1 /* 2 * MMCIF eMMC driver. 3 * 4 * Copyright (C) 2010 Renesas Solutions Corp. 5 * Yusuke Goda <yusuke.goda.sx@renesas.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License. 10 * 11 * 12 * TODO 13 * 1. DMA 14 * 2. Power management 15 * 3. Handle MMC errors better 16 * 17 */ 18 19 /* 20 * The MMCIF driver is now processing MMC requests asynchronously, according 21 * to the Linux MMC API requirement. 22 * 23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional 24 * data, and optional stop. To achieve asynchronous processing each of these 25 * stages is split into two halves: a top and a bottom half. The top half 26 * initialises the hardware, installs a timeout handler to handle completion 27 * timeouts, and returns. In case of the command stage this immediately returns 28 * control to the caller, leaving all further processing to run asynchronously. 29 * All further request processing is performed by the bottom halves. 30 * 31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler 32 * thread, a DMA completion callback, if DMA is used, a timeout work, and 33 * request- and stage-specific handler methods. 34 * 35 * Each bottom half run begins with either a hardware interrupt, a DMA callback 36 * invocation, or a timeout work run. In case of an error or a successful 37 * processing completion, the MMC core is informed and the request processing is 38 * finished. In case processing has to continue, i.e., if data has to be read 39 * from or written to the card, or if a stop command has to be sent, the next 40 * top half is called, which performs the necessary hardware handling and 41 * reschedules the timeout work. This returns the driver state machine into the 42 * bottom half waiting state. 43 */ 44 45 #include <linux/bitops.h> 46 #include <linux/clk.h> 47 #include <linux/completion.h> 48 #include <linux/delay.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/dmaengine.h> 51 #include <linux/mmc/card.h> 52 #include <linux/mmc/core.h> 53 #include <linux/mmc/host.h> 54 #include <linux/mmc/mmc.h> 55 #include <linux/mmc/sdio.h> 56 #include <linux/mmc/sh_mmcif.h> 57 #include <linux/mmc/slot-gpio.h> 58 #include <linux/mod_devicetable.h> 59 #include <linux/mutex.h> 60 #include <linux/pagemap.h> 61 #include <linux/platform_device.h> 62 #include <linux/pm_qos.h> 63 #include <linux/pm_runtime.h> 64 #include <linux/sh_dma.h> 65 #include <linux/spinlock.h> 66 #include <linux/module.h> 67 68 #define DRIVER_NAME "sh_mmcif" 69 #define DRIVER_VERSION "2010-04-28" 70 71 /* CE_CMD_SET */ 72 #define CMD_MASK 0x3f000000 73 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22)) 74 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */ 75 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */ 76 #define CMD_SET_RBSY (1 << 21) /* R1b */ 77 #define CMD_SET_CCSEN (1 << 20) 78 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */ 79 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */ 80 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */ 81 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */ 82 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */ 83 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */ 84 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */ 85 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/ 86 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/ 87 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/ 88 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/ 89 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */ 90 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */ 91 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */ 92 #define CMD_SET_CCSH (1 << 5) 93 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */ 94 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */ 95 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */ 96 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */ 97 98 /* CE_CMD_CTRL */ 99 #define CMD_CTRL_BREAK (1 << 0) 100 101 /* CE_BLOCK_SET */ 102 #define BLOCK_SIZE_MASK 0x0000ffff 103 104 /* CE_INT */ 105 #define INT_CCSDE (1 << 29) 106 #define INT_CMD12DRE (1 << 26) 107 #define INT_CMD12RBE (1 << 25) 108 #define INT_CMD12CRE (1 << 24) 109 #define INT_DTRANE (1 << 23) 110 #define INT_BUFRE (1 << 22) 111 #define INT_BUFWEN (1 << 21) 112 #define INT_BUFREN (1 << 20) 113 #define INT_CCSRCV (1 << 19) 114 #define INT_RBSYE (1 << 17) 115 #define INT_CRSPE (1 << 16) 116 #define INT_CMDVIO (1 << 15) 117 #define INT_BUFVIO (1 << 14) 118 #define INT_WDATERR (1 << 11) 119 #define INT_RDATERR (1 << 10) 120 #define INT_RIDXERR (1 << 9) 121 #define INT_RSPERR (1 << 8) 122 #define INT_CCSTO (1 << 5) 123 #define INT_CRCSTO (1 << 4) 124 #define INT_WDATTO (1 << 3) 125 #define INT_RDATTO (1 << 2) 126 #define INT_RBSYTO (1 << 1) 127 #define INT_RSPTO (1 << 0) 128 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \ 129 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \ 130 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \ 131 INT_RDATTO | INT_RBSYTO | INT_RSPTO) 132 133 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \ 134 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \ 135 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE) 136 137 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE) 138 139 /* CE_INT_MASK */ 140 #define MASK_ALL 0x00000000 141 #define MASK_MCCSDE (1 << 29) 142 #define MASK_MCMD12DRE (1 << 26) 143 #define MASK_MCMD12RBE (1 << 25) 144 #define MASK_MCMD12CRE (1 << 24) 145 #define MASK_MDTRANE (1 << 23) 146 #define MASK_MBUFRE (1 << 22) 147 #define MASK_MBUFWEN (1 << 21) 148 #define MASK_MBUFREN (1 << 20) 149 #define MASK_MCCSRCV (1 << 19) 150 #define MASK_MRBSYE (1 << 17) 151 #define MASK_MCRSPE (1 << 16) 152 #define MASK_MCMDVIO (1 << 15) 153 #define MASK_MBUFVIO (1 << 14) 154 #define MASK_MWDATERR (1 << 11) 155 #define MASK_MRDATERR (1 << 10) 156 #define MASK_MRIDXERR (1 << 9) 157 #define MASK_MRSPERR (1 << 8) 158 #define MASK_MCCSTO (1 << 5) 159 #define MASK_MCRCSTO (1 << 4) 160 #define MASK_MWDATTO (1 << 3) 161 #define MASK_MRDATTO (1 << 2) 162 #define MASK_MRBSYTO (1 << 1) 163 #define MASK_MRSPTO (1 << 0) 164 165 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \ 166 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \ 167 MASK_MCRCSTO | MASK_MWDATTO | \ 168 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO) 169 170 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \ 171 MASK_MBUFREN | MASK_MBUFWEN | \ 172 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \ 173 MASK_MCMD12RBE | MASK_MCMD12CRE) 174 175 /* CE_HOST_STS1 */ 176 #define STS1_CMDSEQ (1 << 31) 177 178 /* CE_HOST_STS2 */ 179 #define STS2_CRCSTE (1 << 31) 180 #define STS2_CRC16E (1 << 30) 181 #define STS2_AC12CRCE (1 << 29) 182 #define STS2_RSPCRC7E (1 << 28) 183 #define STS2_CRCSTEBE (1 << 27) 184 #define STS2_RDATEBE (1 << 26) 185 #define STS2_AC12REBE (1 << 25) 186 #define STS2_RSPEBE (1 << 24) 187 #define STS2_AC12IDXE (1 << 23) 188 #define STS2_RSPIDXE (1 << 22) 189 #define STS2_CCSTO (1 << 15) 190 #define STS2_RDATTO (1 << 14) 191 #define STS2_DATBSYTO (1 << 13) 192 #define STS2_CRCSTTO (1 << 12) 193 #define STS2_AC12BSYTO (1 << 11) 194 #define STS2_RSPBSYTO (1 << 10) 195 #define STS2_AC12RSPTO (1 << 9) 196 #define STS2_RSPTO (1 << 8) 197 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \ 198 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE) 199 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \ 200 STS2_DATBSYTO | STS2_CRCSTTO | \ 201 STS2_AC12BSYTO | STS2_RSPBSYTO | \ 202 STS2_AC12RSPTO | STS2_RSPTO) 203 204 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */ 205 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */ 206 #define CLKDEV_INIT 400000 /* 400 KHz */ 207 208 enum mmcif_state { 209 STATE_IDLE, 210 STATE_REQUEST, 211 STATE_IOS, 212 STATE_TIMEOUT, 213 }; 214 215 enum mmcif_wait_for { 216 MMCIF_WAIT_FOR_REQUEST, 217 MMCIF_WAIT_FOR_CMD, 218 MMCIF_WAIT_FOR_MREAD, 219 MMCIF_WAIT_FOR_MWRITE, 220 MMCIF_WAIT_FOR_READ, 221 MMCIF_WAIT_FOR_WRITE, 222 MMCIF_WAIT_FOR_READ_END, 223 MMCIF_WAIT_FOR_WRITE_END, 224 MMCIF_WAIT_FOR_STOP, 225 }; 226 227 struct sh_mmcif_host { 228 struct mmc_host *mmc; 229 struct mmc_request *mrq; 230 struct platform_device *pd; 231 struct clk *hclk; 232 unsigned int clk; 233 int bus_width; 234 unsigned char timing; 235 bool sd_error; 236 bool dying; 237 long timeout; 238 void __iomem *addr; 239 u32 *pio_ptr; 240 spinlock_t lock; /* protect sh_mmcif_host::state */ 241 enum mmcif_state state; 242 enum mmcif_wait_for wait_for; 243 struct delayed_work timeout_work; 244 size_t blocksize; 245 int sg_idx; 246 int sg_blkidx; 247 bool power; 248 bool card_present; 249 bool ccs_enable; /* Command Completion Signal support */ 250 bool clk_ctrl2_enable; 251 struct mutex thread_lock; 252 253 /* DMA support */ 254 struct dma_chan *chan_rx; 255 struct dma_chan *chan_tx; 256 struct completion dma_complete; 257 bool dma_active; 258 }; 259 260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host, 261 unsigned int reg, u32 val) 262 { 263 writel(val | readl(host->addr + reg), host->addr + reg); 264 } 265 266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host, 267 unsigned int reg, u32 val) 268 { 269 writel(~val & readl(host->addr + reg), host->addr + reg); 270 } 271 272 static void mmcif_dma_complete(void *arg) 273 { 274 struct sh_mmcif_host *host = arg; 275 struct mmc_request *mrq = host->mrq; 276 277 dev_dbg(&host->pd->dev, "Command completed\n"); 278 279 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n", 280 dev_name(&host->pd->dev))) 281 return; 282 283 complete(&host->dma_complete); 284 } 285 286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host) 287 { 288 struct mmc_data *data = host->mrq->data; 289 struct scatterlist *sg = data->sg; 290 struct dma_async_tx_descriptor *desc = NULL; 291 struct dma_chan *chan = host->chan_rx; 292 dma_cookie_t cookie = -EINVAL; 293 int ret; 294 295 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 296 DMA_FROM_DEVICE); 297 if (ret > 0) { 298 host->dma_active = true; 299 desc = dmaengine_prep_slave_sg(chan, sg, ret, 300 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 301 } 302 303 if (desc) { 304 desc->callback = mmcif_dma_complete; 305 desc->callback_param = host; 306 cookie = dmaengine_submit(desc); 307 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN); 308 dma_async_issue_pending(chan); 309 } 310 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n", 311 __func__, data->sg_len, ret, cookie); 312 313 if (!desc) { 314 /* DMA failed, fall back to PIO */ 315 if (ret >= 0) 316 ret = -EIO; 317 host->chan_rx = NULL; 318 host->dma_active = false; 319 dma_release_channel(chan); 320 /* Free the Tx channel too */ 321 chan = host->chan_tx; 322 if (chan) { 323 host->chan_tx = NULL; 324 dma_release_channel(chan); 325 } 326 dev_warn(&host->pd->dev, 327 "DMA failed: %d, falling back to PIO\n", ret); 328 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 329 } 330 331 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__, 332 desc, cookie, data->sg_len); 333 } 334 335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host) 336 { 337 struct mmc_data *data = host->mrq->data; 338 struct scatterlist *sg = data->sg; 339 struct dma_async_tx_descriptor *desc = NULL; 340 struct dma_chan *chan = host->chan_tx; 341 dma_cookie_t cookie = -EINVAL; 342 int ret; 343 344 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 345 DMA_TO_DEVICE); 346 if (ret > 0) { 347 host->dma_active = true; 348 desc = dmaengine_prep_slave_sg(chan, sg, ret, 349 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 350 } 351 352 if (desc) { 353 desc->callback = mmcif_dma_complete; 354 desc->callback_param = host; 355 cookie = dmaengine_submit(desc); 356 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN); 357 dma_async_issue_pending(chan); 358 } 359 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n", 360 __func__, data->sg_len, ret, cookie); 361 362 if (!desc) { 363 /* DMA failed, fall back to PIO */ 364 if (ret >= 0) 365 ret = -EIO; 366 host->chan_tx = NULL; 367 host->dma_active = false; 368 dma_release_channel(chan); 369 /* Free the Rx channel too */ 370 chan = host->chan_rx; 371 if (chan) { 372 host->chan_rx = NULL; 373 dma_release_channel(chan); 374 } 375 dev_warn(&host->pd->dev, 376 "DMA failed: %d, falling back to PIO\n", ret); 377 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 378 } 379 380 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__, 381 desc, cookie); 382 } 383 384 static struct dma_chan * 385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host, 386 struct sh_mmcif_plat_data *pdata, 387 enum dma_transfer_direction direction) 388 { 389 struct dma_slave_config cfg = { 0, }; 390 struct dma_chan *chan; 391 void *slave_data = NULL; 392 struct resource *res; 393 dma_cap_mask_t mask; 394 int ret; 395 396 dma_cap_zero(mask); 397 dma_cap_set(DMA_SLAVE, mask); 398 399 if (pdata) 400 slave_data = direction == DMA_MEM_TO_DEV ? 401 (void *)pdata->slave_id_tx : 402 (void *)pdata->slave_id_rx; 403 404 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 405 slave_data, &host->pd->dev, 406 direction == DMA_MEM_TO_DEV ? "tx" : "rx"); 407 408 dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__, 409 direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan); 410 411 if (!chan) 412 return NULL; 413 414 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0); 415 416 cfg.direction = direction; 417 418 if (direction == DMA_DEV_TO_MEM) { 419 cfg.src_addr = res->start + MMCIF_CE_DATA; 420 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 421 } else { 422 cfg.dst_addr = res->start + MMCIF_CE_DATA; 423 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 424 } 425 426 ret = dmaengine_slave_config(chan, &cfg); 427 if (ret < 0) { 428 dma_release_channel(chan); 429 return NULL; 430 } 431 432 return chan; 433 } 434 435 static void sh_mmcif_request_dma(struct sh_mmcif_host *host, 436 struct sh_mmcif_plat_data *pdata) 437 { 438 host->dma_active = false; 439 440 if (pdata) { 441 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0) 442 return; 443 } else if (!host->pd->dev.of_node) { 444 return; 445 } 446 447 /* We can only either use DMA for both Tx and Rx or not use it at all */ 448 host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV); 449 if (!host->chan_tx) 450 return; 451 452 host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM); 453 if (!host->chan_rx) { 454 dma_release_channel(host->chan_tx); 455 host->chan_tx = NULL; 456 } 457 } 458 459 static void sh_mmcif_release_dma(struct sh_mmcif_host *host) 460 { 461 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 462 /* Descriptors are freed automatically */ 463 if (host->chan_tx) { 464 struct dma_chan *chan = host->chan_tx; 465 host->chan_tx = NULL; 466 dma_release_channel(chan); 467 } 468 if (host->chan_rx) { 469 struct dma_chan *chan = host->chan_rx; 470 host->chan_rx = NULL; 471 dma_release_channel(chan); 472 } 473 474 host->dma_active = false; 475 } 476 477 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk) 478 { 479 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data; 480 bool sup_pclk = p ? p->sup_pclk : false; 481 482 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 483 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR); 484 485 if (!clk) 486 return; 487 if (sup_pclk && clk == host->clk) 488 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK); 489 else 490 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & 491 ((fls(DIV_ROUND_UP(host->clk, 492 clk) - 1) - 1) << 16)); 493 494 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 495 } 496 497 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host) 498 { 499 u32 tmp; 500 501 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL); 502 503 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON); 504 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF); 505 if (host->ccs_enable) 506 tmp |= SCCSTO_29; 507 if (host->clk_ctrl2_enable) 508 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000); 509 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp | 510 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29); 511 /* byte swap on */ 512 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP); 513 } 514 515 static int sh_mmcif_error_manage(struct sh_mmcif_host *host) 516 { 517 u32 state1, state2; 518 int ret, timeout; 519 520 host->sd_error = false; 521 522 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1); 523 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2); 524 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1); 525 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2); 526 527 if (state1 & STS1_CMDSEQ) { 528 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK); 529 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK); 530 for (timeout = 10000000; timeout; timeout--) { 531 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1) 532 & STS1_CMDSEQ)) 533 break; 534 mdelay(1); 535 } 536 if (!timeout) { 537 dev_err(&host->pd->dev, 538 "Forced end of command sequence timeout err\n"); 539 return -EIO; 540 } 541 sh_mmcif_sync_reset(host); 542 dev_dbg(&host->pd->dev, "Forced end of command sequence\n"); 543 return -EIO; 544 } 545 546 if (state2 & STS2_CRC_ERR) { 547 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n", 548 host->state, host->wait_for); 549 ret = -EIO; 550 } else if (state2 & STS2_TIMEOUT_ERR) { 551 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n", 552 host->state, host->wait_for); 553 ret = -ETIMEDOUT; 554 } else { 555 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n", 556 host->state, host->wait_for); 557 ret = -EIO; 558 } 559 return ret; 560 } 561 562 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p) 563 { 564 struct mmc_data *data = host->mrq->data; 565 566 host->sg_blkidx += host->blocksize; 567 568 /* data->sg->length must be a multiple of host->blocksize? */ 569 BUG_ON(host->sg_blkidx > data->sg->length); 570 571 if (host->sg_blkidx == data->sg->length) { 572 host->sg_blkidx = 0; 573 if (++host->sg_idx < data->sg_len) 574 host->pio_ptr = sg_virt(++data->sg); 575 } else { 576 host->pio_ptr = p; 577 } 578 579 return host->sg_idx != data->sg_len; 580 } 581 582 static void sh_mmcif_single_read(struct sh_mmcif_host *host, 583 struct mmc_request *mrq) 584 { 585 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 586 BLOCK_SIZE_MASK) + 3; 587 588 host->wait_for = MMCIF_WAIT_FOR_READ; 589 590 /* buf read enable */ 591 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 592 } 593 594 static bool sh_mmcif_read_block(struct sh_mmcif_host *host) 595 { 596 struct mmc_data *data = host->mrq->data; 597 u32 *p = sg_virt(data->sg); 598 int i; 599 600 if (host->sd_error) { 601 data->error = sh_mmcif_error_manage(host); 602 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error); 603 return false; 604 } 605 606 for (i = 0; i < host->blocksize / 4; i++) 607 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 608 609 /* buffer read end */ 610 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE); 611 host->wait_for = MMCIF_WAIT_FOR_READ_END; 612 613 return true; 614 } 615 616 static void sh_mmcif_multi_read(struct sh_mmcif_host *host, 617 struct mmc_request *mrq) 618 { 619 struct mmc_data *data = mrq->data; 620 621 if (!data->sg_len || !data->sg->length) 622 return; 623 624 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 625 BLOCK_SIZE_MASK; 626 627 host->wait_for = MMCIF_WAIT_FOR_MREAD; 628 host->sg_idx = 0; 629 host->sg_blkidx = 0; 630 host->pio_ptr = sg_virt(data->sg); 631 632 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 633 } 634 635 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host) 636 { 637 struct mmc_data *data = host->mrq->data; 638 u32 *p = host->pio_ptr; 639 int i; 640 641 if (host->sd_error) { 642 data->error = sh_mmcif_error_manage(host); 643 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error); 644 return false; 645 } 646 647 BUG_ON(!data->sg->length); 648 649 for (i = 0; i < host->blocksize / 4; i++) 650 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 651 652 if (!sh_mmcif_next_block(host, p)) 653 return false; 654 655 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 656 657 return true; 658 } 659 660 static void sh_mmcif_single_write(struct sh_mmcif_host *host, 661 struct mmc_request *mrq) 662 { 663 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 664 BLOCK_SIZE_MASK) + 3; 665 666 host->wait_for = MMCIF_WAIT_FOR_WRITE; 667 668 /* buf write enable */ 669 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 670 } 671 672 static bool sh_mmcif_write_block(struct sh_mmcif_host *host) 673 { 674 struct mmc_data *data = host->mrq->data; 675 u32 *p = sg_virt(data->sg); 676 int i; 677 678 if (host->sd_error) { 679 data->error = sh_mmcif_error_manage(host); 680 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error); 681 return false; 682 } 683 684 for (i = 0; i < host->blocksize / 4; i++) 685 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 686 687 /* buffer write end */ 688 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE); 689 host->wait_for = MMCIF_WAIT_FOR_WRITE_END; 690 691 return true; 692 } 693 694 static void sh_mmcif_multi_write(struct sh_mmcif_host *host, 695 struct mmc_request *mrq) 696 { 697 struct mmc_data *data = mrq->data; 698 699 if (!data->sg_len || !data->sg->length) 700 return; 701 702 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 703 BLOCK_SIZE_MASK; 704 705 host->wait_for = MMCIF_WAIT_FOR_MWRITE; 706 host->sg_idx = 0; 707 host->sg_blkidx = 0; 708 host->pio_ptr = sg_virt(data->sg); 709 710 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 711 } 712 713 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host) 714 { 715 struct mmc_data *data = host->mrq->data; 716 u32 *p = host->pio_ptr; 717 int i; 718 719 if (host->sd_error) { 720 data->error = sh_mmcif_error_manage(host); 721 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error); 722 return false; 723 } 724 725 BUG_ON(!data->sg->length); 726 727 for (i = 0; i < host->blocksize / 4; i++) 728 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 729 730 if (!sh_mmcif_next_block(host, p)) 731 return false; 732 733 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 734 735 return true; 736 } 737 738 static void sh_mmcif_get_response(struct sh_mmcif_host *host, 739 struct mmc_command *cmd) 740 { 741 if (cmd->flags & MMC_RSP_136) { 742 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3); 743 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2); 744 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1); 745 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 746 } else 747 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 748 } 749 750 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host, 751 struct mmc_command *cmd) 752 { 753 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12); 754 } 755 756 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host, 757 struct mmc_request *mrq) 758 { 759 struct mmc_data *data = mrq->data; 760 struct mmc_command *cmd = mrq->cmd; 761 u32 opc = cmd->opcode; 762 u32 tmp = 0; 763 764 /* Response Type check */ 765 switch (mmc_resp_type(cmd)) { 766 case MMC_RSP_NONE: 767 tmp |= CMD_SET_RTYP_NO; 768 break; 769 case MMC_RSP_R1: 770 case MMC_RSP_R1B: 771 case MMC_RSP_R3: 772 tmp |= CMD_SET_RTYP_6B; 773 break; 774 case MMC_RSP_R2: 775 tmp |= CMD_SET_RTYP_17B; 776 break; 777 default: 778 dev_err(&host->pd->dev, "Unsupported response type.\n"); 779 break; 780 } 781 switch (opc) { 782 /* RBSY */ 783 case MMC_SLEEP_AWAKE: 784 case MMC_SWITCH: 785 case MMC_STOP_TRANSMISSION: 786 case MMC_SET_WRITE_PROT: 787 case MMC_CLR_WRITE_PROT: 788 case MMC_ERASE: 789 tmp |= CMD_SET_RBSY; 790 break; 791 } 792 /* WDAT / DATW */ 793 if (data) { 794 tmp |= CMD_SET_WDAT; 795 switch (host->bus_width) { 796 case MMC_BUS_WIDTH_1: 797 tmp |= CMD_SET_DATW_1; 798 break; 799 case MMC_BUS_WIDTH_4: 800 tmp |= CMD_SET_DATW_4; 801 break; 802 case MMC_BUS_WIDTH_8: 803 tmp |= CMD_SET_DATW_8; 804 break; 805 default: 806 dev_err(&host->pd->dev, "Unsupported bus width.\n"); 807 break; 808 } 809 switch (host->timing) { 810 case MMC_TIMING_MMC_DDR52: 811 /* 812 * MMC core will only set this timing, if the host 813 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR 814 * capability. MMCIF implementations with this 815 * capability, e.g. sh73a0, will have to set it 816 * in their platform data. 817 */ 818 tmp |= CMD_SET_DARS; 819 break; 820 } 821 } 822 /* DWEN */ 823 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) 824 tmp |= CMD_SET_DWEN; 825 /* CMLTE/CMD12EN */ 826 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) { 827 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN; 828 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET, 829 data->blocks << 16); 830 } 831 /* RIDXC[1:0] check bits */ 832 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID || 833 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 834 tmp |= CMD_SET_RIDXC_BITS; 835 /* RCRC7C[1:0] check bits */ 836 if (opc == MMC_SEND_OP_COND) 837 tmp |= CMD_SET_CRC7C_BITS; 838 /* RCRC7C[1:0] internal CRC7 */ 839 if (opc == MMC_ALL_SEND_CID || 840 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 841 tmp |= CMD_SET_CRC7C_INTERNAL; 842 843 return (opc << 24) | tmp; 844 } 845 846 static int sh_mmcif_data_trans(struct sh_mmcif_host *host, 847 struct mmc_request *mrq, u32 opc) 848 { 849 switch (opc) { 850 case MMC_READ_MULTIPLE_BLOCK: 851 sh_mmcif_multi_read(host, mrq); 852 return 0; 853 case MMC_WRITE_MULTIPLE_BLOCK: 854 sh_mmcif_multi_write(host, mrq); 855 return 0; 856 case MMC_WRITE_BLOCK: 857 sh_mmcif_single_write(host, mrq); 858 return 0; 859 case MMC_READ_SINGLE_BLOCK: 860 case MMC_SEND_EXT_CSD: 861 sh_mmcif_single_read(host, mrq); 862 return 0; 863 default: 864 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc); 865 return -EINVAL; 866 } 867 } 868 869 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host, 870 struct mmc_request *mrq) 871 { 872 struct mmc_command *cmd = mrq->cmd; 873 u32 opc = cmd->opcode; 874 u32 mask; 875 unsigned long flags; 876 877 switch (opc) { 878 /* response busy check */ 879 case MMC_SLEEP_AWAKE: 880 case MMC_SWITCH: 881 case MMC_STOP_TRANSMISSION: 882 case MMC_SET_WRITE_PROT: 883 case MMC_CLR_WRITE_PROT: 884 case MMC_ERASE: 885 mask = MASK_START_CMD | MASK_MRBSYE; 886 break; 887 default: 888 mask = MASK_START_CMD | MASK_MCRSPE; 889 break; 890 } 891 892 if (host->ccs_enable) 893 mask |= MASK_MCCSTO; 894 895 if (mrq->data) { 896 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0); 897 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 898 mrq->data->blksz); 899 } 900 opc = sh_mmcif_set_cmd(host, mrq); 901 902 if (host->ccs_enable) 903 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0); 904 else 905 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS); 906 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask); 907 /* set arg */ 908 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg); 909 /* set cmd */ 910 spin_lock_irqsave(&host->lock, flags); 911 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc); 912 913 host->wait_for = MMCIF_WAIT_FOR_CMD; 914 schedule_delayed_work(&host->timeout_work, host->timeout); 915 spin_unlock_irqrestore(&host->lock, flags); 916 } 917 918 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host, 919 struct mmc_request *mrq) 920 { 921 switch (mrq->cmd->opcode) { 922 case MMC_READ_MULTIPLE_BLOCK: 923 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE); 924 break; 925 case MMC_WRITE_MULTIPLE_BLOCK: 926 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE); 927 break; 928 default: 929 dev_err(&host->pd->dev, "unsupported stop cmd\n"); 930 mrq->stop->error = sh_mmcif_error_manage(host); 931 return; 932 } 933 934 host->wait_for = MMCIF_WAIT_FOR_STOP; 935 } 936 937 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq) 938 { 939 struct sh_mmcif_host *host = mmc_priv(mmc); 940 unsigned long flags; 941 942 spin_lock_irqsave(&host->lock, flags); 943 if (host->state != STATE_IDLE) { 944 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state); 945 spin_unlock_irqrestore(&host->lock, flags); 946 mrq->cmd->error = -EAGAIN; 947 mmc_request_done(mmc, mrq); 948 return; 949 } 950 951 host->state = STATE_REQUEST; 952 spin_unlock_irqrestore(&host->lock, flags); 953 954 switch (mrq->cmd->opcode) { 955 /* MMCIF does not support SD/SDIO command */ 956 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */ 957 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */ 958 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR) 959 break; 960 case MMC_APP_CMD: 961 case SD_IO_RW_DIRECT: 962 host->state = STATE_IDLE; 963 mrq->cmd->error = -ETIMEDOUT; 964 mmc_request_done(mmc, mrq); 965 return; 966 default: 967 break; 968 } 969 970 host->mrq = mrq; 971 972 sh_mmcif_start_cmd(host, mrq); 973 } 974 975 static int sh_mmcif_clk_update(struct sh_mmcif_host *host) 976 { 977 int ret = clk_prepare_enable(host->hclk); 978 979 if (!ret) { 980 host->clk = clk_get_rate(host->hclk); 981 host->mmc->f_max = host->clk / 2; 982 host->mmc->f_min = host->clk / 512; 983 } 984 985 return ret; 986 } 987 988 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios) 989 { 990 struct mmc_host *mmc = host->mmc; 991 992 if (!IS_ERR(mmc->supply.vmmc)) 993 /* Errors ignored... */ 994 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 995 ios->power_mode ? ios->vdd : 0); 996 } 997 998 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 999 { 1000 struct sh_mmcif_host *host = mmc_priv(mmc); 1001 unsigned long flags; 1002 1003 spin_lock_irqsave(&host->lock, flags); 1004 if (host->state != STATE_IDLE) { 1005 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state); 1006 spin_unlock_irqrestore(&host->lock, flags); 1007 return; 1008 } 1009 1010 host->state = STATE_IOS; 1011 spin_unlock_irqrestore(&host->lock, flags); 1012 1013 if (ios->power_mode == MMC_POWER_UP) { 1014 if (!host->card_present) { 1015 /* See if we also get DMA */ 1016 sh_mmcif_request_dma(host, host->pd->dev.platform_data); 1017 host->card_present = true; 1018 } 1019 sh_mmcif_set_power(host, ios); 1020 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) { 1021 /* clock stop */ 1022 sh_mmcif_clock_control(host, 0); 1023 if (ios->power_mode == MMC_POWER_OFF) { 1024 if (host->card_present) { 1025 sh_mmcif_release_dma(host); 1026 host->card_present = false; 1027 } 1028 } 1029 if (host->power) { 1030 pm_runtime_put_sync(&host->pd->dev); 1031 clk_disable_unprepare(host->hclk); 1032 host->power = false; 1033 if (ios->power_mode == MMC_POWER_OFF) 1034 sh_mmcif_set_power(host, ios); 1035 } 1036 host->state = STATE_IDLE; 1037 return; 1038 } 1039 1040 if (ios->clock) { 1041 if (!host->power) { 1042 sh_mmcif_clk_update(host); 1043 pm_runtime_get_sync(&host->pd->dev); 1044 host->power = true; 1045 sh_mmcif_sync_reset(host); 1046 } 1047 sh_mmcif_clock_control(host, ios->clock); 1048 } 1049 1050 host->timing = ios->timing; 1051 host->bus_width = ios->bus_width; 1052 host->state = STATE_IDLE; 1053 } 1054 1055 static int sh_mmcif_get_cd(struct mmc_host *mmc) 1056 { 1057 struct sh_mmcif_host *host = mmc_priv(mmc); 1058 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data; 1059 int ret = mmc_gpio_get_cd(mmc); 1060 1061 if (ret >= 0) 1062 return ret; 1063 1064 if (!p || !p->get_cd) 1065 return -ENOSYS; 1066 else 1067 return p->get_cd(host->pd); 1068 } 1069 1070 static struct mmc_host_ops sh_mmcif_ops = { 1071 .request = sh_mmcif_request, 1072 .set_ios = sh_mmcif_set_ios, 1073 .get_cd = sh_mmcif_get_cd, 1074 }; 1075 1076 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host) 1077 { 1078 struct mmc_command *cmd = host->mrq->cmd; 1079 struct mmc_data *data = host->mrq->data; 1080 long time; 1081 1082 if (host->sd_error) { 1083 switch (cmd->opcode) { 1084 case MMC_ALL_SEND_CID: 1085 case MMC_SELECT_CARD: 1086 case MMC_APP_CMD: 1087 cmd->error = -ETIMEDOUT; 1088 break; 1089 default: 1090 cmd->error = sh_mmcif_error_manage(host); 1091 break; 1092 } 1093 dev_dbg(&host->pd->dev, "CMD%d error %d\n", 1094 cmd->opcode, cmd->error); 1095 host->sd_error = false; 1096 return false; 1097 } 1098 if (!(cmd->flags & MMC_RSP_PRESENT)) { 1099 cmd->error = 0; 1100 return false; 1101 } 1102 1103 sh_mmcif_get_response(host, cmd); 1104 1105 if (!data) 1106 return false; 1107 1108 /* 1109 * Completion can be signalled from DMA callback and error, so, have to 1110 * reset here, before setting .dma_active 1111 */ 1112 init_completion(&host->dma_complete); 1113 1114 if (data->flags & MMC_DATA_READ) { 1115 if (host->chan_rx) 1116 sh_mmcif_start_dma_rx(host); 1117 } else { 1118 if (host->chan_tx) 1119 sh_mmcif_start_dma_tx(host); 1120 } 1121 1122 if (!host->dma_active) { 1123 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode); 1124 return !data->error; 1125 } 1126 1127 /* Running in the IRQ thread, can sleep */ 1128 time = wait_for_completion_interruptible_timeout(&host->dma_complete, 1129 host->timeout); 1130 1131 if (data->flags & MMC_DATA_READ) 1132 dma_unmap_sg(host->chan_rx->device->dev, 1133 data->sg, data->sg_len, 1134 DMA_FROM_DEVICE); 1135 else 1136 dma_unmap_sg(host->chan_tx->device->dev, 1137 data->sg, data->sg_len, 1138 DMA_TO_DEVICE); 1139 1140 if (host->sd_error) { 1141 dev_err(host->mmc->parent, 1142 "Error IRQ while waiting for DMA completion!\n"); 1143 /* Woken up by an error IRQ: abort DMA */ 1144 data->error = sh_mmcif_error_manage(host); 1145 } else if (!time) { 1146 dev_err(host->mmc->parent, "DMA timeout!\n"); 1147 data->error = -ETIMEDOUT; 1148 } else if (time < 0) { 1149 dev_err(host->mmc->parent, 1150 "wait_for_completion_...() error %ld!\n", time); 1151 data->error = time; 1152 } 1153 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, 1154 BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 1155 host->dma_active = false; 1156 1157 if (data->error) { 1158 data->bytes_xfered = 0; 1159 /* Abort DMA */ 1160 if (data->flags & MMC_DATA_READ) 1161 dmaengine_terminate_all(host->chan_rx); 1162 else 1163 dmaengine_terminate_all(host->chan_tx); 1164 } 1165 1166 return false; 1167 } 1168 1169 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id) 1170 { 1171 struct sh_mmcif_host *host = dev_id; 1172 struct mmc_request *mrq; 1173 bool wait = false; 1174 unsigned long flags; 1175 int wait_work; 1176 1177 spin_lock_irqsave(&host->lock, flags); 1178 wait_work = host->wait_for; 1179 spin_unlock_irqrestore(&host->lock, flags); 1180 1181 cancel_delayed_work_sync(&host->timeout_work); 1182 1183 mutex_lock(&host->thread_lock); 1184 1185 mrq = host->mrq; 1186 if (!mrq) { 1187 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n", 1188 host->state, host->wait_for); 1189 mutex_unlock(&host->thread_lock); 1190 return IRQ_HANDLED; 1191 } 1192 1193 /* 1194 * All handlers return true, if processing continues, and false, if the 1195 * request has to be completed - successfully or not 1196 */ 1197 switch (wait_work) { 1198 case MMCIF_WAIT_FOR_REQUEST: 1199 /* We're too late, the timeout has already kicked in */ 1200 mutex_unlock(&host->thread_lock); 1201 return IRQ_HANDLED; 1202 case MMCIF_WAIT_FOR_CMD: 1203 /* Wait for data? */ 1204 wait = sh_mmcif_end_cmd(host); 1205 break; 1206 case MMCIF_WAIT_FOR_MREAD: 1207 /* Wait for more data? */ 1208 wait = sh_mmcif_mread_block(host); 1209 break; 1210 case MMCIF_WAIT_FOR_READ: 1211 /* Wait for data end? */ 1212 wait = sh_mmcif_read_block(host); 1213 break; 1214 case MMCIF_WAIT_FOR_MWRITE: 1215 /* Wait data to write? */ 1216 wait = sh_mmcif_mwrite_block(host); 1217 break; 1218 case MMCIF_WAIT_FOR_WRITE: 1219 /* Wait for data end? */ 1220 wait = sh_mmcif_write_block(host); 1221 break; 1222 case MMCIF_WAIT_FOR_STOP: 1223 if (host->sd_error) { 1224 mrq->stop->error = sh_mmcif_error_manage(host); 1225 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error); 1226 break; 1227 } 1228 sh_mmcif_get_cmd12response(host, mrq->stop); 1229 mrq->stop->error = 0; 1230 break; 1231 case MMCIF_WAIT_FOR_READ_END: 1232 case MMCIF_WAIT_FOR_WRITE_END: 1233 if (host->sd_error) { 1234 mrq->data->error = sh_mmcif_error_manage(host); 1235 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error); 1236 } 1237 break; 1238 default: 1239 BUG(); 1240 } 1241 1242 if (wait) { 1243 schedule_delayed_work(&host->timeout_work, host->timeout); 1244 /* Wait for more data */ 1245 mutex_unlock(&host->thread_lock); 1246 return IRQ_HANDLED; 1247 } 1248 1249 if (host->wait_for != MMCIF_WAIT_FOR_STOP) { 1250 struct mmc_data *data = mrq->data; 1251 if (!mrq->cmd->error && data && !data->error) 1252 data->bytes_xfered = 1253 data->blocks * data->blksz; 1254 1255 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) { 1256 sh_mmcif_stop_cmd(host, mrq); 1257 if (!mrq->stop->error) { 1258 schedule_delayed_work(&host->timeout_work, host->timeout); 1259 mutex_unlock(&host->thread_lock); 1260 return IRQ_HANDLED; 1261 } 1262 } 1263 } 1264 1265 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1266 host->state = STATE_IDLE; 1267 host->mrq = NULL; 1268 mmc_request_done(host->mmc, mrq); 1269 1270 mutex_unlock(&host->thread_lock); 1271 1272 return IRQ_HANDLED; 1273 } 1274 1275 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id) 1276 { 1277 struct sh_mmcif_host *host = dev_id; 1278 u32 state, mask; 1279 1280 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT); 1281 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK); 1282 if (host->ccs_enable) 1283 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask)); 1284 else 1285 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask)); 1286 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN); 1287 1288 if (state & ~MASK_CLEAN) 1289 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n", 1290 state); 1291 1292 if (state & INT_ERR_STS || state & ~INT_ALL) { 1293 host->sd_error = true; 1294 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state); 1295 } 1296 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) { 1297 if (!host->mrq) 1298 dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state); 1299 if (!host->dma_active) 1300 return IRQ_WAKE_THREAD; 1301 else if (host->sd_error) 1302 mmcif_dma_complete(host); 1303 } else { 1304 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state); 1305 } 1306 1307 return IRQ_HANDLED; 1308 } 1309 1310 static void mmcif_timeout_work(struct work_struct *work) 1311 { 1312 struct delayed_work *d = container_of(work, struct delayed_work, work); 1313 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work); 1314 struct mmc_request *mrq = host->mrq; 1315 unsigned long flags; 1316 1317 if (host->dying) 1318 /* Don't run after mmc_remove_host() */ 1319 return; 1320 1321 spin_lock_irqsave(&host->lock, flags); 1322 if (host->state == STATE_IDLE) { 1323 spin_unlock_irqrestore(&host->lock, flags); 1324 return; 1325 } 1326 1327 dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n", 1328 host->wait_for, mrq->cmd->opcode); 1329 1330 host->state = STATE_TIMEOUT; 1331 spin_unlock_irqrestore(&host->lock, flags); 1332 1333 /* 1334 * Handle races with cancel_delayed_work(), unless 1335 * cancel_delayed_work_sync() is used 1336 */ 1337 switch (host->wait_for) { 1338 case MMCIF_WAIT_FOR_CMD: 1339 mrq->cmd->error = sh_mmcif_error_manage(host); 1340 break; 1341 case MMCIF_WAIT_FOR_STOP: 1342 mrq->stop->error = sh_mmcif_error_manage(host); 1343 break; 1344 case MMCIF_WAIT_FOR_MREAD: 1345 case MMCIF_WAIT_FOR_MWRITE: 1346 case MMCIF_WAIT_FOR_READ: 1347 case MMCIF_WAIT_FOR_WRITE: 1348 case MMCIF_WAIT_FOR_READ_END: 1349 case MMCIF_WAIT_FOR_WRITE_END: 1350 mrq->data->error = sh_mmcif_error_manage(host); 1351 break; 1352 default: 1353 BUG(); 1354 } 1355 1356 host->state = STATE_IDLE; 1357 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1358 host->mrq = NULL; 1359 mmc_request_done(host->mmc, mrq); 1360 } 1361 1362 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host) 1363 { 1364 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data; 1365 struct mmc_host *mmc = host->mmc; 1366 1367 mmc_regulator_get_supply(mmc); 1368 1369 if (!pd) 1370 return; 1371 1372 if (!mmc->ocr_avail) 1373 mmc->ocr_avail = pd->ocr; 1374 else if (pd->ocr) 1375 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1376 } 1377 1378 static int sh_mmcif_probe(struct platform_device *pdev) 1379 { 1380 int ret = 0, irq[2]; 1381 struct mmc_host *mmc; 1382 struct sh_mmcif_host *host; 1383 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data; 1384 struct resource *res; 1385 void __iomem *reg; 1386 const char *name; 1387 1388 irq[0] = platform_get_irq(pdev, 0); 1389 irq[1] = platform_get_irq(pdev, 1); 1390 if (irq[0] < 0) { 1391 dev_err(&pdev->dev, "Get irq error\n"); 1392 return -ENXIO; 1393 } 1394 1395 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1396 reg = devm_ioremap_resource(&pdev->dev, res); 1397 if (IS_ERR(reg)) 1398 return PTR_ERR(reg); 1399 1400 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev); 1401 if (!mmc) 1402 return -ENOMEM; 1403 1404 ret = mmc_of_parse(mmc); 1405 if (ret < 0) 1406 goto err_host; 1407 1408 host = mmc_priv(mmc); 1409 host->mmc = mmc; 1410 host->addr = reg; 1411 host->timeout = msecs_to_jiffies(10000); 1412 host->ccs_enable = !pd || !pd->ccs_unsupported; 1413 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present; 1414 1415 host->pd = pdev; 1416 1417 spin_lock_init(&host->lock); 1418 1419 mmc->ops = &sh_mmcif_ops; 1420 sh_mmcif_init_ocr(host); 1421 1422 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; 1423 if (pd && pd->caps) 1424 mmc->caps |= pd->caps; 1425 mmc->max_segs = 32; 1426 mmc->max_blk_size = 512; 1427 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs; 1428 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; 1429 mmc->max_seg_size = mmc->max_req_size; 1430 1431 platform_set_drvdata(pdev, host); 1432 1433 pm_runtime_enable(&pdev->dev); 1434 host->power = false; 1435 1436 host->hclk = devm_clk_get(&pdev->dev, NULL); 1437 if (IS_ERR(host->hclk)) { 1438 ret = PTR_ERR(host->hclk); 1439 dev_err(&pdev->dev, "cannot get clock: %d\n", ret); 1440 goto err_pm; 1441 } 1442 ret = sh_mmcif_clk_update(host); 1443 if (ret < 0) 1444 goto err_pm; 1445 1446 ret = pm_runtime_resume(&pdev->dev); 1447 if (ret < 0) 1448 goto err_clk; 1449 1450 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work); 1451 1452 sh_mmcif_sync_reset(host); 1453 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1454 1455 name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error"; 1456 ret = devm_request_threaded_irq(&pdev->dev, irq[0], sh_mmcif_intr, 1457 sh_mmcif_irqt, 0, name, host); 1458 if (ret) { 1459 dev_err(&pdev->dev, "request_irq error (%s)\n", name); 1460 goto err_clk; 1461 } 1462 if (irq[1] >= 0) { 1463 ret = devm_request_threaded_irq(&pdev->dev, irq[1], 1464 sh_mmcif_intr, sh_mmcif_irqt, 1465 0, "sh_mmc:int", host); 1466 if (ret) { 1467 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n"); 1468 goto err_clk; 1469 } 1470 } 1471 1472 if (pd && pd->use_cd_gpio) { 1473 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0); 1474 if (ret < 0) 1475 goto err_clk; 1476 } 1477 1478 mutex_init(&host->thread_lock); 1479 1480 ret = mmc_add_host(mmc); 1481 if (ret < 0) 1482 goto err_clk; 1483 1484 dev_pm_qos_expose_latency_limit(&pdev->dev, 100); 1485 1486 dev_info(&pdev->dev, "Chip version 0x%04x, clock rate %luMHz\n", 1487 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff, 1488 clk_get_rate(host->hclk) / 1000000UL); 1489 1490 clk_disable_unprepare(host->hclk); 1491 return ret; 1492 1493 err_clk: 1494 clk_disable_unprepare(host->hclk); 1495 err_pm: 1496 pm_runtime_disable(&pdev->dev); 1497 err_host: 1498 mmc_free_host(mmc); 1499 return ret; 1500 } 1501 1502 static int sh_mmcif_remove(struct platform_device *pdev) 1503 { 1504 struct sh_mmcif_host *host = platform_get_drvdata(pdev); 1505 1506 host->dying = true; 1507 clk_prepare_enable(host->hclk); 1508 pm_runtime_get_sync(&pdev->dev); 1509 1510 dev_pm_qos_hide_latency_limit(&pdev->dev); 1511 1512 mmc_remove_host(host->mmc); 1513 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1514 1515 /* 1516 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the 1517 * mmc_remove_host() call above. But swapping order doesn't help either 1518 * (a query on the linux-mmc mailing list didn't bring any replies). 1519 */ 1520 cancel_delayed_work_sync(&host->timeout_work); 1521 1522 clk_disable_unprepare(host->hclk); 1523 mmc_free_host(host->mmc); 1524 pm_runtime_put_sync(&pdev->dev); 1525 pm_runtime_disable(&pdev->dev); 1526 1527 return 0; 1528 } 1529 1530 #ifdef CONFIG_PM_SLEEP 1531 static int sh_mmcif_suspend(struct device *dev) 1532 { 1533 struct sh_mmcif_host *host = dev_get_drvdata(dev); 1534 1535 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1536 1537 return 0; 1538 } 1539 1540 static int sh_mmcif_resume(struct device *dev) 1541 { 1542 return 0; 1543 } 1544 #endif 1545 1546 static const struct of_device_id mmcif_of_match[] = { 1547 { .compatible = "renesas,sh-mmcif" }, 1548 { } 1549 }; 1550 MODULE_DEVICE_TABLE(of, mmcif_of_match); 1551 1552 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = { 1553 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume) 1554 }; 1555 1556 static struct platform_driver sh_mmcif_driver = { 1557 .probe = sh_mmcif_probe, 1558 .remove = sh_mmcif_remove, 1559 .driver = { 1560 .name = DRIVER_NAME, 1561 .pm = &sh_mmcif_dev_pm_ops, 1562 .of_match_table = mmcif_of_match, 1563 }, 1564 }; 1565 1566 module_platform_driver(sh_mmcif_driver); 1567 1568 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver"); 1569 MODULE_LICENSE("GPL"); 1570 MODULE_ALIAS("platform:" DRIVER_NAME); 1571 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>"); 1572