xref: /linux/drivers/mmc/host/sh_mmcif.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/of_device.h>
61 #include <linux/pagemap.h>
62 #include <linux/platform_device.h>
63 #include <linux/pm_qos.h>
64 #include <linux/pm_runtime.h>
65 #include <linux/sh_dma.h>
66 #include <linux/spinlock.h>
67 #include <linux/module.h>
68 
69 #define DRIVER_NAME	"sh_mmcif"
70 #define DRIVER_VERSION	"2010-04-28"
71 
72 /* CE_CMD_SET */
73 #define CMD_MASK		0x3f000000
74 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
75 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
77 #define CMD_SET_RBSY		(1 << 21) /* R1b */
78 #define CMD_SET_CCSEN		(1 << 20)
79 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
80 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
81 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
82 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
83 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
84 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
85 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
86 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
87 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
88 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
90 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
91 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
92 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
93 #define CMD_SET_CCSH		(1 << 5)
94 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
95 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
96 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
97 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
98 
99 /* CE_CMD_CTRL */
100 #define CMD_CTRL_BREAK		(1 << 0)
101 
102 /* CE_BLOCK_SET */
103 #define BLOCK_SIZE_MASK		0x0000ffff
104 
105 /* CE_INT */
106 #define INT_CCSDE		(1 << 29)
107 #define INT_CMD12DRE		(1 << 26)
108 #define INT_CMD12RBE		(1 << 25)
109 #define INT_CMD12CRE		(1 << 24)
110 #define INT_DTRANE		(1 << 23)
111 #define INT_BUFRE		(1 << 22)
112 #define INT_BUFWEN		(1 << 21)
113 #define INT_BUFREN		(1 << 20)
114 #define INT_CCSRCV		(1 << 19)
115 #define INT_RBSYE		(1 << 17)
116 #define INT_CRSPE		(1 << 16)
117 #define INT_CMDVIO		(1 << 15)
118 #define INT_BUFVIO		(1 << 14)
119 #define INT_WDATERR		(1 << 11)
120 #define INT_RDATERR		(1 << 10)
121 #define INT_RIDXERR		(1 << 9)
122 #define INT_RSPERR		(1 << 8)
123 #define INT_CCSTO		(1 << 5)
124 #define INT_CRCSTO		(1 << 4)
125 #define INT_WDATTO		(1 << 3)
126 #define INT_RDATTO		(1 << 2)
127 #define INT_RBSYTO		(1 << 1)
128 #define INT_RSPTO		(1 << 0)
129 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
130 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
132 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133 
134 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
135 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137 
138 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139 
140 /* CE_INT_MASK */
141 #define MASK_ALL		0x00000000
142 #define MASK_MCCSDE		(1 << 29)
143 #define MASK_MCMD12DRE		(1 << 26)
144 #define MASK_MCMD12RBE		(1 << 25)
145 #define MASK_MCMD12CRE		(1 << 24)
146 #define MASK_MDTRANE		(1 << 23)
147 #define MASK_MBUFRE		(1 << 22)
148 #define MASK_MBUFWEN		(1 << 21)
149 #define MASK_MBUFREN		(1 << 20)
150 #define MASK_MCCSRCV		(1 << 19)
151 #define MASK_MRBSYE		(1 << 17)
152 #define MASK_MCRSPE		(1 << 16)
153 #define MASK_MCMDVIO		(1 << 15)
154 #define MASK_MBUFVIO		(1 << 14)
155 #define MASK_MWDATERR		(1 << 11)
156 #define MASK_MRDATERR		(1 << 10)
157 #define MASK_MRIDXERR		(1 << 9)
158 #define MASK_MRSPERR		(1 << 8)
159 #define MASK_MCCSTO		(1 << 5)
160 #define MASK_MCRCSTO		(1 << 4)
161 #define MASK_MWDATTO		(1 << 3)
162 #define MASK_MRDATTO		(1 << 2)
163 #define MASK_MRBSYTO		(1 << 1)
164 #define MASK_MRSPTO		(1 << 0)
165 
166 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 				 MASK_MCRCSTO | MASK_MWDATTO | \
169 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170 
171 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
172 				 MASK_MBUFREN | MASK_MBUFWEN |			\
173 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
174 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
175 
176 /* CE_HOST_STS1 */
177 #define STS1_CMDSEQ		(1 << 31)
178 
179 /* CE_HOST_STS2 */
180 #define STS2_CRCSTE		(1 << 31)
181 #define STS2_CRC16E		(1 << 30)
182 #define STS2_AC12CRCE		(1 << 29)
183 #define STS2_RSPCRC7E		(1 << 28)
184 #define STS2_CRCSTEBE		(1 << 27)
185 #define STS2_RDATEBE		(1 << 26)
186 #define STS2_AC12REBE		(1 << 25)
187 #define STS2_RSPEBE		(1 << 24)
188 #define STS2_AC12IDXE		(1 << 23)
189 #define STS2_RSPIDXE		(1 << 22)
190 #define STS2_CCSTO		(1 << 15)
191 #define STS2_RDATTO		(1 << 14)
192 #define STS2_DATBSYTO		(1 << 13)
193 #define STS2_CRCSTTO		(1 << 12)
194 #define STS2_AC12BSYTO		(1 << 11)
195 #define STS2_RSPBSYTO		(1 << 10)
196 #define STS2_AC12RSPTO		(1 << 9)
197 #define STS2_RSPTO		(1 << 8)
198 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
199 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
201 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
202 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
203 				 STS2_AC12RSPTO | STS2_RSPTO)
204 
205 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
206 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
207 #define CLKDEV_INIT		400000   /* 400 KHz */
208 
209 enum sh_mmcif_state {
210 	STATE_IDLE,
211 	STATE_REQUEST,
212 	STATE_IOS,
213 	STATE_TIMEOUT,
214 };
215 
216 enum sh_mmcif_wait_for {
217 	MMCIF_WAIT_FOR_REQUEST,
218 	MMCIF_WAIT_FOR_CMD,
219 	MMCIF_WAIT_FOR_MREAD,
220 	MMCIF_WAIT_FOR_MWRITE,
221 	MMCIF_WAIT_FOR_READ,
222 	MMCIF_WAIT_FOR_WRITE,
223 	MMCIF_WAIT_FOR_READ_END,
224 	MMCIF_WAIT_FOR_WRITE_END,
225 	MMCIF_WAIT_FOR_STOP,
226 };
227 
228 /*
229  * difference for each SoC
230  */
231 struct sh_mmcif_host {
232 	struct mmc_host *mmc;
233 	struct mmc_request *mrq;
234 	struct platform_device *pd;
235 	struct clk *clk;
236 	int bus_width;
237 	unsigned char timing;
238 	bool sd_error;
239 	bool dying;
240 	long timeout;
241 	void __iomem *addr;
242 	u32 *pio_ptr;
243 	spinlock_t lock;		/* protect sh_mmcif_host::state */
244 	enum sh_mmcif_state state;
245 	enum sh_mmcif_wait_for wait_for;
246 	struct delayed_work timeout_work;
247 	size_t blocksize;
248 	int sg_idx;
249 	int sg_blkidx;
250 	bool power;
251 	bool card_present;
252 	bool ccs_enable;		/* Command Completion Signal support */
253 	bool clk_ctrl2_enable;
254 	struct mutex thread_lock;
255 	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
256 
257 	/* DMA support */
258 	struct dma_chan		*chan_rx;
259 	struct dma_chan		*chan_tx;
260 	struct completion	dma_complete;
261 	bool			dma_active;
262 };
263 
264 static const struct of_device_id sh_mmcif_of_match[] = {
265 	{ .compatible = "renesas,sh-mmcif" },
266 	{ }
267 };
268 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
269 
270 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
271 
272 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
273 					unsigned int reg, u32 val)
274 {
275 	writel(val | readl(host->addr + reg), host->addr + reg);
276 }
277 
278 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
279 					unsigned int reg, u32 val)
280 {
281 	writel(~val & readl(host->addr + reg), host->addr + reg);
282 }
283 
284 static void sh_mmcif_dma_complete(void *arg)
285 {
286 	struct sh_mmcif_host *host = arg;
287 	struct mmc_request *mrq = host->mrq;
288 	struct device *dev = sh_mmcif_host_to_dev(host);
289 
290 	dev_dbg(dev, "Command completed\n");
291 
292 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
293 		 dev_name(dev)))
294 		return;
295 
296 	complete(&host->dma_complete);
297 }
298 
299 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
300 {
301 	struct mmc_data *data = host->mrq->data;
302 	struct scatterlist *sg = data->sg;
303 	struct dma_async_tx_descriptor *desc = NULL;
304 	struct dma_chan *chan = host->chan_rx;
305 	struct device *dev = sh_mmcif_host_to_dev(host);
306 	dma_cookie_t cookie = -EINVAL;
307 	int ret;
308 
309 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
310 			 DMA_FROM_DEVICE);
311 	if (ret > 0) {
312 		host->dma_active = true;
313 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
314 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
315 	}
316 
317 	if (desc) {
318 		desc->callback = sh_mmcif_dma_complete;
319 		desc->callback_param = host;
320 		cookie = dmaengine_submit(desc);
321 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
322 		dma_async_issue_pending(chan);
323 	}
324 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
325 		__func__, data->sg_len, ret, cookie);
326 
327 	if (!desc) {
328 		/* DMA failed, fall back to PIO */
329 		if (ret >= 0)
330 			ret = -EIO;
331 		host->chan_rx = NULL;
332 		host->dma_active = false;
333 		dma_release_channel(chan);
334 		/* Free the Tx channel too */
335 		chan = host->chan_tx;
336 		if (chan) {
337 			host->chan_tx = NULL;
338 			dma_release_channel(chan);
339 		}
340 		dev_warn(dev,
341 			 "DMA failed: %d, falling back to PIO\n", ret);
342 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
343 	}
344 
345 	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
346 		desc, cookie, data->sg_len);
347 }
348 
349 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
350 {
351 	struct mmc_data *data = host->mrq->data;
352 	struct scatterlist *sg = data->sg;
353 	struct dma_async_tx_descriptor *desc = NULL;
354 	struct dma_chan *chan = host->chan_tx;
355 	struct device *dev = sh_mmcif_host_to_dev(host);
356 	dma_cookie_t cookie = -EINVAL;
357 	int ret;
358 
359 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
360 			 DMA_TO_DEVICE);
361 	if (ret > 0) {
362 		host->dma_active = true;
363 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
364 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
365 	}
366 
367 	if (desc) {
368 		desc->callback = sh_mmcif_dma_complete;
369 		desc->callback_param = host;
370 		cookie = dmaengine_submit(desc);
371 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
372 		dma_async_issue_pending(chan);
373 	}
374 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
375 		__func__, data->sg_len, ret, cookie);
376 
377 	if (!desc) {
378 		/* DMA failed, fall back to PIO */
379 		if (ret >= 0)
380 			ret = -EIO;
381 		host->chan_tx = NULL;
382 		host->dma_active = false;
383 		dma_release_channel(chan);
384 		/* Free the Rx channel too */
385 		chan = host->chan_rx;
386 		if (chan) {
387 			host->chan_rx = NULL;
388 			dma_release_channel(chan);
389 		}
390 		dev_warn(dev,
391 			 "DMA failed: %d, falling back to PIO\n", ret);
392 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
393 	}
394 
395 	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
396 		desc, cookie);
397 }
398 
399 static struct dma_chan *
400 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
401 			 struct sh_mmcif_plat_data *pdata,
402 			 enum dma_transfer_direction direction)
403 {
404 	struct dma_slave_config cfg = { 0, };
405 	struct dma_chan *chan;
406 	void *slave_data = NULL;
407 	struct resource *res;
408 	struct device *dev = sh_mmcif_host_to_dev(host);
409 	dma_cap_mask_t mask;
410 	int ret;
411 
412 	dma_cap_zero(mask);
413 	dma_cap_set(DMA_SLAVE, mask);
414 
415 	if (pdata)
416 		slave_data = direction == DMA_MEM_TO_DEV ?
417 			(void *)pdata->slave_id_tx :
418 			(void *)pdata->slave_id_rx;
419 
420 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
421 				slave_data, dev,
422 				direction == DMA_MEM_TO_DEV ? "tx" : "rx");
423 
424 	dev_dbg(dev, "%s: %s: got channel %p\n", __func__,
425 		direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
426 
427 	if (!chan)
428 		return NULL;
429 
430 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
431 
432 	cfg.direction = direction;
433 
434 	if (direction == DMA_DEV_TO_MEM) {
435 		cfg.src_addr = res->start + MMCIF_CE_DATA;
436 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
437 	} else {
438 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
439 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
440 	}
441 
442 	ret = dmaengine_slave_config(chan, &cfg);
443 	if (ret < 0) {
444 		dma_release_channel(chan);
445 		return NULL;
446 	}
447 
448 	return chan;
449 }
450 
451 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
452 				 struct sh_mmcif_plat_data *pdata)
453 {
454 	struct device *dev = sh_mmcif_host_to_dev(host);
455 	host->dma_active = false;
456 
457 	if (pdata) {
458 		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
459 			return;
460 	} else if (!dev->of_node) {
461 		return;
462 	}
463 
464 	/* We can only either use DMA for both Tx and Rx or not use it at all */
465 	host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
466 	if (!host->chan_tx)
467 		return;
468 
469 	host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
470 	if (!host->chan_rx) {
471 		dma_release_channel(host->chan_tx);
472 		host->chan_tx = NULL;
473 	}
474 }
475 
476 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
477 {
478 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
479 	/* Descriptors are freed automatically */
480 	if (host->chan_tx) {
481 		struct dma_chan *chan = host->chan_tx;
482 		host->chan_tx = NULL;
483 		dma_release_channel(chan);
484 	}
485 	if (host->chan_rx) {
486 		struct dma_chan *chan = host->chan_rx;
487 		host->chan_rx = NULL;
488 		dma_release_channel(chan);
489 	}
490 
491 	host->dma_active = false;
492 }
493 
494 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
495 {
496 	struct device *dev = sh_mmcif_host_to_dev(host);
497 	struct sh_mmcif_plat_data *p = dev->platform_data;
498 	bool sup_pclk = p ? p->sup_pclk : false;
499 	unsigned int current_clk = clk_get_rate(host->clk);
500 	unsigned int clkdiv;
501 
502 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
503 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
504 
505 	if (!clk)
506 		return;
507 
508 	if (host->clkdiv_map) {
509 		unsigned int freq, best_freq, myclk, div, diff_min, diff;
510 		int i;
511 
512 		clkdiv = 0;
513 		diff_min = ~0;
514 		best_freq = 0;
515 		for (i = 31; i >= 0; i--) {
516 			if (!((1 << i) & host->clkdiv_map))
517 				continue;
518 
519 			/*
520 			 * clk = parent_freq / div
521 			 * -> parent_freq = clk x div
522 			 */
523 
524 			div = 1 << (i + 1);
525 			freq = clk_round_rate(host->clk, clk * div);
526 			myclk = freq / div;
527 			diff = (myclk > clk) ? myclk - clk : clk - myclk;
528 
529 			if (diff <= diff_min) {
530 				best_freq = freq;
531 				clkdiv = i;
532 				diff_min = diff;
533 			}
534 		}
535 
536 		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
537 			(best_freq / (1 << (clkdiv + 1))), clk,
538 			best_freq, clkdiv);
539 
540 		clk_set_rate(host->clk, best_freq);
541 		clkdiv = clkdiv << 16;
542 	} else if (sup_pclk && clk == current_clk) {
543 		clkdiv = CLK_SUP_PCLK;
544 	} else {
545 		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
546 	}
547 
548 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
549 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
550 }
551 
552 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
553 {
554 	u32 tmp;
555 
556 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
557 
558 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
559 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
560 	if (host->ccs_enable)
561 		tmp |= SCCSTO_29;
562 	if (host->clk_ctrl2_enable)
563 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
564 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
565 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
566 	/* byte swap on */
567 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
568 }
569 
570 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
571 {
572 	struct device *dev = sh_mmcif_host_to_dev(host);
573 	u32 state1, state2;
574 	int ret, timeout;
575 
576 	host->sd_error = false;
577 
578 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
579 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
580 	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
581 	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
582 
583 	if (state1 & STS1_CMDSEQ) {
584 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
585 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
586 		for (timeout = 10000000; timeout; timeout--) {
587 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
588 			      & STS1_CMDSEQ))
589 				break;
590 			mdelay(1);
591 		}
592 		if (!timeout) {
593 			dev_err(dev,
594 				"Forced end of command sequence timeout err\n");
595 			return -EIO;
596 		}
597 		sh_mmcif_sync_reset(host);
598 		dev_dbg(dev, "Forced end of command sequence\n");
599 		return -EIO;
600 	}
601 
602 	if (state2 & STS2_CRC_ERR) {
603 		dev_err(dev, " CRC error: state %u, wait %u\n",
604 			host->state, host->wait_for);
605 		ret = -EIO;
606 	} else if (state2 & STS2_TIMEOUT_ERR) {
607 		dev_err(dev, " Timeout: state %u, wait %u\n",
608 			host->state, host->wait_for);
609 		ret = -ETIMEDOUT;
610 	} else {
611 		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
612 			host->state, host->wait_for);
613 		ret = -EIO;
614 	}
615 	return ret;
616 }
617 
618 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
619 {
620 	struct mmc_data *data = host->mrq->data;
621 
622 	host->sg_blkidx += host->blocksize;
623 
624 	/* data->sg->length must be a multiple of host->blocksize? */
625 	BUG_ON(host->sg_blkidx > data->sg->length);
626 
627 	if (host->sg_blkidx == data->sg->length) {
628 		host->sg_blkidx = 0;
629 		if (++host->sg_idx < data->sg_len)
630 			host->pio_ptr = sg_virt(++data->sg);
631 	} else {
632 		host->pio_ptr = p;
633 	}
634 
635 	return host->sg_idx != data->sg_len;
636 }
637 
638 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
639 				 struct mmc_request *mrq)
640 {
641 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
642 			   BLOCK_SIZE_MASK) + 3;
643 
644 	host->wait_for = MMCIF_WAIT_FOR_READ;
645 
646 	/* buf read enable */
647 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
648 }
649 
650 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
651 {
652 	struct device *dev = sh_mmcif_host_to_dev(host);
653 	struct mmc_data *data = host->mrq->data;
654 	u32 *p = sg_virt(data->sg);
655 	int i;
656 
657 	if (host->sd_error) {
658 		data->error = sh_mmcif_error_manage(host);
659 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
660 		return false;
661 	}
662 
663 	for (i = 0; i < host->blocksize / 4; i++)
664 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
665 
666 	/* buffer read end */
667 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
668 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
669 
670 	return true;
671 }
672 
673 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
674 				struct mmc_request *mrq)
675 {
676 	struct mmc_data *data = mrq->data;
677 
678 	if (!data->sg_len || !data->sg->length)
679 		return;
680 
681 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
682 		BLOCK_SIZE_MASK;
683 
684 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
685 	host->sg_idx = 0;
686 	host->sg_blkidx = 0;
687 	host->pio_ptr = sg_virt(data->sg);
688 
689 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
690 }
691 
692 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
693 {
694 	struct device *dev = sh_mmcif_host_to_dev(host);
695 	struct mmc_data *data = host->mrq->data;
696 	u32 *p = host->pio_ptr;
697 	int i;
698 
699 	if (host->sd_error) {
700 		data->error = sh_mmcif_error_manage(host);
701 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
702 		return false;
703 	}
704 
705 	BUG_ON(!data->sg->length);
706 
707 	for (i = 0; i < host->blocksize / 4; i++)
708 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
709 
710 	if (!sh_mmcif_next_block(host, p))
711 		return false;
712 
713 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
714 
715 	return true;
716 }
717 
718 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
719 					struct mmc_request *mrq)
720 {
721 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
722 			   BLOCK_SIZE_MASK) + 3;
723 
724 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
725 
726 	/* buf write enable */
727 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
728 }
729 
730 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
731 {
732 	struct device *dev = sh_mmcif_host_to_dev(host);
733 	struct mmc_data *data = host->mrq->data;
734 	u32 *p = sg_virt(data->sg);
735 	int i;
736 
737 	if (host->sd_error) {
738 		data->error = sh_mmcif_error_manage(host);
739 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
740 		return false;
741 	}
742 
743 	for (i = 0; i < host->blocksize / 4; i++)
744 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
745 
746 	/* buffer write end */
747 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
748 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
749 
750 	return true;
751 }
752 
753 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
754 				struct mmc_request *mrq)
755 {
756 	struct mmc_data *data = mrq->data;
757 
758 	if (!data->sg_len || !data->sg->length)
759 		return;
760 
761 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
762 		BLOCK_SIZE_MASK;
763 
764 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
765 	host->sg_idx = 0;
766 	host->sg_blkidx = 0;
767 	host->pio_ptr = sg_virt(data->sg);
768 
769 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
770 }
771 
772 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
773 {
774 	struct device *dev = sh_mmcif_host_to_dev(host);
775 	struct mmc_data *data = host->mrq->data;
776 	u32 *p = host->pio_ptr;
777 	int i;
778 
779 	if (host->sd_error) {
780 		data->error = sh_mmcif_error_manage(host);
781 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
782 		return false;
783 	}
784 
785 	BUG_ON(!data->sg->length);
786 
787 	for (i = 0; i < host->blocksize / 4; i++)
788 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
789 
790 	if (!sh_mmcif_next_block(host, p))
791 		return false;
792 
793 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
794 
795 	return true;
796 }
797 
798 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
799 						struct mmc_command *cmd)
800 {
801 	if (cmd->flags & MMC_RSP_136) {
802 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
803 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
804 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
805 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
806 	} else
807 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
808 }
809 
810 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
811 						struct mmc_command *cmd)
812 {
813 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
814 }
815 
816 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
817 			    struct mmc_request *mrq)
818 {
819 	struct device *dev = sh_mmcif_host_to_dev(host);
820 	struct mmc_data *data = mrq->data;
821 	struct mmc_command *cmd = mrq->cmd;
822 	u32 opc = cmd->opcode;
823 	u32 tmp = 0;
824 
825 	/* Response Type check */
826 	switch (mmc_resp_type(cmd)) {
827 	case MMC_RSP_NONE:
828 		tmp |= CMD_SET_RTYP_NO;
829 		break;
830 	case MMC_RSP_R1:
831 	case MMC_RSP_R1B:
832 	case MMC_RSP_R3:
833 		tmp |= CMD_SET_RTYP_6B;
834 		break;
835 	case MMC_RSP_R2:
836 		tmp |= CMD_SET_RTYP_17B;
837 		break;
838 	default:
839 		dev_err(dev, "Unsupported response type.\n");
840 		break;
841 	}
842 	switch (opc) {
843 	/* RBSY */
844 	case MMC_SLEEP_AWAKE:
845 	case MMC_SWITCH:
846 	case MMC_STOP_TRANSMISSION:
847 	case MMC_SET_WRITE_PROT:
848 	case MMC_CLR_WRITE_PROT:
849 	case MMC_ERASE:
850 		tmp |= CMD_SET_RBSY;
851 		break;
852 	}
853 	/* WDAT / DATW */
854 	if (data) {
855 		tmp |= CMD_SET_WDAT;
856 		switch (host->bus_width) {
857 		case MMC_BUS_WIDTH_1:
858 			tmp |= CMD_SET_DATW_1;
859 			break;
860 		case MMC_BUS_WIDTH_4:
861 			tmp |= CMD_SET_DATW_4;
862 			break;
863 		case MMC_BUS_WIDTH_8:
864 			tmp |= CMD_SET_DATW_8;
865 			break;
866 		default:
867 			dev_err(dev, "Unsupported bus width.\n");
868 			break;
869 		}
870 		switch (host->timing) {
871 		case MMC_TIMING_MMC_DDR52:
872 			/*
873 			 * MMC core will only set this timing, if the host
874 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
875 			 * capability. MMCIF implementations with this
876 			 * capability, e.g. sh73a0, will have to set it
877 			 * in their platform data.
878 			 */
879 			tmp |= CMD_SET_DARS;
880 			break;
881 		}
882 	}
883 	/* DWEN */
884 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
885 		tmp |= CMD_SET_DWEN;
886 	/* CMLTE/CMD12EN */
887 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
888 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
889 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
890 				data->blocks << 16);
891 	}
892 	/* RIDXC[1:0] check bits */
893 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
894 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
895 		tmp |= CMD_SET_RIDXC_BITS;
896 	/* RCRC7C[1:0] check bits */
897 	if (opc == MMC_SEND_OP_COND)
898 		tmp |= CMD_SET_CRC7C_BITS;
899 	/* RCRC7C[1:0] internal CRC7 */
900 	if (opc == MMC_ALL_SEND_CID ||
901 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
902 		tmp |= CMD_SET_CRC7C_INTERNAL;
903 
904 	return (opc << 24) | tmp;
905 }
906 
907 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
908 			       struct mmc_request *mrq, u32 opc)
909 {
910 	struct device *dev = sh_mmcif_host_to_dev(host);
911 
912 	switch (opc) {
913 	case MMC_READ_MULTIPLE_BLOCK:
914 		sh_mmcif_multi_read(host, mrq);
915 		return 0;
916 	case MMC_WRITE_MULTIPLE_BLOCK:
917 		sh_mmcif_multi_write(host, mrq);
918 		return 0;
919 	case MMC_WRITE_BLOCK:
920 		sh_mmcif_single_write(host, mrq);
921 		return 0;
922 	case MMC_READ_SINGLE_BLOCK:
923 	case MMC_SEND_EXT_CSD:
924 		sh_mmcif_single_read(host, mrq);
925 		return 0;
926 	default:
927 		dev_err(dev, "Unsupported CMD%d\n", opc);
928 		return -EINVAL;
929 	}
930 }
931 
932 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
933 			       struct mmc_request *mrq)
934 {
935 	struct mmc_command *cmd = mrq->cmd;
936 	u32 opc = cmd->opcode;
937 	u32 mask;
938 	unsigned long flags;
939 
940 	switch (opc) {
941 	/* response busy check */
942 	case MMC_SLEEP_AWAKE:
943 	case MMC_SWITCH:
944 	case MMC_STOP_TRANSMISSION:
945 	case MMC_SET_WRITE_PROT:
946 	case MMC_CLR_WRITE_PROT:
947 	case MMC_ERASE:
948 		mask = MASK_START_CMD | MASK_MRBSYE;
949 		break;
950 	default:
951 		mask = MASK_START_CMD | MASK_MCRSPE;
952 		break;
953 	}
954 
955 	if (host->ccs_enable)
956 		mask |= MASK_MCCSTO;
957 
958 	if (mrq->data) {
959 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
960 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
961 				mrq->data->blksz);
962 	}
963 	opc = sh_mmcif_set_cmd(host, mrq);
964 
965 	if (host->ccs_enable)
966 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
967 	else
968 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
969 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
970 	/* set arg */
971 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
972 	/* set cmd */
973 	spin_lock_irqsave(&host->lock, flags);
974 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
975 
976 	host->wait_for = MMCIF_WAIT_FOR_CMD;
977 	schedule_delayed_work(&host->timeout_work, host->timeout);
978 	spin_unlock_irqrestore(&host->lock, flags);
979 }
980 
981 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
982 			      struct mmc_request *mrq)
983 {
984 	struct device *dev = sh_mmcif_host_to_dev(host);
985 
986 	switch (mrq->cmd->opcode) {
987 	case MMC_READ_MULTIPLE_BLOCK:
988 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
989 		break;
990 	case MMC_WRITE_MULTIPLE_BLOCK:
991 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
992 		break;
993 	default:
994 		dev_err(dev, "unsupported stop cmd\n");
995 		mrq->stop->error = sh_mmcif_error_manage(host);
996 		return;
997 	}
998 
999 	host->wait_for = MMCIF_WAIT_FOR_STOP;
1000 }
1001 
1002 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
1003 {
1004 	struct sh_mmcif_host *host = mmc_priv(mmc);
1005 	struct device *dev = sh_mmcif_host_to_dev(host);
1006 	unsigned long flags;
1007 
1008 	spin_lock_irqsave(&host->lock, flags);
1009 	if (host->state != STATE_IDLE) {
1010 		dev_dbg(dev, "%s() rejected, state %u\n",
1011 			__func__, host->state);
1012 		spin_unlock_irqrestore(&host->lock, flags);
1013 		mrq->cmd->error = -EAGAIN;
1014 		mmc_request_done(mmc, mrq);
1015 		return;
1016 	}
1017 
1018 	host->state = STATE_REQUEST;
1019 	spin_unlock_irqrestore(&host->lock, flags);
1020 
1021 	switch (mrq->cmd->opcode) {
1022 	/* MMCIF does not support SD/SDIO command */
1023 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
1024 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
1025 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
1026 			break;
1027 	case MMC_APP_CMD:
1028 	case SD_IO_RW_DIRECT:
1029 		host->state = STATE_IDLE;
1030 		mrq->cmd->error = -ETIMEDOUT;
1031 		mmc_request_done(mmc, mrq);
1032 		return;
1033 	default:
1034 		break;
1035 	}
1036 
1037 	host->mrq = mrq;
1038 
1039 	sh_mmcif_start_cmd(host, mrq);
1040 }
1041 
1042 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1043 {
1044 	struct device *dev = sh_mmcif_host_to_dev(host);
1045 
1046 	if (host->mmc->f_max) {
1047 		unsigned int f_max, f_min = 0, f_min_old;
1048 
1049 		f_max = host->mmc->f_max;
1050 		for (f_min_old = f_max; f_min_old > 2;) {
1051 			f_min = clk_round_rate(host->clk, f_min_old / 2);
1052 			if (f_min == f_min_old)
1053 				break;
1054 			f_min_old = f_min;
1055 		}
1056 
1057 		/*
1058 		 * This driver assumes this SoC is R-Car Gen2 or later
1059 		 */
1060 		host->clkdiv_map = 0x3ff;
1061 
1062 		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1063 		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1064 	} else {
1065 		unsigned int clk = clk_get_rate(host->clk);
1066 
1067 		host->mmc->f_max = clk / 2;
1068 		host->mmc->f_min = clk / 512;
1069 	}
1070 
1071 	dev_dbg(dev, "clk max/min = %d/%d\n",
1072 		host->mmc->f_max, host->mmc->f_min);
1073 }
1074 
1075 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
1076 {
1077 	struct mmc_host *mmc = host->mmc;
1078 
1079 	if (!IS_ERR(mmc->supply.vmmc))
1080 		/* Errors ignored... */
1081 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1082 				      ios->power_mode ? ios->vdd : 0);
1083 }
1084 
1085 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1086 {
1087 	struct sh_mmcif_host *host = mmc_priv(mmc);
1088 	struct device *dev = sh_mmcif_host_to_dev(host);
1089 	unsigned long flags;
1090 
1091 	spin_lock_irqsave(&host->lock, flags);
1092 	if (host->state != STATE_IDLE) {
1093 		dev_dbg(dev, "%s() rejected, state %u\n",
1094 			__func__, host->state);
1095 		spin_unlock_irqrestore(&host->lock, flags);
1096 		return;
1097 	}
1098 
1099 	host->state = STATE_IOS;
1100 	spin_unlock_irqrestore(&host->lock, flags);
1101 
1102 	if (ios->power_mode == MMC_POWER_UP) {
1103 		if (!host->card_present) {
1104 			/* See if we also get DMA */
1105 			sh_mmcif_request_dma(host, dev->platform_data);
1106 			host->card_present = true;
1107 		}
1108 		sh_mmcif_set_power(host, ios);
1109 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1110 		/* clock stop */
1111 		sh_mmcif_clock_control(host, 0);
1112 		if (ios->power_mode == MMC_POWER_OFF) {
1113 			if (host->card_present) {
1114 				sh_mmcif_release_dma(host);
1115 				host->card_present = false;
1116 			}
1117 		}
1118 		if (host->power) {
1119 			pm_runtime_put_sync(dev);
1120 			clk_disable_unprepare(host->clk);
1121 			host->power = false;
1122 			if (ios->power_mode == MMC_POWER_OFF)
1123 				sh_mmcif_set_power(host, ios);
1124 		}
1125 		host->state = STATE_IDLE;
1126 		return;
1127 	}
1128 
1129 	if (ios->clock) {
1130 		if (!host->power) {
1131 			clk_prepare_enable(host->clk);
1132 
1133 			pm_runtime_get_sync(dev);
1134 			host->power = true;
1135 			sh_mmcif_sync_reset(host);
1136 		}
1137 		sh_mmcif_clock_control(host, ios->clock);
1138 	}
1139 
1140 	host->timing = ios->timing;
1141 	host->bus_width = ios->bus_width;
1142 	host->state = STATE_IDLE;
1143 }
1144 
1145 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1146 {
1147 	struct sh_mmcif_host *host = mmc_priv(mmc);
1148 	struct device *dev = sh_mmcif_host_to_dev(host);
1149 	struct sh_mmcif_plat_data *p = dev->platform_data;
1150 	int ret = mmc_gpio_get_cd(mmc);
1151 
1152 	if (ret >= 0)
1153 		return ret;
1154 
1155 	if (!p || !p->get_cd)
1156 		return -ENOSYS;
1157 	else
1158 		return p->get_cd(host->pd);
1159 }
1160 
1161 static struct mmc_host_ops sh_mmcif_ops = {
1162 	.request	= sh_mmcif_request,
1163 	.set_ios	= sh_mmcif_set_ios,
1164 	.get_cd		= sh_mmcif_get_cd,
1165 };
1166 
1167 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1168 {
1169 	struct mmc_command *cmd = host->mrq->cmd;
1170 	struct mmc_data *data = host->mrq->data;
1171 	struct device *dev = sh_mmcif_host_to_dev(host);
1172 	long time;
1173 
1174 	if (host->sd_error) {
1175 		switch (cmd->opcode) {
1176 		case MMC_ALL_SEND_CID:
1177 		case MMC_SELECT_CARD:
1178 		case MMC_APP_CMD:
1179 			cmd->error = -ETIMEDOUT;
1180 			break;
1181 		default:
1182 			cmd->error = sh_mmcif_error_manage(host);
1183 			break;
1184 		}
1185 		dev_dbg(dev, "CMD%d error %d\n",
1186 			cmd->opcode, cmd->error);
1187 		host->sd_error = false;
1188 		return false;
1189 	}
1190 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1191 		cmd->error = 0;
1192 		return false;
1193 	}
1194 
1195 	sh_mmcif_get_response(host, cmd);
1196 
1197 	if (!data)
1198 		return false;
1199 
1200 	/*
1201 	 * Completion can be signalled from DMA callback and error, so, have to
1202 	 * reset here, before setting .dma_active
1203 	 */
1204 	init_completion(&host->dma_complete);
1205 
1206 	if (data->flags & MMC_DATA_READ) {
1207 		if (host->chan_rx)
1208 			sh_mmcif_start_dma_rx(host);
1209 	} else {
1210 		if (host->chan_tx)
1211 			sh_mmcif_start_dma_tx(host);
1212 	}
1213 
1214 	if (!host->dma_active) {
1215 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1216 		return !data->error;
1217 	}
1218 
1219 	/* Running in the IRQ thread, can sleep */
1220 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1221 							 host->timeout);
1222 
1223 	if (data->flags & MMC_DATA_READ)
1224 		dma_unmap_sg(host->chan_rx->device->dev,
1225 			     data->sg, data->sg_len,
1226 			     DMA_FROM_DEVICE);
1227 	else
1228 		dma_unmap_sg(host->chan_tx->device->dev,
1229 			     data->sg, data->sg_len,
1230 			     DMA_TO_DEVICE);
1231 
1232 	if (host->sd_error) {
1233 		dev_err(host->mmc->parent,
1234 			"Error IRQ while waiting for DMA completion!\n");
1235 		/* Woken up by an error IRQ: abort DMA */
1236 		data->error = sh_mmcif_error_manage(host);
1237 	} else if (!time) {
1238 		dev_err(host->mmc->parent, "DMA timeout!\n");
1239 		data->error = -ETIMEDOUT;
1240 	} else if (time < 0) {
1241 		dev_err(host->mmc->parent,
1242 			"wait_for_completion_...() error %ld!\n", time);
1243 		data->error = time;
1244 	}
1245 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1246 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1247 	host->dma_active = false;
1248 
1249 	if (data->error) {
1250 		data->bytes_xfered = 0;
1251 		/* Abort DMA */
1252 		if (data->flags & MMC_DATA_READ)
1253 			dmaengine_terminate_all(host->chan_rx);
1254 		else
1255 			dmaengine_terminate_all(host->chan_tx);
1256 	}
1257 
1258 	return false;
1259 }
1260 
1261 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1262 {
1263 	struct sh_mmcif_host *host = dev_id;
1264 	struct mmc_request *mrq;
1265 	struct device *dev = sh_mmcif_host_to_dev(host);
1266 	bool wait = false;
1267 	unsigned long flags;
1268 	int wait_work;
1269 
1270 	spin_lock_irqsave(&host->lock, flags);
1271 	wait_work = host->wait_for;
1272 	spin_unlock_irqrestore(&host->lock, flags);
1273 
1274 	cancel_delayed_work_sync(&host->timeout_work);
1275 
1276 	mutex_lock(&host->thread_lock);
1277 
1278 	mrq = host->mrq;
1279 	if (!mrq) {
1280 		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1281 			host->state, host->wait_for);
1282 		mutex_unlock(&host->thread_lock);
1283 		return IRQ_HANDLED;
1284 	}
1285 
1286 	/*
1287 	 * All handlers return true, if processing continues, and false, if the
1288 	 * request has to be completed - successfully or not
1289 	 */
1290 	switch (wait_work) {
1291 	case MMCIF_WAIT_FOR_REQUEST:
1292 		/* We're too late, the timeout has already kicked in */
1293 		mutex_unlock(&host->thread_lock);
1294 		return IRQ_HANDLED;
1295 	case MMCIF_WAIT_FOR_CMD:
1296 		/* Wait for data? */
1297 		wait = sh_mmcif_end_cmd(host);
1298 		break;
1299 	case MMCIF_WAIT_FOR_MREAD:
1300 		/* Wait for more data? */
1301 		wait = sh_mmcif_mread_block(host);
1302 		break;
1303 	case MMCIF_WAIT_FOR_READ:
1304 		/* Wait for data end? */
1305 		wait = sh_mmcif_read_block(host);
1306 		break;
1307 	case MMCIF_WAIT_FOR_MWRITE:
1308 		/* Wait data to write? */
1309 		wait = sh_mmcif_mwrite_block(host);
1310 		break;
1311 	case MMCIF_WAIT_FOR_WRITE:
1312 		/* Wait for data end? */
1313 		wait = sh_mmcif_write_block(host);
1314 		break;
1315 	case MMCIF_WAIT_FOR_STOP:
1316 		if (host->sd_error) {
1317 			mrq->stop->error = sh_mmcif_error_manage(host);
1318 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1319 			break;
1320 		}
1321 		sh_mmcif_get_cmd12response(host, mrq->stop);
1322 		mrq->stop->error = 0;
1323 		break;
1324 	case MMCIF_WAIT_FOR_READ_END:
1325 	case MMCIF_WAIT_FOR_WRITE_END:
1326 		if (host->sd_error) {
1327 			mrq->data->error = sh_mmcif_error_manage(host);
1328 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1329 		}
1330 		break;
1331 	default:
1332 		BUG();
1333 	}
1334 
1335 	if (wait) {
1336 		schedule_delayed_work(&host->timeout_work, host->timeout);
1337 		/* Wait for more data */
1338 		mutex_unlock(&host->thread_lock);
1339 		return IRQ_HANDLED;
1340 	}
1341 
1342 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1343 		struct mmc_data *data = mrq->data;
1344 		if (!mrq->cmd->error && data && !data->error)
1345 			data->bytes_xfered =
1346 				data->blocks * data->blksz;
1347 
1348 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1349 			sh_mmcif_stop_cmd(host, mrq);
1350 			if (!mrq->stop->error) {
1351 				schedule_delayed_work(&host->timeout_work, host->timeout);
1352 				mutex_unlock(&host->thread_lock);
1353 				return IRQ_HANDLED;
1354 			}
1355 		}
1356 	}
1357 
1358 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1359 	host->state = STATE_IDLE;
1360 	host->mrq = NULL;
1361 	mmc_request_done(host->mmc, mrq);
1362 
1363 	mutex_unlock(&host->thread_lock);
1364 
1365 	return IRQ_HANDLED;
1366 }
1367 
1368 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1369 {
1370 	struct sh_mmcif_host *host = dev_id;
1371 	struct device *dev = sh_mmcif_host_to_dev(host);
1372 	u32 state, mask;
1373 
1374 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1375 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1376 	if (host->ccs_enable)
1377 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1378 	else
1379 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1380 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1381 
1382 	if (state & ~MASK_CLEAN)
1383 		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1384 			state);
1385 
1386 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1387 		host->sd_error = true;
1388 		dev_dbg(dev, "int err state = 0x%08x\n", state);
1389 	}
1390 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1391 		if (!host->mrq)
1392 			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1393 		if (!host->dma_active)
1394 			return IRQ_WAKE_THREAD;
1395 		else if (host->sd_error)
1396 			sh_mmcif_dma_complete(host);
1397 	} else {
1398 		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1399 	}
1400 
1401 	return IRQ_HANDLED;
1402 }
1403 
1404 static void sh_mmcif_timeout_work(struct work_struct *work)
1405 {
1406 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1407 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1408 	struct mmc_request *mrq = host->mrq;
1409 	struct device *dev = sh_mmcif_host_to_dev(host);
1410 	unsigned long flags;
1411 
1412 	if (host->dying)
1413 		/* Don't run after mmc_remove_host() */
1414 		return;
1415 
1416 	spin_lock_irqsave(&host->lock, flags);
1417 	if (host->state == STATE_IDLE) {
1418 		spin_unlock_irqrestore(&host->lock, flags);
1419 		return;
1420 	}
1421 
1422 	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1423 		host->wait_for, mrq->cmd->opcode);
1424 
1425 	host->state = STATE_TIMEOUT;
1426 	spin_unlock_irqrestore(&host->lock, flags);
1427 
1428 	/*
1429 	 * Handle races with cancel_delayed_work(), unless
1430 	 * cancel_delayed_work_sync() is used
1431 	 */
1432 	switch (host->wait_for) {
1433 	case MMCIF_WAIT_FOR_CMD:
1434 		mrq->cmd->error = sh_mmcif_error_manage(host);
1435 		break;
1436 	case MMCIF_WAIT_FOR_STOP:
1437 		mrq->stop->error = sh_mmcif_error_manage(host);
1438 		break;
1439 	case MMCIF_WAIT_FOR_MREAD:
1440 	case MMCIF_WAIT_FOR_MWRITE:
1441 	case MMCIF_WAIT_FOR_READ:
1442 	case MMCIF_WAIT_FOR_WRITE:
1443 	case MMCIF_WAIT_FOR_READ_END:
1444 	case MMCIF_WAIT_FOR_WRITE_END:
1445 		mrq->data->error = sh_mmcif_error_manage(host);
1446 		break;
1447 	default:
1448 		BUG();
1449 	}
1450 
1451 	host->state = STATE_IDLE;
1452 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1453 	host->mrq = NULL;
1454 	mmc_request_done(host->mmc, mrq);
1455 }
1456 
1457 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1458 {
1459 	struct device *dev = sh_mmcif_host_to_dev(host);
1460 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1461 	struct mmc_host *mmc = host->mmc;
1462 
1463 	mmc_regulator_get_supply(mmc);
1464 
1465 	if (!pd)
1466 		return;
1467 
1468 	if (!mmc->ocr_avail)
1469 		mmc->ocr_avail = pd->ocr;
1470 	else if (pd->ocr)
1471 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1472 }
1473 
1474 static int sh_mmcif_probe(struct platform_device *pdev)
1475 {
1476 	int ret = 0, irq[2];
1477 	struct mmc_host *mmc;
1478 	struct sh_mmcif_host *host;
1479 	struct device *dev = &pdev->dev;
1480 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1481 	struct resource *res;
1482 	void __iomem *reg;
1483 	const char *name;
1484 
1485 	irq[0] = platform_get_irq(pdev, 0);
1486 	irq[1] = platform_get_irq(pdev, 1);
1487 	if (irq[0] < 0) {
1488 		dev_err(dev, "Get irq error\n");
1489 		return -ENXIO;
1490 	}
1491 
1492 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1493 	reg = devm_ioremap_resource(dev, res);
1494 	if (IS_ERR(reg))
1495 		return PTR_ERR(reg);
1496 
1497 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1498 	if (!mmc)
1499 		return -ENOMEM;
1500 
1501 	ret = mmc_of_parse(mmc);
1502 	if (ret < 0)
1503 		goto err_host;
1504 
1505 	host		= mmc_priv(mmc);
1506 	host->mmc	= mmc;
1507 	host->addr	= reg;
1508 	host->timeout	= msecs_to_jiffies(10000);
1509 	host->ccs_enable = !pd || !pd->ccs_unsupported;
1510 	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1511 
1512 	host->pd = pdev;
1513 
1514 	spin_lock_init(&host->lock);
1515 
1516 	mmc->ops = &sh_mmcif_ops;
1517 	sh_mmcif_init_ocr(host);
1518 
1519 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1520 	if (pd && pd->caps)
1521 		mmc->caps |= pd->caps;
1522 	mmc->max_segs = 32;
1523 	mmc->max_blk_size = 512;
1524 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1525 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1526 	mmc->max_seg_size = mmc->max_req_size;
1527 
1528 	platform_set_drvdata(pdev, host);
1529 
1530 	pm_runtime_enable(dev);
1531 	host->power = false;
1532 
1533 	host->clk = devm_clk_get(dev, NULL);
1534 	if (IS_ERR(host->clk)) {
1535 		ret = PTR_ERR(host->clk);
1536 		dev_err(dev, "cannot get clock: %d\n", ret);
1537 		goto err_pm;
1538 	}
1539 
1540 	ret = clk_prepare_enable(host->clk);
1541 	if (ret < 0)
1542 		goto err_pm;
1543 
1544 	sh_mmcif_clk_setup(host);
1545 
1546 	ret = pm_runtime_resume(dev);
1547 	if (ret < 0)
1548 		goto err_clk;
1549 
1550 	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1551 
1552 	sh_mmcif_sync_reset(host);
1553 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1554 
1555 	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1556 	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1557 					sh_mmcif_irqt, 0, name, host);
1558 	if (ret) {
1559 		dev_err(dev, "request_irq error (%s)\n", name);
1560 		goto err_clk;
1561 	}
1562 	if (irq[1] >= 0) {
1563 		ret = devm_request_threaded_irq(dev, irq[1],
1564 						sh_mmcif_intr, sh_mmcif_irqt,
1565 						0, "sh_mmc:int", host);
1566 		if (ret) {
1567 			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1568 			goto err_clk;
1569 		}
1570 	}
1571 
1572 	if (pd && pd->use_cd_gpio) {
1573 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1574 		if (ret < 0)
1575 			goto err_clk;
1576 	}
1577 
1578 	mutex_init(&host->thread_lock);
1579 
1580 	ret = mmc_add_host(mmc);
1581 	if (ret < 0)
1582 		goto err_clk;
1583 
1584 	dev_pm_qos_expose_latency_limit(dev, 100);
1585 
1586 	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1587 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1588 		 clk_get_rate(host->clk) / 1000000UL);
1589 
1590 	clk_disable_unprepare(host->clk);
1591 	return ret;
1592 
1593 err_clk:
1594 	clk_disable_unprepare(host->clk);
1595 err_pm:
1596 	pm_runtime_disable(dev);
1597 err_host:
1598 	mmc_free_host(mmc);
1599 	return ret;
1600 }
1601 
1602 static int sh_mmcif_remove(struct platform_device *pdev)
1603 {
1604 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1605 
1606 	host->dying = true;
1607 	clk_prepare_enable(host->clk);
1608 	pm_runtime_get_sync(&pdev->dev);
1609 
1610 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1611 
1612 	mmc_remove_host(host->mmc);
1613 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1614 
1615 	/*
1616 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1617 	 * mmc_remove_host() call above. But swapping order doesn't help either
1618 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1619 	 */
1620 	cancel_delayed_work_sync(&host->timeout_work);
1621 
1622 	clk_disable_unprepare(host->clk);
1623 	mmc_free_host(host->mmc);
1624 	pm_runtime_put_sync(&pdev->dev);
1625 	pm_runtime_disable(&pdev->dev);
1626 
1627 	return 0;
1628 }
1629 
1630 #ifdef CONFIG_PM_SLEEP
1631 static int sh_mmcif_suspend(struct device *dev)
1632 {
1633 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1634 
1635 	pm_runtime_get_sync(dev);
1636 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1637 	pm_runtime_put(dev);
1638 
1639 	return 0;
1640 }
1641 
1642 static int sh_mmcif_resume(struct device *dev)
1643 {
1644 	return 0;
1645 }
1646 #endif
1647 
1648 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1649 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1650 };
1651 
1652 static struct platform_driver sh_mmcif_driver = {
1653 	.probe		= sh_mmcif_probe,
1654 	.remove		= sh_mmcif_remove,
1655 	.driver		= {
1656 		.name	= DRIVER_NAME,
1657 		.pm	= &sh_mmcif_dev_pm_ops,
1658 		.of_match_table = sh_mmcif_of_match,
1659 	},
1660 };
1661 
1662 module_platform_driver(sh_mmcif_driver);
1663 
1664 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1665 MODULE_LICENSE("GPL");
1666 MODULE_ALIAS("platform:" DRIVER_NAME);
1667 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1668