xref: /linux/drivers/mmc/host/sh_mmcif.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/core.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/mmc.h>
28 #include <linux/mmc/sdio.h>
29 #include <linux/mmc/sh_mmcif.h>
30 #include <linux/pagemap.h>
31 #include <linux/platform_device.h>
32 
33 #define DRIVER_NAME	"sh_mmcif"
34 #define DRIVER_VERSION	"2010-04-28"
35 
36 /* CE_CMD_SET */
37 #define CMD_MASK		0x3f000000
38 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
39 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
40 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
41 #define CMD_SET_RBSY		(1 << 21) /* R1b */
42 #define CMD_SET_CCSEN		(1 << 20)
43 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
44 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
45 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
46 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
47 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
48 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
49 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
50 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
51 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
52 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
53 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
54 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
55 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
56 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
57 #define CMD_SET_CCSH		(1 << 5)
58 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
59 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
60 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
61 
62 /* CE_CMD_CTRL */
63 #define CMD_CTRL_BREAK		(1 << 0)
64 
65 /* CE_BLOCK_SET */
66 #define BLOCK_SIZE_MASK		0x0000ffff
67 
68 /* CE_INT */
69 #define INT_CCSDE		(1 << 29)
70 #define INT_CMD12DRE		(1 << 26)
71 #define INT_CMD12RBE		(1 << 25)
72 #define INT_CMD12CRE		(1 << 24)
73 #define INT_DTRANE		(1 << 23)
74 #define INT_BUFRE		(1 << 22)
75 #define INT_BUFWEN		(1 << 21)
76 #define INT_BUFREN		(1 << 20)
77 #define INT_CCSRCV		(1 << 19)
78 #define INT_RBSYE		(1 << 17)
79 #define INT_CRSPE		(1 << 16)
80 #define INT_CMDVIO		(1 << 15)
81 #define INT_BUFVIO		(1 << 14)
82 #define INT_WDATERR		(1 << 11)
83 #define INT_RDATERR		(1 << 10)
84 #define INT_RIDXERR		(1 << 9)
85 #define INT_RSPERR		(1 << 8)
86 #define INT_CCSTO		(1 << 5)
87 #define INT_CRCSTO		(1 << 4)
88 #define INT_WDATTO		(1 << 3)
89 #define INT_RDATTO		(1 << 2)
90 #define INT_RBSYTO		(1 << 1)
91 #define INT_RSPTO		(1 << 0)
92 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
93 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
94 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
95 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
96 
97 /* CE_INT_MASK */
98 #define MASK_ALL		0x00000000
99 #define MASK_MCCSDE		(1 << 29)
100 #define MASK_MCMD12DRE		(1 << 26)
101 #define MASK_MCMD12RBE		(1 << 25)
102 #define MASK_MCMD12CRE		(1 << 24)
103 #define MASK_MDTRANE		(1 << 23)
104 #define MASK_MBUFRE		(1 << 22)
105 #define MASK_MBUFWEN		(1 << 21)
106 #define MASK_MBUFREN		(1 << 20)
107 #define MASK_MCCSRCV		(1 << 19)
108 #define MASK_MRBSYE		(1 << 17)
109 #define MASK_MCRSPE		(1 << 16)
110 #define MASK_MCMDVIO		(1 << 15)
111 #define MASK_MBUFVIO		(1 << 14)
112 #define MASK_MWDATERR		(1 << 11)
113 #define MASK_MRDATERR		(1 << 10)
114 #define MASK_MRIDXERR		(1 << 9)
115 #define MASK_MRSPERR		(1 << 8)
116 #define MASK_MCCSTO		(1 << 5)
117 #define MASK_MCRCSTO		(1 << 4)
118 #define MASK_MWDATTO		(1 << 3)
119 #define MASK_MRDATTO		(1 << 2)
120 #define MASK_MRBSYTO		(1 << 1)
121 #define MASK_MRSPTO		(1 << 0)
122 
123 /* CE_HOST_STS1 */
124 #define STS1_CMDSEQ		(1 << 31)
125 
126 /* CE_HOST_STS2 */
127 #define STS2_CRCSTE		(1 << 31)
128 #define STS2_CRC16E		(1 << 30)
129 #define STS2_AC12CRCE		(1 << 29)
130 #define STS2_RSPCRC7E		(1 << 28)
131 #define STS2_CRCSTEBE		(1 << 27)
132 #define STS2_RDATEBE		(1 << 26)
133 #define STS2_AC12REBE		(1 << 25)
134 #define STS2_RSPEBE		(1 << 24)
135 #define STS2_AC12IDXE		(1 << 23)
136 #define STS2_RSPIDXE		(1 << 22)
137 #define STS2_CCSTO		(1 << 15)
138 #define STS2_RDATTO		(1 << 14)
139 #define STS2_DATBSYTO		(1 << 13)
140 #define STS2_CRCSTTO		(1 << 12)
141 #define STS2_AC12BSYTO		(1 << 11)
142 #define STS2_RSPBSYTO		(1 << 10)
143 #define STS2_AC12RSPTO		(1 << 9)
144 #define STS2_RSPTO		(1 << 8)
145 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
146 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
147 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
148 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
149 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
150 				 STS2_AC12RSPTO | STS2_RSPTO)
151 
152 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
153 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
154 #define CLKDEV_INIT		400000   /* 400 KHz */
155 
156 struct sh_mmcif_host {
157 	struct mmc_host *mmc;
158 	struct mmc_data *data;
159 	struct platform_device *pd;
160 	struct clk *hclk;
161 	unsigned int clk;
162 	int bus_width;
163 	bool sd_error;
164 	long timeout;
165 	void __iomem *addr;
166 	struct completion intr_wait;
167 
168 	/* DMA support */
169 	struct dma_chan		*chan_rx;
170 	struct dma_chan		*chan_tx;
171 	struct completion	dma_complete;
172 	unsigned int            dma_sglen;
173 };
174 
175 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
176 					unsigned int reg, u32 val)
177 {
178 	writel(val | readl(host->addr + reg), host->addr + reg);
179 }
180 
181 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
182 					unsigned int reg, u32 val)
183 {
184 	writel(~val & readl(host->addr + reg), host->addr + reg);
185 }
186 
187 static void mmcif_dma_complete(void *arg)
188 {
189 	struct sh_mmcif_host *host = arg;
190 	dev_dbg(&host->pd->dev, "Command completed\n");
191 
192 	if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
193 		 dev_name(&host->pd->dev)))
194 		return;
195 
196 	if (host->data->flags & MMC_DATA_READ)
197 		dma_unmap_sg(&host->pd->dev, host->data->sg, host->dma_sglen,
198 			     DMA_FROM_DEVICE);
199 	else
200 		dma_unmap_sg(&host->pd->dev, host->data->sg, host->dma_sglen,
201 			     DMA_TO_DEVICE);
202 
203 	complete(&host->dma_complete);
204 }
205 
206 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
207 {
208 	struct scatterlist *sg = host->data->sg;
209 	struct dma_async_tx_descriptor *desc = NULL;
210 	struct dma_chan *chan = host->chan_rx;
211 	dma_cookie_t cookie = -EINVAL;
212 	int ret;
213 
214 	ret = dma_map_sg(&host->pd->dev, sg, host->data->sg_len, DMA_FROM_DEVICE);
215 	if (ret > 0) {
216 		host->dma_sglen = ret;
217 		desc = chan->device->device_prep_slave_sg(chan, sg, ret,
218 			DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
219 	}
220 
221 	if (desc) {
222 		desc->callback = mmcif_dma_complete;
223 		desc->callback_param = host;
224 		cookie = desc->tx_submit(desc);
225 		if (cookie < 0) {
226 			desc = NULL;
227 			ret = cookie;
228 		} else {
229 			sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
230 			chan->device->device_issue_pending(chan);
231 		}
232 	}
233 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
234 		__func__, host->data->sg_len, ret, cookie);
235 
236 	if (!desc) {
237 		/* DMA failed, fall back to PIO */
238 		if (ret >= 0)
239 			ret = -EIO;
240 		host->chan_rx = NULL;
241 		host->dma_sglen = 0;
242 		dma_release_channel(chan);
243 		/* Free the Tx channel too */
244 		chan = host->chan_tx;
245 		if (chan) {
246 			host->chan_tx = NULL;
247 			dma_release_channel(chan);
248 		}
249 		dev_warn(&host->pd->dev,
250 			 "DMA failed: %d, falling back to PIO\n", ret);
251 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
252 	}
253 
254 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
255 		desc, cookie, host->data->sg_len);
256 }
257 
258 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
259 {
260 	struct scatterlist *sg = host->data->sg;
261 	struct dma_async_tx_descriptor *desc = NULL;
262 	struct dma_chan *chan = host->chan_tx;
263 	dma_cookie_t cookie = -EINVAL;
264 	int ret;
265 
266 	ret = dma_map_sg(&host->pd->dev, sg, host->data->sg_len, DMA_TO_DEVICE);
267 	if (ret > 0) {
268 		host->dma_sglen = ret;
269 		desc = chan->device->device_prep_slave_sg(chan, sg, ret,
270 			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
271 	}
272 
273 	if (desc) {
274 		desc->callback = mmcif_dma_complete;
275 		desc->callback_param = host;
276 		cookie = desc->tx_submit(desc);
277 		if (cookie < 0) {
278 			desc = NULL;
279 			ret = cookie;
280 		} else {
281 			sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
282 			chan->device->device_issue_pending(chan);
283 		}
284 	}
285 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
286 		__func__, host->data->sg_len, ret, cookie);
287 
288 	if (!desc) {
289 		/* DMA failed, fall back to PIO */
290 		if (ret >= 0)
291 			ret = -EIO;
292 		host->chan_tx = NULL;
293 		host->dma_sglen = 0;
294 		dma_release_channel(chan);
295 		/* Free the Rx channel too */
296 		chan = host->chan_rx;
297 		if (chan) {
298 			host->chan_rx = NULL;
299 			dma_release_channel(chan);
300 		}
301 		dev_warn(&host->pd->dev,
302 			 "DMA failed: %d, falling back to PIO\n", ret);
303 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
304 	}
305 
306 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
307 		desc, cookie);
308 }
309 
310 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
311 {
312 	dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
313 	chan->private = arg;
314 	return true;
315 }
316 
317 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
318 				 struct sh_mmcif_plat_data *pdata)
319 {
320 	host->dma_sglen = 0;
321 
322 	/* We can only either use DMA for both Tx and Rx or not use it at all */
323 	if (pdata->dma) {
324 		dma_cap_mask_t mask;
325 
326 		dma_cap_zero(mask);
327 		dma_cap_set(DMA_SLAVE, mask);
328 
329 		host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
330 						    &pdata->dma->chan_priv_tx);
331 		dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
332 			host->chan_tx);
333 
334 		if (!host->chan_tx)
335 			return;
336 
337 		host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
338 						    &pdata->dma->chan_priv_rx);
339 		dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
340 			host->chan_rx);
341 
342 		if (!host->chan_rx) {
343 			dma_release_channel(host->chan_tx);
344 			host->chan_tx = NULL;
345 			return;
346 		}
347 
348 		init_completion(&host->dma_complete);
349 	}
350 }
351 
352 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
353 {
354 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
355 	/* Descriptors are freed automatically */
356 	if (host->chan_tx) {
357 		struct dma_chan *chan = host->chan_tx;
358 		host->chan_tx = NULL;
359 		dma_release_channel(chan);
360 	}
361 	if (host->chan_rx) {
362 		struct dma_chan *chan = host->chan_rx;
363 		host->chan_rx = NULL;
364 		dma_release_channel(chan);
365 	}
366 
367 	host->dma_sglen = 0;
368 }
369 
370 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
371 {
372 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
373 
374 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
375 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
376 
377 	if (!clk)
378 		return;
379 	if (p->sup_pclk && clk == host->clk)
380 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
381 	else
382 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
383 			(ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
384 
385 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
386 }
387 
388 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
389 {
390 	u32 tmp;
391 
392 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
393 
394 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
395 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
396 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
397 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
398 	/* byte swap on */
399 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
400 }
401 
402 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
403 {
404 	u32 state1, state2;
405 	int ret, timeout = 10000000;
406 
407 	host->sd_error = false;
408 
409 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
410 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
411 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
412 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
413 
414 	if (state1 & STS1_CMDSEQ) {
415 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
416 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
417 		while (1) {
418 			timeout--;
419 			if (timeout < 0) {
420 				dev_err(&host->pd->dev,
421 					"Forceed end of command sequence timeout err\n");
422 				return -EIO;
423 			}
424 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
425 								& STS1_CMDSEQ))
426 				break;
427 			mdelay(1);
428 		}
429 		sh_mmcif_sync_reset(host);
430 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
431 		return -EIO;
432 	}
433 
434 	if (state2 & STS2_CRC_ERR) {
435 		dev_dbg(&host->pd->dev, ": Happened CRC error\n");
436 		ret = -EIO;
437 	} else if (state2 & STS2_TIMEOUT_ERR) {
438 		dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
439 		ret = -ETIMEDOUT;
440 	} else {
441 		dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
442 		ret = -EIO;
443 	}
444 	return ret;
445 }
446 
447 static int sh_mmcif_single_read(struct sh_mmcif_host *host,
448 					struct mmc_request *mrq)
449 {
450 	struct mmc_data *data = mrq->data;
451 	long time;
452 	u32 blocksize, i, *p = sg_virt(data->sg);
453 
454 	/* buf read enable */
455 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
456 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
457 			host->timeout);
458 	if (time <= 0 || host->sd_error)
459 		return sh_mmcif_error_manage(host);
460 
461 	blocksize = (BLOCK_SIZE_MASK &
462 			sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
463 	for (i = 0; i < blocksize / 4; i++)
464 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
465 
466 	/* buffer read end */
467 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
468 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
469 			host->timeout);
470 	if (time <= 0 || host->sd_error)
471 		return sh_mmcif_error_manage(host);
472 
473 	return 0;
474 }
475 
476 static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
477 					struct mmc_request *mrq)
478 {
479 	struct mmc_data *data = mrq->data;
480 	long time;
481 	u32 blocksize, i, j, sec, *p;
482 
483 	blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
484 						     MMCIF_CE_BLOCK_SET);
485 	for (j = 0; j < data->sg_len; j++) {
486 		p = sg_virt(data->sg);
487 		for (sec = 0; sec < data->sg->length / blocksize; sec++) {
488 			sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
489 			/* buf read enable */
490 			time = wait_for_completion_interruptible_timeout(&host->intr_wait,
491 				host->timeout);
492 
493 			if (time <= 0 || host->sd_error)
494 				return sh_mmcif_error_manage(host);
495 
496 			for (i = 0; i < blocksize / 4; i++)
497 				*p++ = sh_mmcif_readl(host->addr,
498 						      MMCIF_CE_DATA);
499 		}
500 		if (j < data->sg_len - 1)
501 			data->sg++;
502 	}
503 	return 0;
504 }
505 
506 static int sh_mmcif_single_write(struct sh_mmcif_host *host,
507 					struct mmc_request *mrq)
508 {
509 	struct mmc_data *data = mrq->data;
510 	long time;
511 	u32 blocksize, i, *p = sg_virt(data->sg);
512 
513 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
514 
515 	/* buf write enable */
516 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
517 			host->timeout);
518 	if (time <= 0 || host->sd_error)
519 		return sh_mmcif_error_manage(host);
520 
521 	blocksize = (BLOCK_SIZE_MASK &
522 			sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
523 	for (i = 0; i < blocksize / 4; i++)
524 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
525 
526 	/* buffer write end */
527 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
528 
529 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
530 			host->timeout);
531 	if (time <= 0 || host->sd_error)
532 		return sh_mmcif_error_manage(host);
533 
534 	return 0;
535 }
536 
537 static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
538 						struct mmc_request *mrq)
539 {
540 	struct mmc_data *data = mrq->data;
541 	long time;
542 	u32 i, sec, j, blocksize, *p;
543 
544 	blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
545 						     MMCIF_CE_BLOCK_SET);
546 
547 	for (j = 0; j < data->sg_len; j++) {
548 		p = sg_virt(data->sg);
549 		for (sec = 0; sec < data->sg->length / blocksize; sec++) {
550 			sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
551 			/* buf write enable*/
552 			time = wait_for_completion_interruptible_timeout(&host->intr_wait,
553 				host->timeout);
554 
555 			if (time <= 0 || host->sd_error)
556 				return sh_mmcif_error_manage(host);
557 
558 			for (i = 0; i < blocksize / 4; i++)
559 				sh_mmcif_writel(host->addr,
560 						MMCIF_CE_DATA, *p++);
561 		}
562 		if (j < data->sg_len - 1)
563 			data->sg++;
564 	}
565 	return 0;
566 }
567 
568 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
569 						struct mmc_command *cmd)
570 {
571 	if (cmd->flags & MMC_RSP_136) {
572 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
573 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
574 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
575 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
576 	} else
577 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
578 }
579 
580 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
581 						struct mmc_command *cmd)
582 {
583 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
584 }
585 
586 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
587 		struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
588 {
589 	u32 tmp = 0;
590 
591 	/* Response Type check */
592 	switch (mmc_resp_type(cmd)) {
593 	case MMC_RSP_NONE:
594 		tmp |= CMD_SET_RTYP_NO;
595 		break;
596 	case MMC_RSP_R1:
597 	case MMC_RSP_R1B:
598 	case MMC_RSP_R3:
599 		tmp |= CMD_SET_RTYP_6B;
600 		break;
601 	case MMC_RSP_R2:
602 		tmp |= CMD_SET_RTYP_17B;
603 		break;
604 	default:
605 		dev_err(&host->pd->dev, "Unsupported response type.\n");
606 		break;
607 	}
608 	switch (opc) {
609 	/* RBSY */
610 	case MMC_SWITCH:
611 	case MMC_STOP_TRANSMISSION:
612 	case MMC_SET_WRITE_PROT:
613 	case MMC_CLR_WRITE_PROT:
614 	case MMC_ERASE:
615 	case MMC_GEN_CMD:
616 		tmp |= CMD_SET_RBSY;
617 		break;
618 	}
619 	/* WDAT / DATW */
620 	if (host->data) {
621 		tmp |= CMD_SET_WDAT;
622 		switch (host->bus_width) {
623 		case MMC_BUS_WIDTH_1:
624 			tmp |= CMD_SET_DATW_1;
625 			break;
626 		case MMC_BUS_WIDTH_4:
627 			tmp |= CMD_SET_DATW_4;
628 			break;
629 		case MMC_BUS_WIDTH_8:
630 			tmp |= CMD_SET_DATW_8;
631 			break;
632 		default:
633 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
634 			break;
635 		}
636 	}
637 	/* DWEN */
638 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
639 		tmp |= CMD_SET_DWEN;
640 	/* CMLTE/CMD12EN */
641 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
642 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
643 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
644 					mrq->data->blocks << 16);
645 	}
646 	/* RIDXC[1:0] check bits */
647 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
648 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
649 		tmp |= CMD_SET_RIDXC_BITS;
650 	/* RCRC7C[1:0] check bits */
651 	if (opc == MMC_SEND_OP_COND)
652 		tmp |= CMD_SET_CRC7C_BITS;
653 	/* RCRC7C[1:0] internal CRC7 */
654 	if (opc == MMC_ALL_SEND_CID ||
655 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
656 		tmp |= CMD_SET_CRC7C_INTERNAL;
657 
658 	return opc = ((opc << 24) | tmp);
659 }
660 
661 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
662 				struct mmc_request *mrq, u32 opc)
663 {
664 	int ret;
665 
666 	switch (opc) {
667 	case MMC_READ_MULTIPLE_BLOCK:
668 		ret = sh_mmcif_multi_read(host, mrq);
669 		break;
670 	case MMC_WRITE_MULTIPLE_BLOCK:
671 		ret = sh_mmcif_multi_write(host, mrq);
672 		break;
673 	case MMC_WRITE_BLOCK:
674 		ret = sh_mmcif_single_write(host, mrq);
675 		break;
676 	case MMC_READ_SINGLE_BLOCK:
677 	case MMC_SEND_EXT_CSD:
678 		ret = sh_mmcif_single_read(host, mrq);
679 		break;
680 	default:
681 		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
682 		ret = -EINVAL;
683 		break;
684 	}
685 	return ret;
686 }
687 
688 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
689 			struct mmc_request *mrq, struct mmc_command *cmd)
690 {
691 	long time;
692 	int ret = 0, mask = 0;
693 	u32 opc = cmd->opcode;
694 
695 	switch (opc) {
696 	/* respons busy check */
697 	case MMC_SWITCH:
698 	case MMC_STOP_TRANSMISSION:
699 	case MMC_SET_WRITE_PROT:
700 	case MMC_CLR_WRITE_PROT:
701 	case MMC_ERASE:
702 	case MMC_GEN_CMD:
703 		mask = MASK_MRBSYE;
704 		break;
705 	default:
706 		mask = MASK_MCRSPE;
707 		break;
708 	}
709 	mask |=	MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
710 		MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
711 		MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
712 		MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
713 
714 	if (host->data) {
715 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
716 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
717 				mrq->data->blksz);
718 	}
719 	opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
720 
721 	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
722 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
723 	/* set arg */
724 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
725 	/* set cmd */
726 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
727 
728 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
729 		host->timeout);
730 	if (time <= 0) {
731 		cmd->error = sh_mmcif_error_manage(host);
732 		return;
733 	}
734 	if (host->sd_error) {
735 		switch (cmd->opcode) {
736 		case MMC_ALL_SEND_CID:
737 		case MMC_SELECT_CARD:
738 		case MMC_APP_CMD:
739 			cmd->error = -ETIMEDOUT;
740 			break;
741 		default:
742 			dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
743 					cmd->opcode);
744 			cmd->error = sh_mmcif_error_manage(host);
745 			break;
746 		}
747 		host->sd_error = false;
748 		return;
749 	}
750 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
751 		cmd->error = 0;
752 		return;
753 	}
754 	sh_mmcif_get_response(host, cmd);
755 	if (host->data) {
756 		if (!host->dma_sglen) {
757 			ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
758 		} else {
759 			long time =
760 				wait_for_completion_interruptible_timeout(&host->dma_complete,
761 									  host->timeout);
762 			if (!time)
763 				ret = -ETIMEDOUT;
764 			else if (time < 0)
765 				ret = time;
766 			sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
767 					BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
768 			host->dma_sglen = 0;
769 		}
770 		if (ret < 0)
771 			mrq->data->bytes_xfered = 0;
772 		else
773 			mrq->data->bytes_xfered =
774 				mrq->data->blocks * mrq->data->blksz;
775 	}
776 	cmd->error = ret;
777 }
778 
779 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
780 		struct mmc_request *mrq, struct mmc_command *cmd)
781 {
782 	long time;
783 
784 	if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
785 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
786 	else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
787 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
788 	else {
789 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
790 		cmd->error = sh_mmcif_error_manage(host);
791 		return;
792 	}
793 
794 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
795 			host->timeout);
796 	if (time <= 0 || host->sd_error) {
797 		cmd->error = sh_mmcif_error_manage(host);
798 		return;
799 	}
800 	sh_mmcif_get_cmd12response(host, cmd);
801 	cmd->error = 0;
802 }
803 
804 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
805 {
806 	struct sh_mmcif_host *host = mmc_priv(mmc);
807 
808 	switch (mrq->cmd->opcode) {
809 	/* MMCIF does not support SD/SDIO command */
810 	case SD_IO_SEND_OP_COND:
811 	case MMC_APP_CMD:
812 		mrq->cmd->error = -ETIMEDOUT;
813 		mmc_request_done(mmc, mrq);
814 		return;
815 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
816 		if (!mrq->data) {
817 			/* send_if_cond cmd (not support) */
818 			mrq->cmd->error = -ETIMEDOUT;
819 			mmc_request_done(mmc, mrq);
820 			return;
821 		}
822 		break;
823 	default:
824 		break;
825 	}
826 	host->data = mrq->data;
827 	if (mrq->data) {
828 		if (mrq->data->flags & MMC_DATA_READ) {
829 			if (host->chan_rx)
830 				sh_mmcif_start_dma_rx(host);
831 		} else {
832 			if (host->chan_tx)
833 				sh_mmcif_start_dma_tx(host);
834 		}
835 	}
836 	sh_mmcif_start_cmd(host, mrq, mrq->cmd);
837 	host->data = NULL;
838 
839 	if (mrq->cmd->error != 0) {
840 		mmc_request_done(mmc, mrq);
841 		return;
842 	}
843 	if (mrq->stop)
844 		sh_mmcif_stop_cmd(host, mrq, mrq->stop);
845 	mmc_request_done(mmc, mrq);
846 }
847 
848 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
849 {
850 	struct sh_mmcif_host *host = mmc_priv(mmc);
851 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
852 
853 	if (ios->power_mode == MMC_POWER_OFF) {
854 		/* clock stop */
855 		sh_mmcif_clock_control(host, 0);
856 		if (p->down_pwr)
857 			p->down_pwr(host->pd);
858 		return;
859 	} else if (ios->power_mode == MMC_POWER_UP) {
860 		if (p->set_pwr)
861 			p->set_pwr(host->pd, ios->power_mode);
862 	}
863 
864 	if (ios->clock)
865 		sh_mmcif_clock_control(host, ios->clock);
866 
867 	host->bus_width = ios->bus_width;
868 }
869 
870 static int sh_mmcif_get_cd(struct mmc_host *mmc)
871 {
872 	struct sh_mmcif_host *host = mmc_priv(mmc);
873 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
874 
875 	if (!p->get_cd)
876 		return -ENOSYS;
877 	else
878 		return p->get_cd(host->pd);
879 }
880 
881 static struct mmc_host_ops sh_mmcif_ops = {
882 	.request	= sh_mmcif_request,
883 	.set_ios	= sh_mmcif_set_ios,
884 	.get_cd		= sh_mmcif_get_cd,
885 };
886 
887 static void sh_mmcif_detect(struct mmc_host *mmc)
888 {
889 	mmc_detect_change(mmc, 0);
890 }
891 
892 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
893 {
894 	struct sh_mmcif_host *host = dev_id;
895 	u32 state;
896 	int err = 0;
897 
898 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
899 
900 	if (state & INT_RBSYE) {
901 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
902 				~(INT_RBSYE | INT_CRSPE));
903 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
904 	} else if (state & INT_CRSPE) {
905 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
906 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
907 	} else if (state & INT_BUFREN) {
908 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
909 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
910 	} else if (state & INT_BUFWEN) {
911 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
912 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
913 	} else if (state & INT_CMD12DRE) {
914 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
915 			~(INT_CMD12DRE | INT_CMD12RBE |
916 			  INT_CMD12CRE | INT_BUFRE));
917 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
918 	} else if (state & INT_BUFRE) {
919 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
920 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
921 	} else if (state & INT_DTRANE) {
922 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
923 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
924 	} else if (state & INT_CMD12RBE) {
925 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
926 				~(INT_CMD12RBE | INT_CMD12CRE));
927 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
928 	} else if (state & INT_ERR_STS) {
929 		/* err interrupts */
930 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
931 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
932 		err = 1;
933 	} else {
934 		dev_dbg(&host->pd->dev, "Not support int\n");
935 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
936 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
937 		err = 1;
938 	}
939 	if (err) {
940 		host->sd_error = true;
941 		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
942 	}
943 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
944 		complete(&host->intr_wait);
945 	else
946 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
947 
948 	return IRQ_HANDLED;
949 }
950 
951 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
952 {
953 	int ret = 0, irq[2];
954 	struct mmc_host *mmc;
955 	struct sh_mmcif_host *host;
956 	struct sh_mmcif_plat_data *pd;
957 	struct resource *res;
958 	void __iomem *reg;
959 	char clk_name[8];
960 
961 	irq[0] = platform_get_irq(pdev, 0);
962 	irq[1] = platform_get_irq(pdev, 1);
963 	if (irq[0] < 0 || irq[1] < 0) {
964 		dev_err(&pdev->dev, "Get irq error\n");
965 		return -ENXIO;
966 	}
967 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
968 	if (!res) {
969 		dev_err(&pdev->dev, "platform_get_resource error.\n");
970 		return -ENXIO;
971 	}
972 	reg = ioremap(res->start, resource_size(res));
973 	if (!reg) {
974 		dev_err(&pdev->dev, "ioremap error.\n");
975 		return -ENOMEM;
976 	}
977 	pd = pdev->dev.platform_data;
978 	if (!pd) {
979 		dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
980 		ret = -ENXIO;
981 		goto clean_up;
982 	}
983 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
984 	if (!mmc) {
985 		ret = -ENOMEM;
986 		goto clean_up;
987 	}
988 	host		= mmc_priv(mmc);
989 	host->mmc	= mmc;
990 	host->addr	= reg;
991 	host->timeout	= 1000;
992 
993 	snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
994 	host->hclk = clk_get(&pdev->dev, clk_name);
995 	if (IS_ERR(host->hclk)) {
996 		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
997 		ret = PTR_ERR(host->hclk);
998 		goto clean_up1;
999 	}
1000 	clk_enable(host->hclk);
1001 	host->clk = clk_get_rate(host->hclk);
1002 	host->pd = pdev;
1003 
1004 	init_completion(&host->intr_wait);
1005 
1006 	mmc->ops = &sh_mmcif_ops;
1007 	mmc->f_max = host->clk;
1008 	/* close to 400KHz */
1009 	if (mmc->f_max < 51200000)
1010 		mmc->f_min = mmc->f_max / 128;
1011 	else if (mmc->f_max < 102400000)
1012 		mmc->f_min = mmc->f_max / 256;
1013 	else
1014 		mmc->f_min = mmc->f_max / 512;
1015 	if (pd->ocr)
1016 		mmc->ocr_avail = pd->ocr;
1017 	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1018 	if (pd->caps)
1019 		mmc->caps |= pd->caps;
1020 	mmc->max_segs = 32;
1021 	mmc->max_blk_size = 512;
1022 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1023 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1024 	mmc->max_seg_size = mmc->max_req_size;
1025 
1026 	sh_mmcif_sync_reset(host);
1027 	platform_set_drvdata(pdev, host);
1028 
1029 	/* See if we also get DMA */
1030 	sh_mmcif_request_dma(host, pd);
1031 
1032 	mmc_add_host(mmc);
1033 
1034 	ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
1035 	if (ret) {
1036 		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1037 		goto clean_up2;
1038 	}
1039 	ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
1040 	if (ret) {
1041 		free_irq(irq[0], host);
1042 		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1043 		goto clean_up2;
1044 	}
1045 
1046 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1047 	sh_mmcif_detect(host->mmc);
1048 
1049 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1050 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1051 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1052 	return ret;
1053 
1054 clean_up2:
1055 	clk_disable(host->hclk);
1056 clean_up1:
1057 	mmc_free_host(mmc);
1058 clean_up:
1059 	if (reg)
1060 		iounmap(reg);
1061 	return ret;
1062 }
1063 
1064 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1065 {
1066 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1067 	int irq[2];
1068 
1069 	mmc_remove_host(host->mmc);
1070 	sh_mmcif_release_dma(host);
1071 
1072 	if (host->addr)
1073 		iounmap(host->addr);
1074 
1075 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1076 
1077 	irq[0] = platform_get_irq(pdev, 0);
1078 	irq[1] = platform_get_irq(pdev, 1);
1079 
1080 	free_irq(irq[0], host);
1081 	free_irq(irq[1], host);
1082 
1083 	platform_set_drvdata(pdev, NULL);
1084 
1085 	clk_disable(host->hclk);
1086 	mmc_free_host(host->mmc);
1087 
1088 	return 0;
1089 }
1090 
1091 static struct platform_driver sh_mmcif_driver = {
1092 	.probe		= sh_mmcif_probe,
1093 	.remove		= sh_mmcif_remove,
1094 	.driver		= {
1095 		.name	= DRIVER_NAME,
1096 	},
1097 };
1098 
1099 static int __init sh_mmcif_init(void)
1100 {
1101 	return platform_driver_register(&sh_mmcif_driver);
1102 }
1103 
1104 static void __exit sh_mmcif_exit(void)
1105 {
1106 	platform_driver_unregister(&sh_mmcif_driver);
1107 }
1108 
1109 module_init(sh_mmcif_init);
1110 module_exit(sh_mmcif_exit);
1111 
1112 
1113 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1114 MODULE_LICENSE("GPL");
1115 MODULE_ALIAS("platform:" DRIVER_NAME);
1116 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1117