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
809 
810 	sgm->consumed = host->blocksize;
811 
812 	if (!sg_miter_next(sgm)) {
813 		sg_miter_stop(sgm);
814 		return false;
815 	}
816 
817 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
818 
819 	return true;
820 }
821 
822 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
823 						struct mmc_command *cmd)
824 {
825 	if (cmd->flags & MMC_RSP_136) {
826 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
827 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
828 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
829 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
830 	} else
831 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
832 }
833 
834 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
835 						struct mmc_command *cmd)
836 {
837 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
838 }
839 
840 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
841 			    struct mmc_request *mrq)
842 {
843 	struct device *dev = sh_mmcif_host_to_dev(host);
844 	struct mmc_data *data = mrq->data;
845 	struct mmc_command *cmd = mrq->cmd;
846 	u32 opc = cmd->opcode;
847 	u32 tmp = 0;
848 
849 	/* Response Type check */
850 	switch (mmc_resp_type(cmd)) {
851 	case MMC_RSP_NONE:
852 		tmp |= CMD_SET_RTYP_NO;
853 		break;
854 	case MMC_RSP_R1:
855 	case MMC_RSP_R3:
856 		tmp |= CMD_SET_RTYP_6B;
857 		break;
858 	case MMC_RSP_R1B:
859 		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
860 		break;
861 	case MMC_RSP_R2:
862 		tmp |= CMD_SET_RTYP_17B;
863 		break;
864 	default:
865 		dev_err(dev, "Unsupported response type.\n");
866 		break;
867 	}
868 
869 	/* WDAT / DATW */
870 	if (data) {
871 		tmp |= CMD_SET_WDAT;
872 		switch (host->bus_width) {
873 		case MMC_BUS_WIDTH_1:
874 			tmp |= CMD_SET_DATW_1;
875 			break;
876 		case MMC_BUS_WIDTH_4:
877 			tmp |= CMD_SET_DATW_4;
878 			break;
879 		case MMC_BUS_WIDTH_8:
880 			tmp |= CMD_SET_DATW_8;
881 			break;
882 		default:
883 			dev_err(dev, "Unsupported bus width.\n");
884 			break;
885 		}
886 		switch (host->timing) {
887 		case MMC_TIMING_MMC_DDR52:
888 			/*
889 			 * MMC core will only set this timing, if the host
890 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
891 			 * capability. MMCIF implementations with this
892 			 * capability, e.g. sh73a0, will have to set it
893 			 * in their platform data.
894 			 */
895 			tmp |= CMD_SET_DARS;
896 			break;
897 		}
898 	}
899 	/* DWEN */
900 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
901 		tmp |= CMD_SET_DWEN;
902 	/* CMLTE/CMD12EN */
903 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
904 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
905 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
906 				data->blocks << 16);
907 	}
908 	/* RIDXC[1:0] check bits */
909 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
910 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
911 		tmp |= CMD_SET_RIDXC_BITS;
912 	/* RCRC7C[1:0] check bits */
913 	if (opc == MMC_SEND_OP_COND)
914 		tmp |= CMD_SET_CRC7C_BITS;
915 	/* RCRC7C[1:0] internal CRC7 */
916 	if (opc == MMC_ALL_SEND_CID ||
917 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
918 		tmp |= CMD_SET_CRC7C_INTERNAL;
919 
920 	return (opc << 24) | tmp;
921 }
922 
923 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
924 			       struct mmc_request *mrq, u32 opc)
925 {
926 	struct device *dev = sh_mmcif_host_to_dev(host);
927 
928 	switch (opc) {
929 	case MMC_READ_MULTIPLE_BLOCK:
930 		sh_mmcif_multi_read(host, mrq);
931 		return 0;
932 	case MMC_WRITE_MULTIPLE_BLOCK:
933 		sh_mmcif_multi_write(host, mrq);
934 		return 0;
935 	case MMC_WRITE_BLOCK:
936 		sh_mmcif_single_write(host, mrq);
937 		return 0;
938 	case MMC_READ_SINGLE_BLOCK:
939 	case MMC_SEND_EXT_CSD:
940 		sh_mmcif_single_read(host, mrq);
941 		return 0;
942 	default:
943 		dev_err(dev, "Unsupported CMD%d\n", opc);
944 		return -EINVAL;
945 	}
946 }
947 
948 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
949 			       struct mmc_request *mrq)
950 {
951 	struct mmc_command *cmd = mrq->cmd;
952 	u32 opc;
953 	u32 mask = 0;
954 	unsigned long flags;
955 
956 	if (cmd->flags & MMC_RSP_BUSY)
957 		mask = MASK_START_CMD | MASK_MRBSYE;
958 	else
959 		mask = MASK_START_CMD | MASK_MCRSPE;
960 
961 	if (host->ccs_enable)
962 		mask |= MASK_MCCSTO;
963 
964 	if (mrq->data) {
965 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
966 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
967 				mrq->data->blksz);
968 	}
969 	opc = sh_mmcif_set_cmd(host, mrq);
970 
971 	if (host->ccs_enable)
972 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
973 	else
974 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
975 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
976 	/* set arg */
977 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
978 	/* set cmd */
979 	spin_lock_irqsave(&host->lock, flags);
980 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
981 
982 	host->wait_for = MMCIF_WAIT_FOR_CMD;
983 	schedule_delayed_work(&host->timeout_work, host->timeout);
984 	spin_unlock_irqrestore(&host->lock, flags);
985 }
986 
987 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
988 			      struct mmc_request *mrq)
989 {
990 	struct device *dev = sh_mmcif_host_to_dev(host);
991 
992 	switch (mrq->cmd->opcode) {
993 	case MMC_READ_MULTIPLE_BLOCK:
994 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
995 		break;
996 	case MMC_WRITE_MULTIPLE_BLOCK:
997 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
998 		break;
999 	default:
1000 		dev_err(dev, "unsupported stop cmd\n");
1001 		mrq->stop->error = sh_mmcif_error_manage(host);
1002 		return;
1003 	}
1004 
1005 	host->wait_for = MMCIF_WAIT_FOR_STOP;
1006 }
1007 
1008 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
1009 {
1010 	struct sh_mmcif_host *host = mmc_priv(mmc);
1011 	struct device *dev = sh_mmcif_host_to_dev(host);
1012 	unsigned long flags;
1013 
1014 	spin_lock_irqsave(&host->lock, flags);
1015 	if (host->state != STATE_IDLE) {
1016 		dev_dbg(dev, "%s() rejected, state %u\n",
1017 			__func__, host->state);
1018 		spin_unlock_irqrestore(&host->lock, flags);
1019 		mrq->cmd->error = -EAGAIN;
1020 		mmc_request_done(mmc, mrq);
1021 		return;
1022 	}
1023 
1024 	host->state = STATE_REQUEST;
1025 	spin_unlock_irqrestore(&host->lock, flags);
1026 
1027 	host->mrq = mrq;
1028 
1029 	sh_mmcif_start_cmd(host, mrq);
1030 }
1031 
1032 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1033 {
1034 	struct device *dev = sh_mmcif_host_to_dev(host);
1035 
1036 	if (host->mmc->f_max) {
1037 		unsigned int f_max, f_min = 0, f_min_old;
1038 
1039 		f_max = host->mmc->f_max;
1040 		for (f_min_old = f_max; f_min_old > 2;) {
1041 			f_min = clk_round_rate(host->clk, f_min_old / 2);
1042 			if (f_min == f_min_old)
1043 				break;
1044 			f_min_old = f_min;
1045 		}
1046 
1047 		/*
1048 		 * This driver assumes this SoC is R-Car Gen2 or later
1049 		 */
1050 		host->clkdiv_map = 0x3ff;
1051 
1052 		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1053 		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1054 	} else {
1055 		unsigned int clk = clk_get_rate(host->clk);
1056 
1057 		host->mmc->f_max = clk / 2;
1058 		host->mmc->f_min = clk / 512;
1059 	}
1060 
1061 	dev_dbg(dev, "clk max/min = %d/%d\n",
1062 		host->mmc->f_max, host->mmc->f_min);
1063 }
1064 
1065 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1066 {
1067 	struct sh_mmcif_host *host = mmc_priv(mmc);
1068 	struct device *dev = sh_mmcif_host_to_dev(host);
1069 	unsigned long flags;
1070 
1071 	spin_lock_irqsave(&host->lock, flags);
1072 	if (host->state != STATE_IDLE) {
1073 		dev_dbg(dev, "%s() rejected, state %u\n",
1074 			__func__, host->state);
1075 		spin_unlock_irqrestore(&host->lock, flags);
1076 		return;
1077 	}
1078 
1079 	host->state = STATE_IOS;
1080 	spin_unlock_irqrestore(&host->lock, flags);
1081 
1082 	switch (ios->power_mode) {
1083 	case MMC_POWER_UP:
1084 		if (!IS_ERR(mmc->supply.vmmc))
1085 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1086 		if (!host->power) {
1087 			clk_prepare_enable(host->clk);
1088 			pm_runtime_get_sync(dev);
1089 			sh_mmcif_sync_reset(host);
1090 			sh_mmcif_request_dma(host);
1091 			host->power = true;
1092 		}
1093 		break;
1094 	case MMC_POWER_OFF:
1095 		if (!IS_ERR(mmc->supply.vmmc))
1096 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1097 		if (host->power) {
1098 			sh_mmcif_clock_control(host, 0);
1099 			sh_mmcif_release_dma(host);
1100 			pm_runtime_put(dev);
1101 			clk_disable_unprepare(host->clk);
1102 			host->power = false;
1103 		}
1104 		break;
1105 	case MMC_POWER_ON:
1106 		sh_mmcif_clock_control(host, ios->clock);
1107 		break;
1108 	}
1109 
1110 	host->timing = ios->timing;
1111 	host->bus_width = ios->bus_width;
1112 	host->state = STATE_IDLE;
1113 }
1114 
1115 static const struct mmc_host_ops sh_mmcif_ops = {
1116 	.request	= sh_mmcif_request,
1117 	.set_ios	= sh_mmcif_set_ios,
1118 	.get_cd		= mmc_gpio_get_cd,
1119 };
1120 
1121 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1122 {
1123 	struct mmc_command *cmd = host->mrq->cmd;
1124 	struct mmc_data *data = host->mrq->data;
1125 	struct device *dev = sh_mmcif_host_to_dev(host);
1126 	long time;
1127 
1128 	if (host->sd_error) {
1129 		switch (cmd->opcode) {
1130 		case MMC_ALL_SEND_CID:
1131 		case MMC_SELECT_CARD:
1132 		case MMC_APP_CMD:
1133 			cmd->error = -ETIMEDOUT;
1134 			break;
1135 		default:
1136 			cmd->error = sh_mmcif_error_manage(host);
1137 			break;
1138 		}
1139 		dev_dbg(dev, "CMD%d error %d\n",
1140 			cmd->opcode, cmd->error);
1141 		host->sd_error = false;
1142 		return false;
1143 	}
1144 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1145 		cmd->error = 0;
1146 		return false;
1147 	}
1148 
1149 	sh_mmcif_get_response(host, cmd);
1150 
1151 	if (!data)
1152 		return false;
1153 
1154 	/*
1155 	 * Completion can be signalled from DMA callback and error, so, have to
1156 	 * reset here, before setting .dma_active
1157 	 */
1158 	init_completion(&host->dma_complete);
1159 
1160 	if (data->flags & MMC_DATA_READ) {
1161 		if (host->chan_rx)
1162 			sh_mmcif_start_dma_rx(host);
1163 	} else {
1164 		if (host->chan_tx)
1165 			sh_mmcif_start_dma_tx(host);
1166 	}
1167 
1168 	if (!host->dma_active) {
1169 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1170 		return !data->error;
1171 	}
1172 
1173 	/* Running in the IRQ thread, can sleep */
1174 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1175 							 host->timeout);
1176 
1177 	if (data->flags & MMC_DATA_READ)
1178 		dma_unmap_sg(host->chan_rx->device->dev,
1179 			     data->sg, data->sg_len,
1180 			     DMA_FROM_DEVICE);
1181 	else
1182 		dma_unmap_sg(host->chan_tx->device->dev,
1183 			     data->sg, data->sg_len,
1184 			     DMA_TO_DEVICE);
1185 
1186 	if (host->sd_error) {
1187 		dev_err(host->mmc->parent,
1188 			"Error IRQ while waiting for DMA completion!\n");
1189 		/* Woken up by an error IRQ: abort DMA */
1190 		data->error = sh_mmcif_error_manage(host);
1191 	} else if (!time) {
1192 		dev_err(host->mmc->parent, "DMA timeout!\n");
1193 		data->error = -ETIMEDOUT;
1194 	} else if (time < 0) {
1195 		dev_err(host->mmc->parent,
1196 			"wait_for_completion_...() error %ld!\n", time);
1197 		data->error = time;
1198 	}
1199 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1200 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1201 	host->dma_active = false;
1202 
1203 	if (data->error) {
1204 		data->bytes_xfered = 0;
1205 		/* Abort DMA */
1206 		if (data->flags & MMC_DATA_READ)
1207 			dmaengine_terminate_sync(host->chan_rx);
1208 		else
1209 			dmaengine_terminate_sync(host->chan_tx);
1210 	}
1211 
1212 	return false;
1213 }
1214 
1215 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1216 {
1217 	struct sh_mmcif_host *host = dev_id;
1218 	struct mmc_request *mrq;
1219 	struct device *dev = sh_mmcif_host_to_dev(host);
1220 	bool wait = false;
1221 	unsigned long flags;
1222 	int wait_work;
1223 
1224 	spin_lock_irqsave(&host->lock, flags);
1225 	wait_work = host->wait_for;
1226 	spin_unlock_irqrestore(&host->lock, flags);
1227 
1228 	cancel_delayed_work_sync(&host->timeout_work);
1229 
1230 	mutex_lock(&host->thread_lock);
1231 
1232 	mrq = host->mrq;
1233 	if (!mrq) {
1234 		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1235 			host->state, host->wait_for);
1236 		mutex_unlock(&host->thread_lock);
1237 		return IRQ_HANDLED;
1238 	}
1239 
1240 	/*
1241 	 * All handlers return true, if processing continues, and false, if the
1242 	 * request has to be completed - successfully or not
1243 	 */
1244 	switch (wait_work) {
1245 	case MMCIF_WAIT_FOR_REQUEST:
1246 		/* We're too late, the timeout has already kicked in */
1247 		mutex_unlock(&host->thread_lock);
1248 		return IRQ_HANDLED;
1249 	case MMCIF_WAIT_FOR_CMD:
1250 		/* Wait for data? */
1251 		wait = sh_mmcif_end_cmd(host);
1252 		break;
1253 	case MMCIF_WAIT_FOR_MREAD:
1254 		/* Wait for more data? */
1255 		wait = sh_mmcif_mread_block(host);
1256 		break;
1257 	case MMCIF_WAIT_FOR_READ:
1258 		/* Wait for data end? */
1259 		wait = sh_mmcif_read_block(host);
1260 		break;
1261 	case MMCIF_WAIT_FOR_MWRITE:
1262 		/* Wait data to write? */
1263 		wait = sh_mmcif_mwrite_block(host);
1264 		break;
1265 	case MMCIF_WAIT_FOR_WRITE:
1266 		/* Wait for data end? */
1267 		wait = sh_mmcif_write_block(host);
1268 		break;
1269 	case MMCIF_WAIT_FOR_STOP:
1270 		if (host->sd_error) {
1271 			mrq->stop->error = sh_mmcif_error_manage(host);
1272 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1273 			break;
1274 		}
1275 		sh_mmcif_get_cmd12response(host, mrq->stop);
1276 		mrq->stop->error = 0;
1277 		break;
1278 	case MMCIF_WAIT_FOR_READ_END:
1279 	case MMCIF_WAIT_FOR_WRITE_END:
1280 		if (host->sd_error) {
1281 			mrq->data->error = sh_mmcif_error_manage(host);
1282 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1283 		}
1284 		break;
1285 	default:
1286 		BUG();
1287 	}
1288 
1289 	if (wait) {
1290 		schedule_delayed_work(&host->timeout_work, host->timeout);
1291 		/* Wait for more data */
1292 		mutex_unlock(&host->thread_lock);
1293 		return IRQ_HANDLED;
1294 	}
1295 
1296 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1297 		struct mmc_data *data = mrq->data;
1298 		if (!mrq->cmd->error && data && !data->error)
1299 			data->bytes_xfered =
1300 				data->blocks * data->blksz;
1301 
1302 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1303 			sh_mmcif_stop_cmd(host, mrq);
1304 			if (!mrq->stop->error) {
1305 				schedule_delayed_work(&host->timeout_work, host->timeout);
1306 				mutex_unlock(&host->thread_lock);
1307 				return IRQ_HANDLED;
1308 			}
1309 		}
1310 	}
1311 
1312 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1313 	host->state = STATE_IDLE;
1314 	host->mrq = NULL;
1315 	mmc_request_done(host->mmc, mrq);
1316 
1317 	mutex_unlock(&host->thread_lock);
1318 
1319 	return IRQ_HANDLED;
1320 }
1321 
1322 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1323 {
1324 	struct sh_mmcif_host *host = dev_id;
1325 	struct device *dev = sh_mmcif_host_to_dev(host);
1326 	u32 state, mask;
1327 
1328 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1329 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1330 	if (host->ccs_enable)
1331 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1332 	else
1333 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1334 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1335 
1336 	if (state & ~MASK_CLEAN)
1337 		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1338 			state);
1339 
1340 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1341 		host->sd_error = true;
1342 		dev_dbg(dev, "int err state = 0x%08x\n", state);
1343 	}
1344 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1345 		if (!host->mrq)
1346 			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1347 		if (!host->dma_active)
1348 			return IRQ_WAKE_THREAD;
1349 		else if (host->sd_error)
1350 			sh_mmcif_dma_complete(host);
1351 	} else {
1352 		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1353 	}
1354 
1355 	return IRQ_HANDLED;
1356 }
1357 
1358 static void sh_mmcif_timeout_work(struct work_struct *work)
1359 {
1360 	struct delayed_work *d = to_delayed_work(work);
1361 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1362 	struct mmc_request *mrq = host->mrq;
1363 	struct device *dev = sh_mmcif_host_to_dev(host);
1364 	unsigned long flags;
1365 
1366 	if (host->dying)
1367 		/* Don't run after mmc_remove_host() */
1368 		return;
1369 
1370 	spin_lock_irqsave(&host->lock, flags);
1371 	if (host->state == STATE_IDLE) {
1372 		spin_unlock_irqrestore(&host->lock, flags);
1373 		return;
1374 	}
1375 
1376 	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1377 		host->wait_for, mrq->cmd->opcode);
1378 
1379 	host->state = STATE_TIMEOUT;
1380 	spin_unlock_irqrestore(&host->lock, flags);
1381 
1382 	/*
1383 	 * Handle races with cancel_delayed_work(), unless
1384 	 * cancel_delayed_work_sync() is used
1385 	 */
1386 	switch (host->wait_for) {
1387 	case MMCIF_WAIT_FOR_CMD:
1388 		mrq->cmd->error = sh_mmcif_error_manage(host);
1389 		break;
1390 	case MMCIF_WAIT_FOR_STOP:
1391 		mrq->stop->error = sh_mmcif_error_manage(host);
1392 		break;
1393 	case MMCIF_WAIT_FOR_MREAD:
1394 	case MMCIF_WAIT_FOR_MWRITE:
1395 	case MMCIF_WAIT_FOR_READ:
1396 	case MMCIF_WAIT_FOR_WRITE:
1397 	case MMCIF_WAIT_FOR_READ_END:
1398 	case MMCIF_WAIT_FOR_WRITE_END:
1399 		mrq->data->error = sh_mmcif_error_manage(host);
1400 		break;
1401 	default:
1402 		BUG();
1403 	}
1404 
1405 	host->state = STATE_IDLE;
1406 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1407 	host->mrq = NULL;
1408 	mmc_request_done(host->mmc, mrq);
1409 }
1410 
1411 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1412 {
1413 	struct device *dev = sh_mmcif_host_to_dev(host);
1414 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1415 	struct mmc_host *mmc = host->mmc;
1416 
1417 	mmc_regulator_get_supply(mmc);
1418 
1419 	if (!pd)
1420 		return;
1421 
1422 	if (!mmc->ocr_avail)
1423 		mmc->ocr_avail = pd->ocr;
1424 	else if (pd->ocr)
1425 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1426 }
1427 
1428 static int sh_mmcif_probe(struct platform_device *pdev)
1429 {
1430 	int ret = 0, irq[2];
1431 	struct mmc_host *mmc;
1432 	struct sh_mmcif_host *host;
1433 	struct device *dev = &pdev->dev;
1434 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1435 	void __iomem *reg;
1436 	const char *name;
1437 
1438 	irq[0] = platform_get_irq(pdev, 0);
1439 	irq[1] = platform_get_irq_optional(pdev, 1);
1440 	if (irq[0] < 0)
1441 		return irq[0];
1442 
1443 	reg = devm_platform_ioremap_resource(pdev, 0);
1444 	if (IS_ERR(reg))
1445 		return PTR_ERR(reg);
1446 
1447 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1448 	if (!mmc)
1449 		return -ENOMEM;
1450 
1451 	ret = mmc_of_parse(mmc);
1452 	if (ret < 0)
1453 		goto err_host;
1454 
1455 	host		= mmc_priv(mmc);
1456 	host->mmc	= mmc;
1457 	host->addr	= reg;
1458 	host->timeout	= msecs_to_jiffies(10000);
1459 	host->ccs_enable = true;
1460 	host->clk_ctrl2_enable = false;
1461 
1462 	host->pd = pdev;
1463 
1464 	spin_lock_init(&host->lock);
1465 
1466 	mmc->ops = &sh_mmcif_ops;
1467 	sh_mmcif_init_ocr(host);
1468 
1469 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1470 	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1471 	mmc->max_busy_timeout = 10000;
1472 
1473 	if (pd && pd->caps)
1474 		mmc->caps |= pd->caps;
1475 	mmc->max_segs = 32;
1476 	mmc->max_blk_size = 512;
1477 	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1478 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1479 	mmc->max_seg_size = mmc->max_req_size;
1480 
1481 	platform_set_drvdata(pdev, host);
1482 
1483 	host->clk = devm_clk_get(dev, NULL);
1484 	if (IS_ERR(host->clk)) {
1485 		ret = PTR_ERR(host->clk);
1486 		dev_err(dev, "cannot get clock: %d\n", ret);
1487 		goto err_host;
1488 	}
1489 
1490 	ret = clk_prepare_enable(host->clk);
1491 	if (ret < 0)
1492 		goto err_host;
1493 
1494 	sh_mmcif_clk_setup(host);
1495 
1496 	pm_runtime_enable(dev);
1497 	host->power = false;
1498 
1499 	ret = pm_runtime_get_sync(dev);
1500 	if (ret < 0)
1501 		goto err_clk;
1502 
1503 	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1504 
1505 	sh_mmcif_sync_reset(host);
1506 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1507 
1508 	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1509 	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1510 					sh_mmcif_irqt, 0, name, host);
1511 	if (ret) {
1512 		dev_err(dev, "request_irq error (%s)\n", name);
1513 		goto err_clk;
1514 	}
1515 	if (irq[1] >= 0) {
1516 		ret = devm_request_threaded_irq(dev, irq[1],
1517 						sh_mmcif_intr, sh_mmcif_irqt,
1518 						0, "sh_mmc:int", host);
1519 		if (ret) {
1520 			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1521 			goto err_clk;
1522 		}
1523 	}
1524 
1525 	mutex_init(&host->thread_lock);
1526 
1527 	ret = mmc_add_host(mmc);
1528 	if (ret < 0)
1529 		goto err_clk;
1530 
1531 	dev_pm_qos_expose_latency_limit(dev, 100);
1532 
1533 	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1534 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1535 		 clk_get_rate(host->clk) / 1000000UL);
1536 
1537 	pm_runtime_put(dev);
1538 	clk_disable_unprepare(host->clk);
1539 	return ret;
1540 
1541 err_clk:
1542 	clk_disable_unprepare(host->clk);
1543 	pm_runtime_put_sync(dev);
1544 	pm_runtime_disable(dev);
1545 err_host:
1546 	mmc_free_host(mmc);
1547 	return ret;
1548 }
1549 
1550 static void sh_mmcif_remove(struct platform_device *pdev)
1551 {
1552 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1553 
1554 	host->dying = true;
1555 	clk_prepare_enable(host->clk);
1556 	pm_runtime_get_sync(&pdev->dev);
1557 
1558 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1559 
1560 	mmc_remove_host(host->mmc);
1561 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1562 
1563 	/*
1564 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1565 	 * mmc_remove_host() call above. But swapping order doesn't help either
1566 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1567 	 */
1568 	cancel_delayed_work_sync(&host->timeout_work);
1569 
1570 	clk_disable_unprepare(host->clk);
1571 	mmc_free_host(host->mmc);
1572 	pm_runtime_put_sync(&pdev->dev);
1573 	pm_runtime_disable(&pdev->dev);
1574 }
1575 
1576 #ifdef CONFIG_PM_SLEEP
1577 static int sh_mmcif_suspend(struct device *dev)
1578 {
1579 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1580 
1581 	pm_runtime_get_sync(dev);
1582 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1583 	pm_runtime_put(dev);
1584 
1585 	return 0;
1586 }
1587 
1588 static int sh_mmcif_resume(struct device *dev)
1589 {
1590 	return 0;
1591 }
1592 #endif
1593 
1594 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1595 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1596 };
1597 
1598 static struct platform_driver sh_mmcif_driver = {
1599 	.probe		= sh_mmcif_probe,
1600 	.remove		= sh_mmcif_remove,
1601 	.driver		= {
1602 		.name	= DRIVER_NAME,
1603 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1604 		.pm	= &sh_mmcif_dev_pm_ops,
1605 		.of_match_table = sh_mmcif_of_match,
1606 	},
1607 };
1608 
1609 module_platform_driver(sh_mmcif_driver);
1610 
1611 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1612 MODULE_LICENSE("GPL v2");
1613 MODULE_ALIAS("platform:" DRIVER_NAME);
1614 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1615