1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MMCIF eMMC driver. 4 * 5 * Copyright (C) 2010 Renesas Solutions Corp. 6 * Yusuke Goda <yusuke.goda.sx@renesas.com> 7 */ 8 9 /* 10 * The MMCIF driver is now processing MMC requests asynchronously, according 11 * to the Linux MMC API requirement. 12 * 13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional 14 * data, and optional stop. To achieve asynchronous processing each of these 15 * stages is split into two halves: a top and a bottom half. The top half 16 * initialises the hardware, installs a timeout handler to handle completion 17 * timeouts, and returns. In case of the command stage this immediately returns 18 * control to the caller, leaving all further processing to run asynchronously. 19 * All further request processing is performed by the bottom halves. 20 * 21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler 22 * thread, a DMA completion callback, if DMA is used, a timeout work, and 23 * request- and stage-specific handler methods. 24 * 25 * Each bottom half run begins with either a hardware interrupt, a DMA callback 26 * invocation, or a timeout work run. In case of an error or a successful 27 * processing completion, the MMC core is informed and the request processing is 28 * finished. In case processing has to continue, i.e., if data has to be read 29 * from or written to the card, or if a stop command has to be sent, the next 30 * top half is called, which performs the necessary hardware handling and 31 * reschedules the timeout work. This returns the driver state machine into the 32 * bottom half waiting state. 33 */ 34 35 #include <linux/bitops.h> 36 #include <linux/clk.h> 37 #include <linux/completion.h> 38 #include <linux/delay.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/dmaengine.h> 41 #include <linux/mmc/card.h> 42 #include <linux/mmc/core.h> 43 #include <linux/mmc/host.h> 44 #include <linux/mmc/mmc.h> 45 #include <linux/mmc/sdio.h> 46 #include <linux/mmc/slot-gpio.h> 47 #include <linux/mod_devicetable.h> 48 #include <linux/mutex.h> 49 #include <linux/pagemap.h> 50 #include <linux/platform_data/sh_mmcif.h> 51 #include <linux/platform_device.h> 52 #include <linux/pm_qos.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/sh_dma.h> 55 #include <linux/spinlock.h> 56 #include <linux/module.h> 57 58 #define DRIVER_NAME "sh_mmcif" 59 60 /* CE_CMD_SET */ 61 #define CMD_MASK 0x3f000000 62 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22)) 63 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */ 64 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */ 65 #define CMD_SET_RBSY (1 << 21) /* R1b */ 66 #define CMD_SET_CCSEN (1 << 20) 67 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */ 68 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */ 69 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */ 70 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */ 71 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */ 72 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */ 73 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */ 74 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/ 75 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/ 76 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/ 77 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/ 78 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */ 79 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */ 80 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */ 81 #define CMD_SET_CCSH (1 << 5) 82 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */ 83 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */ 84 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */ 85 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */ 86 87 /* CE_CMD_CTRL */ 88 #define CMD_CTRL_BREAK (1 << 0) 89 90 /* CE_BLOCK_SET */ 91 #define BLOCK_SIZE_MASK 0x0000ffff 92 93 /* CE_INT */ 94 #define INT_CCSDE (1 << 29) 95 #define INT_CMD12DRE (1 << 26) 96 #define INT_CMD12RBE (1 << 25) 97 #define INT_CMD12CRE (1 << 24) 98 #define INT_DTRANE (1 << 23) 99 #define INT_BUFRE (1 << 22) 100 #define INT_BUFWEN (1 << 21) 101 #define INT_BUFREN (1 << 20) 102 #define INT_CCSRCV (1 << 19) 103 #define INT_RBSYE (1 << 17) 104 #define INT_CRSPE (1 << 16) 105 #define INT_CMDVIO (1 << 15) 106 #define INT_BUFVIO (1 << 14) 107 #define INT_WDATERR (1 << 11) 108 #define INT_RDATERR (1 << 10) 109 #define INT_RIDXERR (1 << 9) 110 #define INT_RSPERR (1 << 8) 111 #define INT_CCSTO (1 << 5) 112 #define INT_CRCSTO (1 << 4) 113 #define INT_WDATTO (1 << 3) 114 #define INT_RDATTO (1 << 2) 115 #define INT_RBSYTO (1 << 1) 116 #define INT_RSPTO (1 << 0) 117 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \ 118 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \ 119 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \ 120 INT_RDATTO | INT_RBSYTO | INT_RSPTO) 121 122 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \ 123 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \ 124 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE) 125 126 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE) 127 128 /* CE_INT_MASK */ 129 #define MASK_ALL 0x00000000 130 #define MASK_MCCSDE (1 << 29) 131 #define MASK_MCMD12DRE (1 << 26) 132 #define MASK_MCMD12RBE (1 << 25) 133 #define MASK_MCMD12CRE (1 << 24) 134 #define MASK_MDTRANE (1 << 23) 135 #define MASK_MBUFRE (1 << 22) 136 #define MASK_MBUFWEN (1 << 21) 137 #define MASK_MBUFREN (1 << 20) 138 #define MASK_MCCSRCV (1 << 19) 139 #define MASK_MRBSYE (1 << 17) 140 #define MASK_MCRSPE (1 << 16) 141 #define MASK_MCMDVIO (1 << 15) 142 #define MASK_MBUFVIO (1 << 14) 143 #define MASK_MWDATERR (1 << 11) 144 #define MASK_MRDATERR (1 << 10) 145 #define MASK_MRIDXERR (1 << 9) 146 #define MASK_MRSPERR (1 << 8) 147 #define MASK_MCCSTO (1 << 5) 148 #define MASK_MCRCSTO (1 << 4) 149 #define MASK_MWDATTO (1 << 3) 150 #define MASK_MRDATTO (1 << 2) 151 #define MASK_MRBSYTO (1 << 1) 152 #define MASK_MRSPTO (1 << 0) 153 154 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \ 155 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \ 156 MASK_MCRCSTO | MASK_MWDATTO | \ 157 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO) 158 159 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \ 160 MASK_MBUFREN | MASK_MBUFWEN | \ 161 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \ 162 MASK_MCMD12RBE | MASK_MCMD12CRE) 163 164 /* CE_HOST_STS1 */ 165 #define STS1_CMDSEQ (1 << 31) 166 167 /* CE_HOST_STS2 */ 168 #define STS2_CRCSTE (1 << 31) 169 #define STS2_CRC16E (1 << 30) 170 #define STS2_AC12CRCE (1 << 29) 171 #define STS2_RSPCRC7E (1 << 28) 172 #define STS2_CRCSTEBE (1 << 27) 173 #define STS2_RDATEBE (1 << 26) 174 #define STS2_AC12REBE (1 << 25) 175 #define STS2_RSPEBE (1 << 24) 176 #define STS2_AC12IDXE (1 << 23) 177 #define STS2_RSPIDXE (1 << 22) 178 #define STS2_CCSTO (1 << 15) 179 #define STS2_RDATTO (1 << 14) 180 #define STS2_DATBSYTO (1 << 13) 181 #define STS2_CRCSTTO (1 << 12) 182 #define STS2_AC12BSYTO (1 << 11) 183 #define STS2_RSPBSYTO (1 << 10) 184 #define STS2_AC12RSPTO (1 << 9) 185 #define STS2_RSPTO (1 << 8) 186 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \ 187 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE) 188 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \ 189 STS2_DATBSYTO | STS2_CRCSTTO | \ 190 STS2_AC12BSYTO | STS2_RSPBSYTO | \ 191 STS2_AC12RSPTO | STS2_RSPTO) 192 193 #define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */ 194 #define CLKDEV_MMC_DATA 20000000 /* 20 MHz */ 195 #define CLKDEV_INIT 400000 /* 400 kHz */ 196 197 enum sh_mmcif_state { 198 STATE_IDLE, 199 STATE_REQUEST, 200 STATE_IOS, 201 STATE_TIMEOUT, 202 }; 203 204 enum sh_mmcif_wait_for { 205 MMCIF_WAIT_FOR_REQUEST, 206 MMCIF_WAIT_FOR_CMD, 207 MMCIF_WAIT_FOR_MREAD, 208 MMCIF_WAIT_FOR_MWRITE, 209 MMCIF_WAIT_FOR_READ, 210 MMCIF_WAIT_FOR_WRITE, 211 MMCIF_WAIT_FOR_READ_END, 212 MMCIF_WAIT_FOR_WRITE_END, 213 MMCIF_WAIT_FOR_STOP, 214 }; 215 216 /* 217 * difference for each SoC 218 */ 219 struct sh_mmcif_host { 220 struct mmc_host *mmc; 221 struct mmc_request *mrq; 222 struct platform_device *pd; 223 struct clk *clk; 224 int bus_width; 225 unsigned char timing; 226 bool sd_error; 227 bool dying; 228 long timeout; 229 void __iomem *addr; 230 spinlock_t lock; /* protect sh_mmcif_host::state */ 231 enum sh_mmcif_state state; 232 enum sh_mmcif_wait_for wait_for; 233 struct delayed_work timeout_work; 234 size_t blocksize; 235 struct sg_mapping_iter sg_miter; 236 bool power; 237 bool ccs_enable; /* Command Completion Signal support */ 238 bool clk_ctrl2_enable; 239 struct mutex thread_lock; 240 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */ 241 242 /* DMA support */ 243 struct dma_chan *chan_rx; 244 struct dma_chan *chan_tx; 245 struct completion dma_complete; 246 bool dma_active; 247 }; 248 249 static const struct of_device_id sh_mmcif_of_match[] = { 250 { .compatible = "renesas,sh-mmcif" }, 251 { } 252 }; 253 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match); 254 255 #define sh_mmcif_host_to_dev(host) (&host->pd->dev) 256 257 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host, 258 unsigned int reg, u32 val) 259 { 260 writel(val | readl(host->addr + reg), host->addr + reg); 261 } 262 263 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host, 264 unsigned int reg, u32 val) 265 { 266 writel(~val & readl(host->addr + reg), host->addr + reg); 267 } 268 269 static void sh_mmcif_dma_complete(void *arg) 270 { 271 struct sh_mmcif_host *host = arg; 272 struct mmc_request *mrq = host->mrq; 273 struct device *dev = sh_mmcif_host_to_dev(host); 274 275 dev_dbg(dev, "Command completed\n"); 276 277 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n", 278 dev_name(dev))) 279 return; 280 281 complete(&host->dma_complete); 282 } 283 284 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host) 285 { 286 struct mmc_data *data = host->mrq->data; 287 struct scatterlist *sg = data->sg; 288 struct dma_async_tx_descriptor *desc = NULL; 289 struct dma_chan *chan = host->chan_rx; 290 struct device *dev = sh_mmcif_host_to_dev(host); 291 dma_cookie_t cookie = -EINVAL; 292 int ret; 293 294 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 295 DMA_FROM_DEVICE); 296 if (ret > 0) { 297 host->dma_active = true; 298 desc = dmaengine_prep_slave_sg(chan, sg, ret, 299 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 300 } 301 302 if (desc) { 303 desc->callback = sh_mmcif_dma_complete; 304 desc->callback_param = host; 305 cookie = dmaengine_submit(desc); 306 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN); 307 dma_async_issue_pending(chan); 308 } 309 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", 310 __func__, data->sg_len, ret, cookie); 311 312 if (!desc) { 313 /* DMA failed, fall back to PIO */ 314 if (ret >= 0) 315 ret = -EIO; 316 host->chan_rx = NULL; 317 host->dma_active = false; 318 dma_release_channel(chan); 319 /* Free the Tx channel too */ 320 chan = host->chan_tx; 321 if (chan) { 322 host->chan_tx = NULL; 323 dma_release_channel(chan); 324 } 325 dev_warn(dev, 326 "DMA failed: %d, falling back to PIO\n", ret); 327 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 328 } 329 330 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__, 331 desc, cookie, data->sg_len); 332 } 333 334 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host) 335 { 336 struct mmc_data *data = host->mrq->data; 337 struct scatterlist *sg = data->sg; 338 struct dma_async_tx_descriptor *desc = NULL; 339 struct dma_chan *chan = host->chan_tx; 340 struct device *dev = sh_mmcif_host_to_dev(host); 341 dma_cookie_t cookie = -EINVAL; 342 int ret; 343 344 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 345 DMA_TO_DEVICE); 346 if (ret > 0) { 347 host->dma_active = true; 348 desc = dmaengine_prep_slave_sg(chan, sg, ret, 349 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 350 } 351 352 if (desc) { 353 desc->callback = sh_mmcif_dma_complete; 354 desc->callback_param = host; 355 cookie = dmaengine_submit(desc); 356 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN); 357 dma_async_issue_pending(chan); 358 } 359 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", 360 __func__, data->sg_len, ret, cookie); 361 362 if (!desc) { 363 /* DMA failed, fall back to PIO */ 364 if (ret >= 0) 365 ret = -EIO; 366 host->chan_tx = NULL; 367 host->dma_active = false; 368 dma_release_channel(chan); 369 /* Free the Rx channel too */ 370 chan = host->chan_rx; 371 if (chan) { 372 host->chan_rx = NULL; 373 dma_release_channel(chan); 374 } 375 dev_warn(dev, 376 "DMA failed: %d, falling back to PIO\n", ret); 377 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 378 } 379 380 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__, 381 desc, cookie); 382 } 383 384 static struct dma_chan * 385 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id) 386 { 387 dma_cap_mask_t mask; 388 389 dma_cap_zero(mask); 390 dma_cap_set(DMA_SLAVE, mask); 391 if (slave_id <= 0) 392 return NULL; 393 394 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id); 395 } 396 397 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host, 398 struct dma_chan *chan, 399 enum dma_transfer_direction direction) 400 { 401 struct resource *res; 402 struct dma_slave_config cfg = { 0, }; 403 404 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0); 405 if (!res) 406 return -EINVAL; 407 408 cfg.direction = direction; 409 410 if (direction == DMA_DEV_TO_MEM) { 411 cfg.src_addr = res->start + MMCIF_CE_DATA; 412 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 413 } else { 414 cfg.dst_addr = res->start + MMCIF_CE_DATA; 415 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 416 } 417 418 return dmaengine_slave_config(chan, &cfg); 419 } 420 421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host) 422 { 423 struct device *dev = sh_mmcif_host_to_dev(host); 424 host->dma_active = false; 425 426 /* We can only either use DMA for both Tx and Rx or not use it at all */ 427 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) { 428 struct sh_mmcif_plat_data *pdata = dev->platform_data; 429 430 host->chan_tx = sh_mmcif_request_dma_pdata(host, 431 pdata->slave_id_tx); 432 host->chan_rx = sh_mmcif_request_dma_pdata(host, 433 pdata->slave_id_rx); 434 } else { 435 host->chan_tx = dma_request_chan(dev, "tx"); 436 if (IS_ERR(host->chan_tx)) 437 host->chan_tx = NULL; 438 host->chan_rx = dma_request_chan(dev, "rx"); 439 if (IS_ERR(host->chan_rx)) 440 host->chan_rx = NULL; 441 } 442 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx, 443 host->chan_rx); 444 445 if (!host->chan_tx || !host->chan_rx || 446 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) || 447 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM)) 448 goto error; 449 450 return; 451 452 error: 453 if (host->chan_tx) 454 dma_release_channel(host->chan_tx); 455 if (host->chan_rx) 456 dma_release_channel(host->chan_rx); 457 host->chan_tx = host->chan_rx = NULL; 458 } 459 460 static void sh_mmcif_release_dma(struct sh_mmcif_host *host) 461 { 462 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 463 /* Descriptors are freed automatically */ 464 if (host->chan_tx) { 465 struct dma_chan *chan = host->chan_tx; 466 host->chan_tx = NULL; 467 dma_release_channel(chan); 468 } 469 if (host->chan_rx) { 470 struct dma_chan *chan = host->chan_rx; 471 host->chan_rx = NULL; 472 dma_release_channel(chan); 473 } 474 475 host->dma_active = false; 476 } 477 478 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk) 479 { 480 struct device *dev = sh_mmcif_host_to_dev(host); 481 struct sh_mmcif_plat_data *p = dev->platform_data; 482 bool sup_pclk = p ? p->sup_pclk : false; 483 unsigned int current_clk = clk_get_rate(host->clk); 484 unsigned int clkdiv; 485 486 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 487 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR); 488 489 if (!clk) 490 return; 491 492 if (host->clkdiv_map) { 493 unsigned int freq, best_freq, myclk, div, diff_min, diff; 494 int i; 495 496 clkdiv = 0; 497 diff_min = ~0; 498 best_freq = 0; 499 for (i = 31; i >= 0; i--) { 500 if (!((1 << i) & host->clkdiv_map)) 501 continue; 502 503 /* 504 * clk = parent_freq / div 505 * -> parent_freq = clk x div 506 */ 507 508 div = 1 << (i + 1); 509 freq = clk_round_rate(host->clk, clk * div); 510 myclk = freq / div; 511 diff = (myclk > clk) ? myclk - clk : clk - myclk; 512 513 if (diff <= diff_min) { 514 best_freq = freq; 515 clkdiv = i; 516 diff_min = diff; 517 } 518 } 519 520 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n", 521 (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv); 522 523 clk_set_rate(host->clk, best_freq); 524 clkdiv = clkdiv << 16; 525 } else if (sup_pclk && clk == current_clk) { 526 clkdiv = CLK_SUP_PCLK; 527 } else { 528 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16; 529 } 530 531 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv); 532 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 533 } 534 535 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host) 536 { 537 u32 tmp; 538 539 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL); 540 541 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON); 542 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF); 543 if (host->ccs_enable) 544 tmp |= SCCSTO_29; 545 if (host->clk_ctrl2_enable) 546 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000); 547 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp | 548 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29); 549 /* byte swap on */ 550 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP); 551 } 552 553 static int sh_mmcif_error_manage(struct sh_mmcif_host *host) 554 { 555 struct device *dev = sh_mmcif_host_to_dev(host); 556 u32 state1, state2; 557 int ret, timeout; 558 559 host->sd_error = false; 560 561 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1); 562 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2); 563 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1); 564 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2); 565 566 if (state1 & STS1_CMDSEQ) { 567 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK); 568 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK); 569 for (timeout = 10000; timeout; timeout--) { 570 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1) 571 & STS1_CMDSEQ)) 572 break; 573 mdelay(1); 574 } 575 if (!timeout) { 576 dev_err(dev, 577 "Forced end of command sequence timeout err\n"); 578 return -EIO; 579 } 580 sh_mmcif_sync_reset(host); 581 dev_dbg(dev, "Forced end of command sequence\n"); 582 return -EIO; 583 } 584 585 if (state2 & STS2_CRC_ERR) { 586 dev_err(dev, " CRC error: state %u, wait %u\n", 587 host->state, host->wait_for); 588 ret = -EIO; 589 } else if (state2 & STS2_TIMEOUT_ERR) { 590 dev_err(dev, " Timeout: state %u, wait %u\n", 591 host->state, host->wait_for); 592 ret = -ETIMEDOUT; 593 } else { 594 dev_dbg(dev, " End/Index error: state %u, wait %u\n", 595 host->state, host->wait_for); 596 ret = -EIO; 597 } 598 return ret; 599 } 600 601 static void sh_mmcif_single_read(struct sh_mmcif_host *host, 602 struct mmc_request *mrq) 603 { 604 struct mmc_data *data = mrq->data; 605 606 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 607 BLOCK_SIZE_MASK) + 3; 608 609 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, 610 SG_MITER_TO_SG); 611 612 host->wait_for = MMCIF_WAIT_FOR_READ; 613 614 /* buf read enable */ 615 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 616 } 617 618 static bool sh_mmcif_read_block(struct sh_mmcif_host *host) 619 { 620 struct sg_mapping_iter *sgm = &host->sg_miter; 621 struct device *dev = sh_mmcif_host_to_dev(host); 622 struct mmc_data *data = host->mrq->data; 623 u32 *p; 624 int i; 625 626 if (host->sd_error) { 627 sg_miter_stop(sgm); 628 data->error = sh_mmcif_error_manage(host); 629 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 630 return false; 631 } 632 633 if (!sg_miter_next(sgm)) { 634 /* This should not happen on single blocks */ 635 sg_miter_stop(sgm); 636 return false; 637 } 638 639 p = sgm->addr; 640 641 for (i = 0; i < host->blocksize / 4; i++) 642 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 643 644 sg_miter_stop(&host->sg_miter); 645 646 /* buffer read end */ 647 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE); 648 host->wait_for = MMCIF_WAIT_FOR_READ_END; 649 650 return true; 651 } 652 653 static void sh_mmcif_multi_read(struct sh_mmcif_host *host, 654 struct mmc_request *mrq) 655 { 656 struct sg_mapping_iter *sgm = &host->sg_miter; 657 struct mmc_data *data = mrq->data; 658 659 if (!data->sg_len || !data->sg->length) 660 return; 661 662 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 663 BLOCK_SIZE_MASK; 664 665 sg_miter_start(sgm, data->sg, data->sg_len, 666 SG_MITER_TO_SG); 667 668 /* Advance to the first sglist entry */ 669 if (!sg_miter_next(sgm)) { 670 sg_miter_stop(sgm); 671 return; 672 } 673 674 host->wait_for = MMCIF_WAIT_FOR_MREAD; 675 676 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 677 } 678 679 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host) 680 { 681 struct sg_mapping_iter *sgm = &host->sg_miter; 682 struct device *dev = sh_mmcif_host_to_dev(host); 683 struct mmc_data *data = host->mrq->data; 684 u32 *p; 685 int i; 686 687 if (host->sd_error) { 688 sg_miter_stop(sgm); 689 data->error = sh_mmcif_error_manage(host); 690 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 691 return false; 692 } 693 694 p = sgm->addr; 695 696 for (i = 0; i < host->blocksize / 4; i++) 697 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 698 699 sgm->consumed = host->blocksize; 700 701 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 702 703 if (!sg_miter_next(sgm)) { 704 sg_miter_stop(sgm); 705 return false; 706 } 707 708 return true; 709 } 710 711 static void sh_mmcif_single_write(struct sh_mmcif_host *host, 712 struct mmc_request *mrq) 713 { 714 struct mmc_data *data = mrq->data; 715 716 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 717 BLOCK_SIZE_MASK) + 3; 718 719 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, 720 SG_MITER_FROM_SG); 721 722 host->wait_for = MMCIF_WAIT_FOR_WRITE; 723 724 /* buf write enable */ 725 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 726 } 727 728 static bool sh_mmcif_write_block(struct sh_mmcif_host *host) 729 { 730 struct sg_mapping_iter *sgm = &host->sg_miter; 731 struct device *dev = sh_mmcif_host_to_dev(host); 732 struct mmc_data *data = host->mrq->data; 733 u32 *p; 734 int i; 735 736 if (host->sd_error) { 737 sg_miter_stop(sgm); 738 data->error = sh_mmcif_error_manage(host); 739 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 740 return false; 741 } 742 743 if (!sg_miter_next(sgm)) { 744 /* This should not happen on single blocks */ 745 sg_miter_stop(sgm); 746 return false; 747 } 748 749 p = sgm->addr; 750 751 for (i = 0; i < host->blocksize / 4; i++) 752 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 753 754 sg_miter_stop(&host->sg_miter); 755 756 /* buffer write end */ 757 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE); 758 host->wait_for = MMCIF_WAIT_FOR_WRITE_END; 759 760 return true; 761 } 762 763 static void sh_mmcif_multi_write(struct sh_mmcif_host *host, 764 struct mmc_request *mrq) 765 { 766 struct sg_mapping_iter *sgm = &host->sg_miter; 767 struct mmc_data *data = mrq->data; 768 769 if (!data->sg_len || !data->sg->length) 770 return; 771 772 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 773 BLOCK_SIZE_MASK; 774 775 sg_miter_start(sgm, data->sg, data->sg_len, 776 SG_MITER_FROM_SG); 777 778 /* Advance to the first sglist entry */ 779 if (!sg_miter_next(sgm)) { 780 sg_miter_stop(sgm); 781 return; 782 } 783 784 host->wait_for = MMCIF_WAIT_FOR_MWRITE; 785 786 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 787 } 788 789 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host) 790 { 791 struct sg_mapping_iter *sgm = &host->sg_miter; 792 struct device *dev = sh_mmcif_host_to_dev(host); 793 struct mmc_data *data = host->mrq->data; 794 u32 *p; 795 int i; 796 797 if (host->sd_error) { 798 sg_miter_stop(sgm); 799 data->error = sh_mmcif_error_manage(host); 800 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 801 return false; 802 } 803 804 p = sgm->addr; 805 806 for (i = 0; i < host->blocksize / 4; i++) 807 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 808 809 sgm->consumed = host->blocksize; 810 811 if (!sg_miter_next(sgm)) { 812 sg_miter_stop(sgm); 813 return false; 814 } 815 816 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 817 818 return true; 819 } 820 821 static void sh_mmcif_get_response(struct sh_mmcif_host *host, 822 struct mmc_command *cmd) 823 { 824 if (cmd->flags & MMC_RSP_136) { 825 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3); 826 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2); 827 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1); 828 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 829 } else 830 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 831 } 832 833 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host, 834 struct mmc_command *cmd) 835 { 836 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12); 837 } 838 839 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host, 840 struct mmc_request *mrq) 841 { 842 struct device *dev = sh_mmcif_host_to_dev(host); 843 struct mmc_data *data = mrq->data; 844 struct mmc_command *cmd = mrq->cmd; 845 u32 opc = cmd->opcode; 846 u32 tmp = 0; 847 848 /* Response Type check */ 849 switch (mmc_resp_type(cmd)) { 850 case MMC_RSP_NONE: 851 tmp |= CMD_SET_RTYP_NO; 852 break; 853 case MMC_RSP_R1: 854 case MMC_RSP_R3: 855 tmp |= CMD_SET_RTYP_6B; 856 break; 857 case MMC_RSP_R1B: 858 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B; 859 break; 860 case MMC_RSP_R2: 861 tmp |= CMD_SET_RTYP_17B; 862 break; 863 default: 864 dev_err(dev, "Unsupported response type.\n"); 865 break; 866 } 867 868 /* WDAT / DATW */ 869 if (data) { 870 tmp |= CMD_SET_WDAT; 871 switch (host->bus_width) { 872 case MMC_BUS_WIDTH_1: 873 tmp |= CMD_SET_DATW_1; 874 break; 875 case MMC_BUS_WIDTH_4: 876 tmp |= CMD_SET_DATW_4; 877 break; 878 case MMC_BUS_WIDTH_8: 879 tmp |= CMD_SET_DATW_8; 880 break; 881 default: 882 dev_err(dev, "Unsupported bus width.\n"); 883 break; 884 } 885 switch (host->timing) { 886 case MMC_TIMING_MMC_DDR52: 887 /* 888 * MMC core will only set this timing, if the host 889 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR 890 * capability. MMCIF implementations with this 891 * capability, e.g. sh73a0, will have to set it 892 * in their platform data. 893 */ 894 tmp |= CMD_SET_DARS; 895 break; 896 } 897 } 898 /* DWEN */ 899 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) 900 tmp |= CMD_SET_DWEN; 901 /* CMLTE/CMD12EN */ 902 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) { 903 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN; 904 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET, 905 data->blocks << 16); 906 } 907 /* RIDXC[1:0] check bits */ 908 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID || 909 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 910 tmp |= CMD_SET_RIDXC_BITS; 911 /* RCRC7C[1:0] check bits */ 912 if (opc == MMC_SEND_OP_COND) 913 tmp |= CMD_SET_CRC7C_BITS; 914 /* RCRC7C[1:0] internal CRC7 */ 915 if (opc == MMC_ALL_SEND_CID || 916 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 917 tmp |= CMD_SET_CRC7C_INTERNAL; 918 919 return (opc << 24) | tmp; 920 } 921 922 static int sh_mmcif_data_trans(struct sh_mmcif_host *host, 923 struct mmc_request *mrq, u32 opc) 924 { 925 struct device *dev = sh_mmcif_host_to_dev(host); 926 927 switch (opc) { 928 case MMC_READ_MULTIPLE_BLOCK: 929 sh_mmcif_multi_read(host, mrq); 930 return 0; 931 case MMC_WRITE_MULTIPLE_BLOCK: 932 sh_mmcif_multi_write(host, mrq); 933 return 0; 934 case MMC_WRITE_BLOCK: 935 sh_mmcif_single_write(host, mrq); 936 return 0; 937 case MMC_READ_SINGLE_BLOCK: 938 case MMC_SEND_EXT_CSD: 939 sh_mmcif_single_read(host, mrq); 940 return 0; 941 default: 942 dev_err(dev, "Unsupported CMD%d\n", opc); 943 return -EINVAL; 944 } 945 } 946 947 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host, 948 struct mmc_request *mrq) 949 { 950 struct mmc_command *cmd = mrq->cmd; 951 u32 opc; 952 u32 mask = 0; 953 unsigned long flags; 954 955 if (cmd->flags & MMC_RSP_BUSY) 956 mask = MASK_START_CMD | MASK_MRBSYE; 957 else 958 mask = MASK_START_CMD | MASK_MCRSPE; 959 960 if (host->ccs_enable) 961 mask |= MASK_MCCSTO; 962 963 if (mrq->data) { 964 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0); 965 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 966 mrq->data->blksz); 967 } 968 opc = sh_mmcif_set_cmd(host, mrq); 969 970 if (host->ccs_enable) 971 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0); 972 else 973 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS); 974 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask); 975 /* set arg */ 976 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg); 977 /* set cmd */ 978 spin_lock_irqsave(&host->lock, flags); 979 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc); 980 981 host->wait_for = MMCIF_WAIT_FOR_CMD; 982 schedule_delayed_work(&host->timeout_work, host->timeout); 983 spin_unlock_irqrestore(&host->lock, flags); 984 } 985 986 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host, 987 struct mmc_request *mrq) 988 { 989 struct device *dev = sh_mmcif_host_to_dev(host); 990 991 switch (mrq->cmd->opcode) { 992 case MMC_READ_MULTIPLE_BLOCK: 993 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE); 994 break; 995 case MMC_WRITE_MULTIPLE_BLOCK: 996 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE); 997 break; 998 default: 999 dev_err(dev, "unsupported stop cmd\n"); 1000 mrq->stop->error = sh_mmcif_error_manage(host); 1001 return; 1002 } 1003 1004 host->wait_for = MMCIF_WAIT_FOR_STOP; 1005 } 1006 1007 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq) 1008 { 1009 struct sh_mmcif_host *host = mmc_priv(mmc); 1010 struct device *dev = sh_mmcif_host_to_dev(host); 1011 unsigned long flags; 1012 1013 spin_lock_irqsave(&host->lock, flags); 1014 if (host->state != STATE_IDLE) { 1015 dev_dbg(dev, "%s() rejected, state %u\n", 1016 __func__, host->state); 1017 spin_unlock_irqrestore(&host->lock, flags); 1018 mrq->cmd->error = -EAGAIN; 1019 mmc_request_done(mmc, mrq); 1020 return; 1021 } 1022 1023 host->state = STATE_REQUEST; 1024 spin_unlock_irqrestore(&host->lock, flags); 1025 1026 host->mrq = mrq; 1027 1028 sh_mmcif_start_cmd(host, mrq); 1029 } 1030 1031 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host) 1032 { 1033 struct device *dev = sh_mmcif_host_to_dev(host); 1034 1035 if (host->mmc->f_max) { 1036 unsigned int f_max, f_min = 0, f_min_old; 1037 1038 f_max = host->mmc->f_max; 1039 for (f_min_old = f_max; f_min_old > 2;) { 1040 f_min = clk_round_rate(host->clk, f_min_old / 2); 1041 if (f_min == f_min_old) 1042 break; 1043 f_min_old = f_min; 1044 } 1045 1046 /* 1047 * This driver assumes this SoC is R-Car Gen2 or later 1048 */ 1049 host->clkdiv_map = 0x3ff; 1050 1051 host->mmc->f_max = f_max >> ffs(host->clkdiv_map); 1052 host->mmc->f_min = f_min >> fls(host->clkdiv_map); 1053 } else { 1054 unsigned int clk = clk_get_rate(host->clk); 1055 1056 host->mmc->f_max = clk / 2; 1057 host->mmc->f_min = clk / 512; 1058 } 1059 1060 dev_dbg(dev, "clk max/min = %d/%d\n", 1061 host->mmc->f_max, host->mmc->f_min); 1062 } 1063 1064 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1065 { 1066 struct sh_mmcif_host *host = mmc_priv(mmc); 1067 struct device *dev = sh_mmcif_host_to_dev(host); 1068 unsigned long flags; 1069 1070 spin_lock_irqsave(&host->lock, flags); 1071 if (host->state != STATE_IDLE) { 1072 dev_dbg(dev, "%s() rejected, state %u\n", 1073 __func__, host->state); 1074 spin_unlock_irqrestore(&host->lock, flags); 1075 return; 1076 } 1077 1078 host->state = STATE_IOS; 1079 spin_unlock_irqrestore(&host->lock, flags); 1080 1081 switch (ios->power_mode) { 1082 case MMC_POWER_UP: 1083 if (!IS_ERR(mmc->supply.vmmc)) 1084 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1085 if (!host->power) { 1086 clk_prepare_enable(host->clk); 1087 pm_runtime_get_sync(dev); 1088 sh_mmcif_sync_reset(host); 1089 sh_mmcif_request_dma(host); 1090 host->power = true; 1091 } 1092 break; 1093 case MMC_POWER_OFF: 1094 if (!IS_ERR(mmc->supply.vmmc)) 1095 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1096 if (host->power) { 1097 sh_mmcif_clock_control(host, 0); 1098 sh_mmcif_release_dma(host); 1099 pm_runtime_put(dev); 1100 clk_disable_unprepare(host->clk); 1101 host->power = false; 1102 } 1103 break; 1104 case MMC_POWER_ON: 1105 sh_mmcif_clock_control(host, ios->clock); 1106 break; 1107 } 1108 1109 host->timing = ios->timing; 1110 host->bus_width = ios->bus_width; 1111 host->state = STATE_IDLE; 1112 } 1113 1114 static const struct mmc_host_ops sh_mmcif_ops = { 1115 .request = sh_mmcif_request, 1116 .set_ios = sh_mmcif_set_ios, 1117 .get_cd = mmc_gpio_get_cd, 1118 }; 1119 1120 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host) 1121 { 1122 struct mmc_command *cmd = host->mrq->cmd; 1123 struct mmc_data *data = host->mrq->data; 1124 struct device *dev = sh_mmcif_host_to_dev(host); 1125 long time; 1126 1127 if (host->sd_error) { 1128 switch (cmd->opcode) { 1129 case MMC_ALL_SEND_CID: 1130 case MMC_SELECT_CARD: 1131 case MMC_APP_CMD: 1132 cmd->error = -ETIMEDOUT; 1133 break; 1134 default: 1135 cmd->error = sh_mmcif_error_manage(host); 1136 break; 1137 } 1138 dev_dbg(dev, "CMD%d error %d\n", 1139 cmd->opcode, cmd->error); 1140 host->sd_error = false; 1141 return false; 1142 } 1143 if (!(cmd->flags & MMC_RSP_PRESENT)) { 1144 cmd->error = 0; 1145 return false; 1146 } 1147 1148 sh_mmcif_get_response(host, cmd); 1149 1150 if (!data) 1151 return false; 1152 1153 /* 1154 * Completion can be signalled from DMA callback and error, so, have to 1155 * reset here, before setting .dma_active 1156 */ 1157 init_completion(&host->dma_complete); 1158 1159 if (data->flags & MMC_DATA_READ) { 1160 if (host->chan_rx) 1161 sh_mmcif_start_dma_rx(host); 1162 } else { 1163 if (host->chan_tx) 1164 sh_mmcif_start_dma_tx(host); 1165 } 1166 1167 if (!host->dma_active) { 1168 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode); 1169 return !data->error; 1170 } 1171 1172 /* Running in the IRQ thread, can sleep */ 1173 time = wait_for_completion_interruptible_timeout(&host->dma_complete, 1174 host->timeout); 1175 1176 if (data->flags & MMC_DATA_READ) 1177 dma_unmap_sg(host->chan_rx->device->dev, 1178 data->sg, data->sg_len, 1179 DMA_FROM_DEVICE); 1180 else 1181 dma_unmap_sg(host->chan_tx->device->dev, 1182 data->sg, data->sg_len, 1183 DMA_TO_DEVICE); 1184 1185 if (host->sd_error) { 1186 dev_err(host->mmc->parent, 1187 "Error IRQ while waiting for DMA completion!\n"); 1188 /* Woken up by an error IRQ: abort DMA */ 1189 data->error = sh_mmcif_error_manage(host); 1190 } else if (!time) { 1191 dev_err(host->mmc->parent, "DMA timeout!\n"); 1192 data->error = -ETIMEDOUT; 1193 } else if (time < 0) { 1194 dev_err(host->mmc->parent, 1195 "wait_for_completion_...() error %ld!\n", time); 1196 data->error = time; 1197 } 1198 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, 1199 BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 1200 host->dma_active = false; 1201 1202 if (data->error) { 1203 data->bytes_xfered = 0; 1204 /* Abort DMA */ 1205 if (data->flags & MMC_DATA_READ) 1206 dmaengine_terminate_sync(host->chan_rx); 1207 else 1208 dmaengine_terminate_sync(host->chan_tx); 1209 } 1210 1211 return false; 1212 } 1213 1214 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id) 1215 { 1216 struct sh_mmcif_host *host = dev_id; 1217 struct mmc_request *mrq; 1218 struct device *dev = sh_mmcif_host_to_dev(host); 1219 bool wait = false; 1220 unsigned long flags; 1221 int wait_work; 1222 1223 spin_lock_irqsave(&host->lock, flags); 1224 wait_work = host->wait_for; 1225 spin_unlock_irqrestore(&host->lock, flags); 1226 1227 cancel_delayed_work_sync(&host->timeout_work); 1228 1229 mutex_lock(&host->thread_lock); 1230 1231 mrq = host->mrq; 1232 if (!mrq) { 1233 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n", 1234 host->state, host->wait_for); 1235 mutex_unlock(&host->thread_lock); 1236 return IRQ_HANDLED; 1237 } 1238 1239 /* 1240 * All handlers return true, if processing continues, and false, if the 1241 * request has to be completed - successfully or not 1242 */ 1243 switch (wait_work) { 1244 case MMCIF_WAIT_FOR_REQUEST: 1245 /* We're too late, the timeout has already kicked in */ 1246 mutex_unlock(&host->thread_lock); 1247 return IRQ_HANDLED; 1248 case MMCIF_WAIT_FOR_CMD: 1249 /* Wait for data? */ 1250 wait = sh_mmcif_end_cmd(host); 1251 break; 1252 case MMCIF_WAIT_FOR_MREAD: 1253 /* Wait for more data? */ 1254 wait = sh_mmcif_mread_block(host); 1255 break; 1256 case MMCIF_WAIT_FOR_READ: 1257 /* Wait for data end? */ 1258 wait = sh_mmcif_read_block(host); 1259 break; 1260 case MMCIF_WAIT_FOR_MWRITE: 1261 /* Wait data to write? */ 1262 wait = sh_mmcif_mwrite_block(host); 1263 break; 1264 case MMCIF_WAIT_FOR_WRITE: 1265 /* Wait for data end? */ 1266 wait = sh_mmcif_write_block(host); 1267 break; 1268 case MMCIF_WAIT_FOR_STOP: 1269 if (host->sd_error) { 1270 mrq->stop->error = sh_mmcif_error_manage(host); 1271 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error); 1272 break; 1273 } 1274 sh_mmcif_get_cmd12response(host, mrq->stop); 1275 mrq->stop->error = 0; 1276 break; 1277 case MMCIF_WAIT_FOR_READ_END: 1278 case MMCIF_WAIT_FOR_WRITE_END: 1279 if (host->sd_error) { 1280 mrq->data->error = sh_mmcif_error_manage(host); 1281 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error); 1282 } 1283 break; 1284 default: 1285 BUG(); 1286 } 1287 1288 if (wait) { 1289 schedule_delayed_work(&host->timeout_work, host->timeout); 1290 /* Wait for more data */ 1291 mutex_unlock(&host->thread_lock); 1292 return IRQ_HANDLED; 1293 } 1294 1295 if (host->wait_for != MMCIF_WAIT_FOR_STOP) { 1296 struct mmc_data *data = mrq->data; 1297 if (!mrq->cmd->error && data && !data->error) 1298 data->bytes_xfered = 1299 data->blocks * data->blksz; 1300 1301 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) { 1302 sh_mmcif_stop_cmd(host, mrq); 1303 if (!mrq->stop->error) { 1304 schedule_delayed_work(&host->timeout_work, host->timeout); 1305 mutex_unlock(&host->thread_lock); 1306 return IRQ_HANDLED; 1307 } 1308 } 1309 } 1310 1311 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1312 host->state = STATE_IDLE; 1313 host->mrq = NULL; 1314 mmc_request_done(host->mmc, mrq); 1315 1316 mutex_unlock(&host->thread_lock); 1317 1318 return IRQ_HANDLED; 1319 } 1320 1321 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id) 1322 { 1323 struct sh_mmcif_host *host = dev_id; 1324 struct device *dev = sh_mmcif_host_to_dev(host); 1325 u32 state, mask; 1326 1327 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT); 1328 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK); 1329 if (host->ccs_enable) 1330 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask)); 1331 else 1332 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask)); 1333 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN); 1334 1335 if (state & ~MASK_CLEAN) 1336 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n", 1337 state); 1338 1339 if (state & INT_ERR_STS || state & ~INT_ALL) { 1340 host->sd_error = true; 1341 dev_dbg(dev, "int err state = 0x%08x\n", state); 1342 } 1343 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) { 1344 if (!host->mrq) 1345 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state); 1346 if (!host->dma_active) 1347 return IRQ_WAKE_THREAD; 1348 else if (host->sd_error) 1349 sh_mmcif_dma_complete(host); 1350 } else { 1351 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state); 1352 } 1353 1354 return IRQ_HANDLED; 1355 } 1356 1357 static void sh_mmcif_timeout_work(struct work_struct *work) 1358 { 1359 struct delayed_work *d = to_delayed_work(work); 1360 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work); 1361 struct mmc_request *mrq = host->mrq; 1362 struct device *dev = sh_mmcif_host_to_dev(host); 1363 unsigned long flags; 1364 1365 if (host->dying) 1366 /* Don't run after mmc_remove_host() */ 1367 return; 1368 1369 spin_lock_irqsave(&host->lock, flags); 1370 if (host->state == STATE_IDLE) { 1371 spin_unlock_irqrestore(&host->lock, flags); 1372 return; 1373 } 1374 1375 dev_err(dev, "Timeout waiting for %u on CMD%u\n", 1376 host->wait_for, mrq->cmd->opcode); 1377 1378 host->state = STATE_TIMEOUT; 1379 spin_unlock_irqrestore(&host->lock, flags); 1380 1381 /* 1382 * Handle races with cancel_delayed_work(), unless 1383 * cancel_delayed_work_sync() is used 1384 */ 1385 switch (host->wait_for) { 1386 case MMCIF_WAIT_FOR_CMD: 1387 mrq->cmd->error = sh_mmcif_error_manage(host); 1388 break; 1389 case MMCIF_WAIT_FOR_STOP: 1390 mrq->stop->error = sh_mmcif_error_manage(host); 1391 break; 1392 case MMCIF_WAIT_FOR_MREAD: 1393 case MMCIF_WAIT_FOR_MWRITE: 1394 case MMCIF_WAIT_FOR_READ: 1395 case MMCIF_WAIT_FOR_WRITE: 1396 case MMCIF_WAIT_FOR_READ_END: 1397 case MMCIF_WAIT_FOR_WRITE_END: 1398 mrq->data->error = sh_mmcif_error_manage(host); 1399 break; 1400 default: 1401 BUG(); 1402 } 1403 1404 host->state = STATE_IDLE; 1405 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1406 host->mrq = NULL; 1407 mmc_request_done(host->mmc, mrq); 1408 } 1409 1410 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host) 1411 { 1412 struct device *dev = sh_mmcif_host_to_dev(host); 1413 struct sh_mmcif_plat_data *pd = dev->platform_data; 1414 struct mmc_host *mmc = host->mmc; 1415 1416 mmc_regulator_get_supply(mmc); 1417 1418 if (!pd) 1419 return; 1420 1421 if (!mmc->ocr_avail) 1422 mmc->ocr_avail = pd->ocr; 1423 else if (pd->ocr) 1424 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1425 } 1426 1427 static int sh_mmcif_probe(struct platform_device *pdev) 1428 { 1429 int ret = 0, irq[2]; 1430 struct mmc_host *mmc; 1431 struct sh_mmcif_host *host; 1432 struct device *dev = &pdev->dev; 1433 struct sh_mmcif_plat_data *pd = dev->platform_data; 1434 void __iomem *reg; 1435 const char *name; 1436 1437 irq[0] = platform_get_irq(pdev, 0); 1438 irq[1] = platform_get_irq_optional(pdev, 1); 1439 if (irq[0] < 0) 1440 return irq[0]; 1441 1442 reg = devm_platform_ioremap_resource(pdev, 0); 1443 if (IS_ERR(reg)) 1444 return PTR_ERR(reg); 1445 1446 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev); 1447 if (!mmc) 1448 return -ENOMEM; 1449 1450 ret = mmc_of_parse(mmc); 1451 if (ret < 0) 1452 goto err_host; 1453 1454 host = mmc_priv(mmc); 1455 host->mmc = mmc; 1456 host->addr = reg; 1457 host->timeout = msecs_to_jiffies(10000); 1458 host->ccs_enable = true; 1459 host->clk_ctrl2_enable = false; 1460 1461 host->pd = pdev; 1462 1463 spin_lock_init(&host->lock); 1464 1465 mmc->ops = &sh_mmcif_ops; 1466 sh_mmcif_init_ocr(host); 1467 1468 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; 1469 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO; 1470 mmc->max_busy_timeout = 10000; 1471 1472 if (pd && pd->caps) 1473 mmc->caps |= pd->caps; 1474 mmc->max_segs = 32; 1475 mmc->max_blk_size = 512; 1476 mmc->max_req_size = PAGE_SIZE * mmc->max_segs; 1477 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; 1478 mmc->max_seg_size = mmc->max_req_size; 1479 1480 platform_set_drvdata(pdev, host); 1481 1482 host->clk = devm_clk_get(dev, NULL); 1483 if (IS_ERR(host->clk)) { 1484 ret = PTR_ERR(host->clk); 1485 dev_err(dev, "cannot get clock: %d\n", ret); 1486 goto err_host; 1487 } 1488 1489 ret = clk_prepare_enable(host->clk); 1490 if (ret < 0) 1491 goto err_host; 1492 1493 sh_mmcif_clk_setup(host); 1494 1495 pm_runtime_enable(dev); 1496 host->power = false; 1497 1498 ret = pm_runtime_get_sync(dev); 1499 if (ret < 0) 1500 goto err_clk; 1501 1502 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work); 1503 1504 sh_mmcif_sync_reset(host); 1505 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1506 1507 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error"; 1508 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr, 1509 sh_mmcif_irqt, 0, name, host); 1510 if (ret) { 1511 dev_err(dev, "request_irq error (%s)\n", name); 1512 goto err_clk; 1513 } 1514 if (irq[1] >= 0) { 1515 ret = devm_request_threaded_irq(dev, irq[1], 1516 sh_mmcif_intr, sh_mmcif_irqt, 1517 0, "sh_mmc:int", host); 1518 if (ret) { 1519 dev_err(dev, "request_irq error (sh_mmc:int)\n"); 1520 goto err_clk; 1521 } 1522 } 1523 1524 mutex_init(&host->thread_lock); 1525 1526 ret = mmc_add_host(mmc); 1527 if (ret < 0) 1528 goto err_clk; 1529 1530 dev_pm_qos_expose_latency_limit(dev, 100); 1531 1532 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n", 1533 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff, 1534 clk_get_rate(host->clk) / 1000000UL); 1535 1536 pm_runtime_put(dev); 1537 clk_disable_unprepare(host->clk); 1538 return ret; 1539 1540 err_clk: 1541 clk_disable_unprepare(host->clk); 1542 pm_runtime_put_sync(dev); 1543 pm_runtime_disable(dev); 1544 err_host: 1545 mmc_free_host(mmc); 1546 return ret; 1547 } 1548 1549 static void sh_mmcif_remove(struct platform_device *pdev) 1550 { 1551 struct sh_mmcif_host *host = platform_get_drvdata(pdev); 1552 1553 host->dying = true; 1554 clk_prepare_enable(host->clk); 1555 pm_runtime_get_sync(&pdev->dev); 1556 1557 dev_pm_qos_hide_latency_limit(&pdev->dev); 1558 1559 mmc_remove_host(host->mmc); 1560 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1561 1562 /* 1563 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the 1564 * mmc_remove_host() call above. But swapping order doesn't help either 1565 * (a query on the linux-mmc mailing list didn't bring any replies). 1566 */ 1567 cancel_delayed_work_sync(&host->timeout_work); 1568 1569 clk_disable_unprepare(host->clk); 1570 mmc_free_host(host->mmc); 1571 pm_runtime_put_sync(&pdev->dev); 1572 pm_runtime_disable(&pdev->dev); 1573 } 1574 1575 #ifdef CONFIG_PM_SLEEP 1576 static int sh_mmcif_suspend(struct device *dev) 1577 { 1578 struct sh_mmcif_host *host = dev_get_drvdata(dev); 1579 1580 pm_runtime_get_sync(dev); 1581 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1582 pm_runtime_put(dev); 1583 1584 return 0; 1585 } 1586 1587 static int sh_mmcif_resume(struct device *dev) 1588 { 1589 return 0; 1590 } 1591 #endif 1592 1593 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = { 1594 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume) 1595 }; 1596 1597 static struct platform_driver sh_mmcif_driver = { 1598 .probe = sh_mmcif_probe, 1599 .remove_new = sh_mmcif_remove, 1600 .driver = { 1601 .name = DRIVER_NAME, 1602 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1603 .pm = &sh_mmcif_dev_pm_ops, 1604 .of_match_table = sh_mmcif_of_match, 1605 }, 1606 }; 1607 1608 module_platform_driver(sh_mmcif_driver); 1609 1610 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver"); 1611 MODULE_LICENSE("GPL v2"); 1612 MODULE_ALIAS("platform:" DRIVER_NAME); 1613 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>"); 1614