xref: /linux/drivers/mmc/host/sdhci-of-esdhc.c (revision 312b62b6610cabea4cb535fd4889c41e9a84afca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale eSDHC controller driver.
4  *
5  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6  * Copyright (c) 2009 MontaVista Software, Inc.
7  *
8  * Authors: Xiaobo Xie <X.Xie@freescale.com>
9  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11 
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
26 
27 #define VENDOR_V_22	0x12
28 #define VENDOR_V_23	0x13
29 
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
31 
32 struct esdhc_clk_fixup {
33 	const unsigned int sd_dflt_max_clk;
34 	const unsigned int max_clk[MMC_TIMING_NUM];
35 };
36 
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 	.sd_dflt_max_clk = 25000000,
39 	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 	.max_clk[MMC_TIMING_SD_HS] = 46500000,
41 };
42 
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 	.sd_dflt_max_clk = 25000000,
45 	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
47 };
48 
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 	.sd_dflt_max_clk = 25000000,
51 	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
53 };
54 
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 	.sd_dflt_max_clk = 20000000,
57 	.max_clk[MMC_TIMING_LEGACY] = 20000000,
58 	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 	.max_clk[MMC_TIMING_SD_HS] = 40000000,
60 };
61 
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
67 	{ .compatible = "fsl,mpc8379-esdhc" },
68 	{ .compatible = "fsl,mpc8536-esdhc" },
69 	{ .compatible = "fsl,esdhc" },
70 	{ }
71 };
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
73 
74 struct sdhci_esdhc {
75 	u8 vendor_ver;
76 	u8 spec_ver;
77 	bool quirk_incorrect_hostver;
78 	bool quirk_limited_clk_division;
79 	bool quirk_unreliable_pulse_detection;
80 	bool quirk_tuning_erratum_type1;
81 	bool quirk_tuning_erratum_type2;
82 	bool quirk_ignore_data_inhibit;
83 	bool quirk_delay_before_data_reset;
84 	bool in_sw_tuning;
85 	unsigned int peripheral_clock;
86 	const struct esdhc_clk_fixup *clk_fixup;
87 	u32 div_ratio;
88 };
89 
90 /**
91  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
92  *		       to make it compatible with SD spec.
93  *
94  * @host: pointer to sdhci_host
95  * @spec_reg: SD spec register address
96  * @value: 32bit eSDHC register value on spec_reg address
97  *
98  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
99  * registers are 32 bits. There are differences in register size, register
100  * address, register function, bit position and function between eSDHC spec
101  * and SD spec.
102  *
103  * Return a fixed up register value
104  */
105 static u32 esdhc_readl_fixup(struct sdhci_host *host,
106 				     int spec_reg, u32 value)
107 {
108 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
109 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
110 	u32 ret;
111 
112 	/*
113 	 * The bit of ADMA flag in eSDHC is not compatible with standard
114 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
115 	 * supported by eSDHC.
116 	 * And for many FSL eSDHC controller, the reset value of field
117 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
118 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
119 	 */
120 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
121 		if (esdhc->vendor_ver > VENDOR_V_22) {
122 			ret = value | SDHCI_CAN_DO_ADMA2;
123 			return ret;
124 		}
125 	}
126 	/*
127 	 * The DAT[3:0] line signal levels and the CMD line signal level are
128 	 * not compatible with standard SDHC register. The line signal levels
129 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
130 	 * bit 23. All other bits are the same as in the standard SDHC
131 	 * register.
132 	 */
133 	if (spec_reg == SDHCI_PRESENT_STATE) {
134 		ret = value & 0x000fffff;
135 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
136 		ret |= (value << 1) & SDHCI_CMD_LVL;
137 		return ret;
138 	}
139 
140 	/*
141 	 * DTS properties of mmc host are used to enable each speed mode
142 	 * according to soc and board capability. So clean up
143 	 * SDR50/SDR104/DDR50 support bits here.
144 	 */
145 	if (spec_reg == SDHCI_CAPABILITIES_1) {
146 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
147 				SDHCI_SUPPORT_DDR50);
148 		return ret;
149 	}
150 
151 	/*
152 	 * Some controllers have unreliable Data Line Active
153 	 * bit for commands with busy signal. This affects
154 	 * Command Inhibit (data) bit. Just ignore it since
155 	 * MMC core driver has already polled card status
156 	 * with CMD13 after any command with busy siganl.
157 	 */
158 	if ((spec_reg == SDHCI_PRESENT_STATE) &&
159 	(esdhc->quirk_ignore_data_inhibit == true)) {
160 		ret = value & ~SDHCI_DATA_INHIBIT;
161 		return ret;
162 	}
163 
164 	ret = value;
165 	return ret;
166 }
167 
168 static u16 esdhc_readw_fixup(struct sdhci_host *host,
169 				     int spec_reg, u32 value)
170 {
171 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
172 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
173 	u16 ret;
174 	int shift = (spec_reg & 0x2) * 8;
175 
176 	if (spec_reg == SDHCI_TRANSFER_MODE)
177 		return pltfm_host->xfer_mode_shadow;
178 
179 	if (spec_reg == SDHCI_HOST_VERSION)
180 		ret = value & 0xffff;
181 	else
182 		ret = (value >> shift) & 0xffff;
183 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
184 	 * vendor version and spec version information.
185 	 */
186 	if ((spec_reg == SDHCI_HOST_VERSION) &&
187 	    (esdhc->quirk_incorrect_hostver))
188 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
189 	return ret;
190 }
191 
192 static u8 esdhc_readb_fixup(struct sdhci_host *host,
193 				     int spec_reg, u32 value)
194 {
195 	u8 ret;
196 	u8 dma_bits;
197 	int shift = (spec_reg & 0x3) * 8;
198 
199 	ret = (value >> shift) & 0xff;
200 
201 	/*
202 	 * "DMA select" locates at offset 0x28 in SD specification, but on
203 	 * P5020 or P3041, it locates at 0x29.
204 	 */
205 	if (spec_reg == SDHCI_HOST_CONTROL) {
206 		/* DMA select is 22,23 bits in Protocol Control Register */
207 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
208 		/* fixup the result */
209 		ret &= ~SDHCI_CTRL_DMA_MASK;
210 		ret |= dma_bits;
211 	}
212 	return ret;
213 }
214 
215 /**
216  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
217  *			written into eSDHC register.
218  *
219  * @host: pointer to sdhci_host
220  * @spec_reg: SD spec register address
221  * @value: 8/16/32bit SD spec register value that would be written
222  * @old_value: 32bit eSDHC register value on spec_reg address
223  *
224  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
225  * registers are 32 bits. There are differences in register size, register
226  * address, register function, bit position and function between eSDHC spec
227  * and SD spec.
228  *
229  * Return a fixed up register value
230  */
231 static u32 esdhc_writel_fixup(struct sdhci_host *host,
232 				     int spec_reg, u32 value, u32 old_value)
233 {
234 	u32 ret;
235 
236 	/*
237 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
238 	 * when SYSCTL[RSTD] is set for some special operations.
239 	 * No any impact on other operation.
240 	 */
241 	if (spec_reg == SDHCI_INT_ENABLE)
242 		ret = value | SDHCI_INT_BLK_GAP;
243 	else
244 		ret = value;
245 
246 	return ret;
247 }
248 
249 static u32 esdhc_writew_fixup(struct sdhci_host *host,
250 				     int spec_reg, u16 value, u32 old_value)
251 {
252 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
253 	int shift = (spec_reg & 0x2) * 8;
254 	u32 ret;
255 
256 	switch (spec_reg) {
257 	case SDHCI_TRANSFER_MODE:
258 		/*
259 		 * Postpone this write, we must do it together with a
260 		 * command write that is down below. Return old value.
261 		 */
262 		pltfm_host->xfer_mode_shadow = value;
263 		return old_value;
264 	case SDHCI_COMMAND:
265 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
266 		return ret;
267 	}
268 
269 	ret = old_value & (~(0xffff << shift));
270 	ret |= (value << shift);
271 
272 	if (spec_reg == SDHCI_BLOCK_SIZE) {
273 		/*
274 		 * Two last DMA bits are reserved, and first one is used for
275 		 * non-standard blksz of 4096 bytes that we don't support
276 		 * yet. So clear the DMA boundary bits.
277 		 */
278 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
279 	}
280 	return ret;
281 }
282 
283 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
284 				     int spec_reg, u8 value, u32 old_value)
285 {
286 	u32 ret;
287 	u32 dma_bits;
288 	u8 tmp;
289 	int shift = (spec_reg & 0x3) * 8;
290 
291 	/*
292 	 * eSDHC doesn't have a standard power control register, so we do
293 	 * nothing here to avoid incorrect operation.
294 	 */
295 	if (spec_reg == SDHCI_POWER_CONTROL)
296 		return old_value;
297 	/*
298 	 * "DMA select" location is offset 0x28 in SD specification, but on
299 	 * P5020 or P3041, it's located at 0x29.
300 	 */
301 	if (spec_reg == SDHCI_HOST_CONTROL) {
302 		/*
303 		 * If host control register is not standard, exit
304 		 * this function
305 		 */
306 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
307 			return old_value;
308 
309 		/* DMA select is 22,23 bits in Protocol Control Register */
310 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
311 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
312 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
313 		      (old_value & SDHCI_CTRL_DMA_MASK);
314 		ret = (ret & (~0xff)) | tmp;
315 
316 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
317 		ret &= ~ESDHC_HOST_CONTROL_RES;
318 		return ret;
319 	}
320 
321 	ret = (old_value & (~(0xff << shift))) | (value << shift);
322 	return ret;
323 }
324 
325 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
326 {
327 	u32 ret;
328 	u32 value;
329 
330 	if (reg == SDHCI_CAPABILITIES_1)
331 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
332 	else
333 		value = ioread32be(host->ioaddr + reg);
334 
335 	ret = esdhc_readl_fixup(host, reg, value);
336 
337 	return ret;
338 }
339 
340 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
341 {
342 	u32 ret;
343 	u32 value;
344 
345 	if (reg == SDHCI_CAPABILITIES_1)
346 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
347 	else
348 		value = ioread32(host->ioaddr + reg);
349 
350 	ret = esdhc_readl_fixup(host, reg, value);
351 
352 	return ret;
353 }
354 
355 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
356 {
357 	u16 ret;
358 	u32 value;
359 	int base = reg & ~0x3;
360 
361 	value = ioread32be(host->ioaddr + base);
362 	ret = esdhc_readw_fixup(host, reg, value);
363 	return ret;
364 }
365 
366 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
367 {
368 	u16 ret;
369 	u32 value;
370 	int base = reg & ~0x3;
371 
372 	value = ioread32(host->ioaddr + base);
373 	ret = esdhc_readw_fixup(host, reg, value);
374 	return ret;
375 }
376 
377 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
378 {
379 	u8 ret;
380 	u32 value;
381 	int base = reg & ~0x3;
382 
383 	value = ioread32be(host->ioaddr + base);
384 	ret = esdhc_readb_fixup(host, reg, value);
385 	return ret;
386 }
387 
388 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
389 {
390 	u8 ret;
391 	u32 value;
392 	int base = reg & ~0x3;
393 
394 	value = ioread32(host->ioaddr + base);
395 	ret = esdhc_readb_fixup(host, reg, value);
396 	return ret;
397 }
398 
399 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
400 {
401 	u32 value;
402 
403 	value = esdhc_writel_fixup(host, reg, val, 0);
404 	iowrite32be(value, host->ioaddr + reg);
405 }
406 
407 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
408 {
409 	u32 value;
410 
411 	value = esdhc_writel_fixup(host, reg, val, 0);
412 	iowrite32(value, host->ioaddr + reg);
413 }
414 
415 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
416 {
417 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
418 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
419 	int base = reg & ~0x3;
420 	u32 value;
421 	u32 ret;
422 
423 	value = ioread32be(host->ioaddr + base);
424 	ret = esdhc_writew_fixup(host, reg, val, value);
425 	if (reg != SDHCI_TRANSFER_MODE)
426 		iowrite32be(ret, host->ioaddr + base);
427 
428 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
429 	 * 1us later after ESDHC_EXTN is set.
430 	 */
431 	if (base == ESDHC_SYSTEM_CONTROL_2) {
432 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
433 		    esdhc->in_sw_tuning) {
434 			udelay(1);
435 			ret |= ESDHC_SMPCLKSEL;
436 			iowrite32be(ret, host->ioaddr + base);
437 		}
438 	}
439 }
440 
441 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
442 {
443 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
444 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
445 	int base = reg & ~0x3;
446 	u32 value;
447 	u32 ret;
448 
449 	value = ioread32(host->ioaddr + base);
450 	ret = esdhc_writew_fixup(host, reg, val, value);
451 	if (reg != SDHCI_TRANSFER_MODE)
452 		iowrite32(ret, host->ioaddr + base);
453 
454 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
455 	 * 1us later after ESDHC_EXTN is set.
456 	 */
457 	if (base == ESDHC_SYSTEM_CONTROL_2) {
458 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
459 		    esdhc->in_sw_tuning) {
460 			udelay(1);
461 			ret |= ESDHC_SMPCLKSEL;
462 			iowrite32(ret, host->ioaddr + base);
463 		}
464 	}
465 }
466 
467 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
468 {
469 	int base = reg & ~0x3;
470 	u32 value;
471 	u32 ret;
472 
473 	value = ioread32be(host->ioaddr + base);
474 	ret = esdhc_writeb_fixup(host, reg, val, value);
475 	iowrite32be(ret, host->ioaddr + base);
476 }
477 
478 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
479 {
480 	int base = reg & ~0x3;
481 	u32 value;
482 	u32 ret;
483 
484 	value = ioread32(host->ioaddr + base);
485 	ret = esdhc_writeb_fixup(host, reg, val, value);
486 	iowrite32(ret, host->ioaddr + base);
487 }
488 
489 /*
490  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
491  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
492  * and Block Gap Event(IRQSTAT[BGE]) are also set.
493  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
494  * and re-issue the entire read transaction from beginning.
495  */
496 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
497 {
498 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
499 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
500 	bool applicable;
501 	dma_addr_t dmastart;
502 	dma_addr_t dmanow;
503 
504 	applicable = (intmask & SDHCI_INT_DATA_END) &&
505 		     (intmask & SDHCI_INT_BLK_GAP) &&
506 		     (esdhc->vendor_ver == VENDOR_V_23);
507 	if (!applicable)
508 		return;
509 
510 	host->data->error = 0;
511 	dmastart = sg_dma_address(host->data->sg);
512 	dmanow = dmastart + host->data->bytes_xfered;
513 	/*
514 	 * Force update to the next DMA block boundary.
515 	 */
516 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
517 		SDHCI_DEFAULT_BOUNDARY_SIZE;
518 	host->data->bytes_xfered = dmanow - dmastart;
519 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
520 }
521 
522 static int esdhc_of_enable_dma(struct sdhci_host *host)
523 {
524 	u32 value;
525 	struct device *dev = mmc_dev(host->mmc);
526 
527 	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
528 	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
529 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
530 
531 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
532 
533 	if (of_dma_is_coherent(dev->of_node))
534 		value |= ESDHC_DMA_SNOOP;
535 	else
536 		value &= ~ESDHC_DMA_SNOOP;
537 
538 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
539 	return 0;
540 }
541 
542 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
543 {
544 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
545 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
546 
547 	if (esdhc->peripheral_clock)
548 		return esdhc->peripheral_clock;
549 	else
550 		return pltfm_host->clock;
551 }
552 
553 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
554 {
555 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
556 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
557 	unsigned int clock;
558 
559 	if (esdhc->peripheral_clock)
560 		clock = esdhc->peripheral_clock;
561 	else
562 		clock = pltfm_host->clock;
563 	return clock / 256 / 16;
564 }
565 
566 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
567 {
568 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
569 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
570 	ktime_t timeout;
571 	u32 val, clk_en;
572 
573 	clk_en = ESDHC_CLOCK_SDCLKEN;
574 
575 	/*
576 	 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
577 	 * is 2.2 or lower.
578 	 */
579 	if (esdhc->vendor_ver <= VENDOR_V_22)
580 		clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
581 			   ESDHC_CLOCK_PEREN);
582 
583 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
584 
585 	if (enable)
586 		val |= clk_en;
587 	else
588 		val &= ~clk_en;
589 
590 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
591 
592 	/*
593 	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
594 	 * wait clock stable bit which does not exist.
595 	 */
596 	timeout = ktime_add_ms(ktime_get(), 20);
597 	while (esdhc->vendor_ver > VENDOR_V_22) {
598 		bool timedout = ktime_after(ktime_get(), timeout);
599 
600 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
601 			break;
602 		if (timedout) {
603 			pr_err("%s: Internal clock never stabilised.\n",
604 				mmc_hostname(host->mmc));
605 			break;
606 		}
607 		usleep_range(10, 20);
608 	}
609 }
610 
611 static void esdhc_flush_async_fifo(struct sdhci_host *host)
612 {
613 	ktime_t timeout;
614 	u32 val;
615 
616 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
617 	val |= ESDHC_FLUSH_ASYNC_FIFO;
618 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
619 
620 	/* Wait max 20 ms */
621 	timeout = ktime_add_ms(ktime_get(), 20);
622 	while (1) {
623 		bool timedout = ktime_after(ktime_get(), timeout);
624 
625 		if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
626 		      ESDHC_FLUSH_ASYNC_FIFO))
627 			break;
628 		if (timedout) {
629 			pr_err("%s: flushing asynchronous FIFO timeout.\n",
630 				mmc_hostname(host->mmc));
631 			break;
632 		}
633 		usleep_range(10, 20);
634 	}
635 }
636 
637 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
638 {
639 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
640 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
641 	unsigned int pre_div = 1, div = 1;
642 	unsigned int clock_fixup = 0;
643 	ktime_t timeout;
644 	u32 temp;
645 
646 	if (clock == 0) {
647 		host->mmc->actual_clock = 0;
648 		esdhc_clock_enable(host, false);
649 		return;
650 	}
651 
652 	/* Start pre_div at 2 for vendor version < 2.3. */
653 	if (esdhc->vendor_ver < VENDOR_V_23)
654 		pre_div = 2;
655 
656 	/* Fix clock value. */
657 	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
658 	    esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
659 		clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
660 	else if (esdhc->clk_fixup)
661 		clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
662 
663 	if (clock_fixup == 0 || clock < clock_fixup)
664 		clock_fixup = clock;
665 
666 	/* Calculate pre_div and div. */
667 	while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
668 		pre_div *= 2;
669 
670 	while (host->max_clk / pre_div / div > clock_fixup && div < 16)
671 		div++;
672 
673 	esdhc->div_ratio = pre_div * div;
674 
675 	/* Limit clock division for HS400 200MHz clock for quirk. */
676 	if (esdhc->quirk_limited_clk_division &&
677 	    clock == MMC_HS200_MAX_DTR &&
678 	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
679 	     host->flags & SDHCI_HS400_TUNING)) {
680 		if (esdhc->div_ratio <= 4) {
681 			pre_div = 4;
682 			div = 1;
683 		} else if (esdhc->div_ratio <= 8) {
684 			pre_div = 4;
685 			div = 2;
686 		} else if (esdhc->div_ratio <= 12) {
687 			pre_div = 4;
688 			div = 3;
689 		} else {
690 			pr_warn("%s: using unsupported clock division.\n",
691 				mmc_hostname(host->mmc));
692 		}
693 		esdhc->div_ratio = pre_div * div;
694 	}
695 
696 	host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
697 
698 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
699 		clock, host->mmc->actual_clock);
700 
701 	/* Set clock division into register. */
702 	pre_div >>= 1;
703 	div--;
704 
705 	esdhc_clock_enable(host, false);
706 
707 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
708 	temp &= ~ESDHC_CLOCK_MASK;
709 	temp |= ((div << ESDHC_DIVIDER_SHIFT) |
710 		(pre_div << ESDHC_PREDIV_SHIFT));
711 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
712 
713 	/*
714 	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
715 	 * wait clock stable bit which does not exist.
716 	 */
717 	timeout = ktime_add_ms(ktime_get(), 20);
718 	while (esdhc->vendor_ver > VENDOR_V_22) {
719 		bool timedout = ktime_after(ktime_get(), timeout);
720 
721 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
722 			break;
723 		if (timedout) {
724 			pr_err("%s: Internal clock never stabilised.\n",
725 				mmc_hostname(host->mmc));
726 			break;
727 		}
728 		usleep_range(10, 20);
729 	}
730 
731 	/* Additional setting for HS400. */
732 	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
733 	    clock == MMC_HS200_MAX_DTR) {
734 		temp = sdhci_readl(host, ESDHC_TBCTL);
735 		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
736 		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
737 		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
738 		esdhc_clock_enable(host, true);
739 
740 		temp = sdhci_readl(host, ESDHC_DLLCFG0);
741 		temp |= ESDHC_DLL_ENABLE;
742 		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
743 			temp |= ESDHC_DLL_FREQ_SEL;
744 		sdhci_writel(host, temp, ESDHC_DLLCFG0);
745 		temp = sdhci_readl(host, ESDHC_TBCTL);
746 		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
747 
748 		esdhc_clock_enable(host, false);
749 		esdhc_flush_async_fifo(host);
750 	}
751 	esdhc_clock_enable(host, true);
752 }
753 
754 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
755 {
756 	u32 ctrl;
757 
758 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
759 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
760 	switch (width) {
761 	case MMC_BUS_WIDTH_8:
762 		ctrl |= ESDHC_CTRL_8BITBUS;
763 		break;
764 
765 	case MMC_BUS_WIDTH_4:
766 		ctrl |= ESDHC_CTRL_4BITBUS;
767 		break;
768 
769 	default:
770 		break;
771 	}
772 
773 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
774 }
775 
776 static void esdhc_reset(struct sdhci_host *host, u8 mask)
777 {
778 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
779 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
780 	u32 val, bus_width = 0;
781 
782 	/*
783 	 * Add delay to make sure all the DMA transfers are finished
784 	 * for quirk.
785 	 */
786 	if (esdhc->quirk_delay_before_data_reset &&
787 	    (mask & SDHCI_RESET_DATA) &&
788 	    (host->flags & SDHCI_REQ_USE_DMA))
789 		mdelay(5);
790 
791 	/*
792 	 * Save bus-width for eSDHC whose vendor version is 2.2
793 	 * or lower for data reset.
794 	 */
795 	if ((mask & SDHCI_RESET_DATA) &&
796 	    (esdhc->vendor_ver <= VENDOR_V_22)) {
797 		val = sdhci_readl(host, ESDHC_PROCTL);
798 		bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
799 	}
800 
801 	sdhci_reset(host, mask);
802 
803 	/*
804 	 * Restore bus-width setting and interrupt registers for eSDHC
805 	 * whose vendor version is 2.2 or lower for data reset.
806 	 */
807 	if ((mask & SDHCI_RESET_DATA) &&
808 	    (esdhc->vendor_ver <= VENDOR_V_22)) {
809 		val = sdhci_readl(host, ESDHC_PROCTL);
810 		val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
811 		val |= bus_width;
812 		sdhci_writel(host, val, ESDHC_PROCTL);
813 
814 		sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
815 		sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
816 	}
817 
818 	/*
819 	 * Some bits have to be cleaned manually for eSDHC whose spec
820 	 * version is higher than 3.0 for all reset.
821 	 */
822 	if ((mask & SDHCI_RESET_ALL) &&
823 	    (esdhc->spec_ver >= SDHCI_SPEC_300)) {
824 		val = sdhci_readl(host, ESDHC_TBCTL);
825 		val &= ~ESDHC_TB_EN;
826 		sdhci_writel(host, val, ESDHC_TBCTL);
827 
828 		/*
829 		 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
830 		 * 0 for quirk.
831 		 */
832 		if (esdhc->quirk_unreliable_pulse_detection) {
833 			val = sdhci_readl(host, ESDHC_DLLCFG1);
834 			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
835 			sdhci_writel(host, val, ESDHC_DLLCFG1);
836 		}
837 	}
838 }
839 
840 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
841  * configuration and status registers for the device. There is a
842  * SDHC IO VSEL control register on SCFG for some platforms. It's
843  * used to support SDHC IO voltage switching.
844  */
845 static const struct of_device_id scfg_device_ids[] = {
846 	{ .compatible = "fsl,t1040-scfg", },
847 	{ .compatible = "fsl,ls1012a-scfg", },
848 	{ .compatible = "fsl,ls1046a-scfg", },
849 	{}
850 };
851 
852 /* SDHC IO VSEL control register definition */
853 #define SCFG_SDHCIOVSELCR	0x408
854 #define SDHCIOVSELCR_TGLEN	0x80000000
855 #define SDHCIOVSELCR_VSELVAL	0x60000000
856 #define SDHCIOVSELCR_SDHC_VS	0x00000001
857 
858 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
859 				       struct mmc_ios *ios)
860 {
861 	struct sdhci_host *host = mmc_priv(mmc);
862 	struct device_node *scfg_node;
863 	void __iomem *scfg_base = NULL;
864 	u32 sdhciovselcr;
865 	u32 val;
866 
867 	/*
868 	 * Signal Voltage Switching is only applicable for Host Controllers
869 	 * v3.00 and above.
870 	 */
871 	if (host->version < SDHCI_SPEC_300)
872 		return 0;
873 
874 	val = sdhci_readl(host, ESDHC_PROCTL);
875 
876 	switch (ios->signal_voltage) {
877 	case MMC_SIGNAL_VOLTAGE_330:
878 		val &= ~ESDHC_VOLT_SEL;
879 		sdhci_writel(host, val, ESDHC_PROCTL);
880 		return 0;
881 	case MMC_SIGNAL_VOLTAGE_180:
882 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
883 		if (scfg_node)
884 			scfg_base = of_iomap(scfg_node, 0);
885 		if (scfg_base) {
886 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
887 				       SDHCIOVSELCR_VSELVAL;
888 			iowrite32be(sdhciovselcr,
889 				scfg_base + SCFG_SDHCIOVSELCR);
890 
891 			val |= ESDHC_VOLT_SEL;
892 			sdhci_writel(host, val, ESDHC_PROCTL);
893 			mdelay(5);
894 
895 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
896 				       SDHCIOVSELCR_SDHC_VS;
897 			iowrite32be(sdhciovselcr,
898 				scfg_base + SCFG_SDHCIOVSELCR);
899 			iounmap(scfg_base);
900 		} else {
901 			val |= ESDHC_VOLT_SEL;
902 			sdhci_writel(host, val, ESDHC_PROCTL);
903 		}
904 		return 0;
905 	default:
906 		return 0;
907 	}
908 }
909 
910 static struct soc_device_attribute soc_tuning_erratum_type1[] = {
911 	{ .family = "QorIQ T1023", },
912 	{ .family = "QorIQ T1040", },
913 	{ .family = "QorIQ T2080", },
914 	{ .family = "QorIQ LS1021A", },
915 	{ },
916 };
917 
918 static struct soc_device_attribute soc_tuning_erratum_type2[] = {
919 	{ .family = "QorIQ LS1012A", },
920 	{ .family = "QorIQ LS1043A", },
921 	{ .family = "QorIQ LS1046A", },
922 	{ .family = "QorIQ LS1080A", },
923 	{ .family = "QorIQ LS2080A", },
924 	{ .family = "QorIQ LA1575A", },
925 	{ },
926 };
927 
928 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
929 {
930 	u32 val;
931 
932 	esdhc_clock_enable(host, false);
933 	esdhc_flush_async_fifo(host);
934 
935 	val = sdhci_readl(host, ESDHC_TBCTL);
936 	if (enable)
937 		val |= ESDHC_TB_EN;
938 	else
939 		val &= ~ESDHC_TB_EN;
940 	sdhci_writel(host, val, ESDHC_TBCTL);
941 
942 	esdhc_clock_enable(host, true);
943 }
944 
945 static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
946 				    u8 *window_end)
947 {
948 	u32 val;
949 
950 	/* Write TBCTL[11:8]=4'h8 */
951 	val = sdhci_readl(host, ESDHC_TBCTL);
952 	val &= ~(0xf << 8);
953 	val |= 8 << 8;
954 	sdhci_writel(host, val, ESDHC_TBCTL);
955 
956 	mdelay(1);
957 
958 	/* Read TBCTL[31:0] register and rewrite again */
959 	val = sdhci_readl(host, ESDHC_TBCTL);
960 	sdhci_writel(host, val, ESDHC_TBCTL);
961 
962 	mdelay(1);
963 
964 	/* Read the TBSTAT[31:0] register twice */
965 	val = sdhci_readl(host, ESDHC_TBSTAT);
966 	val = sdhci_readl(host, ESDHC_TBSTAT);
967 
968 	*window_end = val & 0xff;
969 	*window_start = (val >> 8) & 0xff;
970 }
971 
972 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
973 				    u8 *window_end)
974 {
975 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
976 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
977 	u8 start_ptr, end_ptr;
978 
979 	if (esdhc->quirk_tuning_erratum_type1) {
980 		*window_start = 5 * esdhc->div_ratio;
981 		*window_end = 3 * esdhc->div_ratio;
982 		return;
983 	}
984 
985 	esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr);
986 
987 	/* Reset data lines by setting ESDHCCTL[RSTD] */
988 	sdhci_reset(host, SDHCI_RESET_DATA);
989 	/* Write 32'hFFFF_FFFF to IRQSTAT register */
990 	sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
991 
992 	/* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
993 	 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
994 	 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
995 	 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
996 	 */
997 
998 	if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
999 		*window_start = 8 * esdhc->div_ratio;
1000 		*window_end = 4 * esdhc->div_ratio;
1001 	} else {
1002 		*window_start = 5 * esdhc->div_ratio;
1003 		*window_end = 3 * esdhc->div_ratio;
1004 	}
1005 }
1006 
1007 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1008 				   u8 window_start, u8 window_end)
1009 {
1010 	struct sdhci_host *host = mmc_priv(mmc);
1011 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1012 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1013 	u32 val;
1014 	int ret;
1015 
1016 	/* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1017 	val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1018 	      ESDHC_WNDW_STRT_PTR_MASK;
1019 	val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1020 	sdhci_writel(host, val, ESDHC_TBPTR);
1021 
1022 	/* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1023 	val = sdhci_readl(host, ESDHC_TBCTL);
1024 	val &= ~ESDHC_TB_MODE_MASK;
1025 	val |= ESDHC_TB_MODE_SW;
1026 	sdhci_writel(host, val, ESDHC_TBCTL);
1027 
1028 	esdhc->in_sw_tuning = true;
1029 	ret = sdhci_execute_tuning(mmc, opcode);
1030 	esdhc->in_sw_tuning = false;
1031 	return ret;
1032 }
1033 
1034 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1035 {
1036 	struct sdhci_host *host = mmc_priv(mmc);
1037 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1038 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1039 	u8 window_start, window_end;
1040 	int ret, retries = 1;
1041 	bool hs400_tuning;
1042 	unsigned int clk;
1043 	u32 val;
1044 
1045 	/* For tuning mode, the sd clock divisor value
1046 	 * must be larger than 3 according to reference manual.
1047 	 */
1048 	clk = esdhc->peripheral_clock / 3;
1049 	if (host->clock > clk)
1050 		esdhc_of_set_clock(host, clk);
1051 
1052 	esdhc_tuning_block_enable(host, true);
1053 
1054 	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
1055 
1056 	do {
1057 		if (esdhc->quirk_limited_clk_division &&
1058 		    hs400_tuning)
1059 			esdhc_of_set_clock(host, host->clock);
1060 
1061 		/* Do HW tuning */
1062 		val = sdhci_readl(host, ESDHC_TBCTL);
1063 		val &= ~ESDHC_TB_MODE_MASK;
1064 		val |= ESDHC_TB_MODE_3;
1065 		sdhci_writel(host, val, ESDHC_TBCTL);
1066 
1067 		ret = sdhci_execute_tuning(mmc, opcode);
1068 		if (ret)
1069 			break;
1070 
1071 		/* For type2 affected platforms of the tuning erratum,
1072 		 * tuning may succeed although eSDHC might not have
1073 		 * tuned properly. Need to check tuning window.
1074 		 */
1075 		if (esdhc->quirk_tuning_erratum_type2 &&
1076 		    !host->tuning_err) {
1077 			esdhc_tuning_window_ptr(host, &window_start,
1078 						&window_end);
1079 			if (abs(window_start - window_end) >
1080 			    (4 * esdhc->div_ratio + 2))
1081 				host->tuning_err = -EAGAIN;
1082 		}
1083 
1084 		/* If HW tuning fails and triggers erratum,
1085 		 * try workaround.
1086 		 */
1087 		ret = host->tuning_err;
1088 		if (ret == -EAGAIN &&
1089 		    (esdhc->quirk_tuning_erratum_type1 ||
1090 		     esdhc->quirk_tuning_erratum_type2)) {
1091 			/* Recover HS400 tuning flag */
1092 			if (hs400_tuning)
1093 				host->flags |= SDHCI_HS400_TUNING;
1094 			pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1095 				mmc_hostname(mmc));
1096 			/* Do SW tuning */
1097 			esdhc_prepare_sw_tuning(host, &window_start,
1098 						&window_end);
1099 			ret = esdhc_execute_sw_tuning(mmc, opcode,
1100 						      window_start,
1101 						      window_end);
1102 			if (ret)
1103 				break;
1104 
1105 			/* Retry both HW/SW tuning with reduced clock. */
1106 			ret = host->tuning_err;
1107 			if (ret == -EAGAIN && retries) {
1108 				/* Recover HS400 tuning flag */
1109 				if (hs400_tuning)
1110 					host->flags |= SDHCI_HS400_TUNING;
1111 
1112 				clk = host->max_clk / (esdhc->div_ratio + 1);
1113 				esdhc_of_set_clock(host, clk);
1114 				pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1115 					mmc_hostname(mmc));
1116 			} else {
1117 				break;
1118 			}
1119 		} else {
1120 			break;
1121 		}
1122 	} while (retries--);
1123 
1124 	if (ret) {
1125 		esdhc_tuning_block_enable(host, false);
1126 	} else if (hs400_tuning) {
1127 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1128 		val |= ESDHC_FLW_CTL_BG;
1129 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1130 	}
1131 
1132 	return ret;
1133 }
1134 
1135 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1136 				   unsigned int timing)
1137 {
1138 	u32 val;
1139 
1140 	/*
1141 	 * There are specific registers setting for HS400 mode.
1142 	 * Clean all of them if controller is in HS400 mode to
1143 	 * exit HS400 mode before re-setting any speed mode.
1144 	 */
1145 	val = sdhci_readl(host, ESDHC_TBCTL);
1146 	if (val & ESDHC_HS400_MODE) {
1147 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1148 		val &= ~ESDHC_FLW_CTL_BG;
1149 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1150 
1151 		val = sdhci_readl(host, ESDHC_SDCLKCTL);
1152 		val &= ~ESDHC_CMD_CLK_CTL;
1153 		sdhci_writel(host, val, ESDHC_SDCLKCTL);
1154 
1155 		esdhc_clock_enable(host, false);
1156 		val = sdhci_readl(host, ESDHC_TBCTL);
1157 		val &= ~ESDHC_HS400_MODE;
1158 		sdhci_writel(host, val, ESDHC_TBCTL);
1159 		esdhc_clock_enable(host, true);
1160 
1161 		val = sdhci_readl(host, ESDHC_DLLCFG0);
1162 		val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL);
1163 		sdhci_writel(host, val, ESDHC_DLLCFG0);
1164 
1165 		val = sdhci_readl(host, ESDHC_TBCTL);
1166 		val &= ~ESDHC_HS400_WNDW_ADJUST;
1167 		sdhci_writel(host, val, ESDHC_TBCTL);
1168 
1169 		esdhc_tuning_block_enable(host, false);
1170 	}
1171 
1172 	if (timing == MMC_TIMING_MMC_HS400)
1173 		esdhc_tuning_block_enable(host, true);
1174 	else
1175 		sdhci_set_uhs_signaling(host, timing);
1176 }
1177 
1178 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1179 {
1180 	u32 command;
1181 
1182 	if (of_find_compatible_node(NULL, NULL,
1183 				"fsl,p2020-esdhc")) {
1184 		command = SDHCI_GET_CMD(sdhci_readw(host,
1185 					SDHCI_COMMAND));
1186 		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1187 				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1188 				intmask & SDHCI_INT_DATA_END) {
1189 			intmask &= ~SDHCI_INT_DATA_END;
1190 			sdhci_writel(host, SDHCI_INT_DATA_END,
1191 					SDHCI_INT_STATUS);
1192 		}
1193 	}
1194 	return intmask;
1195 }
1196 
1197 #ifdef CONFIG_PM_SLEEP
1198 static u32 esdhc_proctl;
1199 static int esdhc_of_suspend(struct device *dev)
1200 {
1201 	struct sdhci_host *host = dev_get_drvdata(dev);
1202 
1203 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1204 
1205 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1206 		mmc_retune_needed(host->mmc);
1207 
1208 	return sdhci_suspend_host(host);
1209 }
1210 
1211 static int esdhc_of_resume(struct device *dev)
1212 {
1213 	struct sdhci_host *host = dev_get_drvdata(dev);
1214 	int ret = sdhci_resume_host(host);
1215 
1216 	if (ret == 0) {
1217 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
1218 		esdhc_of_enable_dma(host);
1219 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1220 	}
1221 	return ret;
1222 }
1223 #endif
1224 
1225 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1226 			esdhc_of_suspend,
1227 			esdhc_of_resume);
1228 
1229 static const struct sdhci_ops sdhci_esdhc_be_ops = {
1230 	.read_l = esdhc_be_readl,
1231 	.read_w = esdhc_be_readw,
1232 	.read_b = esdhc_be_readb,
1233 	.write_l = esdhc_be_writel,
1234 	.write_w = esdhc_be_writew,
1235 	.write_b = esdhc_be_writeb,
1236 	.set_clock = esdhc_of_set_clock,
1237 	.enable_dma = esdhc_of_enable_dma,
1238 	.get_max_clock = esdhc_of_get_max_clock,
1239 	.get_min_clock = esdhc_of_get_min_clock,
1240 	.adma_workaround = esdhc_of_adma_workaround,
1241 	.set_bus_width = esdhc_pltfm_set_bus_width,
1242 	.reset = esdhc_reset,
1243 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1244 	.irq = esdhc_irq,
1245 };
1246 
1247 static const struct sdhci_ops sdhci_esdhc_le_ops = {
1248 	.read_l = esdhc_le_readl,
1249 	.read_w = esdhc_le_readw,
1250 	.read_b = esdhc_le_readb,
1251 	.write_l = esdhc_le_writel,
1252 	.write_w = esdhc_le_writew,
1253 	.write_b = esdhc_le_writeb,
1254 	.set_clock = esdhc_of_set_clock,
1255 	.enable_dma = esdhc_of_enable_dma,
1256 	.get_max_clock = esdhc_of_get_max_clock,
1257 	.get_min_clock = esdhc_of_get_min_clock,
1258 	.adma_workaround = esdhc_of_adma_workaround,
1259 	.set_bus_width = esdhc_pltfm_set_bus_width,
1260 	.reset = esdhc_reset,
1261 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1262 	.irq = esdhc_irq,
1263 };
1264 
1265 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1266 	.quirks = ESDHC_DEFAULT_QUIRKS |
1267 #ifdef CONFIG_PPC
1268 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1269 #endif
1270 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1271 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1272 	.ops = &sdhci_esdhc_be_ops,
1273 };
1274 
1275 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1276 	.quirks = ESDHC_DEFAULT_QUIRKS |
1277 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1278 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1279 	.ops = &sdhci_esdhc_le_ops,
1280 };
1281 
1282 static struct soc_device_attribute soc_incorrect_hostver[] = {
1283 	{ .family = "QorIQ T4240", .revision = "1.0", },
1284 	{ .family = "QorIQ T4240", .revision = "2.0", },
1285 	{ },
1286 };
1287 
1288 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1289 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1290 	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1291 	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1292 	{ },
1293 };
1294 
1295 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1296 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1297 	{ },
1298 };
1299 
1300 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1301 {
1302 	const struct of_device_id *match;
1303 	struct sdhci_pltfm_host *pltfm_host;
1304 	struct sdhci_esdhc *esdhc;
1305 	struct device_node *np;
1306 	struct clk *clk;
1307 	u32 val;
1308 	u16 host_ver;
1309 
1310 	pltfm_host = sdhci_priv(host);
1311 	esdhc = sdhci_pltfm_priv(pltfm_host);
1312 
1313 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1314 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1315 			     SDHCI_VENDOR_VER_SHIFT;
1316 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1317 	if (soc_device_match(soc_incorrect_hostver))
1318 		esdhc->quirk_incorrect_hostver = true;
1319 	else
1320 		esdhc->quirk_incorrect_hostver = false;
1321 
1322 	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1323 		esdhc->quirk_limited_clk_division = true;
1324 	else
1325 		esdhc->quirk_limited_clk_division = false;
1326 
1327 	if (soc_device_match(soc_unreliable_pulse_detection))
1328 		esdhc->quirk_unreliable_pulse_detection = true;
1329 	else
1330 		esdhc->quirk_unreliable_pulse_detection = false;
1331 
1332 	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1333 	if (match)
1334 		esdhc->clk_fixup = match->data;
1335 	np = pdev->dev.of_node;
1336 
1337 	if (of_device_is_compatible(np, "fsl,p2020-esdhc"))
1338 		esdhc->quirk_delay_before_data_reset = true;
1339 
1340 	clk = of_clk_get(np, 0);
1341 	if (!IS_ERR(clk)) {
1342 		/*
1343 		 * esdhc->peripheral_clock would be assigned with a value
1344 		 * which is eSDHC base clock when use periperal clock.
1345 		 * For some platforms, the clock value got by common clk
1346 		 * API is peripheral clock while the eSDHC base clock is
1347 		 * 1/2 peripheral clock.
1348 		 */
1349 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1350 		    of_device_is_compatible(np, "fsl,ls1028a-esdhc") ||
1351 		    of_device_is_compatible(np, "fsl,ls1088a-esdhc"))
1352 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1353 		else
1354 			esdhc->peripheral_clock = clk_get_rate(clk);
1355 
1356 		clk_put(clk);
1357 	}
1358 
1359 	if (esdhc->peripheral_clock) {
1360 		esdhc_clock_enable(host, false);
1361 		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1362 		val |= ESDHC_PERIPHERAL_CLK_SEL;
1363 		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1364 		esdhc_clock_enable(host, true);
1365 	}
1366 }
1367 
1368 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1369 {
1370 	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1371 	return 0;
1372 }
1373 
1374 static int sdhci_esdhc_probe(struct platform_device *pdev)
1375 {
1376 	struct sdhci_host *host;
1377 	struct device_node *np;
1378 	struct sdhci_pltfm_host *pltfm_host;
1379 	struct sdhci_esdhc *esdhc;
1380 	int ret;
1381 
1382 	np = pdev->dev.of_node;
1383 
1384 	if (of_property_read_bool(np, "little-endian"))
1385 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1386 					sizeof(struct sdhci_esdhc));
1387 	else
1388 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1389 					sizeof(struct sdhci_esdhc));
1390 
1391 	if (IS_ERR(host))
1392 		return PTR_ERR(host);
1393 
1394 	host->mmc_host_ops.start_signal_voltage_switch =
1395 		esdhc_signal_voltage_switch;
1396 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1397 	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1398 	host->tuning_delay = 1;
1399 
1400 	esdhc_init(pdev, host);
1401 
1402 	sdhci_get_of_property(pdev);
1403 
1404 	pltfm_host = sdhci_priv(host);
1405 	esdhc = sdhci_pltfm_priv(pltfm_host);
1406 	if (soc_device_match(soc_tuning_erratum_type1))
1407 		esdhc->quirk_tuning_erratum_type1 = true;
1408 	else
1409 		esdhc->quirk_tuning_erratum_type1 = false;
1410 
1411 	if (soc_device_match(soc_tuning_erratum_type2))
1412 		esdhc->quirk_tuning_erratum_type2 = true;
1413 	else
1414 		esdhc->quirk_tuning_erratum_type2 = false;
1415 
1416 	if (esdhc->vendor_ver == VENDOR_V_22)
1417 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1418 
1419 	if (esdhc->vendor_ver > VENDOR_V_22)
1420 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1421 
1422 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1423 		host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1424 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1425 	}
1426 
1427 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1428 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1429 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1430 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1431 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1432 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1433 
1434 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1435 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1436 
1437 	esdhc->quirk_ignore_data_inhibit = false;
1438 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1439 		/*
1440 		 * Freescale messed up with P2020 as it has a non-standard
1441 		 * host control register
1442 		 */
1443 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1444 		esdhc->quirk_ignore_data_inhibit = true;
1445 	}
1446 
1447 	/* call to generic mmc_of_parse to support additional capabilities */
1448 	ret = mmc_of_parse(host->mmc);
1449 	if (ret)
1450 		goto err;
1451 
1452 	mmc_of_parse_voltage(np, &host->ocr_mask);
1453 
1454 	ret = sdhci_add_host(host);
1455 	if (ret)
1456 		goto err;
1457 
1458 	return 0;
1459  err:
1460 	sdhci_pltfm_free(pdev);
1461 	return ret;
1462 }
1463 
1464 static struct platform_driver sdhci_esdhc_driver = {
1465 	.driver = {
1466 		.name = "sdhci-esdhc",
1467 		.of_match_table = sdhci_esdhc_of_match,
1468 		.pm = &esdhc_of_dev_pm_ops,
1469 	},
1470 	.probe = sdhci_esdhc_probe,
1471 	.remove = sdhci_pltfm_unregister,
1472 };
1473 
1474 module_platform_driver(sdhci_esdhc_driver);
1475 
1476 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1477 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1478 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1479 MODULE_LICENSE("GPL v2");
1480