1 /* 2 * linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver 3 * 4 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or (at 9 * your option) any later version. 10 * 11 * Thanks to the following companies for their support: 12 * 13 * - JMicron (hardware and technical support) 14 */ 15 16 #include <linux/delay.h> 17 #include <linux/ktime.h> 18 #include <linux/highmem.h> 19 #include <linux/io.h> 20 #include <linux/module.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/slab.h> 23 #include <linux/scatterlist.h> 24 #include <linux/sizes.h> 25 #include <linux/swiotlb.h> 26 #include <linux/regulator/consumer.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/of.h> 29 30 #include <linux/leds.h> 31 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/host.h> 34 #include <linux/mmc/card.h> 35 #include <linux/mmc/sdio.h> 36 #include <linux/mmc/slot-gpio.h> 37 38 #include "sdhci.h" 39 40 #define DRIVER_NAME "sdhci" 41 42 #define DBG(f, x...) \ 43 pr_debug("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 44 45 #define SDHCI_DUMP(f, x...) \ 46 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 47 48 #define MAX_TUNING_LOOP 40 49 50 static unsigned int debug_quirks = 0; 51 static unsigned int debug_quirks2; 52 53 static void sdhci_finish_data(struct sdhci_host *); 54 55 static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable); 56 57 void sdhci_dumpregs(struct sdhci_host *host) 58 { 59 SDHCI_DUMP("============ SDHCI REGISTER DUMP ===========\n"); 60 61 SDHCI_DUMP("Sys addr: 0x%08x | Version: 0x%08x\n", 62 sdhci_readl(host, SDHCI_DMA_ADDRESS), 63 sdhci_readw(host, SDHCI_HOST_VERSION)); 64 SDHCI_DUMP("Blk size: 0x%08x | Blk cnt: 0x%08x\n", 65 sdhci_readw(host, SDHCI_BLOCK_SIZE), 66 sdhci_readw(host, SDHCI_BLOCK_COUNT)); 67 SDHCI_DUMP("Argument: 0x%08x | Trn mode: 0x%08x\n", 68 sdhci_readl(host, SDHCI_ARGUMENT), 69 sdhci_readw(host, SDHCI_TRANSFER_MODE)); 70 SDHCI_DUMP("Present: 0x%08x | Host ctl: 0x%08x\n", 71 sdhci_readl(host, SDHCI_PRESENT_STATE), 72 sdhci_readb(host, SDHCI_HOST_CONTROL)); 73 SDHCI_DUMP("Power: 0x%08x | Blk gap: 0x%08x\n", 74 sdhci_readb(host, SDHCI_POWER_CONTROL), 75 sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL)); 76 SDHCI_DUMP("Wake-up: 0x%08x | Clock: 0x%08x\n", 77 sdhci_readb(host, SDHCI_WAKE_UP_CONTROL), 78 sdhci_readw(host, SDHCI_CLOCK_CONTROL)); 79 SDHCI_DUMP("Timeout: 0x%08x | Int stat: 0x%08x\n", 80 sdhci_readb(host, SDHCI_TIMEOUT_CONTROL), 81 sdhci_readl(host, SDHCI_INT_STATUS)); 82 SDHCI_DUMP("Int enab: 0x%08x | Sig enab: 0x%08x\n", 83 sdhci_readl(host, SDHCI_INT_ENABLE), 84 sdhci_readl(host, SDHCI_SIGNAL_ENABLE)); 85 SDHCI_DUMP("AC12 err: 0x%08x | Slot int: 0x%08x\n", 86 sdhci_readw(host, SDHCI_ACMD12_ERR), 87 sdhci_readw(host, SDHCI_SLOT_INT_STATUS)); 88 SDHCI_DUMP("Caps: 0x%08x | Caps_1: 0x%08x\n", 89 sdhci_readl(host, SDHCI_CAPABILITIES), 90 sdhci_readl(host, SDHCI_CAPABILITIES_1)); 91 SDHCI_DUMP("Cmd: 0x%08x | Max curr: 0x%08x\n", 92 sdhci_readw(host, SDHCI_COMMAND), 93 sdhci_readl(host, SDHCI_MAX_CURRENT)); 94 SDHCI_DUMP("Resp[0]: 0x%08x | Resp[1]: 0x%08x\n", 95 sdhci_readl(host, SDHCI_RESPONSE), 96 sdhci_readl(host, SDHCI_RESPONSE + 4)); 97 SDHCI_DUMP("Resp[2]: 0x%08x | Resp[3]: 0x%08x\n", 98 sdhci_readl(host, SDHCI_RESPONSE + 8), 99 sdhci_readl(host, SDHCI_RESPONSE + 12)); 100 SDHCI_DUMP("Host ctl2: 0x%08x\n", 101 sdhci_readw(host, SDHCI_HOST_CONTROL2)); 102 103 if (host->flags & SDHCI_USE_ADMA) { 104 if (host->flags & SDHCI_USE_64_BIT_DMA) { 105 SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x%08x\n", 106 sdhci_readl(host, SDHCI_ADMA_ERROR), 107 sdhci_readl(host, SDHCI_ADMA_ADDRESS_HI), 108 sdhci_readl(host, SDHCI_ADMA_ADDRESS)); 109 } else { 110 SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n", 111 sdhci_readl(host, SDHCI_ADMA_ERROR), 112 sdhci_readl(host, SDHCI_ADMA_ADDRESS)); 113 } 114 } 115 116 SDHCI_DUMP("============================================\n"); 117 } 118 EXPORT_SYMBOL_GPL(sdhci_dumpregs); 119 120 /*****************************************************************************\ 121 * * 122 * Low level functions * 123 * * 124 \*****************************************************************************/ 125 126 static void sdhci_do_enable_v4_mode(struct sdhci_host *host) 127 { 128 u16 ctrl2; 129 130 ctrl2 = sdhci_readb(host, SDHCI_HOST_CONTROL2); 131 if (ctrl2 & SDHCI_CTRL_V4_MODE) 132 return; 133 134 ctrl2 |= SDHCI_CTRL_V4_MODE; 135 sdhci_writeb(host, ctrl2, SDHCI_HOST_CONTROL); 136 } 137 138 /* 139 * This can be called before sdhci_add_host() by Vendor's host controller 140 * driver to enable v4 mode if supported. 141 */ 142 void sdhci_enable_v4_mode(struct sdhci_host *host) 143 { 144 host->v4_mode = true; 145 sdhci_do_enable_v4_mode(host); 146 } 147 EXPORT_SYMBOL_GPL(sdhci_enable_v4_mode); 148 149 static inline bool sdhci_data_line_cmd(struct mmc_command *cmd) 150 { 151 return cmd->data || cmd->flags & MMC_RSP_BUSY; 152 } 153 154 static void sdhci_set_card_detection(struct sdhci_host *host, bool enable) 155 { 156 u32 present; 157 158 if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) || 159 !mmc_card_is_removable(host->mmc)) 160 return; 161 162 if (enable) { 163 present = sdhci_readl(host, SDHCI_PRESENT_STATE) & 164 SDHCI_CARD_PRESENT; 165 166 host->ier |= present ? SDHCI_INT_CARD_REMOVE : 167 SDHCI_INT_CARD_INSERT; 168 } else { 169 host->ier &= ~(SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT); 170 } 171 172 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 173 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 174 } 175 176 static void sdhci_enable_card_detection(struct sdhci_host *host) 177 { 178 sdhci_set_card_detection(host, true); 179 } 180 181 static void sdhci_disable_card_detection(struct sdhci_host *host) 182 { 183 sdhci_set_card_detection(host, false); 184 } 185 186 static void sdhci_runtime_pm_bus_on(struct sdhci_host *host) 187 { 188 if (host->bus_on) 189 return; 190 host->bus_on = true; 191 pm_runtime_get_noresume(host->mmc->parent); 192 } 193 194 static void sdhci_runtime_pm_bus_off(struct sdhci_host *host) 195 { 196 if (!host->bus_on) 197 return; 198 host->bus_on = false; 199 pm_runtime_put_noidle(host->mmc->parent); 200 } 201 202 void sdhci_reset(struct sdhci_host *host, u8 mask) 203 { 204 ktime_t timeout; 205 206 sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET); 207 208 if (mask & SDHCI_RESET_ALL) { 209 host->clock = 0; 210 /* Reset-all turns off SD Bus Power */ 211 if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON) 212 sdhci_runtime_pm_bus_off(host); 213 } 214 215 /* Wait max 100 ms */ 216 timeout = ktime_add_ms(ktime_get(), 100); 217 218 /* hw clears the bit when it's done */ 219 while (1) { 220 bool timedout = ktime_after(ktime_get(), timeout); 221 222 if (!(sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask)) 223 break; 224 if (timedout) { 225 pr_err("%s: Reset 0x%x never completed.\n", 226 mmc_hostname(host->mmc), (int)mask); 227 sdhci_dumpregs(host); 228 return; 229 } 230 udelay(10); 231 } 232 } 233 EXPORT_SYMBOL_GPL(sdhci_reset); 234 235 static void sdhci_do_reset(struct sdhci_host *host, u8 mask) 236 { 237 if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { 238 struct mmc_host *mmc = host->mmc; 239 240 if (!mmc->ops->get_cd(mmc)) 241 return; 242 } 243 244 host->ops->reset(host, mask); 245 246 if (mask & SDHCI_RESET_ALL) { 247 if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { 248 if (host->ops->enable_dma) 249 host->ops->enable_dma(host); 250 } 251 252 /* Resetting the controller clears many */ 253 host->preset_enabled = false; 254 } 255 } 256 257 static void sdhci_set_default_irqs(struct sdhci_host *host) 258 { 259 host->ier = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | 260 SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | 261 SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC | 262 SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END | 263 SDHCI_INT_RESPONSE; 264 265 if (host->tuning_mode == SDHCI_TUNING_MODE_2 || 266 host->tuning_mode == SDHCI_TUNING_MODE_3) 267 host->ier |= SDHCI_INT_RETUNE; 268 269 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 270 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 271 } 272 273 static void sdhci_config_dma(struct sdhci_host *host) 274 { 275 u8 ctrl; 276 u16 ctrl2; 277 278 if (host->version < SDHCI_SPEC_200) 279 return; 280 281 ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); 282 283 /* 284 * Always adjust the DMA selection as some controllers 285 * (e.g. JMicron) can't do PIO properly when the selection 286 * is ADMA. 287 */ 288 ctrl &= ~SDHCI_CTRL_DMA_MASK; 289 if (!(host->flags & SDHCI_REQ_USE_DMA)) 290 goto out; 291 292 /* Note if DMA Select is zero then SDMA is selected */ 293 if (host->flags & SDHCI_USE_ADMA) 294 ctrl |= SDHCI_CTRL_ADMA32; 295 296 if (host->flags & SDHCI_USE_64_BIT_DMA) { 297 /* 298 * If v4 mode, all supported DMA can be 64-bit addressing if 299 * controller supports 64-bit system address, otherwise only 300 * ADMA can support 64-bit addressing. 301 */ 302 if (host->v4_mode) { 303 ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 304 ctrl2 |= SDHCI_CTRL_64BIT_ADDR; 305 sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2); 306 } else if (host->flags & SDHCI_USE_ADMA) { 307 /* 308 * Don't need to undo SDHCI_CTRL_ADMA32 in order to 309 * set SDHCI_CTRL_ADMA64. 310 */ 311 ctrl |= SDHCI_CTRL_ADMA64; 312 } 313 } 314 315 out: 316 sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); 317 } 318 319 static void sdhci_init(struct sdhci_host *host, int soft) 320 { 321 struct mmc_host *mmc = host->mmc; 322 323 if (soft) 324 sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 325 else 326 sdhci_do_reset(host, SDHCI_RESET_ALL); 327 328 if (host->v4_mode) 329 sdhci_do_enable_v4_mode(host); 330 331 sdhci_set_default_irqs(host); 332 333 host->cqe_on = false; 334 335 if (soft) { 336 /* force clock reconfiguration */ 337 host->clock = 0; 338 mmc->ops->set_ios(mmc, &mmc->ios); 339 } 340 } 341 342 static void sdhci_reinit(struct sdhci_host *host) 343 { 344 sdhci_init(host, 0); 345 sdhci_enable_card_detection(host); 346 } 347 348 static void __sdhci_led_activate(struct sdhci_host *host) 349 { 350 u8 ctrl; 351 352 ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); 353 ctrl |= SDHCI_CTRL_LED; 354 sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); 355 } 356 357 static void __sdhci_led_deactivate(struct sdhci_host *host) 358 { 359 u8 ctrl; 360 361 ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); 362 ctrl &= ~SDHCI_CTRL_LED; 363 sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); 364 } 365 366 #if IS_REACHABLE(CONFIG_LEDS_CLASS) 367 static void sdhci_led_control(struct led_classdev *led, 368 enum led_brightness brightness) 369 { 370 struct sdhci_host *host = container_of(led, struct sdhci_host, led); 371 unsigned long flags; 372 373 spin_lock_irqsave(&host->lock, flags); 374 375 if (host->runtime_suspended) 376 goto out; 377 378 if (brightness == LED_OFF) 379 __sdhci_led_deactivate(host); 380 else 381 __sdhci_led_activate(host); 382 out: 383 spin_unlock_irqrestore(&host->lock, flags); 384 } 385 386 static int sdhci_led_register(struct sdhci_host *host) 387 { 388 struct mmc_host *mmc = host->mmc; 389 390 snprintf(host->led_name, sizeof(host->led_name), 391 "%s::", mmc_hostname(mmc)); 392 393 host->led.name = host->led_name; 394 host->led.brightness = LED_OFF; 395 host->led.default_trigger = mmc_hostname(mmc); 396 host->led.brightness_set = sdhci_led_control; 397 398 return led_classdev_register(mmc_dev(mmc), &host->led); 399 } 400 401 static void sdhci_led_unregister(struct sdhci_host *host) 402 { 403 led_classdev_unregister(&host->led); 404 } 405 406 static inline void sdhci_led_activate(struct sdhci_host *host) 407 { 408 } 409 410 static inline void sdhci_led_deactivate(struct sdhci_host *host) 411 { 412 } 413 414 #else 415 416 static inline int sdhci_led_register(struct sdhci_host *host) 417 { 418 return 0; 419 } 420 421 static inline void sdhci_led_unregister(struct sdhci_host *host) 422 { 423 } 424 425 static inline void sdhci_led_activate(struct sdhci_host *host) 426 { 427 __sdhci_led_activate(host); 428 } 429 430 static inline void sdhci_led_deactivate(struct sdhci_host *host) 431 { 432 __sdhci_led_deactivate(host); 433 } 434 435 #endif 436 437 /*****************************************************************************\ 438 * * 439 * Core functions * 440 * * 441 \*****************************************************************************/ 442 443 static void sdhci_read_block_pio(struct sdhci_host *host) 444 { 445 unsigned long flags; 446 size_t blksize, len, chunk; 447 u32 uninitialized_var(scratch); 448 u8 *buf; 449 450 DBG("PIO reading\n"); 451 452 blksize = host->data->blksz; 453 chunk = 0; 454 455 local_irq_save(flags); 456 457 while (blksize) { 458 BUG_ON(!sg_miter_next(&host->sg_miter)); 459 460 len = min(host->sg_miter.length, blksize); 461 462 blksize -= len; 463 host->sg_miter.consumed = len; 464 465 buf = host->sg_miter.addr; 466 467 while (len) { 468 if (chunk == 0) { 469 scratch = sdhci_readl(host, SDHCI_BUFFER); 470 chunk = 4; 471 } 472 473 *buf = scratch & 0xFF; 474 475 buf++; 476 scratch >>= 8; 477 chunk--; 478 len--; 479 } 480 } 481 482 sg_miter_stop(&host->sg_miter); 483 484 local_irq_restore(flags); 485 } 486 487 static void sdhci_write_block_pio(struct sdhci_host *host) 488 { 489 unsigned long flags; 490 size_t blksize, len, chunk; 491 u32 scratch; 492 u8 *buf; 493 494 DBG("PIO writing\n"); 495 496 blksize = host->data->blksz; 497 chunk = 0; 498 scratch = 0; 499 500 local_irq_save(flags); 501 502 while (blksize) { 503 BUG_ON(!sg_miter_next(&host->sg_miter)); 504 505 len = min(host->sg_miter.length, blksize); 506 507 blksize -= len; 508 host->sg_miter.consumed = len; 509 510 buf = host->sg_miter.addr; 511 512 while (len) { 513 scratch |= (u32)*buf << (chunk * 8); 514 515 buf++; 516 chunk++; 517 len--; 518 519 if ((chunk == 4) || ((len == 0) && (blksize == 0))) { 520 sdhci_writel(host, scratch, SDHCI_BUFFER); 521 chunk = 0; 522 scratch = 0; 523 } 524 } 525 } 526 527 sg_miter_stop(&host->sg_miter); 528 529 local_irq_restore(flags); 530 } 531 532 static void sdhci_transfer_pio(struct sdhci_host *host) 533 { 534 u32 mask; 535 536 if (host->blocks == 0) 537 return; 538 539 if (host->data->flags & MMC_DATA_READ) 540 mask = SDHCI_DATA_AVAILABLE; 541 else 542 mask = SDHCI_SPACE_AVAILABLE; 543 544 /* 545 * Some controllers (JMicron JMB38x) mess up the buffer bits 546 * for transfers < 4 bytes. As long as it is just one block, 547 * we can ignore the bits. 548 */ 549 if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) && 550 (host->data->blocks == 1)) 551 mask = ~0; 552 553 while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { 554 if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY) 555 udelay(100); 556 557 if (host->data->flags & MMC_DATA_READ) 558 sdhci_read_block_pio(host); 559 else 560 sdhci_write_block_pio(host); 561 562 host->blocks--; 563 if (host->blocks == 0) 564 break; 565 } 566 567 DBG("PIO transfer complete.\n"); 568 } 569 570 static int sdhci_pre_dma_transfer(struct sdhci_host *host, 571 struct mmc_data *data, int cookie) 572 { 573 int sg_count; 574 575 /* 576 * If the data buffers are already mapped, return the previous 577 * dma_map_sg() result. 578 */ 579 if (data->host_cookie == COOKIE_PRE_MAPPED) 580 return data->sg_count; 581 582 /* Bounce write requests to the bounce buffer */ 583 if (host->bounce_buffer) { 584 unsigned int length = data->blksz * data->blocks; 585 586 if (length > host->bounce_buffer_size) { 587 pr_err("%s: asked for transfer of %u bytes exceeds bounce buffer %u bytes\n", 588 mmc_hostname(host->mmc), length, 589 host->bounce_buffer_size); 590 return -EIO; 591 } 592 if (mmc_get_dma_dir(data) == DMA_TO_DEVICE) { 593 /* Copy the data to the bounce buffer */ 594 sg_copy_to_buffer(data->sg, data->sg_len, 595 host->bounce_buffer, 596 length); 597 } 598 /* Switch ownership to the DMA */ 599 dma_sync_single_for_device(host->mmc->parent, 600 host->bounce_addr, 601 host->bounce_buffer_size, 602 mmc_get_dma_dir(data)); 603 /* Just a dummy value */ 604 sg_count = 1; 605 } else { 606 /* Just access the data directly from memory */ 607 sg_count = dma_map_sg(mmc_dev(host->mmc), 608 data->sg, data->sg_len, 609 mmc_get_dma_dir(data)); 610 } 611 612 if (sg_count == 0) 613 return -ENOSPC; 614 615 data->sg_count = sg_count; 616 data->host_cookie = cookie; 617 618 return sg_count; 619 } 620 621 static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags) 622 { 623 local_irq_save(*flags); 624 return kmap_atomic(sg_page(sg)) + sg->offset; 625 } 626 627 static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags) 628 { 629 kunmap_atomic(buffer); 630 local_irq_restore(*flags); 631 } 632 633 void sdhci_adma_write_desc(struct sdhci_host *host, void **desc, 634 dma_addr_t addr, int len, unsigned int cmd) 635 { 636 struct sdhci_adma2_64_desc *dma_desc = *desc; 637 638 /* 32-bit and 64-bit descriptors have these members in same position */ 639 dma_desc->cmd = cpu_to_le16(cmd); 640 dma_desc->len = cpu_to_le16(len); 641 dma_desc->addr_lo = cpu_to_le32((u32)addr); 642 643 if (host->flags & SDHCI_USE_64_BIT_DMA) 644 dma_desc->addr_hi = cpu_to_le32((u64)addr >> 32); 645 646 *desc += host->desc_sz; 647 } 648 EXPORT_SYMBOL_GPL(sdhci_adma_write_desc); 649 650 static inline void __sdhci_adma_write_desc(struct sdhci_host *host, 651 void **desc, dma_addr_t addr, 652 int len, unsigned int cmd) 653 { 654 if (host->ops->adma_write_desc) 655 host->ops->adma_write_desc(host, desc, addr, len, cmd); 656 else 657 sdhci_adma_write_desc(host, desc, addr, len, cmd); 658 } 659 660 static void sdhci_adma_mark_end(void *desc) 661 { 662 struct sdhci_adma2_64_desc *dma_desc = desc; 663 664 /* 32-bit and 64-bit descriptors have 'cmd' in same position */ 665 dma_desc->cmd |= cpu_to_le16(ADMA2_END); 666 } 667 668 static void sdhci_adma_table_pre(struct sdhci_host *host, 669 struct mmc_data *data, int sg_count) 670 { 671 struct scatterlist *sg; 672 unsigned long flags; 673 dma_addr_t addr, align_addr; 674 void *desc, *align; 675 char *buffer; 676 int len, offset, i; 677 678 /* 679 * The spec does not specify endianness of descriptor table. 680 * We currently guess that it is LE. 681 */ 682 683 host->sg_count = sg_count; 684 685 desc = host->adma_table; 686 align = host->align_buffer; 687 688 align_addr = host->align_addr; 689 690 for_each_sg(data->sg, sg, host->sg_count, i) { 691 addr = sg_dma_address(sg); 692 len = sg_dma_len(sg); 693 694 /* 695 * The SDHCI specification states that ADMA addresses must 696 * be 32-bit aligned. If they aren't, then we use a bounce 697 * buffer for the (up to three) bytes that screw up the 698 * alignment. 699 */ 700 offset = (SDHCI_ADMA2_ALIGN - (addr & SDHCI_ADMA2_MASK)) & 701 SDHCI_ADMA2_MASK; 702 if (offset) { 703 if (data->flags & MMC_DATA_WRITE) { 704 buffer = sdhci_kmap_atomic(sg, &flags); 705 memcpy(align, buffer, offset); 706 sdhci_kunmap_atomic(buffer, &flags); 707 } 708 709 /* tran, valid */ 710 __sdhci_adma_write_desc(host, &desc, align_addr, 711 offset, ADMA2_TRAN_VALID); 712 713 BUG_ON(offset > 65536); 714 715 align += SDHCI_ADMA2_ALIGN; 716 align_addr += SDHCI_ADMA2_ALIGN; 717 718 addr += offset; 719 len -= offset; 720 } 721 722 BUG_ON(len > 65536); 723 724 /* tran, valid */ 725 if (len) 726 __sdhci_adma_write_desc(host, &desc, addr, len, 727 ADMA2_TRAN_VALID); 728 729 /* 730 * If this triggers then we have a calculation bug 731 * somewhere. :/ 732 */ 733 WARN_ON((desc - host->adma_table) >= host->adma_table_sz); 734 } 735 736 if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) { 737 /* Mark the last descriptor as the terminating descriptor */ 738 if (desc != host->adma_table) { 739 desc -= host->desc_sz; 740 sdhci_adma_mark_end(desc); 741 } 742 } else { 743 /* Add a terminating entry - nop, end, valid */ 744 __sdhci_adma_write_desc(host, &desc, 0, 0, ADMA2_NOP_END_VALID); 745 } 746 } 747 748 static void sdhci_adma_table_post(struct sdhci_host *host, 749 struct mmc_data *data) 750 { 751 struct scatterlist *sg; 752 int i, size; 753 void *align; 754 char *buffer; 755 unsigned long flags; 756 757 if (data->flags & MMC_DATA_READ) { 758 bool has_unaligned = false; 759 760 /* Do a quick scan of the SG list for any unaligned mappings */ 761 for_each_sg(data->sg, sg, host->sg_count, i) 762 if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) { 763 has_unaligned = true; 764 break; 765 } 766 767 if (has_unaligned) { 768 dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg, 769 data->sg_len, DMA_FROM_DEVICE); 770 771 align = host->align_buffer; 772 773 for_each_sg(data->sg, sg, host->sg_count, i) { 774 if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) { 775 size = SDHCI_ADMA2_ALIGN - 776 (sg_dma_address(sg) & SDHCI_ADMA2_MASK); 777 778 buffer = sdhci_kmap_atomic(sg, &flags); 779 memcpy(buffer, align, size); 780 sdhci_kunmap_atomic(buffer, &flags); 781 782 align += SDHCI_ADMA2_ALIGN; 783 } 784 } 785 } 786 } 787 } 788 789 static dma_addr_t sdhci_sdma_address(struct sdhci_host *host) 790 { 791 if (host->bounce_buffer) 792 return host->bounce_addr; 793 else 794 return sg_dma_address(host->data->sg); 795 } 796 797 static void sdhci_set_sdma_addr(struct sdhci_host *host, dma_addr_t addr) 798 { 799 if (host->v4_mode) { 800 sdhci_writel(host, addr, SDHCI_ADMA_ADDRESS); 801 if (host->flags & SDHCI_USE_64_BIT_DMA) 802 sdhci_writel(host, (u64)addr >> 32, SDHCI_ADMA_ADDRESS_HI); 803 } else { 804 sdhci_writel(host, addr, SDHCI_DMA_ADDRESS); 805 } 806 } 807 808 static unsigned int sdhci_target_timeout(struct sdhci_host *host, 809 struct mmc_command *cmd, 810 struct mmc_data *data) 811 { 812 unsigned int target_timeout; 813 814 /* timeout in us */ 815 if (!data) { 816 target_timeout = cmd->busy_timeout * 1000; 817 } else { 818 target_timeout = DIV_ROUND_UP(data->timeout_ns, 1000); 819 if (host->clock && data->timeout_clks) { 820 unsigned long long val; 821 822 /* 823 * data->timeout_clks is in units of clock cycles. 824 * host->clock is in Hz. target_timeout is in us. 825 * Hence, us = 1000000 * cycles / Hz. Round up. 826 */ 827 val = 1000000ULL * data->timeout_clks; 828 if (do_div(val, host->clock)) 829 target_timeout++; 830 target_timeout += val; 831 } 832 } 833 834 return target_timeout; 835 } 836 837 static void sdhci_calc_sw_timeout(struct sdhci_host *host, 838 struct mmc_command *cmd) 839 { 840 struct mmc_data *data = cmd->data; 841 struct mmc_host *mmc = host->mmc; 842 struct mmc_ios *ios = &mmc->ios; 843 unsigned char bus_width = 1 << ios->bus_width; 844 unsigned int blksz; 845 unsigned int freq; 846 u64 target_timeout; 847 u64 transfer_time; 848 849 target_timeout = sdhci_target_timeout(host, cmd, data); 850 target_timeout *= NSEC_PER_USEC; 851 852 if (data) { 853 blksz = data->blksz; 854 freq = host->mmc->actual_clock ? : host->clock; 855 transfer_time = (u64)blksz * NSEC_PER_SEC * (8 / bus_width); 856 do_div(transfer_time, freq); 857 /* multiply by '2' to account for any unknowns */ 858 transfer_time = transfer_time * 2; 859 /* calculate timeout for the entire data */ 860 host->data_timeout = data->blocks * target_timeout + 861 transfer_time; 862 } else { 863 host->data_timeout = target_timeout; 864 } 865 866 if (host->data_timeout) 867 host->data_timeout += MMC_CMD_TRANSFER_TIME; 868 } 869 870 static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd, 871 bool *too_big) 872 { 873 u8 count; 874 struct mmc_data *data = cmd->data; 875 unsigned target_timeout, current_timeout; 876 877 *too_big = true; 878 879 /* 880 * If the host controller provides us with an incorrect timeout 881 * value, just skip the check and use 0xE. The hardware may take 882 * longer to time out, but that's much better than having a too-short 883 * timeout value. 884 */ 885 if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) 886 return 0xE; 887 888 /* Unspecified timeout, assume max */ 889 if (!data && !cmd->busy_timeout) 890 return 0xE; 891 892 /* timeout in us */ 893 target_timeout = sdhci_target_timeout(host, cmd, data); 894 895 /* 896 * Figure out needed cycles. 897 * We do this in steps in order to fit inside a 32 bit int. 898 * The first step is the minimum timeout, which will have a 899 * minimum resolution of 6 bits: 900 * (1) 2^13*1000 > 2^22, 901 * (2) host->timeout_clk < 2^16 902 * => 903 * (1) / (2) > 2^6 904 */ 905 count = 0; 906 current_timeout = (1 << 13) * 1000 / host->timeout_clk; 907 while (current_timeout < target_timeout) { 908 count++; 909 current_timeout <<= 1; 910 if (count >= 0xF) 911 break; 912 } 913 914 if (count >= 0xF) { 915 if (!(host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT)) 916 DBG("Too large timeout 0x%x requested for CMD%d!\n", 917 count, cmd->opcode); 918 count = 0xE; 919 } else { 920 *too_big = false; 921 } 922 923 return count; 924 } 925 926 static void sdhci_set_transfer_irqs(struct sdhci_host *host) 927 { 928 u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL; 929 u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR; 930 931 if (host->flags & SDHCI_REQ_USE_DMA) 932 host->ier = (host->ier & ~pio_irqs) | dma_irqs; 933 else 934 host->ier = (host->ier & ~dma_irqs) | pio_irqs; 935 936 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 937 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 938 } 939 940 static void sdhci_set_data_timeout_irq(struct sdhci_host *host, bool enable) 941 { 942 if (enable) 943 host->ier |= SDHCI_INT_DATA_TIMEOUT; 944 else 945 host->ier &= ~SDHCI_INT_DATA_TIMEOUT; 946 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 947 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 948 } 949 950 static void sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd) 951 { 952 u8 count; 953 954 if (host->ops->set_timeout) { 955 host->ops->set_timeout(host, cmd); 956 } else { 957 bool too_big = false; 958 959 count = sdhci_calc_timeout(host, cmd, &too_big); 960 961 if (too_big && 962 host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT) { 963 sdhci_calc_sw_timeout(host, cmd); 964 sdhci_set_data_timeout_irq(host, false); 965 } else if (!(host->ier & SDHCI_INT_DATA_TIMEOUT)) { 966 sdhci_set_data_timeout_irq(host, true); 967 } 968 969 sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL); 970 } 971 } 972 973 static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd) 974 { 975 struct mmc_data *data = cmd->data; 976 977 host->data_timeout = 0; 978 979 if (sdhci_data_line_cmd(cmd)) 980 sdhci_set_timeout(host, cmd); 981 982 if (!data) 983 return; 984 985 WARN_ON(host->data); 986 987 /* Sanity checks */ 988 BUG_ON(data->blksz * data->blocks > 524288); 989 BUG_ON(data->blksz > host->mmc->max_blk_size); 990 BUG_ON(data->blocks > 65535); 991 992 host->data = data; 993 host->data_early = 0; 994 host->data->bytes_xfered = 0; 995 996 if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { 997 struct scatterlist *sg; 998 unsigned int length_mask, offset_mask; 999 int i; 1000 1001 host->flags |= SDHCI_REQ_USE_DMA; 1002 1003 /* 1004 * FIXME: This doesn't account for merging when mapping the 1005 * scatterlist. 1006 * 1007 * The assumption here being that alignment and lengths are 1008 * the same after DMA mapping to device address space. 1009 */ 1010 length_mask = 0; 1011 offset_mask = 0; 1012 if (host->flags & SDHCI_USE_ADMA) { 1013 if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) { 1014 length_mask = 3; 1015 /* 1016 * As we use up to 3 byte chunks to work 1017 * around alignment problems, we need to 1018 * check the offset as well. 1019 */ 1020 offset_mask = 3; 1021 } 1022 } else { 1023 if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) 1024 length_mask = 3; 1025 if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) 1026 offset_mask = 3; 1027 } 1028 1029 if (unlikely(length_mask | offset_mask)) { 1030 for_each_sg(data->sg, sg, data->sg_len, i) { 1031 if (sg->length & length_mask) { 1032 DBG("Reverting to PIO because of transfer size (%d)\n", 1033 sg->length); 1034 host->flags &= ~SDHCI_REQ_USE_DMA; 1035 break; 1036 } 1037 if (sg->offset & offset_mask) { 1038 DBG("Reverting to PIO because of bad alignment\n"); 1039 host->flags &= ~SDHCI_REQ_USE_DMA; 1040 break; 1041 } 1042 } 1043 } 1044 } 1045 1046 if (host->flags & SDHCI_REQ_USE_DMA) { 1047 int sg_cnt = sdhci_pre_dma_transfer(host, data, COOKIE_MAPPED); 1048 1049 if (sg_cnt <= 0) { 1050 /* 1051 * This only happens when someone fed 1052 * us an invalid request. 1053 */ 1054 WARN_ON(1); 1055 host->flags &= ~SDHCI_REQ_USE_DMA; 1056 } else if (host->flags & SDHCI_USE_ADMA) { 1057 sdhci_adma_table_pre(host, data, sg_cnt); 1058 1059 sdhci_writel(host, host->adma_addr, SDHCI_ADMA_ADDRESS); 1060 if (host->flags & SDHCI_USE_64_BIT_DMA) 1061 sdhci_writel(host, 1062 (u64)host->adma_addr >> 32, 1063 SDHCI_ADMA_ADDRESS_HI); 1064 } else { 1065 WARN_ON(sg_cnt != 1); 1066 sdhci_set_sdma_addr(host, sdhci_sdma_address(host)); 1067 } 1068 } 1069 1070 sdhci_config_dma(host); 1071 1072 if (!(host->flags & SDHCI_REQ_USE_DMA)) { 1073 int flags; 1074 1075 flags = SG_MITER_ATOMIC; 1076 if (host->data->flags & MMC_DATA_READ) 1077 flags |= SG_MITER_TO_SG; 1078 else 1079 flags |= SG_MITER_FROM_SG; 1080 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 1081 host->blocks = data->blocks; 1082 } 1083 1084 sdhci_set_transfer_irqs(host); 1085 1086 /* Set the DMA boundary value and block size */ 1087 sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, data->blksz), 1088 SDHCI_BLOCK_SIZE); 1089 1090 /* 1091 * For Version 4.10 onwards, if v4 mode is enabled, 32-bit Block Count 1092 * can be supported, in that case 16-bit block count register must be 0. 1093 */ 1094 if (host->version >= SDHCI_SPEC_410 && host->v4_mode && 1095 (host->quirks2 & SDHCI_QUIRK2_USE_32BIT_BLK_CNT)) { 1096 if (sdhci_readw(host, SDHCI_BLOCK_COUNT)) 1097 sdhci_writew(host, 0, SDHCI_BLOCK_COUNT); 1098 sdhci_writew(host, data->blocks, SDHCI_32BIT_BLK_CNT); 1099 } else { 1100 sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT); 1101 } 1102 } 1103 1104 static inline bool sdhci_auto_cmd12(struct sdhci_host *host, 1105 struct mmc_request *mrq) 1106 { 1107 return !mrq->sbc && (host->flags & SDHCI_AUTO_CMD12) && 1108 !mrq->cap_cmd_during_tfr; 1109 } 1110 1111 static inline void sdhci_auto_cmd_select(struct sdhci_host *host, 1112 struct mmc_command *cmd, 1113 u16 *mode) 1114 { 1115 bool use_cmd12 = sdhci_auto_cmd12(host, cmd->mrq) && 1116 (cmd->opcode != SD_IO_RW_EXTENDED); 1117 bool use_cmd23 = cmd->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23); 1118 u16 ctrl2; 1119 1120 /* 1121 * In case of Version 4.10 or later, use of 'Auto CMD Auto 1122 * Select' is recommended rather than use of 'Auto CMD12 1123 * Enable' or 'Auto CMD23 Enable'. 1124 */ 1125 if (host->version >= SDHCI_SPEC_410 && (use_cmd12 || use_cmd23)) { 1126 *mode |= SDHCI_TRNS_AUTO_SEL; 1127 1128 ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1129 if (use_cmd23) 1130 ctrl2 |= SDHCI_CMD23_ENABLE; 1131 else 1132 ctrl2 &= ~SDHCI_CMD23_ENABLE; 1133 sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2); 1134 1135 return; 1136 } 1137 1138 /* 1139 * If we are sending CMD23, CMD12 never gets sent 1140 * on successful completion (so no Auto-CMD12). 1141 */ 1142 if (use_cmd12) 1143 *mode |= SDHCI_TRNS_AUTO_CMD12; 1144 else if (use_cmd23) 1145 *mode |= SDHCI_TRNS_AUTO_CMD23; 1146 } 1147 1148 static void sdhci_set_transfer_mode(struct sdhci_host *host, 1149 struct mmc_command *cmd) 1150 { 1151 u16 mode = 0; 1152 struct mmc_data *data = cmd->data; 1153 1154 if (data == NULL) { 1155 if (host->quirks2 & 1156 SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD) { 1157 /* must not clear SDHCI_TRANSFER_MODE when tuning */ 1158 if (cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) 1159 sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE); 1160 } else { 1161 /* clear Auto CMD settings for no data CMDs */ 1162 mode = sdhci_readw(host, SDHCI_TRANSFER_MODE); 1163 sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 | 1164 SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE); 1165 } 1166 return; 1167 } 1168 1169 WARN_ON(!host->data); 1170 1171 if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE)) 1172 mode = SDHCI_TRNS_BLK_CNT_EN; 1173 1174 if (mmc_op_multi(cmd->opcode) || data->blocks > 1) { 1175 mode = SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_MULTI; 1176 sdhci_auto_cmd_select(host, cmd, &mode); 1177 if (cmd->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) 1178 sdhci_writel(host, cmd->mrq->sbc->arg, SDHCI_ARGUMENT2); 1179 } 1180 1181 if (data->flags & MMC_DATA_READ) 1182 mode |= SDHCI_TRNS_READ; 1183 if (host->flags & SDHCI_REQ_USE_DMA) 1184 mode |= SDHCI_TRNS_DMA; 1185 1186 sdhci_writew(host, mode, SDHCI_TRANSFER_MODE); 1187 } 1188 1189 static bool sdhci_needs_reset(struct sdhci_host *host, struct mmc_request *mrq) 1190 { 1191 return (!(host->flags & SDHCI_DEVICE_DEAD) && 1192 ((mrq->cmd && mrq->cmd->error) || 1193 (mrq->sbc && mrq->sbc->error) || 1194 (mrq->data && ((mrq->data->error && !mrq->data->stop) || 1195 (mrq->data->stop && mrq->data->stop->error))) || 1196 (host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))); 1197 } 1198 1199 static void __sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq) 1200 { 1201 int i; 1202 1203 for (i = 0; i < SDHCI_MAX_MRQS; i++) { 1204 if (host->mrqs_done[i] == mrq) { 1205 WARN_ON(1); 1206 return; 1207 } 1208 } 1209 1210 for (i = 0; i < SDHCI_MAX_MRQS; i++) { 1211 if (!host->mrqs_done[i]) { 1212 host->mrqs_done[i] = mrq; 1213 break; 1214 } 1215 } 1216 1217 WARN_ON(i >= SDHCI_MAX_MRQS); 1218 1219 tasklet_schedule(&host->finish_tasklet); 1220 } 1221 1222 static void sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq) 1223 { 1224 if (host->cmd && host->cmd->mrq == mrq) 1225 host->cmd = NULL; 1226 1227 if (host->data_cmd && host->data_cmd->mrq == mrq) 1228 host->data_cmd = NULL; 1229 1230 if (host->data && host->data->mrq == mrq) 1231 host->data = NULL; 1232 1233 if (sdhci_needs_reset(host, mrq)) 1234 host->pending_reset = true; 1235 1236 __sdhci_finish_mrq(host, mrq); 1237 } 1238 1239 static void sdhci_finish_data(struct sdhci_host *host) 1240 { 1241 struct mmc_command *data_cmd = host->data_cmd; 1242 struct mmc_data *data = host->data; 1243 1244 host->data = NULL; 1245 host->data_cmd = NULL; 1246 1247 if ((host->flags & (SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA)) == 1248 (SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA)) 1249 sdhci_adma_table_post(host, data); 1250 1251 /* 1252 * The specification states that the block count register must 1253 * be updated, but it does not specify at what point in the 1254 * data flow. That makes the register entirely useless to read 1255 * back so we have to assume that nothing made it to the card 1256 * in the event of an error. 1257 */ 1258 if (data->error) 1259 data->bytes_xfered = 0; 1260 else 1261 data->bytes_xfered = data->blksz * data->blocks; 1262 1263 /* 1264 * Need to send CMD12 if - 1265 * a) open-ended multiblock transfer (no CMD23) 1266 * b) error in multiblock transfer 1267 */ 1268 if (data->stop && 1269 (data->error || 1270 !data->mrq->sbc)) { 1271 1272 /* 1273 * The controller needs a reset of internal state machines 1274 * upon error conditions. 1275 */ 1276 if (data->error) { 1277 if (!host->cmd || host->cmd == data_cmd) 1278 sdhci_do_reset(host, SDHCI_RESET_CMD); 1279 sdhci_do_reset(host, SDHCI_RESET_DATA); 1280 } 1281 1282 /* 1283 * 'cap_cmd_during_tfr' request must not use the command line 1284 * after mmc_command_done() has been called. It is upper layer's 1285 * responsibility to send the stop command if required. 1286 */ 1287 if (data->mrq->cap_cmd_during_tfr) { 1288 sdhci_finish_mrq(host, data->mrq); 1289 } else { 1290 /* Avoid triggering warning in sdhci_send_command() */ 1291 host->cmd = NULL; 1292 sdhci_send_command(host, data->stop); 1293 } 1294 } else { 1295 sdhci_finish_mrq(host, data->mrq); 1296 } 1297 } 1298 1299 static void sdhci_mod_timer(struct sdhci_host *host, struct mmc_request *mrq, 1300 unsigned long timeout) 1301 { 1302 if (sdhci_data_line_cmd(mrq->cmd)) 1303 mod_timer(&host->data_timer, timeout); 1304 else 1305 mod_timer(&host->timer, timeout); 1306 } 1307 1308 static void sdhci_del_timer(struct sdhci_host *host, struct mmc_request *mrq) 1309 { 1310 if (sdhci_data_line_cmd(mrq->cmd)) 1311 del_timer(&host->data_timer); 1312 else 1313 del_timer(&host->timer); 1314 } 1315 1316 void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd) 1317 { 1318 int flags; 1319 u32 mask; 1320 unsigned long timeout; 1321 1322 WARN_ON(host->cmd); 1323 1324 /* Initially, a command has no error */ 1325 cmd->error = 0; 1326 1327 if ((host->quirks2 & SDHCI_QUIRK2_STOP_WITH_TC) && 1328 cmd->opcode == MMC_STOP_TRANSMISSION) 1329 cmd->flags |= MMC_RSP_BUSY; 1330 1331 /* Wait max 10 ms */ 1332 timeout = 10; 1333 1334 mask = SDHCI_CMD_INHIBIT; 1335 if (sdhci_data_line_cmd(cmd)) 1336 mask |= SDHCI_DATA_INHIBIT; 1337 1338 /* We shouldn't wait for data inihibit for stop commands, even 1339 though they might use busy signaling */ 1340 if (cmd->mrq->data && (cmd == cmd->mrq->data->stop)) 1341 mask &= ~SDHCI_DATA_INHIBIT; 1342 1343 while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { 1344 if (timeout == 0) { 1345 pr_err("%s: Controller never released inhibit bit(s).\n", 1346 mmc_hostname(host->mmc)); 1347 sdhci_dumpregs(host); 1348 cmd->error = -EIO; 1349 sdhci_finish_mrq(host, cmd->mrq); 1350 return; 1351 } 1352 timeout--; 1353 mdelay(1); 1354 } 1355 1356 host->cmd = cmd; 1357 if (sdhci_data_line_cmd(cmd)) { 1358 WARN_ON(host->data_cmd); 1359 host->data_cmd = cmd; 1360 } 1361 1362 sdhci_prepare_data(host, cmd); 1363 1364 sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT); 1365 1366 sdhci_set_transfer_mode(host, cmd); 1367 1368 if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { 1369 pr_err("%s: Unsupported response type!\n", 1370 mmc_hostname(host->mmc)); 1371 cmd->error = -EINVAL; 1372 sdhci_finish_mrq(host, cmd->mrq); 1373 return; 1374 } 1375 1376 if (!(cmd->flags & MMC_RSP_PRESENT)) 1377 flags = SDHCI_CMD_RESP_NONE; 1378 else if (cmd->flags & MMC_RSP_136) 1379 flags = SDHCI_CMD_RESP_LONG; 1380 else if (cmd->flags & MMC_RSP_BUSY) 1381 flags = SDHCI_CMD_RESP_SHORT_BUSY; 1382 else 1383 flags = SDHCI_CMD_RESP_SHORT; 1384 1385 if (cmd->flags & MMC_RSP_CRC) 1386 flags |= SDHCI_CMD_CRC; 1387 if (cmd->flags & MMC_RSP_OPCODE) 1388 flags |= SDHCI_CMD_INDEX; 1389 1390 /* CMD19 is special in that the Data Present Select should be set */ 1391 if (cmd->data || cmd->opcode == MMC_SEND_TUNING_BLOCK || 1392 cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200) 1393 flags |= SDHCI_CMD_DATA; 1394 1395 timeout = jiffies; 1396 if (host->data_timeout) 1397 timeout += nsecs_to_jiffies(host->data_timeout); 1398 else if (!cmd->data && cmd->busy_timeout > 9000) 1399 timeout += DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ; 1400 else 1401 timeout += 10 * HZ; 1402 sdhci_mod_timer(host, cmd->mrq, timeout); 1403 1404 sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND); 1405 } 1406 EXPORT_SYMBOL_GPL(sdhci_send_command); 1407 1408 static void sdhci_read_rsp_136(struct sdhci_host *host, struct mmc_command *cmd) 1409 { 1410 int i, reg; 1411 1412 for (i = 0; i < 4; i++) { 1413 reg = SDHCI_RESPONSE + (3 - i) * 4; 1414 cmd->resp[i] = sdhci_readl(host, reg); 1415 } 1416 1417 if (host->quirks2 & SDHCI_QUIRK2_RSP_136_HAS_CRC) 1418 return; 1419 1420 /* CRC is stripped so we need to do some shifting */ 1421 for (i = 0; i < 4; i++) { 1422 cmd->resp[i] <<= 8; 1423 if (i != 3) 1424 cmd->resp[i] |= cmd->resp[i + 1] >> 24; 1425 } 1426 } 1427 1428 static void sdhci_finish_command(struct sdhci_host *host) 1429 { 1430 struct mmc_command *cmd = host->cmd; 1431 1432 host->cmd = NULL; 1433 1434 if (cmd->flags & MMC_RSP_PRESENT) { 1435 if (cmd->flags & MMC_RSP_136) { 1436 sdhci_read_rsp_136(host, cmd); 1437 } else { 1438 cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE); 1439 } 1440 } 1441 1442 if (cmd->mrq->cap_cmd_during_tfr && cmd == cmd->mrq->cmd) 1443 mmc_command_done(host->mmc, cmd->mrq); 1444 1445 /* 1446 * The host can send and interrupt when the busy state has 1447 * ended, allowing us to wait without wasting CPU cycles. 1448 * The busy signal uses DAT0 so this is similar to waiting 1449 * for data to complete. 1450 * 1451 * Note: The 1.0 specification is a bit ambiguous about this 1452 * feature so there might be some problems with older 1453 * controllers. 1454 */ 1455 if (cmd->flags & MMC_RSP_BUSY) { 1456 if (cmd->data) { 1457 DBG("Cannot wait for busy signal when also doing a data transfer"); 1458 } else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) && 1459 cmd == host->data_cmd) { 1460 /* Command complete before busy is ended */ 1461 return; 1462 } 1463 } 1464 1465 /* Finished CMD23, now send actual command. */ 1466 if (cmd == cmd->mrq->sbc) { 1467 sdhci_send_command(host, cmd->mrq->cmd); 1468 } else { 1469 1470 /* Processed actual command. */ 1471 if (host->data && host->data_early) 1472 sdhci_finish_data(host); 1473 1474 if (!cmd->data) 1475 sdhci_finish_mrq(host, cmd->mrq); 1476 } 1477 } 1478 1479 static u16 sdhci_get_preset_value(struct sdhci_host *host) 1480 { 1481 u16 preset = 0; 1482 1483 switch (host->timing) { 1484 case MMC_TIMING_UHS_SDR12: 1485 preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12); 1486 break; 1487 case MMC_TIMING_UHS_SDR25: 1488 preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25); 1489 break; 1490 case MMC_TIMING_UHS_SDR50: 1491 preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50); 1492 break; 1493 case MMC_TIMING_UHS_SDR104: 1494 case MMC_TIMING_MMC_HS200: 1495 preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104); 1496 break; 1497 case MMC_TIMING_UHS_DDR50: 1498 case MMC_TIMING_MMC_DDR52: 1499 preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50); 1500 break; 1501 case MMC_TIMING_MMC_HS400: 1502 preset = sdhci_readw(host, SDHCI_PRESET_FOR_HS400); 1503 break; 1504 default: 1505 pr_warn("%s: Invalid UHS-I mode selected\n", 1506 mmc_hostname(host->mmc)); 1507 preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12); 1508 break; 1509 } 1510 return preset; 1511 } 1512 1513 u16 sdhci_calc_clk(struct sdhci_host *host, unsigned int clock, 1514 unsigned int *actual_clock) 1515 { 1516 int div = 0; /* Initialized for compiler warning */ 1517 int real_div = div, clk_mul = 1; 1518 u16 clk = 0; 1519 bool switch_base_clk = false; 1520 1521 if (host->version >= SDHCI_SPEC_300) { 1522 if (host->preset_enabled) { 1523 u16 pre_val; 1524 1525 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1526 pre_val = sdhci_get_preset_value(host); 1527 div = (pre_val & SDHCI_PRESET_SDCLK_FREQ_MASK) 1528 >> SDHCI_PRESET_SDCLK_FREQ_SHIFT; 1529 if (host->clk_mul && 1530 (pre_val & SDHCI_PRESET_CLKGEN_SEL_MASK)) { 1531 clk = SDHCI_PROG_CLOCK_MODE; 1532 real_div = div + 1; 1533 clk_mul = host->clk_mul; 1534 } else { 1535 real_div = max_t(int, 1, div << 1); 1536 } 1537 goto clock_set; 1538 } 1539 1540 /* 1541 * Check if the Host Controller supports Programmable Clock 1542 * Mode. 1543 */ 1544 if (host->clk_mul) { 1545 for (div = 1; div <= 1024; div++) { 1546 if ((host->max_clk * host->clk_mul / div) 1547 <= clock) 1548 break; 1549 } 1550 if ((host->max_clk * host->clk_mul / div) <= clock) { 1551 /* 1552 * Set Programmable Clock Mode in the Clock 1553 * Control register. 1554 */ 1555 clk = SDHCI_PROG_CLOCK_MODE; 1556 real_div = div; 1557 clk_mul = host->clk_mul; 1558 div--; 1559 } else { 1560 /* 1561 * Divisor can be too small to reach clock 1562 * speed requirement. Then use the base clock. 1563 */ 1564 switch_base_clk = true; 1565 } 1566 } 1567 1568 if (!host->clk_mul || switch_base_clk) { 1569 /* Version 3.00 divisors must be a multiple of 2. */ 1570 if (host->max_clk <= clock) 1571 div = 1; 1572 else { 1573 for (div = 2; div < SDHCI_MAX_DIV_SPEC_300; 1574 div += 2) { 1575 if ((host->max_clk / div) <= clock) 1576 break; 1577 } 1578 } 1579 real_div = div; 1580 div >>= 1; 1581 if ((host->quirks2 & SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN) 1582 && !div && host->max_clk <= 25000000) 1583 div = 1; 1584 } 1585 } else { 1586 /* Version 2.00 divisors must be a power of 2. */ 1587 for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) { 1588 if ((host->max_clk / div) <= clock) 1589 break; 1590 } 1591 real_div = div; 1592 div >>= 1; 1593 } 1594 1595 clock_set: 1596 if (real_div) 1597 *actual_clock = (host->max_clk * clk_mul) / real_div; 1598 clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT; 1599 clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN) 1600 << SDHCI_DIVIDER_HI_SHIFT; 1601 1602 return clk; 1603 } 1604 EXPORT_SYMBOL_GPL(sdhci_calc_clk); 1605 1606 void sdhci_enable_clk(struct sdhci_host *host, u16 clk) 1607 { 1608 ktime_t timeout; 1609 1610 clk |= SDHCI_CLOCK_INT_EN; 1611 sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); 1612 1613 /* Wait max 20 ms */ 1614 timeout = ktime_add_ms(ktime_get(), 20); 1615 while (1) { 1616 bool timedout = ktime_after(ktime_get(), timeout); 1617 1618 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1619 if (clk & SDHCI_CLOCK_INT_STABLE) 1620 break; 1621 if (timedout) { 1622 pr_err("%s: Internal clock never stabilised.\n", 1623 mmc_hostname(host->mmc)); 1624 sdhci_dumpregs(host); 1625 return; 1626 } 1627 udelay(10); 1628 } 1629 1630 clk |= SDHCI_CLOCK_CARD_EN; 1631 sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); 1632 } 1633 EXPORT_SYMBOL_GPL(sdhci_enable_clk); 1634 1635 void sdhci_set_clock(struct sdhci_host *host, unsigned int clock) 1636 { 1637 u16 clk; 1638 1639 host->mmc->actual_clock = 0; 1640 1641 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1642 1643 if (clock == 0) 1644 return; 1645 1646 clk = sdhci_calc_clk(host, clock, &host->mmc->actual_clock); 1647 sdhci_enable_clk(host, clk); 1648 } 1649 EXPORT_SYMBOL_GPL(sdhci_set_clock); 1650 1651 static void sdhci_set_power_reg(struct sdhci_host *host, unsigned char mode, 1652 unsigned short vdd) 1653 { 1654 struct mmc_host *mmc = host->mmc; 1655 1656 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd); 1657 1658 if (mode != MMC_POWER_OFF) 1659 sdhci_writeb(host, SDHCI_POWER_ON, SDHCI_POWER_CONTROL); 1660 else 1661 sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); 1662 } 1663 1664 void sdhci_set_power_noreg(struct sdhci_host *host, unsigned char mode, 1665 unsigned short vdd) 1666 { 1667 u8 pwr = 0; 1668 1669 if (mode != MMC_POWER_OFF) { 1670 switch (1 << vdd) { 1671 case MMC_VDD_165_195: 1672 /* 1673 * Without a regulator, SDHCI does not support 2.0v 1674 * so we only get here if the driver deliberately 1675 * added the 2.0v range to ocr_avail. Map it to 1.8v 1676 * for the purpose of turning on the power. 1677 */ 1678 case MMC_VDD_20_21: 1679 pwr = SDHCI_POWER_180; 1680 break; 1681 case MMC_VDD_29_30: 1682 case MMC_VDD_30_31: 1683 pwr = SDHCI_POWER_300; 1684 break; 1685 case MMC_VDD_32_33: 1686 case MMC_VDD_33_34: 1687 pwr = SDHCI_POWER_330; 1688 break; 1689 default: 1690 WARN(1, "%s: Invalid vdd %#x\n", 1691 mmc_hostname(host->mmc), vdd); 1692 break; 1693 } 1694 } 1695 1696 if (host->pwr == pwr) 1697 return; 1698 1699 host->pwr = pwr; 1700 1701 if (pwr == 0) { 1702 sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); 1703 if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON) 1704 sdhci_runtime_pm_bus_off(host); 1705 } else { 1706 /* 1707 * Spec says that we should clear the power reg before setting 1708 * a new value. Some controllers don't seem to like this though. 1709 */ 1710 if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE)) 1711 sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); 1712 1713 /* 1714 * At least the Marvell CaFe chip gets confused if we set the 1715 * voltage and set turn on power at the same time, so set the 1716 * voltage first. 1717 */ 1718 if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER) 1719 sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); 1720 1721 pwr |= SDHCI_POWER_ON; 1722 1723 sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); 1724 1725 if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON) 1726 sdhci_runtime_pm_bus_on(host); 1727 1728 /* 1729 * Some controllers need an extra 10ms delay of 10ms before 1730 * they can apply clock after applying power 1731 */ 1732 if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER) 1733 mdelay(10); 1734 } 1735 } 1736 EXPORT_SYMBOL_GPL(sdhci_set_power_noreg); 1737 1738 void sdhci_set_power(struct sdhci_host *host, unsigned char mode, 1739 unsigned short vdd) 1740 { 1741 if (IS_ERR(host->mmc->supply.vmmc)) 1742 sdhci_set_power_noreg(host, mode, vdd); 1743 else 1744 sdhci_set_power_reg(host, mode, vdd); 1745 } 1746 EXPORT_SYMBOL_GPL(sdhci_set_power); 1747 1748 /*****************************************************************************\ 1749 * * 1750 * MMC callbacks * 1751 * * 1752 \*****************************************************************************/ 1753 1754 void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1755 { 1756 struct sdhci_host *host; 1757 int present; 1758 unsigned long flags; 1759 1760 host = mmc_priv(mmc); 1761 1762 /* Firstly check card presence */ 1763 present = mmc->ops->get_cd(mmc); 1764 1765 spin_lock_irqsave(&host->lock, flags); 1766 1767 sdhci_led_activate(host); 1768 1769 /* 1770 * Ensure we don't send the STOP for non-SET_BLOCK_COUNTED 1771 * requests if Auto-CMD12 is enabled. 1772 */ 1773 if (sdhci_auto_cmd12(host, mrq)) { 1774 if (mrq->stop) { 1775 mrq->data->stop = NULL; 1776 mrq->stop = NULL; 1777 } 1778 } 1779 1780 if (!present || host->flags & SDHCI_DEVICE_DEAD) { 1781 mrq->cmd->error = -ENOMEDIUM; 1782 sdhci_finish_mrq(host, mrq); 1783 } else { 1784 if (mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23)) 1785 sdhci_send_command(host, mrq->sbc); 1786 else 1787 sdhci_send_command(host, mrq->cmd); 1788 } 1789 1790 mmiowb(); 1791 spin_unlock_irqrestore(&host->lock, flags); 1792 } 1793 EXPORT_SYMBOL_GPL(sdhci_request); 1794 1795 void sdhci_set_bus_width(struct sdhci_host *host, int width) 1796 { 1797 u8 ctrl; 1798 1799 ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); 1800 if (width == MMC_BUS_WIDTH_8) { 1801 ctrl &= ~SDHCI_CTRL_4BITBUS; 1802 ctrl |= SDHCI_CTRL_8BITBUS; 1803 } else { 1804 if (host->mmc->caps & MMC_CAP_8_BIT_DATA) 1805 ctrl &= ~SDHCI_CTRL_8BITBUS; 1806 if (width == MMC_BUS_WIDTH_4) 1807 ctrl |= SDHCI_CTRL_4BITBUS; 1808 else 1809 ctrl &= ~SDHCI_CTRL_4BITBUS; 1810 } 1811 sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); 1812 } 1813 EXPORT_SYMBOL_GPL(sdhci_set_bus_width); 1814 1815 void sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing) 1816 { 1817 u16 ctrl_2; 1818 1819 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1820 /* Select Bus Speed Mode for host */ 1821 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1822 if ((timing == MMC_TIMING_MMC_HS200) || 1823 (timing == MMC_TIMING_UHS_SDR104)) 1824 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1825 else if (timing == MMC_TIMING_UHS_SDR12) 1826 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1827 else if (timing == MMC_TIMING_UHS_SDR25) 1828 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1829 else if (timing == MMC_TIMING_UHS_SDR50) 1830 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1831 else if ((timing == MMC_TIMING_UHS_DDR50) || 1832 (timing == MMC_TIMING_MMC_DDR52)) 1833 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1834 else if (timing == MMC_TIMING_MMC_HS400) 1835 ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */ 1836 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1837 } 1838 EXPORT_SYMBOL_GPL(sdhci_set_uhs_signaling); 1839 1840 void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1841 { 1842 struct sdhci_host *host = mmc_priv(mmc); 1843 u8 ctrl; 1844 1845 if (ios->power_mode == MMC_POWER_UNDEFINED) 1846 return; 1847 1848 if (host->flags & SDHCI_DEVICE_DEAD) { 1849 if (!IS_ERR(mmc->supply.vmmc) && 1850 ios->power_mode == MMC_POWER_OFF) 1851 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1852 return; 1853 } 1854 1855 /* 1856 * Reset the chip on each power off. 1857 * Should clear out any weird states. 1858 */ 1859 if (ios->power_mode == MMC_POWER_OFF) { 1860 sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); 1861 sdhci_reinit(host); 1862 } 1863 1864 if (host->version >= SDHCI_SPEC_300 && 1865 (ios->power_mode == MMC_POWER_UP) && 1866 !(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) 1867 sdhci_enable_preset_value(host, false); 1868 1869 if (!ios->clock || ios->clock != host->clock) { 1870 host->ops->set_clock(host, ios->clock); 1871 host->clock = ios->clock; 1872 1873 if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK && 1874 host->clock) { 1875 host->timeout_clk = host->mmc->actual_clock ? 1876 host->mmc->actual_clock / 1000 : 1877 host->clock / 1000; 1878 host->mmc->max_busy_timeout = 1879 host->ops->get_max_timeout_count ? 1880 host->ops->get_max_timeout_count(host) : 1881 1 << 27; 1882 host->mmc->max_busy_timeout /= host->timeout_clk; 1883 } 1884 } 1885 1886 if (host->ops->set_power) 1887 host->ops->set_power(host, ios->power_mode, ios->vdd); 1888 else 1889 sdhci_set_power(host, ios->power_mode, ios->vdd); 1890 1891 if (host->ops->platform_send_init_74_clocks) 1892 host->ops->platform_send_init_74_clocks(host, ios->power_mode); 1893 1894 host->ops->set_bus_width(host, ios->bus_width); 1895 1896 ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); 1897 1898 if (!(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT)) { 1899 if (ios->timing == MMC_TIMING_SD_HS || 1900 ios->timing == MMC_TIMING_MMC_HS || 1901 ios->timing == MMC_TIMING_MMC_HS400 || 1902 ios->timing == MMC_TIMING_MMC_HS200 || 1903 ios->timing == MMC_TIMING_MMC_DDR52 || 1904 ios->timing == MMC_TIMING_UHS_SDR50 || 1905 ios->timing == MMC_TIMING_UHS_SDR104 || 1906 ios->timing == MMC_TIMING_UHS_DDR50 || 1907 ios->timing == MMC_TIMING_UHS_SDR25) 1908 ctrl |= SDHCI_CTRL_HISPD; 1909 else 1910 ctrl &= ~SDHCI_CTRL_HISPD; 1911 } 1912 1913 if (host->version >= SDHCI_SPEC_300) { 1914 u16 clk, ctrl_2; 1915 1916 if (!host->preset_enabled) { 1917 sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); 1918 /* 1919 * We only need to set Driver Strength if the 1920 * preset value enable is not set. 1921 */ 1922 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1923 ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK; 1924 if (ios->drv_type == MMC_SET_DRIVER_TYPE_A) 1925 ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A; 1926 else if (ios->drv_type == MMC_SET_DRIVER_TYPE_B) 1927 ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B; 1928 else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C) 1929 ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C; 1930 else if (ios->drv_type == MMC_SET_DRIVER_TYPE_D) 1931 ctrl_2 |= SDHCI_CTRL_DRV_TYPE_D; 1932 else { 1933 pr_warn("%s: invalid driver type, default to driver type B\n", 1934 mmc_hostname(mmc)); 1935 ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B; 1936 } 1937 1938 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1939 } else { 1940 /* 1941 * According to SDHC Spec v3.00, if the Preset Value 1942 * Enable in the Host Control 2 register is set, we 1943 * need to reset SD Clock Enable before changing High 1944 * Speed Enable to avoid generating clock gliches. 1945 */ 1946 1947 /* Reset SD Clock Enable */ 1948 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1949 clk &= ~SDHCI_CLOCK_CARD_EN; 1950 sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); 1951 1952 sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); 1953 1954 /* Re-enable SD Clock */ 1955 host->ops->set_clock(host, host->clock); 1956 } 1957 1958 /* Reset SD Clock Enable */ 1959 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1960 clk &= ~SDHCI_CLOCK_CARD_EN; 1961 sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); 1962 1963 host->ops->set_uhs_signaling(host, ios->timing); 1964 host->timing = ios->timing; 1965 1966 if (!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) && 1967 ((ios->timing == MMC_TIMING_UHS_SDR12) || 1968 (ios->timing == MMC_TIMING_UHS_SDR25) || 1969 (ios->timing == MMC_TIMING_UHS_SDR50) || 1970 (ios->timing == MMC_TIMING_UHS_SDR104) || 1971 (ios->timing == MMC_TIMING_UHS_DDR50) || 1972 (ios->timing == MMC_TIMING_MMC_DDR52))) { 1973 u16 preset; 1974 1975 sdhci_enable_preset_value(host, true); 1976 preset = sdhci_get_preset_value(host); 1977 ios->drv_type = (preset & SDHCI_PRESET_DRV_MASK) 1978 >> SDHCI_PRESET_DRV_SHIFT; 1979 } 1980 1981 /* Re-enable SD Clock */ 1982 host->ops->set_clock(host, host->clock); 1983 } else 1984 sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); 1985 1986 /* 1987 * Some (ENE) controllers go apeshit on some ios operation, 1988 * signalling timeout and CRC errors even on CMD0. Resetting 1989 * it on each ios seems to solve the problem. 1990 */ 1991 if (host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS) 1992 sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1993 1994 mmiowb(); 1995 } 1996 EXPORT_SYMBOL_GPL(sdhci_set_ios); 1997 1998 static int sdhci_get_cd(struct mmc_host *mmc) 1999 { 2000 struct sdhci_host *host = mmc_priv(mmc); 2001 int gpio_cd = mmc_gpio_get_cd(mmc); 2002 2003 if (host->flags & SDHCI_DEVICE_DEAD) 2004 return 0; 2005 2006 /* If nonremovable, assume that the card is always present. */ 2007 if (!mmc_card_is_removable(host->mmc)) 2008 return 1; 2009 2010 /* 2011 * Try slot gpio detect, if defined it take precedence 2012 * over build in controller functionality 2013 */ 2014 if (gpio_cd >= 0) 2015 return !!gpio_cd; 2016 2017 /* If polling, assume that the card is always present. */ 2018 if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) 2019 return 1; 2020 2021 /* Host native card detect */ 2022 return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); 2023 } 2024 2025 static int sdhci_check_ro(struct sdhci_host *host) 2026 { 2027 unsigned long flags; 2028 int is_readonly; 2029 2030 spin_lock_irqsave(&host->lock, flags); 2031 2032 if (host->flags & SDHCI_DEVICE_DEAD) 2033 is_readonly = 0; 2034 else if (host->ops->get_ro) 2035 is_readonly = host->ops->get_ro(host); 2036 else 2037 is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE) 2038 & SDHCI_WRITE_PROTECT); 2039 2040 spin_unlock_irqrestore(&host->lock, flags); 2041 2042 /* This quirk needs to be replaced by a callback-function later */ 2043 return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ? 2044 !is_readonly : is_readonly; 2045 } 2046 2047 #define SAMPLE_COUNT 5 2048 2049 static int sdhci_get_ro(struct mmc_host *mmc) 2050 { 2051 struct sdhci_host *host = mmc_priv(mmc); 2052 int i, ro_count; 2053 2054 if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT)) 2055 return sdhci_check_ro(host); 2056 2057 ro_count = 0; 2058 for (i = 0; i < SAMPLE_COUNT; i++) { 2059 if (sdhci_check_ro(host)) { 2060 if (++ro_count > SAMPLE_COUNT / 2) 2061 return 1; 2062 } 2063 msleep(30); 2064 } 2065 return 0; 2066 } 2067 2068 static void sdhci_hw_reset(struct mmc_host *mmc) 2069 { 2070 struct sdhci_host *host = mmc_priv(mmc); 2071 2072 if (host->ops && host->ops->hw_reset) 2073 host->ops->hw_reset(host); 2074 } 2075 2076 static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable) 2077 { 2078 if (!(host->flags & SDHCI_DEVICE_DEAD)) { 2079 if (enable) 2080 host->ier |= SDHCI_INT_CARD_INT; 2081 else 2082 host->ier &= ~SDHCI_INT_CARD_INT; 2083 2084 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 2085 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 2086 mmiowb(); 2087 } 2088 } 2089 2090 void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable) 2091 { 2092 struct sdhci_host *host = mmc_priv(mmc); 2093 unsigned long flags; 2094 2095 if (enable) 2096 pm_runtime_get_noresume(host->mmc->parent); 2097 2098 spin_lock_irqsave(&host->lock, flags); 2099 if (enable) 2100 host->flags |= SDHCI_SDIO_IRQ_ENABLED; 2101 else 2102 host->flags &= ~SDHCI_SDIO_IRQ_ENABLED; 2103 2104 sdhci_enable_sdio_irq_nolock(host, enable); 2105 spin_unlock_irqrestore(&host->lock, flags); 2106 2107 if (!enable) 2108 pm_runtime_put_noidle(host->mmc->parent); 2109 } 2110 EXPORT_SYMBOL_GPL(sdhci_enable_sdio_irq); 2111 2112 int sdhci_start_signal_voltage_switch(struct mmc_host *mmc, 2113 struct mmc_ios *ios) 2114 { 2115 struct sdhci_host *host = mmc_priv(mmc); 2116 u16 ctrl; 2117 int ret; 2118 2119 /* 2120 * Signal Voltage Switching is only applicable for Host Controllers 2121 * v3.00 and above. 2122 */ 2123 if (host->version < SDHCI_SPEC_300) 2124 return 0; 2125 2126 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2127 2128 switch (ios->signal_voltage) { 2129 case MMC_SIGNAL_VOLTAGE_330: 2130 if (!(host->flags & SDHCI_SIGNALING_330)) 2131 return -EINVAL; 2132 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2133 ctrl &= ~SDHCI_CTRL_VDD_180; 2134 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2135 2136 if (!IS_ERR(mmc->supply.vqmmc)) { 2137 ret = mmc_regulator_set_vqmmc(mmc, ios); 2138 if (ret) { 2139 pr_warn("%s: Switching to 3.3V signalling voltage failed\n", 2140 mmc_hostname(mmc)); 2141 return -EIO; 2142 } 2143 } 2144 /* Wait for 5ms */ 2145 usleep_range(5000, 5500); 2146 2147 /* 3.3V regulator output should be stable within 5 ms */ 2148 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2149 if (!(ctrl & SDHCI_CTRL_VDD_180)) 2150 return 0; 2151 2152 pr_warn("%s: 3.3V regulator output did not became stable\n", 2153 mmc_hostname(mmc)); 2154 2155 return -EAGAIN; 2156 case MMC_SIGNAL_VOLTAGE_180: 2157 if (!(host->flags & SDHCI_SIGNALING_180)) 2158 return -EINVAL; 2159 if (!IS_ERR(mmc->supply.vqmmc)) { 2160 ret = mmc_regulator_set_vqmmc(mmc, ios); 2161 if (ret) { 2162 pr_warn("%s: Switching to 1.8V signalling voltage failed\n", 2163 mmc_hostname(mmc)); 2164 return -EIO; 2165 } 2166 } 2167 2168 /* 2169 * Enable 1.8V Signal Enable in the Host Control2 2170 * register 2171 */ 2172 ctrl |= SDHCI_CTRL_VDD_180; 2173 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2174 2175 /* Some controller need to do more when switching */ 2176 if (host->ops->voltage_switch) 2177 host->ops->voltage_switch(host); 2178 2179 /* 1.8V regulator output should be stable within 5 ms */ 2180 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2181 if (ctrl & SDHCI_CTRL_VDD_180) 2182 return 0; 2183 2184 pr_warn("%s: 1.8V regulator output did not became stable\n", 2185 mmc_hostname(mmc)); 2186 2187 return -EAGAIN; 2188 case MMC_SIGNAL_VOLTAGE_120: 2189 if (!(host->flags & SDHCI_SIGNALING_120)) 2190 return -EINVAL; 2191 if (!IS_ERR(mmc->supply.vqmmc)) { 2192 ret = mmc_regulator_set_vqmmc(mmc, ios); 2193 if (ret) { 2194 pr_warn("%s: Switching to 1.2V signalling voltage failed\n", 2195 mmc_hostname(mmc)); 2196 return -EIO; 2197 } 2198 } 2199 return 0; 2200 default: 2201 /* No signal voltage switch required */ 2202 return 0; 2203 } 2204 } 2205 EXPORT_SYMBOL_GPL(sdhci_start_signal_voltage_switch); 2206 2207 static int sdhci_card_busy(struct mmc_host *mmc) 2208 { 2209 struct sdhci_host *host = mmc_priv(mmc); 2210 u32 present_state; 2211 2212 /* Check whether DAT[0] is 0 */ 2213 present_state = sdhci_readl(host, SDHCI_PRESENT_STATE); 2214 2215 return !(present_state & SDHCI_DATA_0_LVL_MASK); 2216 } 2217 2218 static int sdhci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios) 2219 { 2220 struct sdhci_host *host = mmc_priv(mmc); 2221 unsigned long flags; 2222 2223 spin_lock_irqsave(&host->lock, flags); 2224 host->flags |= SDHCI_HS400_TUNING; 2225 spin_unlock_irqrestore(&host->lock, flags); 2226 2227 return 0; 2228 } 2229 2230 void sdhci_start_tuning(struct sdhci_host *host) 2231 { 2232 u16 ctrl; 2233 2234 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2235 ctrl |= SDHCI_CTRL_EXEC_TUNING; 2236 if (host->quirks2 & SDHCI_QUIRK2_TUNING_WORK_AROUND) 2237 ctrl |= SDHCI_CTRL_TUNED_CLK; 2238 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2239 2240 /* 2241 * As per the Host Controller spec v3.00, tuning command 2242 * generates Buffer Read Ready interrupt, so enable that. 2243 * 2244 * Note: The spec clearly says that when tuning sequence 2245 * is being performed, the controller does not generate 2246 * interrupts other than Buffer Read Ready interrupt. But 2247 * to make sure we don't hit a controller bug, we _only_ 2248 * enable Buffer Read Ready interrupt here. 2249 */ 2250 sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE); 2251 sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE); 2252 } 2253 EXPORT_SYMBOL_GPL(sdhci_start_tuning); 2254 2255 void sdhci_end_tuning(struct sdhci_host *host) 2256 { 2257 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 2258 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 2259 } 2260 EXPORT_SYMBOL_GPL(sdhci_end_tuning); 2261 2262 void sdhci_reset_tuning(struct sdhci_host *host) 2263 { 2264 u16 ctrl; 2265 2266 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2267 ctrl &= ~SDHCI_CTRL_TUNED_CLK; 2268 ctrl &= ~SDHCI_CTRL_EXEC_TUNING; 2269 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2270 } 2271 EXPORT_SYMBOL_GPL(sdhci_reset_tuning); 2272 2273 static void sdhci_abort_tuning(struct sdhci_host *host, u32 opcode) 2274 { 2275 sdhci_reset_tuning(host); 2276 2277 sdhci_do_reset(host, SDHCI_RESET_CMD); 2278 sdhci_do_reset(host, SDHCI_RESET_DATA); 2279 2280 sdhci_end_tuning(host); 2281 2282 mmc_abort_tuning(host->mmc, opcode); 2283 } 2284 2285 /* 2286 * We use sdhci_send_tuning() because mmc_send_tuning() is not a good fit. SDHCI 2287 * tuning command does not have a data payload (or rather the hardware does it 2288 * automatically) so mmc_send_tuning() will return -EIO. Also the tuning command 2289 * interrupt setup is different to other commands and there is no timeout 2290 * interrupt so special handling is needed. 2291 */ 2292 void sdhci_send_tuning(struct sdhci_host *host, u32 opcode) 2293 { 2294 struct mmc_host *mmc = host->mmc; 2295 struct mmc_command cmd = {}; 2296 struct mmc_request mrq = {}; 2297 unsigned long flags; 2298 u32 b = host->sdma_boundary; 2299 2300 spin_lock_irqsave(&host->lock, flags); 2301 2302 cmd.opcode = opcode; 2303 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 2304 cmd.mrq = &mrq; 2305 2306 mrq.cmd = &cmd; 2307 /* 2308 * In response to CMD19, the card sends 64 bytes of tuning 2309 * block to the Host Controller. So we set the block size 2310 * to 64 here. 2311 */ 2312 if (cmd.opcode == MMC_SEND_TUNING_BLOCK_HS200 && 2313 mmc->ios.bus_width == MMC_BUS_WIDTH_8) 2314 sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 128), SDHCI_BLOCK_SIZE); 2315 else 2316 sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 64), SDHCI_BLOCK_SIZE); 2317 2318 /* 2319 * The tuning block is sent by the card to the host controller. 2320 * So we set the TRNS_READ bit in the Transfer Mode register. 2321 * This also takes care of setting DMA Enable and Multi Block 2322 * Select in the same register to 0. 2323 */ 2324 sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE); 2325 2326 sdhci_send_command(host, &cmd); 2327 2328 host->cmd = NULL; 2329 2330 sdhci_del_timer(host, &mrq); 2331 2332 host->tuning_done = 0; 2333 2334 mmiowb(); 2335 spin_unlock_irqrestore(&host->lock, flags); 2336 2337 /* Wait for Buffer Read Ready interrupt */ 2338 wait_event_timeout(host->buf_ready_int, (host->tuning_done == 1), 2339 msecs_to_jiffies(50)); 2340 2341 } 2342 EXPORT_SYMBOL_GPL(sdhci_send_tuning); 2343 2344 static int __sdhci_execute_tuning(struct sdhci_host *host, u32 opcode) 2345 { 2346 int i; 2347 2348 /* 2349 * Issue opcode repeatedly till Execute Tuning is set to 0 or the number 2350 * of loops reaches 40 times. 2351 */ 2352 for (i = 0; i < MAX_TUNING_LOOP; i++) { 2353 u16 ctrl; 2354 2355 sdhci_send_tuning(host, opcode); 2356 2357 if (!host->tuning_done) { 2358 pr_info("%s: Tuning timeout, falling back to fixed sampling clock\n", 2359 mmc_hostname(host->mmc)); 2360 sdhci_abort_tuning(host, opcode); 2361 return -ETIMEDOUT; 2362 } 2363 2364 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2365 if (!(ctrl & SDHCI_CTRL_EXEC_TUNING)) { 2366 if (ctrl & SDHCI_CTRL_TUNED_CLK) 2367 return 0; /* Success! */ 2368 break; 2369 } 2370 2371 /* Spec does not require a delay between tuning cycles */ 2372 if (host->tuning_delay > 0) 2373 mdelay(host->tuning_delay); 2374 } 2375 2376 pr_info("%s: Tuning failed, falling back to fixed sampling clock\n", 2377 mmc_hostname(host->mmc)); 2378 sdhci_reset_tuning(host); 2379 return -EAGAIN; 2380 } 2381 2382 int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode) 2383 { 2384 struct sdhci_host *host = mmc_priv(mmc); 2385 int err = 0; 2386 unsigned int tuning_count = 0; 2387 bool hs400_tuning; 2388 2389 hs400_tuning = host->flags & SDHCI_HS400_TUNING; 2390 2391 if (host->tuning_mode == SDHCI_TUNING_MODE_1) 2392 tuning_count = host->tuning_count; 2393 2394 /* 2395 * The Host Controller needs tuning in case of SDR104 and DDR50 2396 * mode, and for SDR50 mode when Use Tuning for SDR50 is set in 2397 * the Capabilities register. 2398 * If the Host Controller supports the HS200 mode then the 2399 * tuning function has to be executed. 2400 */ 2401 switch (host->timing) { 2402 /* HS400 tuning is done in HS200 mode */ 2403 case MMC_TIMING_MMC_HS400: 2404 err = -EINVAL; 2405 goto out; 2406 2407 case MMC_TIMING_MMC_HS200: 2408 /* 2409 * Periodic re-tuning for HS400 is not expected to be needed, so 2410 * disable it here. 2411 */ 2412 if (hs400_tuning) 2413 tuning_count = 0; 2414 break; 2415 2416 case MMC_TIMING_UHS_SDR104: 2417 case MMC_TIMING_UHS_DDR50: 2418 break; 2419 2420 case MMC_TIMING_UHS_SDR50: 2421 if (host->flags & SDHCI_SDR50_NEEDS_TUNING) 2422 break; 2423 /* FALLTHROUGH */ 2424 2425 default: 2426 goto out; 2427 } 2428 2429 if (host->ops->platform_execute_tuning) { 2430 err = host->ops->platform_execute_tuning(host, opcode); 2431 goto out; 2432 } 2433 2434 host->mmc->retune_period = tuning_count; 2435 2436 if (host->tuning_delay < 0) 2437 host->tuning_delay = opcode == MMC_SEND_TUNING_BLOCK; 2438 2439 sdhci_start_tuning(host); 2440 2441 host->tuning_err = __sdhci_execute_tuning(host, opcode); 2442 2443 sdhci_end_tuning(host); 2444 out: 2445 host->flags &= ~SDHCI_HS400_TUNING; 2446 2447 return err; 2448 } 2449 EXPORT_SYMBOL_GPL(sdhci_execute_tuning); 2450 2451 static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable) 2452 { 2453 /* Host Controller v3.00 defines preset value registers */ 2454 if (host->version < SDHCI_SPEC_300) 2455 return; 2456 2457 /* 2458 * We only enable or disable Preset Value if they are not already 2459 * enabled or disabled respectively. Otherwise, we bail out. 2460 */ 2461 if (host->preset_enabled != enable) { 2462 u16 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2463 2464 if (enable) 2465 ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE; 2466 else 2467 ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE; 2468 2469 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2470 2471 if (enable) 2472 host->flags |= SDHCI_PV_ENABLED; 2473 else 2474 host->flags &= ~SDHCI_PV_ENABLED; 2475 2476 host->preset_enabled = enable; 2477 } 2478 } 2479 2480 static void sdhci_post_req(struct mmc_host *mmc, struct mmc_request *mrq, 2481 int err) 2482 { 2483 struct sdhci_host *host = mmc_priv(mmc); 2484 struct mmc_data *data = mrq->data; 2485 2486 if (data->host_cookie != COOKIE_UNMAPPED) 2487 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 2488 mmc_get_dma_dir(data)); 2489 2490 data->host_cookie = COOKIE_UNMAPPED; 2491 } 2492 2493 static void sdhci_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) 2494 { 2495 struct sdhci_host *host = mmc_priv(mmc); 2496 2497 mrq->data->host_cookie = COOKIE_UNMAPPED; 2498 2499 /* 2500 * No pre-mapping in the pre hook if we're using the bounce buffer, 2501 * for that we would need two bounce buffers since one buffer is 2502 * in flight when this is getting called. 2503 */ 2504 if (host->flags & SDHCI_REQ_USE_DMA && !host->bounce_buffer) 2505 sdhci_pre_dma_transfer(host, mrq->data, COOKIE_PRE_MAPPED); 2506 } 2507 2508 static inline bool sdhci_has_requests(struct sdhci_host *host) 2509 { 2510 return host->cmd || host->data_cmd; 2511 } 2512 2513 static void sdhci_error_out_mrqs(struct sdhci_host *host, int err) 2514 { 2515 if (host->data_cmd) { 2516 host->data_cmd->error = err; 2517 sdhci_finish_mrq(host, host->data_cmd->mrq); 2518 } 2519 2520 if (host->cmd) { 2521 host->cmd->error = err; 2522 sdhci_finish_mrq(host, host->cmd->mrq); 2523 } 2524 } 2525 2526 static void sdhci_card_event(struct mmc_host *mmc) 2527 { 2528 struct sdhci_host *host = mmc_priv(mmc); 2529 unsigned long flags; 2530 int present; 2531 2532 /* First check if client has provided their own card event */ 2533 if (host->ops->card_event) 2534 host->ops->card_event(host); 2535 2536 present = mmc->ops->get_cd(mmc); 2537 2538 spin_lock_irqsave(&host->lock, flags); 2539 2540 /* Check sdhci_has_requests() first in case we are runtime suspended */ 2541 if (sdhci_has_requests(host) && !present) { 2542 pr_err("%s: Card removed during transfer!\n", 2543 mmc_hostname(host->mmc)); 2544 pr_err("%s: Resetting controller.\n", 2545 mmc_hostname(host->mmc)); 2546 2547 sdhci_do_reset(host, SDHCI_RESET_CMD); 2548 sdhci_do_reset(host, SDHCI_RESET_DATA); 2549 2550 sdhci_error_out_mrqs(host, -ENOMEDIUM); 2551 } 2552 2553 spin_unlock_irqrestore(&host->lock, flags); 2554 } 2555 2556 static const struct mmc_host_ops sdhci_ops = { 2557 .request = sdhci_request, 2558 .post_req = sdhci_post_req, 2559 .pre_req = sdhci_pre_req, 2560 .set_ios = sdhci_set_ios, 2561 .get_cd = sdhci_get_cd, 2562 .get_ro = sdhci_get_ro, 2563 .hw_reset = sdhci_hw_reset, 2564 .enable_sdio_irq = sdhci_enable_sdio_irq, 2565 .start_signal_voltage_switch = sdhci_start_signal_voltage_switch, 2566 .prepare_hs400_tuning = sdhci_prepare_hs400_tuning, 2567 .execute_tuning = sdhci_execute_tuning, 2568 .card_event = sdhci_card_event, 2569 .card_busy = sdhci_card_busy, 2570 }; 2571 2572 /*****************************************************************************\ 2573 * * 2574 * Tasklets * 2575 * * 2576 \*****************************************************************************/ 2577 2578 static bool sdhci_request_done(struct sdhci_host *host) 2579 { 2580 unsigned long flags; 2581 struct mmc_request *mrq; 2582 int i; 2583 2584 spin_lock_irqsave(&host->lock, flags); 2585 2586 for (i = 0; i < SDHCI_MAX_MRQS; i++) { 2587 mrq = host->mrqs_done[i]; 2588 if (mrq) 2589 break; 2590 } 2591 2592 if (!mrq) { 2593 spin_unlock_irqrestore(&host->lock, flags); 2594 return true; 2595 } 2596 2597 sdhci_del_timer(host, mrq); 2598 2599 /* 2600 * Always unmap the data buffers if they were mapped by 2601 * sdhci_prepare_data() whenever we finish with a request. 2602 * This avoids leaking DMA mappings on error. 2603 */ 2604 if (host->flags & SDHCI_REQ_USE_DMA) { 2605 struct mmc_data *data = mrq->data; 2606 2607 if (data && data->host_cookie == COOKIE_MAPPED) { 2608 if (host->bounce_buffer) { 2609 /* 2610 * On reads, copy the bounced data into the 2611 * sglist 2612 */ 2613 if (mmc_get_dma_dir(data) == DMA_FROM_DEVICE) { 2614 unsigned int length = data->bytes_xfered; 2615 2616 if (length > host->bounce_buffer_size) { 2617 pr_err("%s: bounce buffer is %u bytes but DMA claims to have transferred %u bytes\n", 2618 mmc_hostname(host->mmc), 2619 host->bounce_buffer_size, 2620 data->bytes_xfered); 2621 /* Cap it down and continue */ 2622 length = host->bounce_buffer_size; 2623 } 2624 dma_sync_single_for_cpu( 2625 host->mmc->parent, 2626 host->bounce_addr, 2627 host->bounce_buffer_size, 2628 DMA_FROM_DEVICE); 2629 sg_copy_from_buffer(data->sg, 2630 data->sg_len, 2631 host->bounce_buffer, 2632 length); 2633 } else { 2634 /* No copying, just switch ownership */ 2635 dma_sync_single_for_cpu( 2636 host->mmc->parent, 2637 host->bounce_addr, 2638 host->bounce_buffer_size, 2639 mmc_get_dma_dir(data)); 2640 } 2641 } else { 2642 /* Unmap the raw data */ 2643 dma_unmap_sg(mmc_dev(host->mmc), data->sg, 2644 data->sg_len, 2645 mmc_get_dma_dir(data)); 2646 } 2647 data->host_cookie = COOKIE_UNMAPPED; 2648 } 2649 } 2650 2651 /* 2652 * The controller needs a reset of internal state machines 2653 * upon error conditions. 2654 */ 2655 if (sdhci_needs_reset(host, mrq)) { 2656 /* 2657 * Do not finish until command and data lines are available for 2658 * reset. Note there can only be one other mrq, so it cannot 2659 * also be in mrqs_done, otherwise host->cmd and host->data_cmd 2660 * would both be null. 2661 */ 2662 if (host->cmd || host->data_cmd) { 2663 spin_unlock_irqrestore(&host->lock, flags); 2664 return true; 2665 } 2666 2667 /* Some controllers need this kick or reset won't work here */ 2668 if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET) 2669 /* This is to force an update */ 2670 host->ops->set_clock(host, host->clock); 2671 2672 /* Spec says we should do both at the same time, but Ricoh 2673 controllers do not like that. */ 2674 sdhci_do_reset(host, SDHCI_RESET_CMD); 2675 sdhci_do_reset(host, SDHCI_RESET_DATA); 2676 2677 host->pending_reset = false; 2678 } 2679 2680 if (!sdhci_has_requests(host)) 2681 sdhci_led_deactivate(host); 2682 2683 host->mrqs_done[i] = NULL; 2684 2685 mmiowb(); 2686 spin_unlock_irqrestore(&host->lock, flags); 2687 2688 mmc_request_done(host->mmc, mrq); 2689 2690 return false; 2691 } 2692 2693 static void sdhci_tasklet_finish(unsigned long param) 2694 { 2695 struct sdhci_host *host = (struct sdhci_host *)param; 2696 2697 while (!sdhci_request_done(host)) 2698 ; 2699 } 2700 2701 static void sdhci_timeout_timer(struct timer_list *t) 2702 { 2703 struct sdhci_host *host; 2704 unsigned long flags; 2705 2706 host = from_timer(host, t, timer); 2707 2708 spin_lock_irqsave(&host->lock, flags); 2709 2710 if (host->cmd && !sdhci_data_line_cmd(host->cmd)) { 2711 pr_err("%s: Timeout waiting for hardware cmd interrupt.\n", 2712 mmc_hostname(host->mmc)); 2713 sdhci_dumpregs(host); 2714 2715 host->cmd->error = -ETIMEDOUT; 2716 sdhci_finish_mrq(host, host->cmd->mrq); 2717 } 2718 2719 mmiowb(); 2720 spin_unlock_irqrestore(&host->lock, flags); 2721 } 2722 2723 static void sdhci_timeout_data_timer(struct timer_list *t) 2724 { 2725 struct sdhci_host *host; 2726 unsigned long flags; 2727 2728 host = from_timer(host, t, data_timer); 2729 2730 spin_lock_irqsave(&host->lock, flags); 2731 2732 if (host->data || host->data_cmd || 2733 (host->cmd && sdhci_data_line_cmd(host->cmd))) { 2734 pr_err("%s: Timeout waiting for hardware interrupt.\n", 2735 mmc_hostname(host->mmc)); 2736 sdhci_dumpregs(host); 2737 2738 if (host->data) { 2739 host->data->error = -ETIMEDOUT; 2740 sdhci_finish_data(host); 2741 } else if (host->data_cmd) { 2742 host->data_cmd->error = -ETIMEDOUT; 2743 sdhci_finish_mrq(host, host->data_cmd->mrq); 2744 } else { 2745 host->cmd->error = -ETIMEDOUT; 2746 sdhci_finish_mrq(host, host->cmd->mrq); 2747 } 2748 } 2749 2750 mmiowb(); 2751 spin_unlock_irqrestore(&host->lock, flags); 2752 } 2753 2754 /*****************************************************************************\ 2755 * * 2756 * Interrupt handling * 2757 * * 2758 \*****************************************************************************/ 2759 2760 static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask) 2761 { 2762 if (!host->cmd) { 2763 /* 2764 * SDHCI recovers from errors by resetting the cmd and data 2765 * circuits. Until that is done, there very well might be more 2766 * interrupts, so ignore them in that case. 2767 */ 2768 if (host->pending_reset) 2769 return; 2770 pr_err("%s: Got command interrupt 0x%08x even though no command operation was in progress.\n", 2771 mmc_hostname(host->mmc), (unsigned)intmask); 2772 sdhci_dumpregs(host); 2773 return; 2774 } 2775 2776 if (intmask & (SDHCI_INT_TIMEOUT | SDHCI_INT_CRC | 2777 SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) { 2778 if (intmask & SDHCI_INT_TIMEOUT) 2779 host->cmd->error = -ETIMEDOUT; 2780 else 2781 host->cmd->error = -EILSEQ; 2782 2783 /* 2784 * If this command initiates a data phase and a response 2785 * CRC error is signalled, the card can start transferring 2786 * data - the card may have received the command without 2787 * error. We must not terminate the mmc_request early. 2788 * 2789 * If the card did not receive the command or returned an 2790 * error which prevented it sending data, the data phase 2791 * will time out. 2792 */ 2793 if (host->cmd->data && 2794 (intmask & (SDHCI_INT_CRC | SDHCI_INT_TIMEOUT)) == 2795 SDHCI_INT_CRC) { 2796 host->cmd = NULL; 2797 return; 2798 } 2799 2800 sdhci_finish_mrq(host, host->cmd->mrq); 2801 return; 2802 } 2803 2804 if (intmask & SDHCI_INT_RESPONSE) 2805 sdhci_finish_command(host); 2806 } 2807 2808 static void sdhci_adma_show_error(struct sdhci_host *host) 2809 { 2810 void *desc = host->adma_table; 2811 2812 sdhci_dumpregs(host); 2813 2814 while (true) { 2815 struct sdhci_adma2_64_desc *dma_desc = desc; 2816 2817 if (host->flags & SDHCI_USE_64_BIT_DMA) 2818 DBG("%p: DMA 0x%08x%08x, LEN 0x%04x, Attr=0x%02x\n", 2819 desc, le32_to_cpu(dma_desc->addr_hi), 2820 le32_to_cpu(dma_desc->addr_lo), 2821 le16_to_cpu(dma_desc->len), 2822 le16_to_cpu(dma_desc->cmd)); 2823 else 2824 DBG("%p: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n", 2825 desc, le32_to_cpu(dma_desc->addr_lo), 2826 le16_to_cpu(dma_desc->len), 2827 le16_to_cpu(dma_desc->cmd)); 2828 2829 desc += host->desc_sz; 2830 2831 if (dma_desc->cmd & cpu_to_le16(ADMA2_END)) 2832 break; 2833 } 2834 } 2835 2836 static void sdhci_data_irq(struct sdhci_host *host, u32 intmask) 2837 { 2838 u32 command; 2839 2840 /* CMD19 generates _only_ Buffer Read Ready interrupt */ 2841 if (intmask & SDHCI_INT_DATA_AVAIL) { 2842 command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)); 2843 if (command == MMC_SEND_TUNING_BLOCK || 2844 command == MMC_SEND_TUNING_BLOCK_HS200) { 2845 host->tuning_done = 1; 2846 wake_up(&host->buf_ready_int); 2847 return; 2848 } 2849 } 2850 2851 if (!host->data) { 2852 struct mmc_command *data_cmd = host->data_cmd; 2853 2854 /* 2855 * The "data complete" interrupt is also used to 2856 * indicate that a busy state has ended. See comment 2857 * above in sdhci_cmd_irq(). 2858 */ 2859 if (data_cmd && (data_cmd->flags & MMC_RSP_BUSY)) { 2860 if (intmask & SDHCI_INT_DATA_TIMEOUT) { 2861 host->data_cmd = NULL; 2862 data_cmd->error = -ETIMEDOUT; 2863 sdhci_finish_mrq(host, data_cmd->mrq); 2864 return; 2865 } 2866 if (intmask & SDHCI_INT_DATA_END) { 2867 host->data_cmd = NULL; 2868 /* 2869 * Some cards handle busy-end interrupt 2870 * before the command completed, so make 2871 * sure we do things in the proper order. 2872 */ 2873 if (host->cmd == data_cmd) 2874 return; 2875 2876 sdhci_finish_mrq(host, data_cmd->mrq); 2877 return; 2878 } 2879 } 2880 2881 /* 2882 * SDHCI recovers from errors by resetting the cmd and data 2883 * circuits. Until that is done, there very well might be more 2884 * interrupts, so ignore them in that case. 2885 */ 2886 if (host->pending_reset) 2887 return; 2888 2889 pr_err("%s: Got data interrupt 0x%08x even though no data operation was in progress.\n", 2890 mmc_hostname(host->mmc), (unsigned)intmask); 2891 sdhci_dumpregs(host); 2892 2893 return; 2894 } 2895 2896 if (intmask & SDHCI_INT_DATA_TIMEOUT) 2897 host->data->error = -ETIMEDOUT; 2898 else if (intmask & SDHCI_INT_DATA_END_BIT) 2899 host->data->error = -EILSEQ; 2900 else if ((intmask & SDHCI_INT_DATA_CRC) && 2901 SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)) 2902 != MMC_BUS_TEST_R) 2903 host->data->error = -EILSEQ; 2904 else if (intmask & SDHCI_INT_ADMA_ERROR) { 2905 pr_err("%s: ADMA error\n", mmc_hostname(host->mmc)); 2906 sdhci_adma_show_error(host); 2907 host->data->error = -EIO; 2908 if (host->ops->adma_workaround) 2909 host->ops->adma_workaround(host, intmask); 2910 } 2911 2912 if (host->data->error) 2913 sdhci_finish_data(host); 2914 else { 2915 if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) 2916 sdhci_transfer_pio(host); 2917 2918 /* 2919 * We currently don't do anything fancy with DMA 2920 * boundaries, but as we can't disable the feature 2921 * we need to at least restart the transfer. 2922 * 2923 * According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS) 2924 * should return a valid address to continue from, but as 2925 * some controllers are faulty, don't trust them. 2926 */ 2927 if (intmask & SDHCI_INT_DMA_END) { 2928 dma_addr_t dmastart, dmanow; 2929 2930 dmastart = sdhci_sdma_address(host); 2931 dmanow = dmastart + host->data->bytes_xfered; 2932 /* 2933 * Force update to the next DMA block boundary. 2934 */ 2935 dmanow = (dmanow & 2936 ~((dma_addr_t)SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + 2937 SDHCI_DEFAULT_BOUNDARY_SIZE; 2938 host->data->bytes_xfered = dmanow - dmastart; 2939 DBG("DMA base %pad, transferred 0x%06x bytes, next %pad\n", 2940 &dmastart, host->data->bytes_xfered, &dmanow); 2941 sdhci_set_sdma_addr(host, dmanow); 2942 } 2943 2944 if (intmask & SDHCI_INT_DATA_END) { 2945 if (host->cmd == host->data_cmd) { 2946 /* 2947 * Data managed to finish before the 2948 * command completed. Make sure we do 2949 * things in the proper order. 2950 */ 2951 host->data_early = 1; 2952 } else { 2953 sdhci_finish_data(host); 2954 } 2955 } 2956 } 2957 } 2958 2959 static irqreturn_t sdhci_irq(int irq, void *dev_id) 2960 { 2961 irqreturn_t result = IRQ_NONE; 2962 struct sdhci_host *host = dev_id; 2963 u32 intmask, mask, unexpected = 0; 2964 int max_loops = 16; 2965 2966 spin_lock(&host->lock); 2967 2968 if (host->runtime_suspended && !sdhci_sdio_irq_enabled(host)) { 2969 spin_unlock(&host->lock); 2970 return IRQ_NONE; 2971 } 2972 2973 intmask = sdhci_readl(host, SDHCI_INT_STATUS); 2974 if (!intmask || intmask == 0xffffffff) { 2975 result = IRQ_NONE; 2976 goto out; 2977 } 2978 2979 do { 2980 DBG("IRQ status 0x%08x\n", intmask); 2981 2982 if (host->ops->irq) { 2983 intmask = host->ops->irq(host, intmask); 2984 if (!intmask) 2985 goto cont; 2986 } 2987 2988 /* Clear selected interrupts. */ 2989 mask = intmask & (SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK | 2990 SDHCI_INT_BUS_POWER); 2991 sdhci_writel(host, mask, SDHCI_INT_STATUS); 2992 2993 if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { 2994 u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) & 2995 SDHCI_CARD_PRESENT; 2996 2997 /* 2998 * There is a observation on i.mx esdhc. INSERT 2999 * bit will be immediately set again when it gets 3000 * cleared, if a card is inserted. We have to mask 3001 * the irq to prevent interrupt storm which will 3002 * freeze the system. And the REMOVE gets the 3003 * same situation. 3004 * 3005 * More testing are needed here to ensure it works 3006 * for other platforms though. 3007 */ 3008 host->ier &= ~(SDHCI_INT_CARD_INSERT | 3009 SDHCI_INT_CARD_REMOVE); 3010 host->ier |= present ? SDHCI_INT_CARD_REMOVE : 3011 SDHCI_INT_CARD_INSERT; 3012 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 3013 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 3014 3015 sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT | 3016 SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS); 3017 3018 host->thread_isr |= intmask & (SDHCI_INT_CARD_INSERT | 3019 SDHCI_INT_CARD_REMOVE); 3020 result = IRQ_WAKE_THREAD; 3021 } 3022 3023 if (intmask & SDHCI_INT_CMD_MASK) 3024 sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK); 3025 3026 if (intmask & SDHCI_INT_DATA_MASK) 3027 sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK); 3028 3029 if (intmask & SDHCI_INT_BUS_POWER) 3030 pr_err("%s: Card is consuming too much power!\n", 3031 mmc_hostname(host->mmc)); 3032 3033 if (intmask & SDHCI_INT_RETUNE) 3034 mmc_retune_needed(host->mmc); 3035 3036 if ((intmask & SDHCI_INT_CARD_INT) && 3037 (host->ier & SDHCI_INT_CARD_INT)) { 3038 sdhci_enable_sdio_irq_nolock(host, false); 3039 host->thread_isr |= SDHCI_INT_CARD_INT; 3040 result = IRQ_WAKE_THREAD; 3041 } 3042 3043 intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | 3044 SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK | 3045 SDHCI_INT_ERROR | SDHCI_INT_BUS_POWER | 3046 SDHCI_INT_RETUNE | SDHCI_INT_CARD_INT); 3047 3048 if (intmask) { 3049 unexpected |= intmask; 3050 sdhci_writel(host, intmask, SDHCI_INT_STATUS); 3051 } 3052 cont: 3053 if (result == IRQ_NONE) 3054 result = IRQ_HANDLED; 3055 3056 intmask = sdhci_readl(host, SDHCI_INT_STATUS); 3057 } while (intmask && --max_loops); 3058 out: 3059 spin_unlock(&host->lock); 3060 3061 if (unexpected) { 3062 pr_err("%s: Unexpected interrupt 0x%08x.\n", 3063 mmc_hostname(host->mmc), unexpected); 3064 sdhci_dumpregs(host); 3065 } 3066 3067 return result; 3068 } 3069 3070 static irqreturn_t sdhci_thread_irq(int irq, void *dev_id) 3071 { 3072 struct sdhci_host *host = dev_id; 3073 unsigned long flags; 3074 u32 isr; 3075 3076 spin_lock_irqsave(&host->lock, flags); 3077 isr = host->thread_isr; 3078 host->thread_isr = 0; 3079 spin_unlock_irqrestore(&host->lock, flags); 3080 3081 if (isr & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { 3082 struct mmc_host *mmc = host->mmc; 3083 3084 mmc->ops->card_event(mmc); 3085 mmc_detect_change(mmc, msecs_to_jiffies(200)); 3086 } 3087 3088 if (isr & SDHCI_INT_CARD_INT) { 3089 sdio_run_irqs(host->mmc); 3090 3091 spin_lock_irqsave(&host->lock, flags); 3092 if (host->flags & SDHCI_SDIO_IRQ_ENABLED) 3093 sdhci_enable_sdio_irq_nolock(host, true); 3094 spin_unlock_irqrestore(&host->lock, flags); 3095 } 3096 3097 return isr ? IRQ_HANDLED : IRQ_NONE; 3098 } 3099 3100 /*****************************************************************************\ 3101 * * 3102 * Suspend/resume * 3103 * * 3104 \*****************************************************************************/ 3105 3106 #ifdef CONFIG_PM 3107 3108 static bool sdhci_cd_irq_can_wakeup(struct sdhci_host *host) 3109 { 3110 return mmc_card_is_removable(host->mmc) && 3111 !(host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) && 3112 !mmc_can_gpio_cd(host->mmc); 3113 } 3114 3115 /* 3116 * To enable wakeup events, the corresponding events have to be enabled in 3117 * the Interrupt Status Enable register too. See 'Table 1-6: Wakeup Signal 3118 * Table' in the SD Host Controller Standard Specification. 3119 * It is useless to restore SDHCI_INT_ENABLE state in 3120 * sdhci_disable_irq_wakeups() since it will be set by 3121 * sdhci_enable_card_detection() or sdhci_init(). 3122 */ 3123 static bool sdhci_enable_irq_wakeups(struct sdhci_host *host) 3124 { 3125 u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE | 3126 SDHCI_WAKE_ON_INT; 3127 u32 irq_val = 0; 3128 u8 wake_val = 0; 3129 u8 val; 3130 3131 if (sdhci_cd_irq_can_wakeup(host)) { 3132 wake_val |= SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE; 3133 irq_val |= SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE; 3134 } 3135 3136 if (mmc_card_wake_sdio_irq(host->mmc)) { 3137 wake_val |= SDHCI_WAKE_ON_INT; 3138 irq_val |= SDHCI_INT_CARD_INT; 3139 } 3140 3141 if (!irq_val) 3142 return false; 3143 3144 val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL); 3145 val &= ~mask; 3146 val |= wake_val; 3147 sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL); 3148 3149 sdhci_writel(host, irq_val, SDHCI_INT_ENABLE); 3150 3151 host->irq_wake_enabled = !enable_irq_wake(host->irq); 3152 3153 return host->irq_wake_enabled; 3154 } 3155 3156 static void sdhci_disable_irq_wakeups(struct sdhci_host *host) 3157 { 3158 u8 val; 3159 u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE 3160 | SDHCI_WAKE_ON_INT; 3161 3162 val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL); 3163 val &= ~mask; 3164 sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL); 3165 3166 disable_irq_wake(host->irq); 3167 3168 host->irq_wake_enabled = false; 3169 } 3170 3171 int sdhci_suspend_host(struct sdhci_host *host) 3172 { 3173 sdhci_disable_card_detection(host); 3174 3175 mmc_retune_timer_stop(host->mmc); 3176 3177 if (!device_may_wakeup(mmc_dev(host->mmc)) || 3178 !sdhci_enable_irq_wakeups(host)) { 3179 host->ier = 0; 3180 sdhci_writel(host, 0, SDHCI_INT_ENABLE); 3181 sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); 3182 free_irq(host->irq, host); 3183 } 3184 3185 return 0; 3186 } 3187 3188 EXPORT_SYMBOL_GPL(sdhci_suspend_host); 3189 3190 int sdhci_resume_host(struct sdhci_host *host) 3191 { 3192 struct mmc_host *mmc = host->mmc; 3193 int ret = 0; 3194 3195 if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { 3196 if (host->ops->enable_dma) 3197 host->ops->enable_dma(host); 3198 } 3199 3200 if ((host->mmc->pm_flags & MMC_PM_KEEP_POWER) && 3201 (host->quirks2 & SDHCI_QUIRK2_HOST_OFF_CARD_ON)) { 3202 /* Card keeps power but host controller does not */ 3203 sdhci_init(host, 0); 3204 host->pwr = 0; 3205 host->clock = 0; 3206 mmc->ops->set_ios(mmc, &mmc->ios); 3207 } else { 3208 sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER)); 3209 mmiowb(); 3210 } 3211 3212 if (host->irq_wake_enabled) { 3213 sdhci_disable_irq_wakeups(host); 3214 } else { 3215 ret = request_threaded_irq(host->irq, sdhci_irq, 3216 sdhci_thread_irq, IRQF_SHARED, 3217 mmc_hostname(host->mmc), host); 3218 if (ret) 3219 return ret; 3220 } 3221 3222 sdhci_enable_card_detection(host); 3223 3224 return ret; 3225 } 3226 3227 EXPORT_SYMBOL_GPL(sdhci_resume_host); 3228 3229 int sdhci_runtime_suspend_host(struct sdhci_host *host) 3230 { 3231 unsigned long flags; 3232 3233 mmc_retune_timer_stop(host->mmc); 3234 3235 spin_lock_irqsave(&host->lock, flags); 3236 host->ier &= SDHCI_INT_CARD_INT; 3237 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 3238 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 3239 spin_unlock_irqrestore(&host->lock, flags); 3240 3241 synchronize_hardirq(host->irq); 3242 3243 spin_lock_irqsave(&host->lock, flags); 3244 host->runtime_suspended = true; 3245 spin_unlock_irqrestore(&host->lock, flags); 3246 3247 return 0; 3248 } 3249 EXPORT_SYMBOL_GPL(sdhci_runtime_suspend_host); 3250 3251 int sdhci_runtime_resume_host(struct sdhci_host *host) 3252 { 3253 struct mmc_host *mmc = host->mmc; 3254 unsigned long flags; 3255 int host_flags = host->flags; 3256 3257 if (host_flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { 3258 if (host->ops->enable_dma) 3259 host->ops->enable_dma(host); 3260 } 3261 3262 sdhci_init(host, 0); 3263 3264 if (mmc->ios.power_mode != MMC_POWER_UNDEFINED && 3265 mmc->ios.power_mode != MMC_POWER_OFF) { 3266 /* Force clock and power re-program */ 3267 host->pwr = 0; 3268 host->clock = 0; 3269 mmc->ops->start_signal_voltage_switch(mmc, &mmc->ios); 3270 mmc->ops->set_ios(mmc, &mmc->ios); 3271 3272 if ((host_flags & SDHCI_PV_ENABLED) && 3273 !(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) { 3274 spin_lock_irqsave(&host->lock, flags); 3275 sdhci_enable_preset_value(host, true); 3276 spin_unlock_irqrestore(&host->lock, flags); 3277 } 3278 3279 if ((mmc->caps2 & MMC_CAP2_HS400_ES) && 3280 mmc->ops->hs400_enhanced_strobe) 3281 mmc->ops->hs400_enhanced_strobe(mmc, &mmc->ios); 3282 } 3283 3284 spin_lock_irqsave(&host->lock, flags); 3285 3286 host->runtime_suspended = false; 3287 3288 /* Enable SDIO IRQ */ 3289 if (host->flags & SDHCI_SDIO_IRQ_ENABLED) 3290 sdhci_enable_sdio_irq_nolock(host, true); 3291 3292 /* Enable Card Detection */ 3293 sdhci_enable_card_detection(host); 3294 3295 spin_unlock_irqrestore(&host->lock, flags); 3296 3297 return 0; 3298 } 3299 EXPORT_SYMBOL_GPL(sdhci_runtime_resume_host); 3300 3301 #endif /* CONFIG_PM */ 3302 3303 /*****************************************************************************\ 3304 * * 3305 * Command Queue Engine (CQE) helpers * 3306 * * 3307 \*****************************************************************************/ 3308 3309 void sdhci_cqe_enable(struct mmc_host *mmc) 3310 { 3311 struct sdhci_host *host = mmc_priv(mmc); 3312 unsigned long flags; 3313 u8 ctrl; 3314 3315 spin_lock_irqsave(&host->lock, flags); 3316 3317 ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); 3318 ctrl &= ~SDHCI_CTRL_DMA_MASK; 3319 if (host->flags & SDHCI_USE_64_BIT_DMA) 3320 ctrl |= SDHCI_CTRL_ADMA64; 3321 else 3322 ctrl |= SDHCI_CTRL_ADMA32; 3323 sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); 3324 3325 sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, 512), 3326 SDHCI_BLOCK_SIZE); 3327 3328 /* Set maximum timeout */ 3329 sdhci_writeb(host, 0xE, SDHCI_TIMEOUT_CONTROL); 3330 3331 host->ier = host->cqe_ier; 3332 3333 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 3334 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 3335 3336 host->cqe_on = true; 3337 3338 pr_debug("%s: sdhci: CQE on, IRQ mask %#x, IRQ status %#x\n", 3339 mmc_hostname(mmc), host->ier, 3340 sdhci_readl(host, SDHCI_INT_STATUS)); 3341 3342 mmiowb(); 3343 spin_unlock_irqrestore(&host->lock, flags); 3344 } 3345 EXPORT_SYMBOL_GPL(sdhci_cqe_enable); 3346 3347 void sdhci_cqe_disable(struct mmc_host *mmc, bool recovery) 3348 { 3349 struct sdhci_host *host = mmc_priv(mmc); 3350 unsigned long flags; 3351 3352 spin_lock_irqsave(&host->lock, flags); 3353 3354 sdhci_set_default_irqs(host); 3355 3356 host->cqe_on = false; 3357 3358 if (recovery) { 3359 sdhci_do_reset(host, SDHCI_RESET_CMD); 3360 sdhci_do_reset(host, SDHCI_RESET_DATA); 3361 } 3362 3363 pr_debug("%s: sdhci: CQE off, IRQ mask %#x, IRQ status %#x\n", 3364 mmc_hostname(mmc), host->ier, 3365 sdhci_readl(host, SDHCI_INT_STATUS)); 3366 3367 mmiowb(); 3368 spin_unlock_irqrestore(&host->lock, flags); 3369 } 3370 EXPORT_SYMBOL_GPL(sdhci_cqe_disable); 3371 3372 bool sdhci_cqe_irq(struct sdhci_host *host, u32 intmask, int *cmd_error, 3373 int *data_error) 3374 { 3375 u32 mask; 3376 3377 if (!host->cqe_on) 3378 return false; 3379 3380 if (intmask & (SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC)) 3381 *cmd_error = -EILSEQ; 3382 else if (intmask & SDHCI_INT_TIMEOUT) 3383 *cmd_error = -ETIMEDOUT; 3384 else 3385 *cmd_error = 0; 3386 3387 if (intmask & (SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC)) 3388 *data_error = -EILSEQ; 3389 else if (intmask & SDHCI_INT_DATA_TIMEOUT) 3390 *data_error = -ETIMEDOUT; 3391 else if (intmask & SDHCI_INT_ADMA_ERROR) 3392 *data_error = -EIO; 3393 else 3394 *data_error = 0; 3395 3396 /* Clear selected interrupts. */ 3397 mask = intmask & host->cqe_ier; 3398 sdhci_writel(host, mask, SDHCI_INT_STATUS); 3399 3400 if (intmask & SDHCI_INT_BUS_POWER) 3401 pr_err("%s: Card is consuming too much power!\n", 3402 mmc_hostname(host->mmc)); 3403 3404 intmask &= ~(host->cqe_ier | SDHCI_INT_ERROR); 3405 if (intmask) { 3406 sdhci_writel(host, intmask, SDHCI_INT_STATUS); 3407 pr_err("%s: CQE: Unexpected interrupt 0x%08x.\n", 3408 mmc_hostname(host->mmc), intmask); 3409 sdhci_dumpregs(host); 3410 } 3411 3412 return true; 3413 } 3414 EXPORT_SYMBOL_GPL(sdhci_cqe_irq); 3415 3416 /*****************************************************************************\ 3417 * * 3418 * Device allocation/registration * 3419 * * 3420 \*****************************************************************************/ 3421 3422 struct sdhci_host *sdhci_alloc_host(struct device *dev, 3423 size_t priv_size) 3424 { 3425 struct mmc_host *mmc; 3426 struct sdhci_host *host; 3427 3428 WARN_ON(dev == NULL); 3429 3430 mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev); 3431 if (!mmc) 3432 return ERR_PTR(-ENOMEM); 3433 3434 host = mmc_priv(mmc); 3435 host->mmc = mmc; 3436 host->mmc_host_ops = sdhci_ops; 3437 mmc->ops = &host->mmc_host_ops; 3438 3439 host->flags = SDHCI_SIGNALING_330; 3440 3441 host->cqe_ier = SDHCI_CQE_INT_MASK; 3442 host->cqe_err_ier = SDHCI_CQE_INT_ERR_MASK; 3443 3444 host->tuning_delay = -1; 3445 3446 host->sdma_boundary = SDHCI_DEFAULT_BOUNDARY_ARG; 3447 3448 /* 3449 * The DMA table descriptor count is calculated as the maximum 3450 * number of segments times 2, to allow for an alignment 3451 * descriptor for each segment, plus 1 for a nop end descriptor. 3452 */ 3453 host->adma_table_cnt = SDHCI_MAX_SEGS * 2 + 1; 3454 3455 return host; 3456 } 3457 3458 EXPORT_SYMBOL_GPL(sdhci_alloc_host); 3459 3460 static int sdhci_set_dma_mask(struct sdhci_host *host) 3461 { 3462 struct mmc_host *mmc = host->mmc; 3463 struct device *dev = mmc_dev(mmc); 3464 int ret = -EINVAL; 3465 3466 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_64_BIT_DMA) 3467 host->flags &= ~SDHCI_USE_64_BIT_DMA; 3468 3469 /* Try 64-bit mask if hardware is capable of it */ 3470 if (host->flags & SDHCI_USE_64_BIT_DMA) { 3471 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3472 if (ret) { 3473 pr_warn("%s: Failed to set 64-bit DMA mask.\n", 3474 mmc_hostname(mmc)); 3475 host->flags &= ~SDHCI_USE_64_BIT_DMA; 3476 } 3477 } 3478 3479 /* 32-bit mask as default & fallback */ 3480 if (ret) { 3481 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3482 if (ret) 3483 pr_warn("%s: Failed to set 32-bit DMA mask.\n", 3484 mmc_hostname(mmc)); 3485 } 3486 3487 return ret; 3488 } 3489 3490 void __sdhci_read_caps(struct sdhci_host *host, u16 *ver, u32 *caps, u32 *caps1) 3491 { 3492 u16 v; 3493 u64 dt_caps_mask = 0; 3494 u64 dt_caps = 0; 3495 3496 if (host->read_caps) 3497 return; 3498 3499 host->read_caps = true; 3500 3501 if (debug_quirks) 3502 host->quirks = debug_quirks; 3503 3504 if (debug_quirks2) 3505 host->quirks2 = debug_quirks2; 3506 3507 sdhci_do_reset(host, SDHCI_RESET_ALL); 3508 3509 if (host->v4_mode) 3510 sdhci_do_enable_v4_mode(host); 3511 3512 of_property_read_u64(mmc_dev(host->mmc)->of_node, 3513 "sdhci-caps-mask", &dt_caps_mask); 3514 of_property_read_u64(mmc_dev(host->mmc)->of_node, 3515 "sdhci-caps", &dt_caps); 3516 3517 v = ver ? *ver : sdhci_readw(host, SDHCI_HOST_VERSION); 3518 host->version = (v & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT; 3519 3520 if (host->quirks & SDHCI_QUIRK_MISSING_CAPS) 3521 return; 3522 3523 if (caps) { 3524 host->caps = *caps; 3525 } else { 3526 host->caps = sdhci_readl(host, SDHCI_CAPABILITIES); 3527 host->caps &= ~lower_32_bits(dt_caps_mask); 3528 host->caps |= lower_32_bits(dt_caps); 3529 } 3530 3531 if (host->version < SDHCI_SPEC_300) 3532 return; 3533 3534 if (caps1) { 3535 host->caps1 = *caps1; 3536 } else { 3537 host->caps1 = sdhci_readl(host, SDHCI_CAPABILITIES_1); 3538 host->caps1 &= ~upper_32_bits(dt_caps_mask); 3539 host->caps1 |= upper_32_bits(dt_caps); 3540 } 3541 } 3542 EXPORT_SYMBOL_GPL(__sdhci_read_caps); 3543 3544 static int sdhci_allocate_bounce_buffer(struct sdhci_host *host) 3545 { 3546 struct mmc_host *mmc = host->mmc; 3547 unsigned int max_blocks; 3548 unsigned int bounce_size; 3549 int ret; 3550 3551 /* 3552 * Cap the bounce buffer at 64KB. Using a bigger bounce buffer 3553 * has diminishing returns, this is probably because SD/MMC 3554 * cards are usually optimized to handle this size of requests. 3555 */ 3556 bounce_size = SZ_64K; 3557 /* 3558 * Adjust downwards to maximum request size if this is less 3559 * than our segment size, else hammer down the maximum 3560 * request size to the maximum buffer size. 3561 */ 3562 if (mmc->max_req_size < bounce_size) 3563 bounce_size = mmc->max_req_size; 3564 max_blocks = bounce_size / 512; 3565 3566 /* 3567 * When we just support one segment, we can get significant 3568 * speedups by the help of a bounce buffer to group scattered 3569 * reads/writes together. 3570 */ 3571 host->bounce_buffer = devm_kmalloc(mmc->parent, 3572 bounce_size, 3573 GFP_KERNEL); 3574 if (!host->bounce_buffer) { 3575 pr_err("%s: failed to allocate %u bytes for bounce buffer, falling back to single segments\n", 3576 mmc_hostname(mmc), 3577 bounce_size); 3578 /* 3579 * Exiting with zero here makes sure we proceed with 3580 * mmc->max_segs == 1. 3581 */ 3582 return 0; 3583 } 3584 3585 host->bounce_addr = dma_map_single(mmc->parent, 3586 host->bounce_buffer, 3587 bounce_size, 3588 DMA_BIDIRECTIONAL); 3589 ret = dma_mapping_error(mmc->parent, host->bounce_addr); 3590 if (ret) 3591 /* Again fall back to max_segs == 1 */ 3592 return 0; 3593 host->bounce_buffer_size = bounce_size; 3594 3595 /* Lie about this since we're bouncing */ 3596 mmc->max_segs = max_blocks; 3597 mmc->max_seg_size = bounce_size; 3598 mmc->max_req_size = bounce_size; 3599 3600 pr_info("%s bounce up to %u segments into one, max segment size %u bytes\n", 3601 mmc_hostname(mmc), max_blocks, bounce_size); 3602 3603 return 0; 3604 } 3605 3606 static inline bool sdhci_can_64bit_dma(struct sdhci_host *host) 3607 { 3608 /* 3609 * According to SD Host Controller spec v4.10, bit[27] added from 3610 * version 4.10 in Capabilities Register is used as 64-bit System 3611 * Address support for V4 mode. 3612 */ 3613 if (host->version >= SDHCI_SPEC_410 && host->v4_mode) 3614 return host->caps & SDHCI_CAN_64BIT_V4; 3615 3616 return host->caps & SDHCI_CAN_64BIT; 3617 } 3618 3619 int sdhci_setup_host(struct sdhci_host *host) 3620 { 3621 struct mmc_host *mmc; 3622 u32 max_current_caps; 3623 unsigned int ocr_avail; 3624 unsigned int override_timeout_clk; 3625 u32 max_clk; 3626 int ret; 3627 3628 WARN_ON(host == NULL); 3629 if (host == NULL) 3630 return -EINVAL; 3631 3632 mmc = host->mmc; 3633 3634 /* 3635 * If there are external regulators, get them. Note this must be done 3636 * early before resetting the host and reading the capabilities so that 3637 * the host can take the appropriate action if regulators are not 3638 * available. 3639 */ 3640 ret = mmc_regulator_get_supply(mmc); 3641 if (ret) 3642 return ret; 3643 3644 DBG("Version: 0x%08x | Present: 0x%08x\n", 3645 sdhci_readw(host, SDHCI_HOST_VERSION), 3646 sdhci_readl(host, SDHCI_PRESENT_STATE)); 3647 DBG("Caps: 0x%08x | Caps_1: 0x%08x\n", 3648 sdhci_readl(host, SDHCI_CAPABILITIES), 3649 sdhci_readl(host, SDHCI_CAPABILITIES_1)); 3650 3651 sdhci_read_caps(host); 3652 3653 override_timeout_clk = host->timeout_clk; 3654 3655 if (host->version > SDHCI_SPEC_420) { 3656 pr_err("%s: Unknown controller version (%d). You may experience problems.\n", 3657 mmc_hostname(mmc), host->version); 3658 } 3659 3660 if (host->quirks & SDHCI_QUIRK_FORCE_DMA) 3661 host->flags |= SDHCI_USE_SDMA; 3662 else if (!(host->caps & SDHCI_CAN_DO_SDMA)) 3663 DBG("Controller doesn't have SDMA capability\n"); 3664 else 3665 host->flags |= SDHCI_USE_SDMA; 3666 3667 if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) && 3668 (host->flags & SDHCI_USE_SDMA)) { 3669 DBG("Disabling DMA as it is marked broken\n"); 3670 host->flags &= ~SDHCI_USE_SDMA; 3671 } 3672 3673 if ((host->version >= SDHCI_SPEC_200) && 3674 (host->caps & SDHCI_CAN_DO_ADMA2)) 3675 host->flags |= SDHCI_USE_ADMA; 3676 3677 if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) && 3678 (host->flags & SDHCI_USE_ADMA)) { 3679 DBG("Disabling ADMA as it is marked broken\n"); 3680 host->flags &= ~SDHCI_USE_ADMA; 3681 } 3682 3683 /* 3684 * It is assumed that a 64-bit capable device has set a 64-bit DMA mask 3685 * and *must* do 64-bit DMA. A driver has the opportunity to change 3686 * that during the first call to ->enable_dma(). Similarly 3687 * SDHCI_QUIRK2_BROKEN_64_BIT_DMA must be left to the drivers to 3688 * implement. 3689 */ 3690 if (sdhci_can_64bit_dma(host)) 3691 host->flags |= SDHCI_USE_64_BIT_DMA; 3692 3693 if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { 3694 ret = sdhci_set_dma_mask(host); 3695 3696 if (!ret && host->ops->enable_dma) 3697 ret = host->ops->enable_dma(host); 3698 3699 if (ret) { 3700 pr_warn("%s: No suitable DMA available - falling back to PIO\n", 3701 mmc_hostname(mmc)); 3702 host->flags &= ~(SDHCI_USE_SDMA | SDHCI_USE_ADMA); 3703 3704 ret = 0; 3705 } 3706 } 3707 3708 /* SDMA does not support 64-bit DMA if v4 mode not set */ 3709 if ((host->flags & SDHCI_USE_64_BIT_DMA) && !host->v4_mode) 3710 host->flags &= ~SDHCI_USE_SDMA; 3711 3712 if (host->flags & SDHCI_USE_ADMA) { 3713 dma_addr_t dma; 3714 void *buf; 3715 3716 if (host->flags & SDHCI_USE_64_BIT_DMA) { 3717 host->adma_table_sz = host->adma_table_cnt * 3718 SDHCI_ADMA2_64_DESC_SZ(host); 3719 host->desc_sz = SDHCI_ADMA2_64_DESC_SZ(host); 3720 } else { 3721 host->adma_table_sz = host->adma_table_cnt * 3722 SDHCI_ADMA2_32_DESC_SZ; 3723 host->desc_sz = SDHCI_ADMA2_32_DESC_SZ; 3724 } 3725 3726 host->align_buffer_sz = SDHCI_MAX_SEGS * SDHCI_ADMA2_ALIGN; 3727 /* 3728 * Use zalloc to zero the reserved high 32-bits of 128-bit 3729 * descriptors so that they never need to be written. 3730 */ 3731 buf = dma_zalloc_coherent(mmc_dev(mmc), host->align_buffer_sz + 3732 host->adma_table_sz, &dma, GFP_KERNEL); 3733 if (!buf) { 3734 pr_warn("%s: Unable to allocate ADMA buffers - falling back to standard DMA\n", 3735 mmc_hostname(mmc)); 3736 host->flags &= ~SDHCI_USE_ADMA; 3737 } else if ((dma + host->align_buffer_sz) & 3738 (SDHCI_ADMA2_DESC_ALIGN - 1)) { 3739 pr_warn("%s: unable to allocate aligned ADMA descriptor\n", 3740 mmc_hostname(mmc)); 3741 host->flags &= ~SDHCI_USE_ADMA; 3742 dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + 3743 host->adma_table_sz, buf, dma); 3744 } else { 3745 host->align_buffer = buf; 3746 host->align_addr = dma; 3747 3748 host->adma_table = buf + host->align_buffer_sz; 3749 host->adma_addr = dma + host->align_buffer_sz; 3750 } 3751 } 3752 3753 /* 3754 * If we use DMA, then it's up to the caller to set the DMA 3755 * mask, but PIO does not need the hw shim so we set a new 3756 * mask here in that case. 3757 */ 3758 if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) { 3759 host->dma_mask = DMA_BIT_MASK(64); 3760 mmc_dev(mmc)->dma_mask = &host->dma_mask; 3761 } 3762 3763 if (host->version >= SDHCI_SPEC_300) 3764 host->max_clk = (host->caps & SDHCI_CLOCK_V3_BASE_MASK) 3765 >> SDHCI_CLOCK_BASE_SHIFT; 3766 else 3767 host->max_clk = (host->caps & SDHCI_CLOCK_BASE_MASK) 3768 >> SDHCI_CLOCK_BASE_SHIFT; 3769 3770 host->max_clk *= 1000000; 3771 if (host->max_clk == 0 || host->quirks & 3772 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) { 3773 if (!host->ops->get_max_clock) { 3774 pr_err("%s: Hardware doesn't specify base clock frequency.\n", 3775 mmc_hostname(mmc)); 3776 ret = -ENODEV; 3777 goto undma; 3778 } 3779 host->max_clk = host->ops->get_max_clock(host); 3780 } 3781 3782 /* 3783 * In case of Host Controller v3.00, find out whether clock 3784 * multiplier is supported. 3785 */ 3786 host->clk_mul = (host->caps1 & SDHCI_CLOCK_MUL_MASK) >> 3787 SDHCI_CLOCK_MUL_SHIFT; 3788 3789 /* 3790 * In case the value in Clock Multiplier is 0, then programmable 3791 * clock mode is not supported, otherwise the actual clock 3792 * multiplier is one more than the value of Clock Multiplier 3793 * in the Capabilities Register. 3794 */ 3795 if (host->clk_mul) 3796 host->clk_mul += 1; 3797 3798 /* 3799 * Set host parameters. 3800 */ 3801 max_clk = host->max_clk; 3802 3803 if (host->ops->get_min_clock) 3804 mmc->f_min = host->ops->get_min_clock(host); 3805 else if (host->version >= SDHCI_SPEC_300) { 3806 if (host->clk_mul) { 3807 mmc->f_min = (host->max_clk * host->clk_mul) / 1024; 3808 max_clk = host->max_clk * host->clk_mul; 3809 } else 3810 mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300; 3811 } else 3812 mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200; 3813 3814 if (!mmc->f_max || mmc->f_max > max_clk) 3815 mmc->f_max = max_clk; 3816 3817 if (!(host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) { 3818 host->timeout_clk = (host->caps & SDHCI_TIMEOUT_CLK_MASK) >> 3819 SDHCI_TIMEOUT_CLK_SHIFT; 3820 3821 if (host->caps & SDHCI_TIMEOUT_CLK_UNIT) 3822 host->timeout_clk *= 1000; 3823 3824 if (host->timeout_clk == 0) { 3825 if (!host->ops->get_timeout_clock) { 3826 pr_err("%s: Hardware doesn't specify timeout clock frequency.\n", 3827 mmc_hostname(mmc)); 3828 ret = -ENODEV; 3829 goto undma; 3830 } 3831 3832 host->timeout_clk = 3833 DIV_ROUND_UP(host->ops->get_timeout_clock(host), 3834 1000); 3835 } 3836 3837 if (override_timeout_clk) 3838 host->timeout_clk = override_timeout_clk; 3839 3840 mmc->max_busy_timeout = host->ops->get_max_timeout_count ? 3841 host->ops->get_max_timeout_count(host) : 1 << 27; 3842 mmc->max_busy_timeout /= host->timeout_clk; 3843 } 3844 3845 if (host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT && 3846 !host->ops->get_max_timeout_count) 3847 mmc->max_busy_timeout = 0; 3848 3849 mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_ERASE | MMC_CAP_CMD23; 3850 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; 3851 3852 if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12) 3853 host->flags |= SDHCI_AUTO_CMD12; 3854 3855 /* 3856 * For v3 mode, Auto-CMD23 stuff only works in ADMA or PIO. 3857 * For v4 mode, SDMA may use Auto-CMD23 as well. 3858 */ 3859 if ((host->version >= SDHCI_SPEC_300) && 3860 ((host->flags & SDHCI_USE_ADMA) || 3861 !(host->flags & SDHCI_USE_SDMA) || host->v4_mode) && 3862 !(host->quirks2 & SDHCI_QUIRK2_ACMD23_BROKEN)) { 3863 host->flags |= SDHCI_AUTO_CMD23; 3864 DBG("Auto-CMD23 available\n"); 3865 } else { 3866 DBG("Auto-CMD23 unavailable\n"); 3867 } 3868 3869 /* 3870 * A controller may support 8-bit width, but the board itself 3871 * might not have the pins brought out. Boards that support 3872 * 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in 3873 * their platform code before calling sdhci_add_host(), and we 3874 * won't assume 8-bit width for hosts without that CAP. 3875 */ 3876 if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA)) 3877 mmc->caps |= MMC_CAP_4_BIT_DATA; 3878 3879 if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23) 3880 mmc->caps &= ~MMC_CAP_CMD23; 3881 3882 if (host->caps & SDHCI_CAN_DO_HISPD) 3883 mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED; 3884 3885 if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) && 3886 mmc_card_is_removable(mmc) && 3887 mmc_gpio_get_cd(host->mmc) < 0) 3888 mmc->caps |= MMC_CAP_NEEDS_POLL; 3889 3890 if (!IS_ERR(mmc->supply.vqmmc)) { 3891 ret = regulator_enable(mmc->supply.vqmmc); 3892 3893 /* If vqmmc provides no 1.8V signalling, then there's no UHS */ 3894 if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 1700000, 3895 1950000)) 3896 host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | 3897 SDHCI_SUPPORT_SDR50 | 3898 SDHCI_SUPPORT_DDR50); 3899 3900 /* In eMMC case vqmmc might be a fixed 1.8V regulator */ 3901 if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 2700000, 3902 3600000)) 3903 host->flags &= ~SDHCI_SIGNALING_330; 3904 3905 if (ret) { 3906 pr_warn("%s: Failed to enable vqmmc regulator: %d\n", 3907 mmc_hostname(mmc), ret); 3908 mmc->supply.vqmmc = ERR_PTR(-EINVAL); 3909 } 3910 } 3911 3912 if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V) { 3913 host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | 3914 SDHCI_SUPPORT_DDR50); 3915 /* 3916 * The SDHCI controller in a SoC might support HS200/HS400 3917 * (indicated using mmc-hs200-1_8v/mmc-hs400-1_8v dt property), 3918 * but if the board is modeled such that the IO lines are not 3919 * connected to 1.8v then HS200/HS400 cannot be supported. 3920 * Disable HS200/HS400 if the board does not have 1.8v connected 3921 * to the IO lines. (Applicable for other modes in 1.8v) 3922 */ 3923 mmc->caps2 &= ~(MMC_CAP2_HSX00_1_8V | MMC_CAP2_HS400_ES); 3924 mmc->caps &= ~(MMC_CAP_1_8V_DDR | MMC_CAP_UHS); 3925 } 3926 3927 /* Any UHS-I mode in caps implies SDR12 and SDR25 support. */ 3928 if (host->caps1 & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | 3929 SDHCI_SUPPORT_DDR50)) 3930 mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; 3931 3932 /* SDR104 supports also implies SDR50 support */ 3933 if (host->caps1 & SDHCI_SUPPORT_SDR104) { 3934 mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50; 3935 /* SD3.0: SDR104 is supported so (for eMMC) the caps2 3936 * field can be promoted to support HS200. 3937 */ 3938 if (!(host->quirks2 & SDHCI_QUIRK2_BROKEN_HS200)) 3939 mmc->caps2 |= MMC_CAP2_HS200; 3940 } else if (host->caps1 & SDHCI_SUPPORT_SDR50) { 3941 mmc->caps |= MMC_CAP_UHS_SDR50; 3942 } 3943 3944 if (host->quirks2 & SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 && 3945 (host->caps1 & SDHCI_SUPPORT_HS400)) 3946 mmc->caps2 |= MMC_CAP2_HS400; 3947 3948 if ((mmc->caps2 & MMC_CAP2_HSX00_1_2V) && 3949 (IS_ERR(mmc->supply.vqmmc) || 3950 !regulator_is_supported_voltage(mmc->supply.vqmmc, 1100000, 3951 1300000))) 3952 mmc->caps2 &= ~MMC_CAP2_HSX00_1_2V; 3953 3954 if ((host->caps1 & SDHCI_SUPPORT_DDR50) && 3955 !(host->quirks2 & SDHCI_QUIRK2_BROKEN_DDR50)) 3956 mmc->caps |= MMC_CAP_UHS_DDR50; 3957 3958 /* Does the host need tuning for SDR50? */ 3959 if (host->caps1 & SDHCI_USE_SDR50_TUNING) 3960 host->flags |= SDHCI_SDR50_NEEDS_TUNING; 3961 3962 /* Driver Type(s) (A, C, D) supported by the host */ 3963 if (host->caps1 & SDHCI_DRIVER_TYPE_A) 3964 mmc->caps |= MMC_CAP_DRIVER_TYPE_A; 3965 if (host->caps1 & SDHCI_DRIVER_TYPE_C) 3966 mmc->caps |= MMC_CAP_DRIVER_TYPE_C; 3967 if (host->caps1 & SDHCI_DRIVER_TYPE_D) 3968 mmc->caps |= MMC_CAP_DRIVER_TYPE_D; 3969 3970 /* Initial value for re-tuning timer count */ 3971 host->tuning_count = (host->caps1 & SDHCI_RETUNING_TIMER_COUNT_MASK) >> 3972 SDHCI_RETUNING_TIMER_COUNT_SHIFT; 3973 3974 /* 3975 * In case Re-tuning Timer is not disabled, the actual value of 3976 * re-tuning timer will be 2 ^ (n - 1). 3977 */ 3978 if (host->tuning_count) 3979 host->tuning_count = 1 << (host->tuning_count - 1); 3980 3981 /* Re-tuning mode supported by the Host Controller */ 3982 host->tuning_mode = (host->caps1 & SDHCI_RETUNING_MODE_MASK) >> 3983 SDHCI_RETUNING_MODE_SHIFT; 3984 3985 ocr_avail = 0; 3986 3987 /* 3988 * According to SD Host Controller spec v3.00, if the Host System 3989 * can afford more than 150mA, Host Driver should set XPC to 1. Also 3990 * the value is meaningful only if Voltage Support in the Capabilities 3991 * register is set. The actual current value is 4 times the register 3992 * value. 3993 */ 3994 max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT); 3995 if (!max_current_caps && !IS_ERR(mmc->supply.vmmc)) { 3996 int curr = regulator_get_current_limit(mmc->supply.vmmc); 3997 if (curr > 0) { 3998 3999 /* convert to SDHCI_MAX_CURRENT format */ 4000 curr = curr/1000; /* convert to mA */ 4001 curr = curr/SDHCI_MAX_CURRENT_MULTIPLIER; 4002 4003 curr = min_t(u32, curr, SDHCI_MAX_CURRENT_LIMIT); 4004 max_current_caps = 4005 (curr << SDHCI_MAX_CURRENT_330_SHIFT) | 4006 (curr << SDHCI_MAX_CURRENT_300_SHIFT) | 4007 (curr << SDHCI_MAX_CURRENT_180_SHIFT); 4008 } 4009 } 4010 4011 if (host->caps & SDHCI_CAN_VDD_330) { 4012 ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34; 4013 4014 mmc->max_current_330 = ((max_current_caps & 4015 SDHCI_MAX_CURRENT_330_MASK) >> 4016 SDHCI_MAX_CURRENT_330_SHIFT) * 4017 SDHCI_MAX_CURRENT_MULTIPLIER; 4018 } 4019 if (host->caps & SDHCI_CAN_VDD_300) { 4020 ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31; 4021 4022 mmc->max_current_300 = ((max_current_caps & 4023 SDHCI_MAX_CURRENT_300_MASK) >> 4024 SDHCI_MAX_CURRENT_300_SHIFT) * 4025 SDHCI_MAX_CURRENT_MULTIPLIER; 4026 } 4027 if (host->caps & SDHCI_CAN_VDD_180) { 4028 ocr_avail |= MMC_VDD_165_195; 4029 4030 mmc->max_current_180 = ((max_current_caps & 4031 SDHCI_MAX_CURRENT_180_MASK) >> 4032 SDHCI_MAX_CURRENT_180_SHIFT) * 4033 SDHCI_MAX_CURRENT_MULTIPLIER; 4034 } 4035 4036 /* If OCR set by host, use it instead. */ 4037 if (host->ocr_mask) 4038 ocr_avail = host->ocr_mask; 4039 4040 /* If OCR set by external regulators, give it highest prio. */ 4041 if (mmc->ocr_avail) 4042 ocr_avail = mmc->ocr_avail; 4043 4044 mmc->ocr_avail = ocr_avail; 4045 mmc->ocr_avail_sdio = ocr_avail; 4046 if (host->ocr_avail_sdio) 4047 mmc->ocr_avail_sdio &= host->ocr_avail_sdio; 4048 mmc->ocr_avail_sd = ocr_avail; 4049 if (host->ocr_avail_sd) 4050 mmc->ocr_avail_sd &= host->ocr_avail_sd; 4051 else /* normal SD controllers don't support 1.8V */ 4052 mmc->ocr_avail_sd &= ~MMC_VDD_165_195; 4053 mmc->ocr_avail_mmc = ocr_avail; 4054 if (host->ocr_avail_mmc) 4055 mmc->ocr_avail_mmc &= host->ocr_avail_mmc; 4056 4057 if (mmc->ocr_avail == 0) { 4058 pr_err("%s: Hardware doesn't report any support voltages.\n", 4059 mmc_hostname(mmc)); 4060 ret = -ENODEV; 4061 goto unreg; 4062 } 4063 4064 if ((mmc->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 4065 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | 4066 MMC_CAP_UHS_DDR50 | MMC_CAP_1_8V_DDR)) || 4067 (mmc->caps2 & (MMC_CAP2_HS200_1_8V_SDR | MMC_CAP2_HS400_1_8V))) 4068 host->flags |= SDHCI_SIGNALING_180; 4069 4070 if (mmc->caps2 & MMC_CAP2_HSX00_1_2V) 4071 host->flags |= SDHCI_SIGNALING_120; 4072 4073 spin_lock_init(&host->lock); 4074 4075 /* 4076 * Maximum number of sectors in one transfer. Limited by SDMA boundary 4077 * size (512KiB). Note some tuning modes impose a 4MiB limit, but this 4078 * is less anyway. 4079 */ 4080 mmc->max_req_size = 524288; 4081 4082 /* 4083 * Maximum number of segments. Depends on if the hardware 4084 * can do scatter/gather or not. 4085 */ 4086 if (host->flags & SDHCI_USE_ADMA) { 4087 mmc->max_segs = SDHCI_MAX_SEGS; 4088 } else if (host->flags & SDHCI_USE_SDMA) { 4089 mmc->max_segs = 1; 4090 if (swiotlb_max_segment()) { 4091 unsigned int max_req_size = (1 << IO_TLB_SHIFT) * 4092 IO_TLB_SEGSIZE; 4093 mmc->max_req_size = min(mmc->max_req_size, 4094 max_req_size); 4095 } 4096 } else { /* PIO */ 4097 mmc->max_segs = SDHCI_MAX_SEGS; 4098 } 4099 4100 /* 4101 * Maximum segment size. Could be one segment with the maximum number 4102 * of bytes. When doing hardware scatter/gather, each entry cannot 4103 * be larger than 64 KiB though. 4104 */ 4105 if (host->flags & SDHCI_USE_ADMA) { 4106 if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC) 4107 mmc->max_seg_size = 65535; 4108 else 4109 mmc->max_seg_size = 65536; 4110 } else { 4111 mmc->max_seg_size = mmc->max_req_size; 4112 } 4113 4114 /* 4115 * Maximum block size. This varies from controller to controller and 4116 * is specified in the capabilities register. 4117 */ 4118 if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) { 4119 mmc->max_blk_size = 2; 4120 } else { 4121 mmc->max_blk_size = (host->caps & SDHCI_MAX_BLOCK_MASK) >> 4122 SDHCI_MAX_BLOCK_SHIFT; 4123 if (mmc->max_blk_size >= 3) { 4124 pr_warn("%s: Invalid maximum block size, assuming 512 bytes\n", 4125 mmc_hostname(mmc)); 4126 mmc->max_blk_size = 0; 4127 } 4128 } 4129 4130 mmc->max_blk_size = 512 << mmc->max_blk_size; 4131 4132 /* 4133 * Maximum block count. 4134 */ 4135 mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535; 4136 4137 if (mmc->max_segs == 1) { 4138 /* This may alter mmc->*_blk_* parameters */ 4139 ret = sdhci_allocate_bounce_buffer(host); 4140 if (ret) 4141 return ret; 4142 } 4143 4144 return 0; 4145 4146 unreg: 4147 if (!IS_ERR(mmc->supply.vqmmc)) 4148 regulator_disable(mmc->supply.vqmmc); 4149 undma: 4150 if (host->align_buffer) 4151 dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + 4152 host->adma_table_sz, host->align_buffer, 4153 host->align_addr); 4154 host->adma_table = NULL; 4155 host->align_buffer = NULL; 4156 4157 return ret; 4158 } 4159 EXPORT_SYMBOL_GPL(sdhci_setup_host); 4160 4161 void sdhci_cleanup_host(struct sdhci_host *host) 4162 { 4163 struct mmc_host *mmc = host->mmc; 4164 4165 if (!IS_ERR(mmc->supply.vqmmc)) 4166 regulator_disable(mmc->supply.vqmmc); 4167 4168 if (host->align_buffer) 4169 dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + 4170 host->adma_table_sz, host->align_buffer, 4171 host->align_addr); 4172 host->adma_table = NULL; 4173 host->align_buffer = NULL; 4174 } 4175 EXPORT_SYMBOL_GPL(sdhci_cleanup_host); 4176 4177 int __sdhci_add_host(struct sdhci_host *host) 4178 { 4179 struct mmc_host *mmc = host->mmc; 4180 int ret; 4181 4182 /* 4183 * Init tasklets. 4184 */ 4185 tasklet_init(&host->finish_tasklet, 4186 sdhci_tasklet_finish, (unsigned long)host); 4187 4188 timer_setup(&host->timer, sdhci_timeout_timer, 0); 4189 timer_setup(&host->data_timer, sdhci_timeout_data_timer, 0); 4190 4191 init_waitqueue_head(&host->buf_ready_int); 4192 4193 sdhci_init(host, 0); 4194 4195 ret = request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq, 4196 IRQF_SHARED, mmc_hostname(mmc), host); 4197 if (ret) { 4198 pr_err("%s: Failed to request IRQ %d: %d\n", 4199 mmc_hostname(mmc), host->irq, ret); 4200 goto untasklet; 4201 } 4202 4203 ret = sdhci_led_register(host); 4204 if (ret) { 4205 pr_err("%s: Failed to register LED device: %d\n", 4206 mmc_hostname(mmc), ret); 4207 goto unirq; 4208 } 4209 4210 mmiowb(); 4211 4212 ret = mmc_add_host(mmc); 4213 if (ret) 4214 goto unled; 4215 4216 pr_info("%s: SDHCI controller on %s [%s] using %s\n", 4217 mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)), 4218 (host->flags & SDHCI_USE_ADMA) ? 4219 (host->flags & SDHCI_USE_64_BIT_DMA) ? "ADMA 64-bit" : "ADMA" : 4220 (host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO"); 4221 4222 sdhci_enable_card_detection(host); 4223 4224 return 0; 4225 4226 unled: 4227 sdhci_led_unregister(host); 4228 unirq: 4229 sdhci_do_reset(host, SDHCI_RESET_ALL); 4230 sdhci_writel(host, 0, SDHCI_INT_ENABLE); 4231 sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); 4232 free_irq(host->irq, host); 4233 untasklet: 4234 tasklet_kill(&host->finish_tasklet); 4235 4236 return ret; 4237 } 4238 EXPORT_SYMBOL_GPL(__sdhci_add_host); 4239 4240 int sdhci_add_host(struct sdhci_host *host) 4241 { 4242 int ret; 4243 4244 ret = sdhci_setup_host(host); 4245 if (ret) 4246 return ret; 4247 4248 ret = __sdhci_add_host(host); 4249 if (ret) 4250 goto cleanup; 4251 4252 return 0; 4253 4254 cleanup: 4255 sdhci_cleanup_host(host); 4256 4257 return ret; 4258 } 4259 EXPORT_SYMBOL_GPL(sdhci_add_host); 4260 4261 void sdhci_remove_host(struct sdhci_host *host, int dead) 4262 { 4263 struct mmc_host *mmc = host->mmc; 4264 unsigned long flags; 4265 4266 if (dead) { 4267 spin_lock_irqsave(&host->lock, flags); 4268 4269 host->flags |= SDHCI_DEVICE_DEAD; 4270 4271 if (sdhci_has_requests(host)) { 4272 pr_err("%s: Controller removed during " 4273 " transfer!\n", mmc_hostname(mmc)); 4274 sdhci_error_out_mrqs(host, -ENOMEDIUM); 4275 } 4276 4277 spin_unlock_irqrestore(&host->lock, flags); 4278 } 4279 4280 sdhci_disable_card_detection(host); 4281 4282 mmc_remove_host(mmc); 4283 4284 sdhci_led_unregister(host); 4285 4286 if (!dead) 4287 sdhci_do_reset(host, SDHCI_RESET_ALL); 4288 4289 sdhci_writel(host, 0, SDHCI_INT_ENABLE); 4290 sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); 4291 free_irq(host->irq, host); 4292 4293 del_timer_sync(&host->timer); 4294 del_timer_sync(&host->data_timer); 4295 4296 tasklet_kill(&host->finish_tasklet); 4297 4298 if (!IS_ERR(mmc->supply.vqmmc)) 4299 regulator_disable(mmc->supply.vqmmc); 4300 4301 if (host->align_buffer) 4302 dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + 4303 host->adma_table_sz, host->align_buffer, 4304 host->align_addr); 4305 4306 host->adma_table = NULL; 4307 host->align_buffer = NULL; 4308 } 4309 4310 EXPORT_SYMBOL_GPL(sdhci_remove_host); 4311 4312 void sdhci_free_host(struct sdhci_host *host) 4313 { 4314 mmc_free_host(host->mmc); 4315 } 4316 4317 EXPORT_SYMBOL_GPL(sdhci_free_host); 4318 4319 /*****************************************************************************\ 4320 * * 4321 * Driver init/exit * 4322 * * 4323 \*****************************************************************************/ 4324 4325 static int __init sdhci_drv_init(void) 4326 { 4327 pr_info(DRIVER_NAME 4328 ": Secure Digital Host Controller Interface driver\n"); 4329 pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n"); 4330 4331 return 0; 4332 } 4333 4334 static void __exit sdhci_drv_exit(void) 4335 { 4336 } 4337 4338 module_init(sdhci_drv_init); 4339 module_exit(sdhci_drv_exit); 4340 4341 module_param(debug_quirks, uint, 0444); 4342 module_param(debug_quirks2, uint, 0444); 4343 4344 MODULE_AUTHOR("Pierre Ossman <pierre@ossman.eu>"); 4345 MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver"); 4346 MODULE_LICENSE("GPL"); 4347 4348 MODULE_PARM_DESC(debug_quirks, "Force certain quirks."); 4349 MODULE_PARM_DESC(debug_quirks2, "Force certain other quirks."); 4350