1 /* 2 * MMCIF eMMC driver. 3 * 4 * Copyright (C) 2010 Renesas Solutions Corp. 5 * Yusuke Goda <yusuke.goda.sx@renesas.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License. 10 * 11 * 12 * TODO 13 * 1. DMA 14 * 2. Power management 15 * 3. Handle MMC errors better 16 * 17 */ 18 19 /* 20 * The MMCIF driver is now processing MMC requests asynchronously, according 21 * to the Linux MMC API requirement. 22 * 23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional 24 * data, and optional stop. To achieve asynchronous processing each of these 25 * stages is split into two halves: a top and a bottom half. The top half 26 * initialises the hardware, installs a timeout handler to handle completion 27 * timeouts, and returns. In case of the command stage this immediately returns 28 * control to the caller, leaving all further processing to run asynchronously. 29 * All further request processing is performed by the bottom halves. 30 * 31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler 32 * thread, a DMA completion callback, if DMA is used, a timeout work, and 33 * request- and stage-specific handler methods. 34 * 35 * Each bottom half run begins with either a hardware interrupt, a DMA callback 36 * invocation, or a timeout work run. In case of an error or a successful 37 * processing completion, the MMC core is informed and the request processing is 38 * finished. In case processing has to continue, i.e., if data has to be read 39 * from or written to the card, or if a stop command has to be sent, the next 40 * top half is called, which performs the necessary hardware handling and 41 * reschedules the timeout work. This returns the driver state machine into the 42 * bottom half waiting state. 43 */ 44 45 #include <linux/bitops.h> 46 #include <linux/clk.h> 47 #include <linux/completion.h> 48 #include <linux/delay.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/dmaengine.h> 51 #include <linux/mmc/card.h> 52 #include <linux/mmc/core.h> 53 #include <linux/mmc/host.h> 54 #include <linux/mmc/mmc.h> 55 #include <linux/mmc/sdio.h> 56 #include <linux/mmc/sh_mmcif.h> 57 #include <linux/mmc/slot-gpio.h> 58 #include <linux/mod_devicetable.h> 59 #include <linux/mutex.h> 60 #include <linux/of_device.h> 61 #include <linux/pagemap.h> 62 #include <linux/platform_device.h> 63 #include <linux/pm_qos.h> 64 #include <linux/pm_runtime.h> 65 #include <linux/sh_dma.h> 66 #include <linux/spinlock.h> 67 #include <linux/module.h> 68 69 #define DRIVER_NAME "sh_mmcif" 70 #define DRIVER_VERSION "2010-04-28" 71 72 /* CE_CMD_SET */ 73 #define CMD_MASK 0x3f000000 74 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22)) 75 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */ 76 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */ 77 #define CMD_SET_RBSY (1 << 21) /* R1b */ 78 #define CMD_SET_CCSEN (1 << 20) 79 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */ 80 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */ 81 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */ 82 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */ 83 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */ 84 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */ 85 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */ 86 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/ 87 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/ 88 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/ 89 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/ 90 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */ 91 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */ 92 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */ 93 #define CMD_SET_CCSH (1 << 5) 94 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */ 95 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */ 96 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */ 97 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */ 98 99 /* CE_CMD_CTRL */ 100 #define CMD_CTRL_BREAK (1 << 0) 101 102 /* CE_BLOCK_SET */ 103 #define BLOCK_SIZE_MASK 0x0000ffff 104 105 /* CE_INT */ 106 #define INT_CCSDE (1 << 29) 107 #define INT_CMD12DRE (1 << 26) 108 #define INT_CMD12RBE (1 << 25) 109 #define INT_CMD12CRE (1 << 24) 110 #define INT_DTRANE (1 << 23) 111 #define INT_BUFRE (1 << 22) 112 #define INT_BUFWEN (1 << 21) 113 #define INT_BUFREN (1 << 20) 114 #define INT_CCSRCV (1 << 19) 115 #define INT_RBSYE (1 << 17) 116 #define INT_CRSPE (1 << 16) 117 #define INT_CMDVIO (1 << 15) 118 #define INT_BUFVIO (1 << 14) 119 #define INT_WDATERR (1 << 11) 120 #define INT_RDATERR (1 << 10) 121 #define INT_RIDXERR (1 << 9) 122 #define INT_RSPERR (1 << 8) 123 #define INT_CCSTO (1 << 5) 124 #define INT_CRCSTO (1 << 4) 125 #define INT_WDATTO (1 << 3) 126 #define INT_RDATTO (1 << 2) 127 #define INT_RBSYTO (1 << 1) 128 #define INT_RSPTO (1 << 0) 129 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \ 130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \ 131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \ 132 INT_RDATTO | INT_RBSYTO | INT_RSPTO) 133 134 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \ 135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \ 136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE) 137 138 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE) 139 140 /* CE_INT_MASK */ 141 #define MASK_ALL 0x00000000 142 #define MASK_MCCSDE (1 << 29) 143 #define MASK_MCMD12DRE (1 << 26) 144 #define MASK_MCMD12RBE (1 << 25) 145 #define MASK_MCMD12CRE (1 << 24) 146 #define MASK_MDTRANE (1 << 23) 147 #define MASK_MBUFRE (1 << 22) 148 #define MASK_MBUFWEN (1 << 21) 149 #define MASK_MBUFREN (1 << 20) 150 #define MASK_MCCSRCV (1 << 19) 151 #define MASK_MRBSYE (1 << 17) 152 #define MASK_MCRSPE (1 << 16) 153 #define MASK_MCMDVIO (1 << 15) 154 #define MASK_MBUFVIO (1 << 14) 155 #define MASK_MWDATERR (1 << 11) 156 #define MASK_MRDATERR (1 << 10) 157 #define MASK_MRIDXERR (1 << 9) 158 #define MASK_MRSPERR (1 << 8) 159 #define MASK_MCCSTO (1 << 5) 160 #define MASK_MCRCSTO (1 << 4) 161 #define MASK_MWDATTO (1 << 3) 162 #define MASK_MRDATTO (1 << 2) 163 #define MASK_MRBSYTO (1 << 1) 164 #define MASK_MRSPTO (1 << 0) 165 166 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \ 167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \ 168 MASK_MCRCSTO | MASK_MWDATTO | \ 169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO) 170 171 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \ 172 MASK_MBUFREN | MASK_MBUFWEN | \ 173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \ 174 MASK_MCMD12RBE | MASK_MCMD12CRE) 175 176 /* CE_HOST_STS1 */ 177 #define STS1_CMDSEQ (1 << 31) 178 179 /* CE_HOST_STS2 */ 180 #define STS2_CRCSTE (1 << 31) 181 #define STS2_CRC16E (1 << 30) 182 #define STS2_AC12CRCE (1 << 29) 183 #define STS2_RSPCRC7E (1 << 28) 184 #define STS2_CRCSTEBE (1 << 27) 185 #define STS2_RDATEBE (1 << 26) 186 #define STS2_AC12REBE (1 << 25) 187 #define STS2_RSPEBE (1 << 24) 188 #define STS2_AC12IDXE (1 << 23) 189 #define STS2_RSPIDXE (1 << 22) 190 #define STS2_CCSTO (1 << 15) 191 #define STS2_RDATTO (1 << 14) 192 #define STS2_DATBSYTO (1 << 13) 193 #define STS2_CRCSTTO (1 << 12) 194 #define STS2_AC12BSYTO (1 << 11) 195 #define STS2_RSPBSYTO (1 << 10) 196 #define STS2_AC12RSPTO (1 << 9) 197 #define STS2_RSPTO (1 << 8) 198 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \ 199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE) 200 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \ 201 STS2_DATBSYTO | STS2_CRCSTTO | \ 202 STS2_AC12BSYTO | STS2_RSPBSYTO | \ 203 STS2_AC12RSPTO | STS2_RSPTO) 204 205 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */ 206 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */ 207 #define CLKDEV_INIT 400000 /* 400 KHz */ 208 209 enum sh_mmcif_state { 210 STATE_IDLE, 211 STATE_REQUEST, 212 STATE_IOS, 213 STATE_TIMEOUT, 214 }; 215 216 enum sh_mmcif_wait_for { 217 MMCIF_WAIT_FOR_REQUEST, 218 MMCIF_WAIT_FOR_CMD, 219 MMCIF_WAIT_FOR_MREAD, 220 MMCIF_WAIT_FOR_MWRITE, 221 MMCIF_WAIT_FOR_READ, 222 MMCIF_WAIT_FOR_WRITE, 223 MMCIF_WAIT_FOR_READ_END, 224 MMCIF_WAIT_FOR_WRITE_END, 225 MMCIF_WAIT_FOR_STOP, 226 }; 227 228 /* 229 * difference for each SoC 230 */ 231 struct sh_mmcif_host { 232 struct mmc_host *mmc; 233 struct mmc_request *mrq; 234 struct platform_device *pd; 235 struct clk *clk; 236 int bus_width; 237 unsigned char timing; 238 bool sd_error; 239 bool dying; 240 long timeout; 241 void __iomem *addr; 242 u32 *pio_ptr; 243 spinlock_t lock; /* protect sh_mmcif_host::state */ 244 enum sh_mmcif_state state; 245 enum sh_mmcif_wait_for wait_for; 246 struct delayed_work timeout_work; 247 size_t blocksize; 248 int sg_idx; 249 int sg_blkidx; 250 bool power; 251 bool ccs_enable; /* Command Completion Signal support */ 252 bool clk_ctrl2_enable; 253 struct mutex thread_lock; 254 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */ 255 256 /* DMA support */ 257 struct dma_chan *chan_rx; 258 struct dma_chan *chan_tx; 259 struct completion dma_complete; 260 bool dma_active; 261 }; 262 263 static const struct of_device_id sh_mmcif_of_match[] = { 264 { .compatible = "renesas,sh-mmcif" }, 265 { } 266 }; 267 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match); 268 269 #define sh_mmcif_host_to_dev(host) (&host->pd->dev) 270 271 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host, 272 unsigned int reg, u32 val) 273 { 274 writel(val | readl(host->addr + reg), host->addr + reg); 275 } 276 277 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host, 278 unsigned int reg, u32 val) 279 { 280 writel(~val & readl(host->addr + reg), host->addr + reg); 281 } 282 283 static void sh_mmcif_dma_complete(void *arg) 284 { 285 struct sh_mmcif_host *host = arg; 286 struct mmc_request *mrq = host->mrq; 287 struct device *dev = sh_mmcif_host_to_dev(host); 288 289 dev_dbg(dev, "Command completed\n"); 290 291 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n", 292 dev_name(dev))) 293 return; 294 295 complete(&host->dma_complete); 296 } 297 298 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host) 299 { 300 struct mmc_data *data = host->mrq->data; 301 struct scatterlist *sg = data->sg; 302 struct dma_async_tx_descriptor *desc = NULL; 303 struct dma_chan *chan = host->chan_rx; 304 struct device *dev = sh_mmcif_host_to_dev(host); 305 dma_cookie_t cookie = -EINVAL; 306 int ret; 307 308 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 309 DMA_FROM_DEVICE); 310 if (ret > 0) { 311 host->dma_active = true; 312 desc = dmaengine_prep_slave_sg(chan, sg, ret, 313 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 314 } 315 316 if (desc) { 317 desc->callback = sh_mmcif_dma_complete; 318 desc->callback_param = host; 319 cookie = dmaengine_submit(desc); 320 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN); 321 dma_async_issue_pending(chan); 322 } 323 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", 324 __func__, data->sg_len, ret, cookie); 325 326 if (!desc) { 327 /* DMA failed, fall back to PIO */ 328 if (ret >= 0) 329 ret = -EIO; 330 host->chan_rx = NULL; 331 host->dma_active = false; 332 dma_release_channel(chan); 333 /* Free the Tx channel too */ 334 chan = host->chan_tx; 335 if (chan) { 336 host->chan_tx = NULL; 337 dma_release_channel(chan); 338 } 339 dev_warn(dev, 340 "DMA failed: %d, falling back to PIO\n", ret); 341 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 342 } 343 344 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__, 345 desc, cookie, data->sg_len); 346 } 347 348 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host) 349 { 350 struct mmc_data *data = host->mrq->data; 351 struct scatterlist *sg = data->sg; 352 struct dma_async_tx_descriptor *desc = NULL; 353 struct dma_chan *chan = host->chan_tx; 354 struct device *dev = sh_mmcif_host_to_dev(host); 355 dma_cookie_t cookie = -EINVAL; 356 int ret; 357 358 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 359 DMA_TO_DEVICE); 360 if (ret > 0) { 361 host->dma_active = true; 362 desc = dmaengine_prep_slave_sg(chan, sg, ret, 363 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 364 } 365 366 if (desc) { 367 desc->callback = sh_mmcif_dma_complete; 368 desc->callback_param = host; 369 cookie = dmaengine_submit(desc); 370 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN); 371 dma_async_issue_pending(chan); 372 } 373 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", 374 __func__, data->sg_len, ret, cookie); 375 376 if (!desc) { 377 /* DMA failed, fall back to PIO */ 378 if (ret >= 0) 379 ret = -EIO; 380 host->chan_tx = NULL; 381 host->dma_active = false; 382 dma_release_channel(chan); 383 /* Free the Rx channel too */ 384 chan = host->chan_rx; 385 if (chan) { 386 host->chan_rx = NULL; 387 dma_release_channel(chan); 388 } 389 dev_warn(dev, 390 "DMA failed: %d, falling back to PIO\n", ret); 391 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 392 } 393 394 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__, 395 desc, cookie); 396 } 397 398 static struct dma_chan * 399 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id) 400 { 401 dma_cap_mask_t mask; 402 403 dma_cap_zero(mask); 404 dma_cap_set(DMA_SLAVE, mask); 405 if (slave_id <= 0) 406 return NULL; 407 408 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id); 409 } 410 411 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host, 412 struct dma_chan *chan, 413 enum dma_transfer_direction direction) 414 { 415 struct resource *res; 416 struct dma_slave_config cfg = { 0, }; 417 418 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0); 419 cfg.direction = direction; 420 421 if (direction == DMA_DEV_TO_MEM) { 422 cfg.src_addr = res->start + MMCIF_CE_DATA; 423 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 424 } else { 425 cfg.dst_addr = res->start + MMCIF_CE_DATA; 426 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 427 } 428 429 return dmaengine_slave_config(chan, &cfg); 430 } 431 432 static void sh_mmcif_request_dma(struct sh_mmcif_host *host) 433 { 434 struct device *dev = sh_mmcif_host_to_dev(host); 435 host->dma_active = false; 436 437 /* We can only either use DMA for both Tx and Rx or not use it at all */ 438 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) { 439 struct sh_mmcif_plat_data *pdata = dev->platform_data; 440 441 host->chan_tx = sh_mmcif_request_dma_pdata(host, 442 pdata->slave_id_tx); 443 host->chan_rx = sh_mmcif_request_dma_pdata(host, 444 pdata->slave_id_rx); 445 } else { 446 host->chan_tx = dma_request_slave_channel(dev, "tx"); 447 host->chan_rx = dma_request_slave_channel(dev, "rx"); 448 } 449 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx, 450 host->chan_rx); 451 452 if (!host->chan_tx || !host->chan_rx || 453 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) || 454 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM)) 455 goto error; 456 457 return; 458 459 error: 460 if (host->chan_tx) 461 dma_release_channel(host->chan_tx); 462 if (host->chan_rx) 463 dma_release_channel(host->chan_rx); 464 host->chan_tx = host->chan_rx = NULL; 465 } 466 467 static void sh_mmcif_release_dma(struct sh_mmcif_host *host) 468 { 469 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 470 /* Descriptors are freed automatically */ 471 if (host->chan_tx) { 472 struct dma_chan *chan = host->chan_tx; 473 host->chan_tx = NULL; 474 dma_release_channel(chan); 475 } 476 if (host->chan_rx) { 477 struct dma_chan *chan = host->chan_rx; 478 host->chan_rx = NULL; 479 dma_release_channel(chan); 480 } 481 482 host->dma_active = false; 483 } 484 485 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk) 486 { 487 struct device *dev = sh_mmcif_host_to_dev(host); 488 struct sh_mmcif_plat_data *p = dev->platform_data; 489 bool sup_pclk = p ? p->sup_pclk : false; 490 unsigned int current_clk = clk_get_rate(host->clk); 491 unsigned int clkdiv; 492 493 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 494 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR); 495 496 if (!clk) 497 return; 498 499 if (host->clkdiv_map) { 500 unsigned int freq, best_freq, myclk, div, diff_min, diff; 501 int i; 502 503 clkdiv = 0; 504 diff_min = ~0; 505 best_freq = 0; 506 for (i = 31; i >= 0; i--) { 507 if (!((1 << i) & host->clkdiv_map)) 508 continue; 509 510 /* 511 * clk = parent_freq / div 512 * -> parent_freq = clk x div 513 */ 514 515 div = 1 << (i + 1); 516 freq = clk_round_rate(host->clk, clk * div); 517 myclk = freq / div; 518 diff = (myclk > clk) ? myclk - clk : clk - myclk; 519 520 if (diff <= diff_min) { 521 best_freq = freq; 522 clkdiv = i; 523 diff_min = diff; 524 } 525 } 526 527 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n", 528 (best_freq / (1 << (clkdiv + 1))), clk, 529 best_freq, clkdiv); 530 531 clk_set_rate(host->clk, best_freq); 532 clkdiv = clkdiv << 16; 533 } else if (sup_pclk && clk == current_clk) { 534 clkdiv = CLK_SUP_PCLK; 535 } else { 536 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16; 537 } 538 539 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv); 540 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 541 } 542 543 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host) 544 { 545 u32 tmp; 546 547 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL); 548 549 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON); 550 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF); 551 if (host->ccs_enable) 552 tmp |= SCCSTO_29; 553 if (host->clk_ctrl2_enable) 554 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000); 555 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp | 556 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29); 557 /* byte swap on */ 558 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP); 559 } 560 561 static int sh_mmcif_error_manage(struct sh_mmcif_host *host) 562 { 563 struct device *dev = sh_mmcif_host_to_dev(host); 564 u32 state1, state2; 565 int ret, timeout; 566 567 host->sd_error = false; 568 569 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1); 570 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2); 571 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1); 572 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2); 573 574 if (state1 & STS1_CMDSEQ) { 575 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK); 576 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK); 577 for (timeout = 10000; timeout; timeout--) { 578 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1) 579 & STS1_CMDSEQ)) 580 break; 581 mdelay(1); 582 } 583 if (!timeout) { 584 dev_err(dev, 585 "Forced end of command sequence timeout err\n"); 586 return -EIO; 587 } 588 sh_mmcif_sync_reset(host); 589 dev_dbg(dev, "Forced end of command sequence\n"); 590 return -EIO; 591 } 592 593 if (state2 & STS2_CRC_ERR) { 594 dev_err(dev, " CRC error: state %u, wait %u\n", 595 host->state, host->wait_for); 596 ret = -EIO; 597 } else if (state2 & STS2_TIMEOUT_ERR) { 598 dev_err(dev, " Timeout: state %u, wait %u\n", 599 host->state, host->wait_for); 600 ret = -ETIMEDOUT; 601 } else { 602 dev_dbg(dev, " End/Index error: state %u, wait %u\n", 603 host->state, host->wait_for); 604 ret = -EIO; 605 } 606 return ret; 607 } 608 609 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p) 610 { 611 struct mmc_data *data = host->mrq->data; 612 613 host->sg_blkidx += host->blocksize; 614 615 /* data->sg->length must be a multiple of host->blocksize? */ 616 BUG_ON(host->sg_blkidx > data->sg->length); 617 618 if (host->sg_blkidx == data->sg->length) { 619 host->sg_blkidx = 0; 620 if (++host->sg_idx < data->sg_len) 621 host->pio_ptr = sg_virt(++data->sg); 622 } else { 623 host->pio_ptr = p; 624 } 625 626 return host->sg_idx != data->sg_len; 627 } 628 629 static void sh_mmcif_single_read(struct sh_mmcif_host *host, 630 struct mmc_request *mrq) 631 { 632 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 633 BLOCK_SIZE_MASK) + 3; 634 635 host->wait_for = MMCIF_WAIT_FOR_READ; 636 637 /* buf read enable */ 638 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 639 } 640 641 static bool sh_mmcif_read_block(struct sh_mmcif_host *host) 642 { 643 struct device *dev = sh_mmcif_host_to_dev(host); 644 struct mmc_data *data = host->mrq->data; 645 u32 *p = sg_virt(data->sg); 646 int i; 647 648 if (host->sd_error) { 649 data->error = sh_mmcif_error_manage(host); 650 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 651 return false; 652 } 653 654 for (i = 0; i < host->blocksize / 4; i++) 655 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 656 657 /* buffer read end */ 658 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE); 659 host->wait_for = MMCIF_WAIT_FOR_READ_END; 660 661 return true; 662 } 663 664 static void sh_mmcif_multi_read(struct sh_mmcif_host *host, 665 struct mmc_request *mrq) 666 { 667 struct mmc_data *data = mrq->data; 668 669 if (!data->sg_len || !data->sg->length) 670 return; 671 672 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 673 BLOCK_SIZE_MASK; 674 675 host->wait_for = MMCIF_WAIT_FOR_MREAD; 676 host->sg_idx = 0; 677 host->sg_blkidx = 0; 678 host->pio_ptr = sg_virt(data->sg); 679 680 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 681 } 682 683 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host) 684 { 685 struct device *dev = sh_mmcif_host_to_dev(host); 686 struct mmc_data *data = host->mrq->data; 687 u32 *p = host->pio_ptr; 688 int i; 689 690 if (host->sd_error) { 691 data->error = sh_mmcif_error_manage(host); 692 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 693 return false; 694 } 695 696 BUG_ON(!data->sg->length); 697 698 for (i = 0; i < host->blocksize / 4; i++) 699 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 700 701 if (!sh_mmcif_next_block(host, p)) 702 return false; 703 704 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 705 706 return true; 707 } 708 709 static void sh_mmcif_single_write(struct sh_mmcif_host *host, 710 struct mmc_request *mrq) 711 { 712 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 713 BLOCK_SIZE_MASK) + 3; 714 715 host->wait_for = MMCIF_WAIT_FOR_WRITE; 716 717 /* buf write enable */ 718 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 719 } 720 721 static bool sh_mmcif_write_block(struct sh_mmcif_host *host) 722 { 723 struct device *dev = sh_mmcif_host_to_dev(host); 724 struct mmc_data *data = host->mrq->data; 725 u32 *p = sg_virt(data->sg); 726 int i; 727 728 if (host->sd_error) { 729 data->error = sh_mmcif_error_manage(host); 730 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 731 return false; 732 } 733 734 for (i = 0; i < host->blocksize / 4; i++) 735 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 736 737 /* buffer write end */ 738 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE); 739 host->wait_for = MMCIF_WAIT_FOR_WRITE_END; 740 741 return true; 742 } 743 744 static void sh_mmcif_multi_write(struct sh_mmcif_host *host, 745 struct mmc_request *mrq) 746 { 747 struct mmc_data *data = mrq->data; 748 749 if (!data->sg_len || !data->sg->length) 750 return; 751 752 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 753 BLOCK_SIZE_MASK; 754 755 host->wait_for = MMCIF_WAIT_FOR_MWRITE; 756 host->sg_idx = 0; 757 host->sg_blkidx = 0; 758 host->pio_ptr = sg_virt(data->sg); 759 760 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 761 } 762 763 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host) 764 { 765 struct device *dev = sh_mmcif_host_to_dev(host); 766 struct mmc_data *data = host->mrq->data; 767 u32 *p = host->pio_ptr; 768 int i; 769 770 if (host->sd_error) { 771 data->error = sh_mmcif_error_manage(host); 772 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 773 return false; 774 } 775 776 BUG_ON(!data->sg->length); 777 778 for (i = 0; i < host->blocksize / 4; i++) 779 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 780 781 if (!sh_mmcif_next_block(host, p)) 782 return false; 783 784 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 785 786 return true; 787 } 788 789 static void sh_mmcif_get_response(struct sh_mmcif_host *host, 790 struct mmc_command *cmd) 791 { 792 if (cmd->flags & MMC_RSP_136) { 793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3); 794 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2); 795 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1); 796 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 797 } else 798 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 799 } 800 801 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host, 802 struct mmc_command *cmd) 803 { 804 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12); 805 } 806 807 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host, 808 struct mmc_request *mrq) 809 { 810 struct device *dev = sh_mmcif_host_to_dev(host); 811 struct mmc_data *data = mrq->data; 812 struct mmc_command *cmd = mrq->cmd; 813 u32 opc = cmd->opcode; 814 u32 tmp = 0; 815 816 /* Response Type check */ 817 switch (mmc_resp_type(cmd)) { 818 case MMC_RSP_NONE: 819 tmp |= CMD_SET_RTYP_NO; 820 break; 821 case MMC_RSP_R1: 822 case MMC_RSP_R3: 823 tmp |= CMD_SET_RTYP_6B; 824 break; 825 case MMC_RSP_R1B: 826 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B; 827 break; 828 case MMC_RSP_R2: 829 tmp |= CMD_SET_RTYP_17B; 830 break; 831 default: 832 dev_err(dev, "Unsupported response type.\n"); 833 break; 834 } 835 836 /* WDAT / DATW */ 837 if (data) { 838 tmp |= CMD_SET_WDAT; 839 switch (host->bus_width) { 840 case MMC_BUS_WIDTH_1: 841 tmp |= CMD_SET_DATW_1; 842 break; 843 case MMC_BUS_WIDTH_4: 844 tmp |= CMD_SET_DATW_4; 845 break; 846 case MMC_BUS_WIDTH_8: 847 tmp |= CMD_SET_DATW_8; 848 break; 849 default: 850 dev_err(dev, "Unsupported bus width.\n"); 851 break; 852 } 853 switch (host->timing) { 854 case MMC_TIMING_MMC_DDR52: 855 /* 856 * MMC core will only set this timing, if the host 857 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR 858 * capability. MMCIF implementations with this 859 * capability, e.g. sh73a0, will have to set it 860 * in their platform data. 861 */ 862 tmp |= CMD_SET_DARS; 863 break; 864 } 865 } 866 /* DWEN */ 867 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) 868 tmp |= CMD_SET_DWEN; 869 /* CMLTE/CMD12EN */ 870 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) { 871 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN; 872 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET, 873 data->blocks << 16); 874 } 875 /* RIDXC[1:0] check bits */ 876 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID || 877 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 878 tmp |= CMD_SET_RIDXC_BITS; 879 /* RCRC7C[1:0] check bits */ 880 if (opc == MMC_SEND_OP_COND) 881 tmp |= CMD_SET_CRC7C_BITS; 882 /* RCRC7C[1:0] internal CRC7 */ 883 if (opc == MMC_ALL_SEND_CID || 884 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 885 tmp |= CMD_SET_CRC7C_INTERNAL; 886 887 return (opc << 24) | tmp; 888 } 889 890 static int sh_mmcif_data_trans(struct sh_mmcif_host *host, 891 struct mmc_request *mrq, u32 opc) 892 { 893 struct device *dev = sh_mmcif_host_to_dev(host); 894 895 switch (opc) { 896 case MMC_READ_MULTIPLE_BLOCK: 897 sh_mmcif_multi_read(host, mrq); 898 return 0; 899 case MMC_WRITE_MULTIPLE_BLOCK: 900 sh_mmcif_multi_write(host, mrq); 901 return 0; 902 case MMC_WRITE_BLOCK: 903 sh_mmcif_single_write(host, mrq); 904 return 0; 905 case MMC_READ_SINGLE_BLOCK: 906 case MMC_SEND_EXT_CSD: 907 sh_mmcif_single_read(host, mrq); 908 return 0; 909 default: 910 dev_err(dev, "Unsupported CMD%d\n", opc); 911 return -EINVAL; 912 } 913 } 914 915 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host, 916 struct mmc_request *mrq) 917 { 918 struct mmc_command *cmd = mrq->cmd; 919 u32 opc = cmd->opcode; 920 u32 mask = 0; 921 unsigned long flags; 922 923 if (cmd->flags & MMC_RSP_BUSY) 924 mask = MASK_START_CMD | MASK_MRBSYE; 925 else 926 mask = MASK_START_CMD | MASK_MCRSPE; 927 928 if (host->ccs_enable) 929 mask |= MASK_MCCSTO; 930 931 if (mrq->data) { 932 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0); 933 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 934 mrq->data->blksz); 935 } 936 opc = sh_mmcif_set_cmd(host, mrq); 937 938 if (host->ccs_enable) 939 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0); 940 else 941 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS); 942 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask); 943 /* set arg */ 944 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg); 945 /* set cmd */ 946 spin_lock_irqsave(&host->lock, flags); 947 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc); 948 949 host->wait_for = MMCIF_WAIT_FOR_CMD; 950 schedule_delayed_work(&host->timeout_work, host->timeout); 951 spin_unlock_irqrestore(&host->lock, flags); 952 } 953 954 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host, 955 struct mmc_request *mrq) 956 { 957 struct device *dev = sh_mmcif_host_to_dev(host); 958 959 switch (mrq->cmd->opcode) { 960 case MMC_READ_MULTIPLE_BLOCK: 961 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE); 962 break; 963 case MMC_WRITE_MULTIPLE_BLOCK: 964 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE); 965 break; 966 default: 967 dev_err(dev, "unsupported stop cmd\n"); 968 mrq->stop->error = sh_mmcif_error_manage(host); 969 return; 970 } 971 972 host->wait_for = MMCIF_WAIT_FOR_STOP; 973 } 974 975 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq) 976 { 977 struct sh_mmcif_host *host = mmc_priv(mmc); 978 struct device *dev = sh_mmcif_host_to_dev(host); 979 unsigned long flags; 980 981 spin_lock_irqsave(&host->lock, flags); 982 if (host->state != STATE_IDLE) { 983 dev_dbg(dev, "%s() rejected, state %u\n", 984 __func__, host->state); 985 spin_unlock_irqrestore(&host->lock, flags); 986 mrq->cmd->error = -EAGAIN; 987 mmc_request_done(mmc, mrq); 988 return; 989 } 990 991 host->state = STATE_REQUEST; 992 spin_unlock_irqrestore(&host->lock, flags); 993 994 host->mrq = mrq; 995 996 sh_mmcif_start_cmd(host, mrq); 997 } 998 999 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host) 1000 { 1001 struct device *dev = sh_mmcif_host_to_dev(host); 1002 1003 if (host->mmc->f_max) { 1004 unsigned int f_max, f_min = 0, f_min_old; 1005 1006 f_max = host->mmc->f_max; 1007 for (f_min_old = f_max; f_min_old > 2;) { 1008 f_min = clk_round_rate(host->clk, f_min_old / 2); 1009 if (f_min == f_min_old) 1010 break; 1011 f_min_old = f_min; 1012 } 1013 1014 /* 1015 * This driver assumes this SoC is R-Car Gen2 or later 1016 */ 1017 host->clkdiv_map = 0x3ff; 1018 1019 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map)); 1020 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map)); 1021 } else { 1022 unsigned int clk = clk_get_rate(host->clk); 1023 1024 host->mmc->f_max = clk / 2; 1025 host->mmc->f_min = clk / 512; 1026 } 1027 1028 dev_dbg(dev, "clk max/min = %d/%d\n", 1029 host->mmc->f_max, host->mmc->f_min); 1030 } 1031 1032 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1033 { 1034 struct sh_mmcif_host *host = mmc_priv(mmc); 1035 struct device *dev = sh_mmcif_host_to_dev(host); 1036 unsigned long flags; 1037 1038 spin_lock_irqsave(&host->lock, flags); 1039 if (host->state != STATE_IDLE) { 1040 dev_dbg(dev, "%s() rejected, state %u\n", 1041 __func__, host->state); 1042 spin_unlock_irqrestore(&host->lock, flags); 1043 return; 1044 } 1045 1046 host->state = STATE_IOS; 1047 spin_unlock_irqrestore(&host->lock, flags); 1048 1049 switch (ios->power_mode) { 1050 case MMC_POWER_UP: 1051 if (!IS_ERR(mmc->supply.vmmc)) 1052 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1053 if (!host->power) { 1054 clk_prepare_enable(host->clk); 1055 pm_runtime_get_sync(dev); 1056 sh_mmcif_sync_reset(host); 1057 sh_mmcif_request_dma(host); 1058 host->power = true; 1059 } 1060 break; 1061 case MMC_POWER_OFF: 1062 if (!IS_ERR(mmc->supply.vmmc)) 1063 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1064 if (host->power) { 1065 sh_mmcif_clock_control(host, 0); 1066 sh_mmcif_release_dma(host); 1067 pm_runtime_put(dev); 1068 clk_disable_unprepare(host->clk); 1069 host->power = false; 1070 } 1071 break; 1072 case MMC_POWER_ON: 1073 sh_mmcif_clock_control(host, ios->clock); 1074 break; 1075 } 1076 1077 host->timing = ios->timing; 1078 host->bus_width = ios->bus_width; 1079 host->state = STATE_IDLE; 1080 } 1081 1082 static struct mmc_host_ops sh_mmcif_ops = { 1083 .request = sh_mmcif_request, 1084 .set_ios = sh_mmcif_set_ios, 1085 .get_cd = mmc_gpio_get_cd, 1086 }; 1087 1088 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host) 1089 { 1090 struct mmc_command *cmd = host->mrq->cmd; 1091 struct mmc_data *data = host->mrq->data; 1092 struct device *dev = sh_mmcif_host_to_dev(host); 1093 long time; 1094 1095 if (host->sd_error) { 1096 switch (cmd->opcode) { 1097 case MMC_ALL_SEND_CID: 1098 case MMC_SELECT_CARD: 1099 case MMC_APP_CMD: 1100 cmd->error = -ETIMEDOUT; 1101 break; 1102 default: 1103 cmd->error = sh_mmcif_error_manage(host); 1104 break; 1105 } 1106 dev_dbg(dev, "CMD%d error %d\n", 1107 cmd->opcode, cmd->error); 1108 host->sd_error = false; 1109 return false; 1110 } 1111 if (!(cmd->flags & MMC_RSP_PRESENT)) { 1112 cmd->error = 0; 1113 return false; 1114 } 1115 1116 sh_mmcif_get_response(host, cmd); 1117 1118 if (!data) 1119 return false; 1120 1121 /* 1122 * Completion can be signalled from DMA callback and error, so, have to 1123 * reset here, before setting .dma_active 1124 */ 1125 init_completion(&host->dma_complete); 1126 1127 if (data->flags & MMC_DATA_READ) { 1128 if (host->chan_rx) 1129 sh_mmcif_start_dma_rx(host); 1130 } else { 1131 if (host->chan_tx) 1132 sh_mmcif_start_dma_tx(host); 1133 } 1134 1135 if (!host->dma_active) { 1136 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode); 1137 return !data->error; 1138 } 1139 1140 /* Running in the IRQ thread, can sleep */ 1141 time = wait_for_completion_interruptible_timeout(&host->dma_complete, 1142 host->timeout); 1143 1144 if (data->flags & MMC_DATA_READ) 1145 dma_unmap_sg(host->chan_rx->device->dev, 1146 data->sg, data->sg_len, 1147 DMA_FROM_DEVICE); 1148 else 1149 dma_unmap_sg(host->chan_tx->device->dev, 1150 data->sg, data->sg_len, 1151 DMA_TO_DEVICE); 1152 1153 if (host->sd_error) { 1154 dev_err(host->mmc->parent, 1155 "Error IRQ while waiting for DMA completion!\n"); 1156 /* Woken up by an error IRQ: abort DMA */ 1157 data->error = sh_mmcif_error_manage(host); 1158 } else if (!time) { 1159 dev_err(host->mmc->parent, "DMA timeout!\n"); 1160 data->error = -ETIMEDOUT; 1161 } else if (time < 0) { 1162 dev_err(host->mmc->parent, 1163 "wait_for_completion_...() error %ld!\n", time); 1164 data->error = time; 1165 } 1166 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, 1167 BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 1168 host->dma_active = false; 1169 1170 if (data->error) { 1171 data->bytes_xfered = 0; 1172 /* Abort DMA */ 1173 if (data->flags & MMC_DATA_READ) 1174 dmaengine_terminate_all(host->chan_rx); 1175 else 1176 dmaengine_terminate_all(host->chan_tx); 1177 } 1178 1179 return false; 1180 } 1181 1182 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id) 1183 { 1184 struct sh_mmcif_host *host = dev_id; 1185 struct mmc_request *mrq; 1186 struct device *dev = sh_mmcif_host_to_dev(host); 1187 bool wait = false; 1188 unsigned long flags; 1189 int wait_work; 1190 1191 spin_lock_irqsave(&host->lock, flags); 1192 wait_work = host->wait_for; 1193 spin_unlock_irqrestore(&host->lock, flags); 1194 1195 cancel_delayed_work_sync(&host->timeout_work); 1196 1197 mutex_lock(&host->thread_lock); 1198 1199 mrq = host->mrq; 1200 if (!mrq) { 1201 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n", 1202 host->state, host->wait_for); 1203 mutex_unlock(&host->thread_lock); 1204 return IRQ_HANDLED; 1205 } 1206 1207 /* 1208 * All handlers return true, if processing continues, and false, if the 1209 * request has to be completed - successfully or not 1210 */ 1211 switch (wait_work) { 1212 case MMCIF_WAIT_FOR_REQUEST: 1213 /* We're too late, the timeout has already kicked in */ 1214 mutex_unlock(&host->thread_lock); 1215 return IRQ_HANDLED; 1216 case MMCIF_WAIT_FOR_CMD: 1217 /* Wait for data? */ 1218 wait = sh_mmcif_end_cmd(host); 1219 break; 1220 case MMCIF_WAIT_FOR_MREAD: 1221 /* Wait for more data? */ 1222 wait = sh_mmcif_mread_block(host); 1223 break; 1224 case MMCIF_WAIT_FOR_READ: 1225 /* Wait for data end? */ 1226 wait = sh_mmcif_read_block(host); 1227 break; 1228 case MMCIF_WAIT_FOR_MWRITE: 1229 /* Wait data to write? */ 1230 wait = sh_mmcif_mwrite_block(host); 1231 break; 1232 case MMCIF_WAIT_FOR_WRITE: 1233 /* Wait for data end? */ 1234 wait = sh_mmcif_write_block(host); 1235 break; 1236 case MMCIF_WAIT_FOR_STOP: 1237 if (host->sd_error) { 1238 mrq->stop->error = sh_mmcif_error_manage(host); 1239 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error); 1240 break; 1241 } 1242 sh_mmcif_get_cmd12response(host, mrq->stop); 1243 mrq->stop->error = 0; 1244 break; 1245 case MMCIF_WAIT_FOR_READ_END: 1246 case MMCIF_WAIT_FOR_WRITE_END: 1247 if (host->sd_error) { 1248 mrq->data->error = sh_mmcif_error_manage(host); 1249 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error); 1250 } 1251 break; 1252 default: 1253 BUG(); 1254 } 1255 1256 if (wait) { 1257 schedule_delayed_work(&host->timeout_work, host->timeout); 1258 /* Wait for more data */ 1259 mutex_unlock(&host->thread_lock); 1260 return IRQ_HANDLED; 1261 } 1262 1263 if (host->wait_for != MMCIF_WAIT_FOR_STOP) { 1264 struct mmc_data *data = mrq->data; 1265 if (!mrq->cmd->error && data && !data->error) 1266 data->bytes_xfered = 1267 data->blocks * data->blksz; 1268 1269 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) { 1270 sh_mmcif_stop_cmd(host, mrq); 1271 if (!mrq->stop->error) { 1272 schedule_delayed_work(&host->timeout_work, host->timeout); 1273 mutex_unlock(&host->thread_lock); 1274 return IRQ_HANDLED; 1275 } 1276 } 1277 } 1278 1279 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1280 host->state = STATE_IDLE; 1281 host->mrq = NULL; 1282 mmc_request_done(host->mmc, mrq); 1283 1284 mutex_unlock(&host->thread_lock); 1285 1286 return IRQ_HANDLED; 1287 } 1288 1289 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id) 1290 { 1291 struct sh_mmcif_host *host = dev_id; 1292 struct device *dev = sh_mmcif_host_to_dev(host); 1293 u32 state, mask; 1294 1295 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT); 1296 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK); 1297 if (host->ccs_enable) 1298 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask)); 1299 else 1300 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask)); 1301 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN); 1302 1303 if (state & ~MASK_CLEAN) 1304 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n", 1305 state); 1306 1307 if (state & INT_ERR_STS || state & ~INT_ALL) { 1308 host->sd_error = true; 1309 dev_dbg(dev, "int err state = 0x%08x\n", state); 1310 } 1311 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) { 1312 if (!host->mrq) 1313 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state); 1314 if (!host->dma_active) 1315 return IRQ_WAKE_THREAD; 1316 else if (host->sd_error) 1317 sh_mmcif_dma_complete(host); 1318 } else { 1319 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state); 1320 } 1321 1322 return IRQ_HANDLED; 1323 } 1324 1325 static void sh_mmcif_timeout_work(struct work_struct *work) 1326 { 1327 struct delayed_work *d = to_delayed_work(work); 1328 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work); 1329 struct mmc_request *mrq = host->mrq; 1330 struct device *dev = sh_mmcif_host_to_dev(host); 1331 unsigned long flags; 1332 1333 if (host->dying) 1334 /* Don't run after mmc_remove_host() */ 1335 return; 1336 1337 spin_lock_irqsave(&host->lock, flags); 1338 if (host->state == STATE_IDLE) { 1339 spin_unlock_irqrestore(&host->lock, flags); 1340 return; 1341 } 1342 1343 dev_err(dev, "Timeout waiting for %u on CMD%u\n", 1344 host->wait_for, mrq->cmd->opcode); 1345 1346 host->state = STATE_TIMEOUT; 1347 spin_unlock_irqrestore(&host->lock, flags); 1348 1349 /* 1350 * Handle races with cancel_delayed_work(), unless 1351 * cancel_delayed_work_sync() is used 1352 */ 1353 switch (host->wait_for) { 1354 case MMCIF_WAIT_FOR_CMD: 1355 mrq->cmd->error = sh_mmcif_error_manage(host); 1356 break; 1357 case MMCIF_WAIT_FOR_STOP: 1358 mrq->stop->error = sh_mmcif_error_manage(host); 1359 break; 1360 case MMCIF_WAIT_FOR_MREAD: 1361 case MMCIF_WAIT_FOR_MWRITE: 1362 case MMCIF_WAIT_FOR_READ: 1363 case MMCIF_WAIT_FOR_WRITE: 1364 case MMCIF_WAIT_FOR_READ_END: 1365 case MMCIF_WAIT_FOR_WRITE_END: 1366 mrq->data->error = sh_mmcif_error_manage(host); 1367 break; 1368 default: 1369 BUG(); 1370 } 1371 1372 host->state = STATE_IDLE; 1373 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1374 host->mrq = NULL; 1375 mmc_request_done(host->mmc, mrq); 1376 } 1377 1378 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host) 1379 { 1380 struct device *dev = sh_mmcif_host_to_dev(host); 1381 struct sh_mmcif_plat_data *pd = dev->platform_data; 1382 struct mmc_host *mmc = host->mmc; 1383 1384 mmc_regulator_get_supply(mmc); 1385 1386 if (!pd) 1387 return; 1388 1389 if (!mmc->ocr_avail) 1390 mmc->ocr_avail = pd->ocr; 1391 else if (pd->ocr) 1392 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1393 } 1394 1395 static int sh_mmcif_probe(struct platform_device *pdev) 1396 { 1397 int ret = 0, irq[2]; 1398 struct mmc_host *mmc; 1399 struct sh_mmcif_host *host; 1400 struct device *dev = &pdev->dev; 1401 struct sh_mmcif_plat_data *pd = dev->platform_data; 1402 struct resource *res; 1403 void __iomem *reg; 1404 const char *name; 1405 1406 irq[0] = platform_get_irq(pdev, 0); 1407 irq[1] = platform_get_irq(pdev, 1); 1408 if (irq[0] < 0) { 1409 dev_err(dev, "Get irq error\n"); 1410 return -ENXIO; 1411 } 1412 1413 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1414 reg = devm_ioremap_resource(dev, res); 1415 if (IS_ERR(reg)) 1416 return PTR_ERR(reg); 1417 1418 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev); 1419 if (!mmc) 1420 return -ENOMEM; 1421 1422 ret = mmc_of_parse(mmc); 1423 if (ret < 0) 1424 goto err_host; 1425 1426 host = mmc_priv(mmc); 1427 host->mmc = mmc; 1428 host->addr = reg; 1429 host->timeout = msecs_to_jiffies(10000); 1430 host->ccs_enable = true; 1431 host->clk_ctrl2_enable = false; 1432 1433 host->pd = pdev; 1434 1435 spin_lock_init(&host->lock); 1436 1437 mmc->ops = &sh_mmcif_ops; 1438 sh_mmcif_init_ocr(host); 1439 1440 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; 1441 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO; 1442 mmc->max_busy_timeout = 10000; 1443 1444 if (pd && pd->caps) 1445 mmc->caps |= pd->caps; 1446 mmc->max_segs = 32; 1447 mmc->max_blk_size = 512; 1448 mmc->max_req_size = PAGE_SIZE * mmc->max_segs; 1449 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; 1450 mmc->max_seg_size = mmc->max_req_size; 1451 1452 platform_set_drvdata(pdev, host); 1453 1454 host->clk = devm_clk_get(dev, NULL); 1455 if (IS_ERR(host->clk)) { 1456 ret = PTR_ERR(host->clk); 1457 dev_err(dev, "cannot get clock: %d\n", ret); 1458 goto err_host; 1459 } 1460 1461 ret = clk_prepare_enable(host->clk); 1462 if (ret < 0) 1463 goto err_host; 1464 1465 sh_mmcif_clk_setup(host); 1466 1467 pm_runtime_enable(dev); 1468 host->power = false; 1469 1470 ret = pm_runtime_get_sync(dev); 1471 if (ret < 0) 1472 goto err_clk; 1473 1474 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work); 1475 1476 sh_mmcif_sync_reset(host); 1477 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1478 1479 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error"; 1480 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr, 1481 sh_mmcif_irqt, 0, name, host); 1482 if (ret) { 1483 dev_err(dev, "request_irq error (%s)\n", name); 1484 goto err_clk; 1485 } 1486 if (irq[1] >= 0) { 1487 ret = devm_request_threaded_irq(dev, irq[1], 1488 sh_mmcif_intr, sh_mmcif_irqt, 1489 0, "sh_mmc:int", host); 1490 if (ret) { 1491 dev_err(dev, "request_irq error (sh_mmc:int)\n"); 1492 goto err_clk; 1493 } 1494 } 1495 1496 mutex_init(&host->thread_lock); 1497 1498 ret = mmc_add_host(mmc); 1499 if (ret < 0) 1500 goto err_clk; 1501 1502 dev_pm_qos_expose_latency_limit(dev, 100); 1503 1504 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n", 1505 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff, 1506 clk_get_rate(host->clk) / 1000000UL); 1507 1508 pm_runtime_put(dev); 1509 clk_disable_unprepare(host->clk); 1510 return ret; 1511 1512 err_clk: 1513 clk_disable_unprepare(host->clk); 1514 pm_runtime_put_sync(dev); 1515 pm_runtime_disable(dev); 1516 err_host: 1517 mmc_free_host(mmc); 1518 return ret; 1519 } 1520 1521 static int sh_mmcif_remove(struct platform_device *pdev) 1522 { 1523 struct sh_mmcif_host *host = platform_get_drvdata(pdev); 1524 1525 host->dying = true; 1526 clk_prepare_enable(host->clk); 1527 pm_runtime_get_sync(&pdev->dev); 1528 1529 dev_pm_qos_hide_latency_limit(&pdev->dev); 1530 1531 mmc_remove_host(host->mmc); 1532 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1533 1534 /* 1535 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the 1536 * mmc_remove_host() call above. But swapping order doesn't help either 1537 * (a query on the linux-mmc mailing list didn't bring any replies). 1538 */ 1539 cancel_delayed_work_sync(&host->timeout_work); 1540 1541 clk_disable_unprepare(host->clk); 1542 mmc_free_host(host->mmc); 1543 pm_runtime_put_sync(&pdev->dev); 1544 pm_runtime_disable(&pdev->dev); 1545 1546 return 0; 1547 } 1548 1549 #ifdef CONFIG_PM_SLEEP 1550 static int sh_mmcif_suspend(struct device *dev) 1551 { 1552 struct sh_mmcif_host *host = dev_get_drvdata(dev); 1553 1554 pm_runtime_get_sync(dev); 1555 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1556 pm_runtime_put(dev); 1557 1558 return 0; 1559 } 1560 1561 static int sh_mmcif_resume(struct device *dev) 1562 { 1563 return 0; 1564 } 1565 #endif 1566 1567 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = { 1568 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume) 1569 }; 1570 1571 static struct platform_driver sh_mmcif_driver = { 1572 .probe = sh_mmcif_probe, 1573 .remove = sh_mmcif_remove, 1574 .driver = { 1575 .name = DRIVER_NAME, 1576 .pm = &sh_mmcif_dev_pm_ops, 1577 .of_match_table = sh_mmcif_of_match, 1578 }, 1579 }; 1580 1581 module_platform_driver(sh_mmcif_driver); 1582 1583 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver"); 1584 MODULE_LICENSE("GPL"); 1585 MODULE_ALIAS("platform:" DRIVER_NAME); 1586 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>"); 1587