xref: /linux/drivers/mmc/host/sh_mmcif.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67 
68 #define DRIVER_NAME	"sh_mmcif"
69 #define DRIVER_VERSION	"2010-04-28"
70 
71 /* CE_CMD_SET */
72 #define CMD_MASK		0x3f000000
73 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY		(1 << 21) /* R1b */
77 #define CMD_SET_CCSEN		(1 << 20)
78 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH		(1 << 5)
93 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
97 
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK		(1 << 0)
100 
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK		0x0000ffff
103 
104 /* CE_INT */
105 #define INT_CCSDE		(1 << 29)
106 #define INT_CMD12DRE		(1 << 26)
107 #define INT_CMD12RBE		(1 << 25)
108 #define INT_CMD12CRE		(1 << 24)
109 #define INT_DTRANE		(1 << 23)
110 #define INT_BUFRE		(1 << 22)
111 #define INT_BUFWEN		(1 << 21)
112 #define INT_BUFREN		(1 << 20)
113 #define INT_CCSRCV		(1 << 19)
114 #define INT_RBSYE		(1 << 17)
115 #define INT_CRSPE		(1 << 16)
116 #define INT_CMDVIO		(1 << 15)
117 #define INT_BUFVIO		(1 << 14)
118 #define INT_WDATERR		(1 << 11)
119 #define INT_RDATERR		(1 << 10)
120 #define INT_RIDXERR		(1 << 9)
121 #define INT_RSPERR		(1 << 8)
122 #define INT_CCSTO		(1 << 5)
123 #define INT_CRCSTO		(1 << 4)
124 #define INT_WDATTO		(1 << 3)
125 #define INT_RDATTO		(1 << 2)
126 #define INT_RBSYTO		(1 << 1)
127 #define INT_RSPTO		(1 << 0)
128 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
131 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132 
133 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
134 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136 
137 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138 
139 /* CE_INT_MASK */
140 #define MASK_ALL		0x00000000
141 #define MASK_MCCSDE		(1 << 29)
142 #define MASK_MCMD12DRE		(1 << 26)
143 #define MASK_MCMD12RBE		(1 << 25)
144 #define MASK_MCMD12CRE		(1 << 24)
145 #define MASK_MDTRANE		(1 << 23)
146 #define MASK_MBUFRE		(1 << 22)
147 #define MASK_MBUFWEN		(1 << 21)
148 #define MASK_MBUFREN		(1 << 20)
149 #define MASK_MCCSRCV		(1 << 19)
150 #define MASK_MRBSYE		(1 << 17)
151 #define MASK_MCRSPE		(1 << 16)
152 #define MASK_MCMDVIO		(1 << 15)
153 #define MASK_MBUFVIO		(1 << 14)
154 #define MASK_MWDATERR		(1 << 11)
155 #define MASK_MRDATERR		(1 << 10)
156 #define MASK_MRIDXERR		(1 << 9)
157 #define MASK_MRSPERR		(1 << 8)
158 #define MASK_MCCSTO		(1 << 5)
159 #define MASK_MCRCSTO		(1 << 4)
160 #define MASK_MWDATTO		(1 << 3)
161 #define MASK_MRDATTO		(1 << 2)
162 #define MASK_MRBSYTO		(1 << 1)
163 #define MASK_MRSPTO		(1 << 0)
164 
165 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 				 MASK_MCRCSTO | MASK_MWDATTO | \
168 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169 
170 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
171 				 MASK_MBUFREN | MASK_MBUFWEN |			\
172 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
173 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
174 
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ		(1 << 31)
177 
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE		(1 << 31)
180 #define STS2_CRC16E		(1 << 30)
181 #define STS2_AC12CRCE		(1 << 29)
182 #define STS2_RSPCRC7E		(1 << 28)
183 #define STS2_CRCSTEBE		(1 << 27)
184 #define STS2_RDATEBE		(1 << 26)
185 #define STS2_AC12REBE		(1 << 25)
186 #define STS2_RSPEBE		(1 << 24)
187 #define STS2_AC12IDXE		(1 << 23)
188 #define STS2_RSPIDXE		(1 << 22)
189 #define STS2_CCSTO		(1 << 15)
190 #define STS2_RDATTO		(1 << 14)
191 #define STS2_DATBSYTO		(1 << 13)
192 #define STS2_CRCSTTO		(1 << 12)
193 #define STS2_AC12BSYTO		(1 << 11)
194 #define STS2_RSPBSYTO		(1 << 10)
195 #define STS2_AC12RSPTO		(1 << 9)
196 #define STS2_RSPTO		(1 << 8)
197 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
198 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
200 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
201 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
202 				 STS2_AC12RSPTO | STS2_RSPTO)
203 
204 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
206 #define CLKDEV_INIT		400000   /* 400 KHz */
207 
208 enum mmcif_state {
209 	STATE_IDLE,
210 	STATE_REQUEST,
211 	STATE_IOS,
212 	STATE_TIMEOUT,
213 };
214 
215 enum mmcif_wait_for {
216 	MMCIF_WAIT_FOR_REQUEST,
217 	MMCIF_WAIT_FOR_CMD,
218 	MMCIF_WAIT_FOR_MREAD,
219 	MMCIF_WAIT_FOR_MWRITE,
220 	MMCIF_WAIT_FOR_READ,
221 	MMCIF_WAIT_FOR_WRITE,
222 	MMCIF_WAIT_FOR_READ_END,
223 	MMCIF_WAIT_FOR_WRITE_END,
224 	MMCIF_WAIT_FOR_STOP,
225 };
226 
227 struct sh_mmcif_host {
228 	struct mmc_host *mmc;
229 	struct mmc_request *mrq;
230 	struct platform_device *pd;
231 	struct clk *hclk;
232 	unsigned int clk;
233 	int bus_width;
234 	unsigned char timing;
235 	bool sd_error;
236 	bool dying;
237 	long timeout;
238 	void __iomem *addr;
239 	u32 *pio_ptr;
240 	spinlock_t lock;		/* protect sh_mmcif_host::state */
241 	enum mmcif_state state;
242 	enum mmcif_wait_for wait_for;
243 	struct delayed_work timeout_work;
244 	size_t blocksize;
245 	int sg_idx;
246 	int sg_blkidx;
247 	bool power;
248 	bool card_present;
249 	bool ccs_enable;		/* Command Completion Signal support */
250 	bool clk_ctrl2_enable;
251 	struct mutex thread_lock;
252 
253 	/* DMA support */
254 	struct dma_chan		*chan_rx;
255 	struct dma_chan		*chan_tx;
256 	struct completion	dma_complete;
257 	bool			dma_active;
258 };
259 
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 					unsigned int reg, u32 val)
262 {
263 	writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265 
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 					unsigned int reg, u32 val)
268 {
269 	writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271 
272 static void mmcif_dma_complete(void *arg)
273 {
274 	struct sh_mmcif_host *host = arg;
275 	struct mmc_request *mrq = host->mrq;
276 
277 	dev_dbg(&host->pd->dev, "Command completed\n");
278 
279 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 		 dev_name(&host->pd->dev)))
281 		return;
282 
283 	complete(&host->dma_complete);
284 }
285 
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288 	struct mmc_data *data = host->mrq->data;
289 	struct scatterlist *sg = data->sg;
290 	struct dma_async_tx_descriptor *desc = NULL;
291 	struct dma_chan *chan = host->chan_rx;
292 	dma_cookie_t cookie = -EINVAL;
293 	int ret;
294 
295 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296 			 DMA_FROM_DEVICE);
297 	if (ret > 0) {
298 		host->dma_active = true;
299 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301 	}
302 
303 	if (desc) {
304 		desc->callback = mmcif_dma_complete;
305 		desc->callback_param = host;
306 		cookie = dmaengine_submit(desc);
307 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 		dma_async_issue_pending(chan);
309 	}
310 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 		__func__, data->sg_len, ret, cookie);
312 
313 	if (!desc) {
314 		/* DMA failed, fall back to PIO */
315 		if (ret >= 0)
316 			ret = -EIO;
317 		host->chan_rx = NULL;
318 		host->dma_active = false;
319 		dma_release_channel(chan);
320 		/* Free the Tx channel too */
321 		chan = host->chan_tx;
322 		if (chan) {
323 			host->chan_tx = NULL;
324 			dma_release_channel(chan);
325 		}
326 		dev_warn(&host->pd->dev,
327 			 "DMA failed: %d, falling back to PIO\n", ret);
328 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329 	}
330 
331 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 		desc, cookie, data->sg_len);
333 }
334 
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 {
337 	struct mmc_data *data = host->mrq->data;
338 	struct scatterlist *sg = data->sg;
339 	struct dma_async_tx_descriptor *desc = NULL;
340 	struct dma_chan *chan = host->chan_tx;
341 	dma_cookie_t cookie = -EINVAL;
342 	int ret;
343 
344 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 			 DMA_TO_DEVICE);
346 	if (ret > 0) {
347 		host->dma_active = true;
348 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350 	}
351 
352 	if (desc) {
353 		desc->callback = mmcif_dma_complete;
354 		desc->callback_param = host;
355 		cookie = dmaengine_submit(desc);
356 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 		dma_async_issue_pending(chan);
358 	}
359 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 		__func__, data->sg_len, ret, cookie);
361 
362 	if (!desc) {
363 		/* DMA failed, fall back to PIO */
364 		if (ret >= 0)
365 			ret = -EIO;
366 		host->chan_tx = NULL;
367 		host->dma_active = false;
368 		dma_release_channel(chan);
369 		/* Free the Rx channel too */
370 		chan = host->chan_rx;
371 		if (chan) {
372 			host->chan_rx = NULL;
373 			dma_release_channel(chan);
374 		}
375 		dev_warn(&host->pd->dev,
376 			 "DMA failed: %d, falling back to PIO\n", ret);
377 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378 	}
379 
380 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381 		desc, cookie);
382 }
383 
384 static struct dma_chan *
385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386 			 struct sh_mmcif_plat_data *pdata,
387 			 enum dma_transfer_direction direction)
388 {
389 	struct dma_slave_config cfg = { 0, };
390 	struct dma_chan *chan;
391 	void *slave_data = NULL;
392 	struct resource *res;
393 	dma_cap_mask_t mask;
394 	int ret;
395 
396 	dma_cap_zero(mask);
397 	dma_cap_set(DMA_SLAVE, mask);
398 
399 	if (pdata)
400 		slave_data = direction == DMA_MEM_TO_DEV ?
401 			(void *)pdata->slave_id_tx :
402 			(void *)pdata->slave_id_rx;
403 
404 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
405 				slave_data, &host->pd->dev,
406 				direction == DMA_MEM_TO_DEV ? "tx" : "rx");
407 
408 	dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
409 		direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
410 
411 	if (!chan)
412 		return NULL;
413 
414 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
415 
416 	cfg.direction = direction;
417 
418 	if (direction == DMA_DEV_TO_MEM) {
419 		cfg.src_addr = res->start + MMCIF_CE_DATA;
420 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
421 	} else {
422 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
423 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424 	}
425 
426 	ret = dmaengine_slave_config(chan, &cfg);
427 	if (ret < 0) {
428 		dma_release_channel(chan);
429 		return NULL;
430 	}
431 
432 	return chan;
433 }
434 
435 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
436 				 struct sh_mmcif_plat_data *pdata)
437 {
438 	host->dma_active = false;
439 
440 	if (pdata) {
441 		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
442 			return;
443 	} else if (!host->pd->dev.of_node) {
444 		return;
445 	}
446 
447 	/* We can only either use DMA for both Tx and Rx or not use it at all */
448 	host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
449 	if (!host->chan_tx)
450 		return;
451 
452 	host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
453 	if (!host->chan_rx) {
454 		dma_release_channel(host->chan_tx);
455 		host->chan_tx = NULL;
456 	}
457 }
458 
459 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
460 {
461 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
462 	/* Descriptors are freed automatically */
463 	if (host->chan_tx) {
464 		struct dma_chan *chan = host->chan_tx;
465 		host->chan_tx = NULL;
466 		dma_release_channel(chan);
467 	}
468 	if (host->chan_rx) {
469 		struct dma_chan *chan = host->chan_rx;
470 		host->chan_rx = NULL;
471 		dma_release_channel(chan);
472 	}
473 
474 	host->dma_active = false;
475 }
476 
477 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
478 {
479 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
480 	bool sup_pclk = p ? p->sup_pclk : false;
481 
482 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
483 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
484 
485 	if (!clk)
486 		return;
487 	if (sup_pclk && clk == host->clk)
488 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
489 	else
490 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
491 				((fls(DIV_ROUND_UP(host->clk,
492 						   clk) - 1) - 1) << 16));
493 
494 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
495 }
496 
497 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
498 {
499 	u32 tmp;
500 
501 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
502 
503 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
504 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
505 	if (host->ccs_enable)
506 		tmp |= SCCSTO_29;
507 	if (host->clk_ctrl2_enable)
508 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
509 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
510 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
511 	/* byte swap on */
512 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
513 }
514 
515 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
516 {
517 	u32 state1, state2;
518 	int ret, timeout;
519 
520 	host->sd_error = false;
521 
522 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
523 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
524 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
525 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
526 
527 	if (state1 & STS1_CMDSEQ) {
528 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
529 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
530 		for (timeout = 10000000; timeout; timeout--) {
531 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
532 			      & STS1_CMDSEQ))
533 				break;
534 			mdelay(1);
535 		}
536 		if (!timeout) {
537 			dev_err(&host->pd->dev,
538 				"Forced end of command sequence timeout err\n");
539 			return -EIO;
540 		}
541 		sh_mmcif_sync_reset(host);
542 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
543 		return -EIO;
544 	}
545 
546 	if (state2 & STS2_CRC_ERR) {
547 		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
548 			host->state, host->wait_for);
549 		ret = -EIO;
550 	} else if (state2 & STS2_TIMEOUT_ERR) {
551 		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
552 			host->state, host->wait_for);
553 		ret = -ETIMEDOUT;
554 	} else {
555 		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
556 			host->state, host->wait_for);
557 		ret = -EIO;
558 	}
559 	return ret;
560 }
561 
562 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
563 {
564 	struct mmc_data *data = host->mrq->data;
565 
566 	host->sg_blkidx += host->blocksize;
567 
568 	/* data->sg->length must be a multiple of host->blocksize? */
569 	BUG_ON(host->sg_blkidx > data->sg->length);
570 
571 	if (host->sg_blkidx == data->sg->length) {
572 		host->sg_blkidx = 0;
573 		if (++host->sg_idx < data->sg_len)
574 			host->pio_ptr = sg_virt(++data->sg);
575 	} else {
576 		host->pio_ptr = p;
577 	}
578 
579 	return host->sg_idx != data->sg_len;
580 }
581 
582 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
583 				 struct mmc_request *mrq)
584 {
585 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
586 			   BLOCK_SIZE_MASK) + 3;
587 
588 	host->wait_for = MMCIF_WAIT_FOR_READ;
589 
590 	/* buf read enable */
591 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
592 }
593 
594 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
595 {
596 	struct mmc_data *data = host->mrq->data;
597 	u32 *p = sg_virt(data->sg);
598 	int i;
599 
600 	if (host->sd_error) {
601 		data->error = sh_mmcif_error_manage(host);
602 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
603 		return false;
604 	}
605 
606 	for (i = 0; i < host->blocksize / 4; i++)
607 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
608 
609 	/* buffer read end */
610 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
611 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
612 
613 	return true;
614 }
615 
616 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
617 				struct mmc_request *mrq)
618 {
619 	struct mmc_data *data = mrq->data;
620 
621 	if (!data->sg_len || !data->sg->length)
622 		return;
623 
624 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625 		BLOCK_SIZE_MASK;
626 
627 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
628 	host->sg_idx = 0;
629 	host->sg_blkidx = 0;
630 	host->pio_ptr = sg_virt(data->sg);
631 
632 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
633 }
634 
635 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
636 {
637 	struct mmc_data *data = host->mrq->data;
638 	u32 *p = host->pio_ptr;
639 	int i;
640 
641 	if (host->sd_error) {
642 		data->error = sh_mmcif_error_manage(host);
643 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
644 		return false;
645 	}
646 
647 	BUG_ON(!data->sg->length);
648 
649 	for (i = 0; i < host->blocksize / 4; i++)
650 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
651 
652 	if (!sh_mmcif_next_block(host, p))
653 		return false;
654 
655 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
656 
657 	return true;
658 }
659 
660 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
661 					struct mmc_request *mrq)
662 {
663 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664 			   BLOCK_SIZE_MASK) + 3;
665 
666 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
667 
668 	/* buf write enable */
669 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
670 }
671 
672 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
673 {
674 	struct mmc_data *data = host->mrq->data;
675 	u32 *p = sg_virt(data->sg);
676 	int i;
677 
678 	if (host->sd_error) {
679 		data->error = sh_mmcif_error_manage(host);
680 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
681 		return false;
682 	}
683 
684 	for (i = 0; i < host->blocksize / 4; i++)
685 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
686 
687 	/* buffer write end */
688 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
689 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
690 
691 	return true;
692 }
693 
694 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
695 				struct mmc_request *mrq)
696 {
697 	struct mmc_data *data = mrq->data;
698 
699 	if (!data->sg_len || !data->sg->length)
700 		return;
701 
702 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
703 		BLOCK_SIZE_MASK;
704 
705 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
706 	host->sg_idx = 0;
707 	host->sg_blkidx = 0;
708 	host->pio_ptr = sg_virt(data->sg);
709 
710 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
711 }
712 
713 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
714 {
715 	struct mmc_data *data = host->mrq->data;
716 	u32 *p = host->pio_ptr;
717 	int i;
718 
719 	if (host->sd_error) {
720 		data->error = sh_mmcif_error_manage(host);
721 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
722 		return false;
723 	}
724 
725 	BUG_ON(!data->sg->length);
726 
727 	for (i = 0; i < host->blocksize / 4; i++)
728 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
729 
730 	if (!sh_mmcif_next_block(host, p))
731 		return false;
732 
733 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
734 
735 	return true;
736 }
737 
738 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
739 						struct mmc_command *cmd)
740 {
741 	if (cmd->flags & MMC_RSP_136) {
742 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
743 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
744 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
745 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
746 	} else
747 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
748 }
749 
750 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
751 						struct mmc_command *cmd)
752 {
753 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
754 }
755 
756 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
757 			    struct mmc_request *mrq)
758 {
759 	struct mmc_data *data = mrq->data;
760 	struct mmc_command *cmd = mrq->cmd;
761 	u32 opc = cmd->opcode;
762 	u32 tmp = 0;
763 
764 	/* Response Type check */
765 	switch (mmc_resp_type(cmd)) {
766 	case MMC_RSP_NONE:
767 		tmp |= CMD_SET_RTYP_NO;
768 		break;
769 	case MMC_RSP_R1:
770 	case MMC_RSP_R1B:
771 	case MMC_RSP_R3:
772 		tmp |= CMD_SET_RTYP_6B;
773 		break;
774 	case MMC_RSP_R2:
775 		tmp |= CMD_SET_RTYP_17B;
776 		break;
777 	default:
778 		dev_err(&host->pd->dev, "Unsupported response type.\n");
779 		break;
780 	}
781 	switch (opc) {
782 	/* RBSY */
783 	case MMC_SLEEP_AWAKE:
784 	case MMC_SWITCH:
785 	case MMC_STOP_TRANSMISSION:
786 	case MMC_SET_WRITE_PROT:
787 	case MMC_CLR_WRITE_PROT:
788 	case MMC_ERASE:
789 		tmp |= CMD_SET_RBSY;
790 		break;
791 	}
792 	/* WDAT / DATW */
793 	if (data) {
794 		tmp |= CMD_SET_WDAT;
795 		switch (host->bus_width) {
796 		case MMC_BUS_WIDTH_1:
797 			tmp |= CMD_SET_DATW_1;
798 			break;
799 		case MMC_BUS_WIDTH_4:
800 			tmp |= CMD_SET_DATW_4;
801 			break;
802 		case MMC_BUS_WIDTH_8:
803 			tmp |= CMD_SET_DATW_8;
804 			break;
805 		default:
806 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
807 			break;
808 		}
809 		switch (host->timing) {
810 		case MMC_TIMING_MMC_DDR52:
811 			/*
812 			 * MMC core will only set this timing, if the host
813 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
814 			 * capability. MMCIF implementations with this
815 			 * capability, e.g. sh73a0, will have to set it
816 			 * in their platform data.
817 			 */
818 			tmp |= CMD_SET_DARS;
819 			break;
820 		}
821 	}
822 	/* DWEN */
823 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
824 		tmp |= CMD_SET_DWEN;
825 	/* CMLTE/CMD12EN */
826 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
827 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
828 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
829 				data->blocks << 16);
830 	}
831 	/* RIDXC[1:0] check bits */
832 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
833 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
834 		tmp |= CMD_SET_RIDXC_BITS;
835 	/* RCRC7C[1:0] check bits */
836 	if (opc == MMC_SEND_OP_COND)
837 		tmp |= CMD_SET_CRC7C_BITS;
838 	/* RCRC7C[1:0] internal CRC7 */
839 	if (opc == MMC_ALL_SEND_CID ||
840 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
841 		tmp |= CMD_SET_CRC7C_INTERNAL;
842 
843 	return (opc << 24) | tmp;
844 }
845 
846 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
847 			       struct mmc_request *mrq, u32 opc)
848 {
849 	switch (opc) {
850 	case MMC_READ_MULTIPLE_BLOCK:
851 		sh_mmcif_multi_read(host, mrq);
852 		return 0;
853 	case MMC_WRITE_MULTIPLE_BLOCK:
854 		sh_mmcif_multi_write(host, mrq);
855 		return 0;
856 	case MMC_WRITE_BLOCK:
857 		sh_mmcif_single_write(host, mrq);
858 		return 0;
859 	case MMC_READ_SINGLE_BLOCK:
860 	case MMC_SEND_EXT_CSD:
861 		sh_mmcif_single_read(host, mrq);
862 		return 0;
863 	default:
864 		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
865 		return -EINVAL;
866 	}
867 }
868 
869 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
870 			       struct mmc_request *mrq)
871 {
872 	struct mmc_command *cmd = mrq->cmd;
873 	u32 opc = cmd->opcode;
874 	u32 mask;
875 	unsigned long flags;
876 
877 	switch (opc) {
878 	/* response busy check */
879 	case MMC_SLEEP_AWAKE:
880 	case MMC_SWITCH:
881 	case MMC_STOP_TRANSMISSION:
882 	case MMC_SET_WRITE_PROT:
883 	case MMC_CLR_WRITE_PROT:
884 	case MMC_ERASE:
885 		mask = MASK_START_CMD | MASK_MRBSYE;
886 		break;
887 	default:
888 		mask = MASK_START_CMD | MASK_MCRSPE;
889 		break;
890 	}
891 
892 	if (host->ccs_enable)
893 		mask |= MASK_MCCSTO;
894 
895 	if (mrq->data) {
896 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
897 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
898 				mrq->data->blksz);
899 	}
900 	opc = sh_mmcif_set_cmd(host, mrq);
901 
902 	if (host->ccs_enable)
903 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
904 	else
905 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
906 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
907 	/* set arg */
908 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
909 	/* set cmd */
910 	spin_lock_irqsave(&host->lock, flags);
911 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
912 
913 	host->wait_for = MMCIF_WAIT_FOR_CMD;
914 	schedule_delayed_work(&host->timeout_work, host->timeout);
915 	spin_unlock_irqrestore(&host->lock, flags);
916 }
917 
918 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
919 			      struct mmc_request *mrq)
920 {
921 	switch (mrq->cmd->opcode) {
922 	case MMC_READ_MULTIPLE_BLOCK:
923 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
924 		break;
925 	case MMC_WRITE_MULTIPLE_BLOCK:
926 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
927 		break;
928 	default:
929 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
930 		mrq->stop->error = sh_mmcif_error_manage(host);
931 		return;
932 	}
933 
934 	host->wait_for = MMCIF_WAIT_FOR_STOP;
935 }
936 
937 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
938 {
939 	struct sh_mmcif_host *host = mmc_priv(mmc);
940 	unsigned long flags;
941 
942 	spin_lock_irqsave(&host->lock, flags);
943 	if (host->state != STATE_IDLE) {
944 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
945 		spin_unlock_irqrestore(&host->lock, flags);
946 		mrq->cmd->error = -EAGAIN;
947 		mmc_request_done(mmc, mrq);
948 		return;
949 	}
950 
951 	host->state = STATE_REQUEST;
952 	spin_unlock_irqrestore(&host->lock, flags);
953 
954 	switch (mrq->cmd->opcode) {
955 	/* MMCIF does not support SD/SDIO command */
956 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
957 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
958 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
959 			break;
960 	case MMC_APP_CMD:
961 	case SD_IO_RW_DIRECT:
962 		host->state = STATE_IDLE;
963 		mrq->cmd->error = -ETIMEDOUT;
964 		mmc_request_done(mmc, mrq);
965 		return;
966 	default:
967 		break;
968 	}
969 
970 	host->mrq = mrq;
971 
972 	sh_mmcif_start_cmd(host, mrq);
973 }
974 
975 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
976 {
977 	int ret = clk_prepare_enable(host->hclk);
978 
979 	if (!ret) {
980 		host->clk = clk_get_rate(host->hclk);
981 		host->mmc->f_max = host->clk / 2;
982 		host->mmc->f_min = host->clk / 512;
983 	}
984 
985 	return ret;
986 }
987 
988 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
989 {
990 	struct mmc_host *mmc = host->mmc;
991 
992 	if (!IS_ERR(mmc->supply.vmmc))
993 		/* Errors ignored... */
994 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
995 				      ios->power_mode ? ios->vdd : 0);
996 }
997 
998 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
999 {
1000 	struct sh_mmcif_host *host = mmc_priv(mmc);
1001 	unsigned long flags;
1002 
1003 	spin_lock_irqsave(&host->lock, flags);
1004 	if (host->state != STATE_IDLE) {
1005 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
1006 		spin_unlock_irqrestore(&host->lock, flags);
1007 		return;
1008 	}
1009 
1010 	host->state = STATE_IOS;
1011 	spin_unlock_irqrestore(&host->lock, flags);
1012 
1013 	if (ios->power_mode == MMC_POWER_UP) {
1014 		if (!host->card_present) {
1015 			/* See if we also get DMA */
1016 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1017 			host->card_present = true;
1018 		}
1019 		sh_mmcif_set_power(host, ios);
1020 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1021 		/* clock stop */
1022 		sh_mmcif_clock_control(host, 0);
1023 		if (ios->power_mode == MMC_POWER_OFF) {
1024 			if (host->card_present) {
1025 				sh_mmcif_release_dma(host);
1026 				host->card_present = false;
1027 			}
1028 		}
1029 		if (host->power) {
1030 			pm_runtime_put_sync(&host->pd->dev);
1031 			clk_disable_unprepare(host->hclk);
1032 			host->power = false;
1033 			if (ios->power_mode == MMC_POWER_OFF)
1034 				sh_mmcif_set_power(host, ios);
1035 		}
1036 		host->state = STATE_IDLE;
1037 		return;
1038 	}
1039 
1040 	if (ios->clock) {
1041 		if (!host->power) {
1042 			sh_mmcif_clk_update(host);
1043 			pm_runtime_get_sync(&host->pd->dev);
1044 			host->power = true;
1045 			sh_mmcif_sync_reset(host);
1046 		}
1047 		sh_mmcif_clock_control(host, ios->clock);
1048 	}
1049 
1050 	host->timing = ios->timing;
1051 	host->bus_width = ios->bus_width;
1052 	host->state = STATE_IDLE;
1053 }
1054 
1055 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1056 {
1057 	struct sh_mmcif_host *host = mmc_priv(mmc);
1058 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1059 	int ret = mmc_gpio_get_cd(mmc);
1060 
1061 	if (ret >= 0)
1062 		return ret;
1063 
1064 	if (!p || !p->get_cd)
1065 		return -ENOSYS;
1066 	else
1067 		return p->get_cd(host->pd);
1068 }
1069 
1070 static struct mmc_host_ops sh_mmcif_ops = {
1071 	.request	= sh_mmcif_request,
1072 	.set_ios	= sh_mmcif_set_ios,
1073 	.get_cd		= sh_mmcif_get_cd,
1074 };
1075 
1076 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1077 {
1078 	struct mmc_command *cmd = host->mrq->cmd;
1079 	struct mmc_data *data = host->mrq->data;
1080 	long time;
1081 
1082 	if (host->sd_error) {
1083 		switch (cmd->opcode) {
1084 		case MMC_ALL_SEND_CID:
1085 		case MMC_SELECT_CARD:
1086 		case MMC_APP_CMD:
1087 			cmd->error = -ETIMEDOUT;
1088 			break;
1089 		default:
1090 			cmd->error = sh_mmcif_error_manage(host);
1091 			break;
1092 		}
1093 		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1094 			cmd->opcode, cmd->error);
1095 		host->sd_error = false;
1096 		return false;
1097 	}
1098 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1099 		cmd->error = 0;
1100 		return false;
1101 	}
1102 
1103 	sh_mmcif_get_response(host, cmd);
1104 
1105 	if (!data)
1106 		return false;
1107 
1108 	/*
1109 	 * Completion can be signalled from DMA callback and error, so, have to
1110 	 * reset here, before setting .dma_active
1111 	 */
1112 	init_completion(&host->dma_complete);
1113 
1114 	if (data->flags & MMC_DATA_READ) {
1115 		if (host->chan_rx)
1116 			sh_mmcif_start_dma_rx(host);
1117 	} else {
1118 		if (host->chan_tx)
1119 			sh_mmcif_start_dma_tx(host);
1120 	}
1121 
1122 	if (!host->dma_active) {
1123 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1124 		return !data->error;
1125 	}
1126 
1127 	/* Running in the IRQ thread, can sleep */
1128 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1129 							 host->timeout);
1130 
1131 	if (data->flags & MMC_DATA_READ)
1132 		dma_unmap_sg(host->chan_rx->device->dev,
1133 			     data->sg, data->sg_len,
1134 			     DMA_FROM_DEVICE);
1135 	else
1136 		dma_unmap_sg(host->chan_tx->device->dev,
1137 			     data->sg, data->sg_len,
1138 			     DMA_TO_DEVICE);
1139 
1140 	if (host->sd_error) {
1141 		dev_err(host->mmc->parent,
1142 			"Error IRQ while waiting for DMA completion!\n");
1143 		/* Woken up by an error IRQ: abort DMA */
1144 		data->error = sh_mmcif_error_manage(host);
1145 	} else if (!time) {
1146 		dev_err(host->mmc->parent, "DMA timeout!\n");
1147 		data->error = -ETIMEDOUT;
1148 	} else if (time < 0) {
1149 		dev_err(host->mmc->parent,
1150 			"wait_for_completion_...() error %ld!\n", time);
1151 		data->error = time;
1152 	}
1153 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1154 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1155 	host->dma_active = false;
1156 
1157 	if (data->error) {
1158 		data->bytes_xfered = 0;
1159 		/* Abort DMA */
1160 		if (data->flags & MMC_DATA_READ)
1161 			dmaengine_terminate_all(host->chan_rx);
1162 		else
1163 			dmaengine_terminate_all(host->chan_tx);
1164 	}
1165 
1166 	return false;
1167 }
1168 
1169 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1170 {
1171 	struct sh_mmcif_host *host = dev_id;
1172 	struct mmc_request *mrq;
1173 	bool wait = false;
1174 	unsigned long flags;
1175 	int wait_work;
1176 
1177 	spin_lock_irqsave(&host->lock, flags);
1178 	wait_work = host->wait_for;
1179 	spin_unlock_irqrestore(&host->lock, flags);
1180 
1181 	cancel_delayed_work_sync(&host->timeout_work);
1182 
1183 	mutex_lock(&host->thread_lock);
1184 
1185 	mrq = host->mrq;
1186 	if (!mrq) {
1187 		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1188 			host->state, host->wait_for);
1189 		mutex_unlock(&host->thread_lock);
1190 		return IRQ_HANDLED;
1191 	}
1192 
1193 	/*
1194 	 * All handlers return true, if processing continues, and false, if the
1195 	 * request has to be completed - successfully or not
1196 	 */
1197 	switch (wait_work) {
1198 	case MMCIF_WAIT_FOR_REQUEST:
1199 		/* We're too late, the timeout has already kicked in */
1200 		mutex_unlock(&host->thread_lock);
1201 		return IRQ_HANDLED;
1202 	case MMCIF_WAIT_FOR_CMD:
1203 		/* Wait for data? */
1204 		wait = sh_mmcif_end_cmd(host);
1205 		break;
1206 	case MMCIF_WAIT_FOR_MREAD:
1207 		/* Wait for more data? */
1208 		wait = sh_mmcif_mread_block(host);
1209 		break;
1210 	case MMCIF_WAIT_FOR_READ:
1211 		/* Wait for data end? */
1212 		wait = sh_mmcif_read_block(host);
1213 		break;
1214 	case MMCIF_WAIT_FOR_MWRITE:
1215 		/* Wait data to write? */
1216 		wait = sh_mmcif_mwrite_block(host);
1217 		break;
1218 	case MMCIF_WAIT_FOR_WRITE:
1219 		/* Wait for data end? */
1220 		wait = sh_mmcif_write_block(host);
1221 		break;
1222 	case MMCIF_WAIT_FOR_STOP:
1223 		if (host->sd_error) {
1224 			mrq->stop->error = sh_mmcif_error_manage(host);
1225 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1226 			break;
1227 		}
1228 		sh_mmcif_get_cmd12response(host, mrq->stop);
1229 		mrq->stop->error = 0;
1230 		break;
1231 	case MMCIF_WAIT_FOR_READ_END:
1232 	case MMCIF_WAIT_FOR_WRITE_END:
1233 		if (host->sd_error) {
1234 			mrq->data->error = sh_mmcif_error_manage(host);
1235 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1236 		}
1237 		break;
1238 	default:
1239 		BUG();
1240 	}
1241 
1242 	if (wait) {
1243 		schedule_delayed_work(&host->timeout_work, host->timeout);
1244 		/* Wait for more data */
1245 		mutex_unlock(&host->thread_lock);
1246 		return IRQ_HANDLED;
1247 	}
1248 
1249 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1250 		struct mmc_data *data = mrq->data;
1251 		if (!mrq->cmd->error && data && !data->error)
1252 			data->bytes_xfered =
1253 				data->blocks * data->blksz;
1254 
1255 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1256 			sh_mmcif_stop_cmd(host, mrq);
1257 			if (!mrq->stop->error) {
1258 				schedule_delayed_work(&host->timeout_work, host->timeout);
1259 				mutex_unlock(&host->thread_lock);
1260 				return IRQ_HANDLED;
1261 			}
1262 		}
1263 	}
1264 
1265 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1266 	host->state = STATE_IDLE;
1267 	host->mrq = NULL;
1268 	mmc_request_done(host->mmc, mrq);
1269 
1270 	mutex_unlock(&host->thread_lock);
1271 
1272 	return IRQ_HANDLED;
1273 }
1274 
1275 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1276 {
1277 	struct sh_mmcif_host *host = dev_id;
1278 	u32 state, mask;
1279 
1280 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1281 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1282 	if (host->ccs_enable)
1283 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1284 	else
1285 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1286 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1287 
1288 	if (state & ~MASK_CLEAN)
1289 		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1290 			state);
1291 
1292 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1293 		host->sd_error = true;
1294 		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1295 	}
1296 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1297 		if (!host->mrq)
1298 			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1299 		if (!host->dma_active)
1300 			return IRQ_WAKE_THREAD;
1301 		else if (host->sd_error)
1302 			mmcif_dma_complete(host);
1303 	} else {
1304 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1305 	}
1306 
1307 	return IRQ_HANDLED;
1308 }
1309 
1310 static void mmcif_timeout_work(struct work_struct *work)
1311 {
1312 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1313 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1314 	struct mmc_request *mrq = host->mrq;
1315 	unsigned long flags;
1316 
1317 	if (host->dying)
1318 		/* Don't run after mmc_remove_host() */
1319 		return;
1320 
1321 	spin_lock_irqsave(&host->lock, flags);
1322 	if (host->state == STATE_IDLE) {
1323 		spin_unlock_irqrestore(&host->lock, flags);
1324 		return;
1325 	}
1326 
1327 	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1328 		host->wait_for, mrq->cmd->opcode);
1329 
1330 	host->state = STATE_TIMEOUT;
1331 	spin_unlock_irqrestore(&host->lock, flags);
1332 
1333 	/*
1334 	 * Handle races with cancel_delayed_work(), unless
1335 	 * cancel_delayed_work_sync() is used
1336 	 */
1337 	switch (host->wait_for) {
1338 	case MMCIF_WAIT_FOR_CMD:
1339 		mrq->cmd->error = sh_mmcif_error_manage(host);
1340 		break;
1341 	case MMCIF_WAIT_FOR_STOP:
1342 		mrq->stop->error = sh_mmcif_error_manage(host);
1343 		break;
1344 	case MMCIF_WAIT_FOR_MREAD:
1345 	case MMCIF_WAIT_FOR_MWRITE:
1346 	case MMCIF_WAIT_FOR_READ:
1347 	case MMCIF_WAIT_FOR_WRITE:
1348 	case MMCIF_WAIT_FOR_READ_END:
1349 	case MMCIF_WAIT_FOR_WRITE_END:
1350 		mrq->data->error = sh_mmcif_error_manage(host);
1351 		break;
1352 	default:
1353 		BUG();
1354 	}
1355 
1356 	host->state = STATE_IDLE;
1357 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1358 	host->mrq = NULL;
1359 	mmc_request_done(host->mmc, mrq);
1360 }
1361 
1362 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1363 {
1364 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1365 	struct mmc_host *mmc = host->mmc;
1366 
1367 	mmc_regulator_get_supply(mmc);
1368 
1369 	if (!pd)
1370 		return;
1371 
1372 	if (!mmc->ocr_avail)
1373 		mmc->ocr_avail = pd->ocr;
1374 	else if (pd->ocr)
1375 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1376 }
1377 
1378 static int sh_mmcif_probe(struct platform_device *pdev)
1379 {
1380 	int ret = 0, irq[2];
1381 	struct mmc_host *mmc;
1382 	struct sh_mmcif_host *host;
1383 	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1384 	struct resource *res;
1385 	void __iomem *reg;
1386 	const char *name;
1387 
1388 	irq[0] = platform_get_irq(pdev, 0);
1389 	irq[1] = platform_get_irq(pdev, 1);
1390 	if (irq[0] < 0) {
1391 		dev_err(&pdev->dev, "Get irq error\n");
1392 		return -ENXIO;
1393 	}
1394 
1395 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1396 	reg = devm_ioremap_resource(&pdev->dev, res);
1397 	if (IS_ERR(reg))
1398 		return PTR_ERR(reg);
1399 
1400 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1401 	if (!mmc)
1402 		return -ENOMEM;
1403 
1404 	ret = mmc_of_parse(mmc);
1405 	if (ret < 0)
1406 		goto err_host;
1407 
1408 	host		= mmc_priv(mmc);
1409 	host->mmc	= mmc;
1410 	host->addr	= reg;
1411 	host->timeout	= msecs_to_jiffies(10000);
1412 	host->ccs_enable = !pd || !pd->ccs_unsupported;
1413 	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1414 
1415 	host->pd = pdev;
1416 
1417 	spin_lock_init(&host->lock);
1418 
1419 	mmc->ops = &sh_mmcif_ops;
1420 	sh_mmcif_init_ocr(host);
1421 
1422 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1423 	if (pd && pd->caps)
1424 		mmc->caps |= pd->caps;
1425 	mmc->max_segs = 32;
1426 	mmc->max_blk_size = 512;
1427 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1428 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1429 	mmc->max_seg_size = mmc->max_req_size;
1430 
1431 	platform_set_drvdata(pdev, host);
1432 
1433 	pm_runtime_enable(&pdev->dev);
1434 	host->power = false;
1435 
1436 	host->hclk = devm_clk_get(&pdev->dev, NULL);
1437 	if (IS_ERR(host->hclk)) {
1438 		ret = PTR_ERR(host->hclk);
1439 		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1440 		goto err_pm;
1441 	}
1442 	ret = sh_mmcif_clk_update(host);
1443 	if (ret < 0)
1444 		goto err_pm;
1445 
1446 	ret = pm_runtime_resume(&pdev->dev);
1447 	if (ret < 0)
1448 		goto err_clk;
1449 
1450 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1451 
1452 	sh_mmcif_sync_reset(host);
1453 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1454 
1455 	name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1456 	ret = devm_request_threaded_irq(&pdev->dev, irq[0], sh_mmcif_intr,
1457 					sh_mmcif_irqt, 0, name, host);
1458 	if (ret) {
1459 		dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1460 		goto err_clk;
1461 	}
1462 	if (irq[1] >= 0) {
1463 		ret = devm_request_threaded_irq(&pdev->dev, irq[1],
1464 						sh_mmcif_intr, sh_mmcif_irqt,
1465 						0, "sh_mmc:int", host);
1466 		if (ret) {
1467 			dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1468 			goto err_clk;
1469 		}
1470 	}
1471 
1472 	if (pd && pd->use_cd_gpio) {
1473 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1474 		if (ret < 0)
1475 			goto err_clk;
1476 	}
1477 
1478 	mutex_init(&host->thread_lock);
1479 
1480 	ret = mmc_add_host(mmc);
1481 	if (ret < 0)
1482 		goto err_clk;
1483 
1484 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1485 
1486 	dev_info(&pdev->dev, "Chip version 0x%04x, clock rate %luMHz\n",
1487 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1488 		 clk_get_rate(host->hclk) / 1000000UL);
1489 
1490 	clk_disable_unprepare(host->hclk);
1491 	return ret;
1492 
1493 err_clk:
1494 	clk_disable_unprepare(host->hclk);
1495 err_pm:
1496 	pm_runtime_disable(&pdev->dev);
1497 err_host:
1498 	mmc_free_host(mmc);
1499 	return ret;
1500 }
1501 
1502 static int sh_mmcif_remove(struct platform_device *pdev)
1503 {
1504 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1505 
1506 	host->dying = true;
1507 	clk_prepare_enable(host->hclk);
1508 	pm_runtime_get_sync(&pdev->dev);
1509 
1510 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1511 
1512 	mmc_remove_host(host->mmc);
1513 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1514 
1515 	/*
1516 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1517 	 * mmc_remove_host() call above. But swapping order doesn't help either
1518 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1519 	 */
1520 	cancel_delayed_work_sync(&host->timeout_work);
1521 
1522 	clk_disable_unprepare(host->hclk);
1523 	mmc_free_host(host->mmc);
1524 	pm_runtime_put_sync(&pdev->dev);
1525 	pm_runtime_disable(&pdev->dev);
1526 
1527 	return 0;
1528 }
1529 
1530 #ifdef CONFIG_PM_SLEEP
1531 static int sh_mmcif_suspend(struct device *dev)
1532 {
1533 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1534 
1535 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1536 
1537 	return 0;
1538 }
1539 
1540 static int sh_mmcif_resume(struct device *dev)
1541 {
1542 	return 0;
1543 }
1544 #endif
1545 
1546 static const struct of_device_id mmcif_of_match[] = {
1547 	{ .compatible = "renesas,sh-mmcif" },
1548 	{ }
1549 };
1550 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1551 
1552 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1553 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1554 };
1555 
1556 static struct platform_driver sh_mmcif_driver = {
1557 	.probe		= sh_mmcif_probe,
1558 	.remove		= sh_mmcif_remove,
1559 	.driver		= {
1560 		.name	= DRIVER_NAME,
1561 		.pm	= &sh_mmcif_dev_pm_ops,
1562 		.of_match_table = mmcif_of_match,
1563 	},
1564 };
1565 
1566 module_platform_driver(sh_mmcif_driver);
1567 
1568 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1569 MODULE_LICENSE("GPL");
1570 MODULE_ALIAS("platform:" DRIVER_NAME);
1571 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1572