1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/delay.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/pm_opp.h> 13 #include <linux/slab.h> 14 #include <linux/iopoll.h> 15 #include <linux/regulator/consumer.h> 16 #include <linux/interconnect.h> 17 #include <linux/of.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/reset.h> 20 21 #include <soc/qcom/ice.h> 22 23 #include "sdhci-cqhci.h" 24 #include "sdhci-pltfm.h" 25 #include "cqhci.h" 26 27 #define CORE_MCI_VERSION 0x50 28 #define CORE_VERSION_MAJOR_SHIFT 28 29 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 30 #define CORE_VERSION_MINOR_MASK 0xff 31 32 #define CORE_MCI_GENERICS 0x70 33 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 34 35 #define HC_MODE_EN 0x1 36 #define CORE_POWER 0x0 37 #define CORE_SW_RST BIT(7) 38 #define FF_CLK_SW_RST_DIS BIT(13) 39 40 #define CORE_PWRCTL_BUS_OFF BIT(0) 41 #define CORE_PWRCTL_BUS_ON BIT(1) 42 #define CORE_PWRCTL_IO_LOW BIT(2) 43 #define CORE_PWRCTL_IO_HIGH BIT(3) 44 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 45 #define CORE_PWRCTL_BUS_FAIL BIT(1) 46 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 47 #define CORE_PWRCTL_IO_FAIL BIT(3) 48 #define REQ_BUS_OFF BIT(0) 49 #define REQ_BUS_ON BIT(1) 50 #define REQ_IO_LOW BIT(2) 51 #define REQ_IO_HIGH BIT(3) 52 #define INT_MASK 0xf 53 #define MAX_PHASES 16 54 #define CORE_DLL_LOCK BIT(7) 55 #define CORE_DDR_DLL_LOCK BIT(11) 56 #define CORE_DLL_EN BIT(16) 57 #define CORE_CDR_EN BIT(17) 58 #define CORE_CK_OUT_EN BIT(18) 59 #define CORE_CDR_EXT_EN BIT(19) 60 #define CORE_DLL_PDN BIT(29) 61 #define CORE_DLL_RST BIT(30) 62 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 63 64 #define CORE_DDR_CAL_EN BIT(0) 65 #define CORE_FLL_CYCLE_CNT BIT(18) 66 #define CORE_DLL_CLOCK_DISABLE BIT(21) 67 68 #define DLL_USR_CTL_POR_VAL 0x10800 69 #define ENABLE_DLL_LOCK_STATUS BIT(26) 70 #define FINE_TUNE_MODE_EN BIT(27) 71 #define BIAS_OK_SIGNAL BIT(29) 72 73 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 74 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 75 76 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 77 #define CORE_CLK_PWRSAVE BIT(1) 78 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 79 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 80 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 81 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 82 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 83 #define CORE_HC_SELECT_IN_EN BIT(18) 84 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 85 #define CORE_HC_SELECT_IN_MASK (7 << 19) 86 87 #define CORE_3_0V_SUPPORT BIT(25) 88 #define CORE_1_8V_SUPPORT BIT(26) 89 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 90 91 #define CORE_CSR_CDC_CTLR_CFG0 0x130 92 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 93 #define CORE_HW_AUTOCAL_ENA BIT(17) 94 95 #define CORE_CSR_CDC_CTLR_CFG1 0x134 96 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 97 #define CORE_TIMER_ENA BIT(16) 98 99 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 100 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 101 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 102 #define CORE_CDC_OFFSET_CFG 0x14C 103 #define CORE_CSR_CDC_DELAY_CFG 0x150 104 #define CORE_CDC_SLAVE_DDA_CFG 0x160 105 #define CORE_CSR_CDC_STATUS0 0x164 106 #define CORE_CALIBRATION_DONE BIT(0) 107 108 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 109 110 #define CORE_CSR_CDC_GEN_CFG 0x178 111 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 112 #define CORE_CDC_SWITCH_RC_EN BIT(1) 113 114 #define CORE_CDC_T4_DLY_SEL BIT(0) 115 #define CORE_CMDIN_RCLK_EN BIT(1) 116 #define CORE_START_CDC_TRAFFIC BIT(6) 117 118 #define CORE_PWRSAVE_DLL BIT(3) 119 120 #define DDR_CONFIG_POR_VAL 0x80040873 121 122 123 #define INVALID_TUNING_PHASE -1 124 #define SDHCI_MSM_MIN_CLOCK 400000 125 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 126 127 #define CDR_SELEXT_SHIFT 20 128 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 129 #define CMUX_SHIFT_PHASE_SHIFT 24 130 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 131 132 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 133 134 /* Timeout value to avoid infinite waiting for pwr_irq */ 135 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 136 137 /* Max load for eMMC Vdd supply */ 138 #define MMC_VMMC_MAX_LOAD_UA 570000 139 140 /* Max load for eMMC Vdd-io supply */ 141 #define MMC_VQMMC_MAX_LOAD_UA 325000 142 143 /* Max load for SD Vdd supply */ 144 #define SD_VMMC_MAX_LOAD_UA 800000 145 146 /* Max load for SD Vdd-io supply */ 147 #define SD_VQMMC_MAX_LOAD_UA 22000 148 149 #define msm_host_readl(msm_host, host, offset) \ 150 msm_host->var_ops->msm_readl_relaxed(host, offset) 151 152 #define msm_host_writel(msm_host, val, host, offset) \ 153 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 154 155 /* CQHCI vendor specific registers */ 156 #define CQHCI_VENDOR_CFG1 0xA00 157 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 158 159 struct sdhci_msm_offset { 160 u32 core_hc_mode; 161 u32 core_mci_data_cnt; 162 u32 core_mci_status; 163 u32 core_mci_fifo_cnt; 164 u32 core_mci_version; 165 u32 core_generics; 166 u32 core_testbus_config; 167 u32 core_testbus_sel2_bit; 168 u32 core_testbus_ena; 169 u32 core_testbus_sel2; 170 u32 core_pwrctl_status; 171 u32 core_pwrctl_mask; 172 u32 core_pwrctl_clear; 173 u32 core_pwrctl_ctl; 174 u32 core_sdcc_debug_reg; 175 u32 core_dll_config; 176 u32 core_dll_status; 177 u32 core_vendor_spec; 178 u32 core_vendor_spec_adma_err_addr0; 179 u32 core_vendor_spec_adma_err_addr1; 180 u32 core_vendor_spec_func2; 181 u32 core_vendor_spec_capabilities0; 182 u32 core_ddr_200_cfg; 183 u32 core_vendor_spec3; 184 u32 core_dll_config_2; 185 u32 core_dll_config_3; 186 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 187 u32 core_ddr_config; 188 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 189 }; 190 191 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 192 .core_mci_data_cnt = 0x35c, 193 .core_mci_status = 0x324, 194 .core_mci_fifo_cnt = 0x308, 195 .core_mci_version = 0x318, 196 .core_generics = 0x320, 197 .core_testbus_config = 0x32c, 198 .core_testbus_sel2_bit = 3, 199 .core_testbus_ena = (1 << 31), 200 .core_testbus_sel2 = (1 << 3), 201 .core_pwrctl_status = 0x240, 202 .core_pwrctl_mask = 0x244, 203 .core_pwrctl_clear = 0x248, 204 .core_pwrctl_ctl = 0x24c, 205 .core_sdcc_debug_reg = 0x358, 206 .core_dll_config = 0x200, 207 .core_dll_status = 0x208, 208 .core_vendor_spec = 0x20c, 209 .core_vendor_spec_adma_err_addr0 = 0x214, 210 .core_vendor_spec_adma_err_addr1 = 0x218, 211 .core_vendor_spec_func2 = 0x210, 212 .core_vendor_spec_capabilities0 = 0x21c, 213 .core_ddr_200_cfg = 0x224, 214 .core_vendor_spec3 = 0x250, 215 .core_dll_config_2 = 0x254, 216 .core_dll_config_3 = 0x258, 217 .core_ddr_config = 0x25c, 218 .core_dll_usr_ctl = 0x388, 219 }; 220 221 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 222 .core_hc_mode = 0x78, 223 .core_mci_data_cnt = 0x30, 224 .core_mci_status = 0x34, 225 .core_mci_fifo_cnt = 0x44, 226 .core_mci_version = 0x050, 227 .core_generics = 0x70, 228 .core_testbus_config = 0x0cc, 229 .core_testbus_sel2_bit = 4, 230 .core_testbus_ena = (1 << 3), 231 .core_testbus_sel2 = (1 << 4), 232 .core_pwrctl_status = 0xdc, 233 .core_pwrctl_mask = 0xe0, 234 .core_pwrctl_clear = 0xe4, 235 .core_pwrctl_ctl = 0xe8, 236 .core_sdcc_debug_reg = 0x124, 237 .core_dll_config = 0x100, 238 .core_dll_status = 0x108, 239 .core_vendor_spec = 0x10c, 240 .core_vendor_spec_adma_err_addr0 = 0x114, 241 .core_vendor_spec_adma_err_addr1 = 0x118, 242 .core_vendor_spec_func2 = 0x110, 243 .core_vendor_spec_capabilities0 = 0x11c, 244 .core_ddr_200_cfg = 0x184, 245 .core_vendor_spec3 = 0x1b0, 246 .core_dll_config_2 = 0x1b4, 247 .core_ddr_config_old = 0x1b8, 248 .core_ddr_config = 0x1bc, 249 }; 250 251 struct sdhci_msm_variant_ops { 252 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 253 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 254 u32 offset); 255 }; 256 257 /* 258 * From V5, register spaces have changed. Wrap this info in a structure 259 * and choose the data_structure based on version info mentioned in DT. 260 */ 261 struct sdhci_msm_variant_info { 262 bool mci_removed; 263 bool restore_dll_config; 264 const struct sdhci_msm_variant_ops *var_ops; 265 const struct sdhci_msm_offset *offset; 266 }; 267 268 struct sdhci_msm_host { 269 struct platform_device *pdev; 270 void __iomem *core_mem; /* MSM SDCC mapped address */ 271 int pwr_irq; /* power irq */ 272 struct clk *bus_clk; /* SDHC bus voter clock */ 273 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 274 /* core, iface, cal and sleep clocks */ 275 struct clk_bulk_data bulk_clks[4]; 276 #ifdef CONFIG_MMC_CRYPTO 277 struct qcom_ice *ice; 278 #endif 279 unsigned long clk_rate; 280 struct mmc_host *mmc; 281 bool use_14lpp_dll_reset; 282 bool tuning_done; 283 bool calibration_done; 284 u8 saved_tuning_phase; 285 bool use_cdclp533; 286 u32 curr_pwr_state; 287 u32 curr_io_level; 288 wait_queue_head_t pwr_irq_wait; 289 bool pwr_irq_flag; 290 u32 caps_0; 291 bool mci_removed; 292 bool restore_dll_config; 293 const struct sdhci_msm_variant_ops *var_ops; 294 const struct sdhci_msm_offset *offset; 295 bool use_cdr; 296 u32 transfer_mode; 297 bool updated_ddr_cfg; 298 bool uses_tassadar_dll; 299 u32 dll_config; 300 u32 ddr_config; 301 bool vqmmc_enabled; 302 }; 303 304 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 305 { 306 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 307 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 308 309 return msm_host->offset; 310 } 311 312 /* 313 * APIs to read/write to vendor specific registers which were there in the 314 * core_mem region before MCI was removed. 315 */ 316 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 317 u32 offset) 318 { 319 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 320 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 321 322 return readl_relaxed(msm_host->core_mem + offset); 323 } 324 325 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 326 u32 offset) 327 { 328 return readl_relaxed(host->ioaddr + offset); 329 } 330 331 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 332 struct sdhci_host *host, u32 offset) 333 { 334 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 335 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 336 337 writel_relaxed(val, msm_host->core_mem + offset); 338 } 339 340 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 341 struct sdhci_host *host, u32 offset) 342 { 343 writel_relaxed(val, host->ioaddr + offset); 344 } 345 346 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host) 347 { 348 struct mmc_ios ios = host->mmc->ios; 349 /* 350 * The SDHC requires internal clock frequency to be double the 351 * actual clock that will be set for DDR mode. The controller 352 * uses the faster clock(100/400MHz) for some of its parts and 353 * send the actual required clock (50/200MHz) to the card. 354 */ 355 if (ios.timing == MMC_TIMING_UHS_DDR50 || 356 ios.timing == MMC_TIMING_MMC_DDR52 || 357 ios.timing == MMC_TIMING_MMC_HS400 || 358 host->flags & SDHCI_HS400_TUNING) 359 return 2; 360 return 1; 361 } 362 363 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 364 unsigned int clock) 365 { 366 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 367 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 368 struct mmc_ios curr_ios = host->mmc->ios; 369 struct clk *core_clk = msm_host->bulk_clks[0].clk; 370 unsigned long achieved_rate; 371 unsigned int desired_rate; 372 unsigned int mult; 373 int rc; 374 375 mult = msm_get_clock_mult_for_bus_mode(host); 376 desired_rate = clock * mult; 377 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate); 378 if (rc) { 379 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 380 mmc_hostname(host->mmc), desired_rate, curr_ios.timing); 381 return; 382 } 383 384 /* 385 * Qualcomm clock drivers by default round clock _up_ if they can't 386 * make the requested rate. This is not good for SD. Yell if we 387 * encounter it. 388 */ 389 achieved_rate = clk_get_rate(core_clk); 390 if (achieved_rate > desired_rate) 391 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n", 392 mmc_hostname(host->mmc), desired_rate, achieved_rate); 393 host->mmc->actual_clock = achieved_rate / mult; 394 395 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */ 396 msm_host->clk_rate = desired_rate; 397 398 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 399 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing); 400 } 401 402 /* Platform specific tuning */ 403 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 404 { 405 u32 wait_cnt = 50; 406 u8 ck_out_en; 407 struct mmc_host *mmc = host->mmc; 408 const struct sdhci_msm_offset *msm_offset = 409 sdhci_priv_msm_offset(host); 410 411 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 412 ck_out_en = !!(readl_relaxed(host->ioaddr + 413 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 414 415 while (ck_out_en != poll) { 416 if (--wait_cnt == 0) { 417 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 418 mmc_hostname(mmc), poll); 419 return -ETIMEDOUT; 420 } 421 udelay(1); 422 423 ck_out_en = !!(readl_relaxed(host->ioaddr + 424 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 425 } 426 427 return 0; 428 } 429 430 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 431 { 432 int rc; 433 static const u8 grey_coded_phase_table[] = { 434 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 435 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 436 }; 437 unsigned long flags; 438 u32 config; 439 struct mmc_host *mmc = host->mmc; 440 const struct sdhci_msm_offset *msm_offset = 441 sdhci_priv_msm_offset(host); 442 443 if (phase > 0xf) 444 return -EINVAL; 445 446 spin_lock_irqsave(&host->lock, flags); 447 448 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 449 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 450 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 451 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 452 453 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 454 rc = msm_dll_poll_ck_out_en(host, 0); 455 if (rc) 456 goto err_out; 457 458 /* 459 * Write the selected DLL clock output phase (0 ... 15) 460 * to CDR_SELEXT bit field of DLL_CONFIG register. 461 */ 462 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 463 config &= ~CDR_SELEXT_MASK; 464 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 465 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 466 467 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 468 config |= CORE_CK_OUT_EN; 469 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 470 471 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 472 rc = msm_dll_poll_ck_out_en(host, 1); 473 if (rc) 474 goto err_out; 475 476 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 477 config |= CORE_CDR_EN; 478 config &= ~CORE_CDR_EXT_EN; 479 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 480 goto out; 481 482 err_out: 483 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 484 mmc_hostname(mmc), phase); 485 out: 486 spin_unlock_irqrestore(&host->lock, flags); 487 return rc; 488 } 489 490 /* 491 * Find out the greatest range of consecuitive selected 492 * DLL clock output phases that can be used as sampling 493 * setting for SD3.0 UHS-I card read operation (in SDR104 494 * timing mode) or for eMMC4.5 card read operation (in 495 * HS400/HS200 timing mode). 496 * Select the 3/4 of the range and configure the DLL with the 497 * selected DLL clock output phase. 498 */ 499 500 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 501 u8 *phase_table, u8 total_phases) 502 { 503 int ret; 504 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 505 u8 phases_per_row[MAX_PHASES] = { 0 }; 506 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 507 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 508 bool phase_0_found = false, phase_15_found = false; 509 struct mmc_host *mmc = host->mmc; 510 511 if (!total_phases || (total_phases > MAX_PHASES)) { 512 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 513 mmc_hostname(mmc), total_phases); 514 return -EINVAL; 515 } 516 517 for (cnt = 0; cnt < total_phases; cnt++) { 518 ranges[row_index][col_index] = phase_table[cnt]; 519 phases_per_row[row_index] += 1; 520 col_index++; 521 522 if ((cnt + 1) == total_phases) { 523 continue; 524 /* check if next phase in phase_table is consecutive or not */ 525 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 526 row_index++; 527 col_index = 0; 528 } 529 } 530 531 if (row_index >= MAX_PHASES) 532 return -EINVAL; 533 534 /* Check if phase-0 is present in first valid window? */ 535 if (!ranges[0][0]) { 536 phase_0_found = true; 537 phase_0_raw_index = 0; 538 /* Check if cycle exist between 2 valid windows */ 539 for (cnt = 1; cnt <= row_index; cnt++) { 540 if (phases_per_row[cnt]) { 541 for (i = 0; i < phases_per_row[cnt]; i++) { 542 if (ranges[cnt][i] == 15) { 543 phase_15_found = true; 544 phase_15_raw_index = cnt; 545 break; 546 } 547 } 548 } 549 } 550 } 551 552 /* If 2 valid windows form cycle then merge them as single window */ 553 if (phase_0_found && phase_15_found) { 554 /* number of phases in raw where phase 0 is present */ 555 u8 phases_0 = phases_per_row[phase_0_raw_index]; 556 /* number of phases in raw where phase 15 is present */ 557 u8 phases_15 = phases_per_row[phase_15_raw_index]; 558 559 if (phases_0 + phases_15 >= MAX_PHASES) 560 /* 561 * If there are more than 1 phase windows then total 562 * number of phases in both the windows should not be 563 * more than or equal to MAX_PHASES. 564 */ 565 return -EINVAL; 566 567 /* Merge 2 cyclic windows */ 568 i = phases_15; 569 for (cnt = 0; cnt < phases_0; cnt++) { 570 ranges[phase_15_raw_index][i] = 571 ranges[phase_0_raw_index][cnt]; 572 if (++i >= MAX_PHASES) 573 break; 574 } 575 576 phases_per_row[phase_0_raw_index] = 0; 577 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 578 } 579 580 for (cnt = 0; cnt <= row_index; cnt++) { 581 if (phases_per_row[cnt] > curr_max) { 582 curr_max = phases_per_row[cnt]; 583 selected_row_index = cnt; 584 } 585 } 586 587 i = (curr_max * 3) / 4; 588 if (i) 589 i--; 590 591 ret = ranges[selected_row_index][i]; 592 593 if (ret >= MAX_PHASES) { 594 ret = -EINVAL; 595 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 596 mmc_hostname(mmc), ret); 597 } 598 599 return ret; 600 } 601 602 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 603 { 604 u32 mclk_freq = 0, config; 605 const struct sdhci_msm_offset *msm_offset = 606 sdhci_priv_msm_offset(host); 607 608 /* Program the MCLK value to MCLK_FREQ bit field */ 609 if (host->clock <= 112000000) 610 mclk_freq = 0; 611 else if (host->clock <= 125000000) 612 mclk_freq = 1; 613 else if (host->clock <= 137000000) 614 mclk_freq = 2; 615 else if (host->clock <= 150000000) 616 mclk_freq = 3; 617 else if (host->clock <= 162000000) 618 mclk_freq = 4; 619 else if (host->clock <= 175000000) 620 mclk_freq = 5; 621 else if (host->clock <= 187000000) 622 mclk_freq = 6; 623 else if (host->clock <= 200000000) 624 mclk_freq = 7; 625 626 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 627 config &= ~CMUX_SHIFT_PHASE_MASK; 628 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 629 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 630 } 631 632 /* Initialize the DLL (Programmable Delay Line) */ 633 static int msm_init_cm_dll(struct sdhci_host *host) 634 { 635 struct mmc_host *mmc = host->mmc; 636 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 637 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 638 int wait_cnt = 50; 639 unsigned long flags, xo_clk = 0; 640 u32 config; 641 const struct sdhci_msm_offset *msm_offset = 642 msm_host->offset; 643 644 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 645 xo_clk = clk_get_rate(msm_host->xo_clk); 646 647 spin_lock_irqsave(&host->lock, flags); 648 649 /* 650 * Make sure that clock is always enabled when DLL 651 * tuning is in progress. Keeping PWRSAVE ON may 652 * turn off the clock. 653 */ 654 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 655 config &= ~CORE_CLK_PWRSAVE; 656 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 657 658 if (msm_host->dll_config) 659 writel_relaxed(msm_host->dll_config, 660 host->ioaddr + msm_offset->core_dll_config); 661 662 if (msm_host->use_14lpp_dll_reset) { 663 config = readl_relaxed(host->ioaddr + 664 msm_offset->core_dll_config); 665 config &= ~CORE_CK_OUT_EN; 666 writel_relaxed(config, host->ioaddr + 667 msm_offset->core_dll_config); 668 669 config = readl_relaxed(host->ioaddr + 670 msm_offset->core_dll_config_2); 671 config |= CORE_DLL_CLOCK_DISABLE; 672 writel_relaxed(config, host->ioaddr + 673 msm_offset->core_dll_config_2); 674 } 675 676 config = readl_relaxed(host->ioaddr + 677 msm_offset->core_dll_config); 678 config |= CORE_DLL_RST; 679 writel_relaxed(config, host->ioaddr + 680 msm_offset->core_dll_config); 681 682 config = readl_relaxed(host->ioaddr + 683 msm_offset->core_dll_config); 684 config |= CORE_DLL_PDN; 685 writel_relaxed(config, host->ioaddr + 686 msm_offset->core_dll_config); 687 688 if (!msm_host->dll_config) 689 msm_cm_dll_set_freq(host); 690 691 if (msm_host->use_14lpp_dll_reset && 692 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 693 u32 mclk_freq = 0; 694 695 config = readl_relaxed(host->ioaddr + 696 msm_offset->core_dll_config_2); 697 config &= CORE_FLL_CYCLE_CNT; 698 if (config) 699 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 700 xo_clk); 701 else 702 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 703 xo_clk); 704 705 config = readl_relaxed(host->ioaddr + 706 msm_offset->core_dll_config_2); 707 config &= ~(0xFF << 10); 708 config |= mclk_freq << 10; 709 710 writel_relaxed(config, host->ioaddr + 711 msm_offset->core_dll_config_2); 712 /* wait for 5us before enabling DLL clock */ 713 udelay(5); 714 } 715 716 config = readl_relaxed(host->ioaddr + 717 msm_offset->core_dll_config); 718 config &= ~CORE_DLL_RST; 719 writel_relaxed(config, host->ioaddr + 720 msm_offset->core_dll_config); 721 722 config = readl_relaxed(host->ioaddr + 723 msm_offset->core_dll_config); 724 config &= ~CORE_DLL_PDN; 725 writel_relaxed(config, host->ioaddr + 726 msm_offset->core_dll_config); 727 728 if (msm_host->use_14lpp_dll_reset) { 729 if (!msm_host->dll_config) 730 msm_cm_dll_set_freq(host); 731 config = readl_relaxed(host->ioaddr + 732 msm_offset->core_dll_config_2); 733 config &= ~CORE_DLL_CLOCK_DISABLE; 734 writel_relaxed(config, host->ioaddr + 735 msm_offset->core_dll_config_2); 736 } 737 738 /* 739 * Configure DLL user control register to enable DLL status. 740 * This setting is applicable to SDCC v5.1 onwards only. 741 */ 742 if (msm_host->uses_tassadar_dll) { 743 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 744 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 745 writel_relaxed(config, host->ioaddr + 746 msm_offset->core_dll_usr_ctl); 747 748 config = readl_relaxed(host->ioaddr + 749 msm_offset->core_dll_config_3); 750 config &= ~0xFF; 751 if (msm_host->clk_rate < 150000000) 752 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 753 else 754 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 755 writel_relaxed(config, host->ioaddr + 756 msm_offset->core_dll_config_3); 757 } 758 759 config = readl_relaxed(host->ioaddr + 760 msm_offset->core_dll_config); 761 config |= CORE_DLL_EN; 762 writel_relaxed(config, host->ioaddr + 763 msm_offset->core_dll_config); 764 765 config = readl_relaxed(host->ioaddr + 766 msm_offset->core_dll_config); 767 config |= CORE_CK_OUT_EN; 768 writel_relaxed(config, host->ioaddr + 769 msm_offset->core_dll_config); 770 771 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 772 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 773 CORE_DLL_LOCK)) { 774 /* max. wait for 50us sec for LOCK bit to be set */ 775 if (--wait_cnt == 0) { 776 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 777 mmc_hostname(mmc)); 778 spin_unlock_irqrestore(&host->lock, flags); 779 return -ETIMEDOUT; 780 } 781 udelay(1); 782 } 783 784 spin_unlock_irqrestore(&host->lock, flags); 785 return 0; 786 } 787 788 static void msm_hc_select_default(struct sdhci_host *host) 789 { 790 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 791 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 792 u32 config; 793 const struct sdhci_msm_offset *msm_offset = 794 msm_host->offset; 795 796 if (!msm_host->use_cdclp533) { 797 config = readl_relaxed(host->ioaddr + 798 msm_offset->core_vendor_spec3); 799 config &= ~CORE_PWRSAVE_DLL; 800 writel_relaxed(config, host->ioaddr + 801 msm_offset->core_vendor_spec3); 802 } 803 804 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 805 config &= ~CORE_HC_MCLK_SEL_MASK; 806 config |= CORE_HC_MCLK_SEL_DFLT; 807 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 808 809 /* 810 * Disable HC_SELECT_IN to be able to use the UHS mode select 811 * configuration from Host Control2 register for all other 812 * modes. 813 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 814 * in VENDOR_SPEC_FUNC 815 */ 816 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 817 config &= ~CORE_HC_SELECT_IN_EN; 818 config &= ~CORE_HC_SELECT_IN_MASK; 819 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 820 821 /* 822 * Make sure above writes impacting free running MCLK are completed 823 * before changing the clk_rate at GCC. 824 */ 825 wmb(); 826 } 827 828 static void msm_hc_select_hs400(struct sdhci_host *host) 829 { 830 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 831 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 832 struct mmc_ios ios = host->mmc->ios; 833 u32 config, dll_lock; 834 int rc; 835 const struct sdhci_msm_offset *msm_offset = 836 msm_host->offset; 837 838 /* Select the divided clock (free running MCLK/2) */ 839 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 840 config &= ~CORE_HC_MCLK_SEL_MASK; 841 config |= CORE_HC_MCLK_SEL_HS400; 842 843 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 844 /* 845 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 846 * register 847 */ 848 if ((msm_host->tuning_done || ios.enhanced_strobe) && 849 !msm_host->calibration_done) { 850 config = readl_relaxed(host->ioaddr + 851 msm_offset->core_vendor_spec); 852 config |= CORE_HC_SELECT_IN_HS400; 853 config |= CORE_HC_SELECT_IN_EN; 854 writel_relaxed(config, host->ioaddr + 855 msm_offset->core_vendor_spec); 856 } 857 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 858 /* 859 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 860 * core_dll_status to be set. This should get set 861 * within 15 us at 200 MHz. 862 */ 863 rc = readl_relaxed_poll_timeout(host->ioaddr + 864 msm_offset->core_dll_status, 865 dll_lock, 866 (dll_lock & 867 (CORE_DLL_LOCK | 868 CORE_DDR_DLL_LOCK)), 10, 869 1000); 870 if (rc == -ETIMEDOUT) 871 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 872 mmc_hostname(host->mmc), dll_lock); 873 } 874 /* 875 * Make sure above writes impacting free running MCLK are completed 876 * before changing the clk_rate at GCC. 877 */ 878 wmb(); 879 } 880 881 /* 882 * sdhci_msm_hc_select_mode :- In general all timing modes are 883 * controlled via UHS mode select in Host Control2 register. 884 * eMMC specific HS200/HS400 doesn't have their respective modes 885 * defined here, hence we use these values. 886 * 887 * HS200 - SDR104 (Since they both are equivalent in functionality) 888 * HS400 - This involves multiple configurations 889 * Initially SDR104 - when tuning is required as HS200 890 * Then when switching to DDR @ 400MHz (HS400) we use 891 * the vendor specific HC_SELECT_IN to control the mode. 892 * 893 * In addition to controlling the modes we also need to select the 894 * correct input clock for DLL depending on the mode. 895 * 896 * HS400 - divided clock (free running MCLK/2) 897 * All other modes - default (free running MCLK) 898 */ 899 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 900 { 901 struct mmc_ios ios = host->mmc->ios; 902 903 if (ios.timing == MMC_TIMING_MMC_HS400 || 904 host->flags & SDHCI_HS400_TUNING) 905 msm_hc_select_hs400(host); 906 else 907 msm_hc_select_default(host); 908 } 909 910 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 911 { 912 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 913 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 914 u32 config, calib_done; 915 int ret; 916 const struct sdhci_msm_offset *msm_offset = 917 msm_host->offset; 918 919 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 920 921 /* 922 * Retuning in HS400 (DDR mode) will fail, just reset the 923 * tuning block and restore the saved tuning phase. 924 */ 925 ret = msm_init_cm_dll(host); 926 if (ret) 927 goto out; 928 929 /* Set the selected phase in delay line hw block */ 930 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 931 if (ret) 932 goto out; 933 934 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 935 config |= CORE_CMD_DAT_TRACK_SEL; 936 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 937 938 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 939 config &= ~CORE_CDC_T4_DLY_SEL; 940 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 941 942 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 943 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 944 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 945 946 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 947 config |= CORE_CDC_SWITCH_RC_EN; 948 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 949 950 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 951 config &= ~CORE_START_CDC_TRAFFIC; 952 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 953 954 /* Perform CDC Register Initialization Sequence */ 955 956 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 957 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 958 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 959 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 960 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 961 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 962 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 963 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 964 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 965 966 /* CDC HW Calibration */ 967 968 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 969 config |= CORE_SW_TRIG_FULL_CALIB; 970 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 971 972 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 973 config &= ~CORE_SW_TRIG_FULL_CALIB; 974 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 975 976 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 977 config |= CORE_HW_AUTOCAL_ENA; 978 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 979 980 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 981 config |= CORE_TIMER_ENA; 982 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 983 984 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 985 calib_done, 986 (calib_done & CORE_CALIBRATION_DONE), 987 1, 50); 988 989 if (ret == -ETIMEDOUT) { 990 pr_err("%s: %s: CDC calibration was not completed\n", 991 mmc_hostname(host->mmc), __func__); 992 goto out; 993 } 994 995 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 996 & CORE_CDC_ERROR_CODE_MASK; 997 if (ret) { 998 pr_err("%s: %s: CDC error code %d\n", 999 mmc_hostname(host->mmc), __func__, ret); 1000 ret = -EINVAL; 1001 goto out; 1002 } 1003 1004 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 1005 config |= CORE_START_CDC_TRAFFIC; 1006 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 1007 out: 1008 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1009 __func__, ret); 1010 return ret; 1011 } 1012 1013 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 1014 { 1015 struct mmc_host *mmc = host->mmc; 1016 u32 dll_status, config, ddr_cfg_offset; 1017 int ret; 1018 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1019 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1020 const struct sdhci_msm_offset *msm_offset = 1021 sdhci_priv_msm_offset(host); 1022 1023 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1024 1025 /* 1026 * Currently the core_ddr_config register defaults to desired 1027 * configuration on reset. Currently reprogramming the power on 1028 * reset (POR) value in case it might have been modified by 1029 * bootloaders. In the future, if this changes, then the desired 1030 * values will need to be programmed appropriately. 1031 */ 1032 if (msm_host->updated_ddr_cfg) 1033 ddr_cfg_offset = msm_offset->core_ddr_config; 1034 else 1035 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1036 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1037 1038 if (mmc->ios.enhanced_strobe) { 1039 config = readl_relaxed(host->ioaddr + 1040 msm_offset->core_ddr_200_cfg); 1041 config |= CORE_CMDIN_RCLK_EN; 1042 writel_relaxed(config, host->ioaddr + 1043 msm_offset->core_ddr_200_cfg); 1044 } 1045 1046 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1047 config |= CORE_DDR_CAL_EN; 1048 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1049 1050 ret = readl_relaxed_poll_timeout(host->ioaddr + 1051 msm_offset->core_dll_status, 1052 dll_status, 1053 (dll_status & CORE_DDR_DLL_LOCK), 1054 10, 1000); 1055 1056 if (ret == -ETIMEDOUT) { 1057 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1058 mmc_hostname(host->mmc), __func__); 1059 goto out; 1060 } 1061 1062 /* 1063 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1064 * When MCLK is gated OFF, it is not gated for less than 0.5us 1065 * and MCLK must be switched on for at-least 1us before DATA 1066 * starts coming. Controllers with 14lpp and later tech DLL cannot 1067 * guarantee above requirement. So PWRSAVE_DLL should not be 1068 * turned on for host controllers using this DLL. 1069 */ 1070 if (!msm_host->use_14lpp_dll_reset) { 1071 config = readl_relaxed(host->ioaddr + 1072 msm_offset->core_vendor_spec3); 1073 config |= CORE_PWRSAVE_DLL; 1074 writel_relaxed(config, host->ioaddr + 1075 msm_offset->core_vendor_spec3); 1076 } 1077 1078 /* 1079 * Drain writebuffer to ensure above DLL calibration 1080 * and PWRSAVE DLL is enabled. 1081 */ 1082 wmb(); 1083 out: 1084 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1085 __func__, ret); 1086 return ret; 1087 } 1088 1089 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1090 { 1091 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1092 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1093 struct mmc_host *mmc = host->mmc; 1094 int ret; 1095 u32 config; 1096 const struct sdhci_msm_offset *msm_offset = 1097 msm_host->offset; 1098 1099 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1100 1101 /* 1102 * Retuning in HS400 (DDR mode) will fail, just reset the 1103 * tuning block and restore the saved tuning phase. 1104 */ 1105 ret = msm_init_cm_dll(host); 1106 if (ret) 1107 goto out; 1108 1109 if (!mmc->ios.enhanced_strobe) { 1110 /* Set the selected phase in delay line hw block */ 1111 ret = msm_config_cm_dll_phase(host, 1112 msm_host->saved_tuning_phase); 1113 if (ret) 1114 goto out; 1115 config = readl_relaxed(host->ioaddr + 1116 msm_offset->core_dll_config); 1117 config |= CORE_CMD_DAT_TRACK_SEL; 1118 writel_relaxed(config, host->ioaddr + 1119 msm_offset->core_dll_config); 1120 } 1121 1122 if (msm_host->use_cdclp533) 1123 ret = sdhci_msm_cdclp533_calibration(host); 1124 else 1125 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1126 out: 1127 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1128 __func__, ret); 1129 return ret; 1130 } 1131 1132 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1133 { 1134 struct mmc_ios *ios = &host->mmc->ios; 1135 1136 /* 1137 * Tuning is required for SDR104, HS200 and HS400 cards and 1138 * if clock frequency is greater than 100MHz in these modes. 1139 */ 1140 if (host->clock <= CORE_FREQ_100MHZ || 1141 !(ios->timing == MMC_TIMING_MMC_HS400 || 1142 ios->timing == MMC_TIMING_MMC_HS200 || 1143 ios->timing == MMC_TIMING_UHS_SDR104) || 1144 ios->enhanced_strobe) 1145 return false; 1146 1147 return true; 1148 } 1149 1150 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1151 { 1152 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1153 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1154 int ret; 1155 1156 /* 1157 * SDR DLL comes into picture only for timing modes which needs 1158 * tuning. 1159 */ 1160 if (!sdhci_msm_is_tuning_needed(host)) 1161 return 0; 1162 1163 /* Reset the tuning block */ 1164 ret = msm_init_cm_dll(host); 1165 if (ret) 1166 return ret; 1167 1168 /* Restore the tuning block */ 1169 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1170 1171 return ret; 1172 } 1173 1174 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1175 { 1176 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1177 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1178 msm_offset->core_dll_config); 1179 1180 config = oldconfig; 1181 if (enable) { 1182 config |= CORE_CDR_EN; 1183 config &= ~CORE_CDR_EXT_EN; 1184 } else { 1185 config &= ~CORE_CDR_EN; 1186 config |= CORE_CDR_EXT_EN; 1187 } 1188 1189 if (config != oldconfig) { 1190 writel_relaxed(config, host->ioaddr + 1191 msm_offset->core_dll_config); 1192 } 1193 } 1194 1195 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1196 { 1197 struct sdhci_host *host = mmc_priv(mmc); 1198 int tuning_seq_cnt = 10; 1199 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1200 int rc; 1201 struct mmc_ios ios = host->mmc->ios; 1202 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1203 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1204 1205 if (!sdhci_msm_is_tuning_needed(host)) { 1206 msm_host->use_cdr = false; 1207 sdhci_msm_set_cdr(host, false); 1208 return 0; 1209 } 1210 1211 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1212 msm_host->use_cdr = true; 1213 1214 /* 1215 * Clear tuning_done flag before tuning to ensure proper 1216 * HS400 settings. 1217 */ 1218 msm_host->tuning_done = 0; 1219 1220 /* 1221 * For HS400 tuning in HS200 timing requires: 1222 * - select MCLK/2 in VENDOR_SPEC 1223 * - program MCLK to 400MHz (or nearest supported) in GCC 1224 */ 1225 if (host->flags & SDHCI_HS400_TUNING) { 1226 sdhci_msm_hc_select_mode(host); 1227 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1228 host->flags &= ~SDHCI_HS400_TUNING; 1229 } 1230 1231 retry: 1232 /* First of all reset the tuning block */ 1233 rc = msm_init_cm_dll(host); 1234 if (rc) 1235 return rc; 1236 1237 phase = 0; 1238 do { 1239 /* Set the phase in delay line hw block */ 1240 rc = msm_config_cm_dll_phase(host, phase); 1241 if (rc) 1242 return rc; 1243 1244 rc = mmc_send_tuning(mmc, opcode, NULL); 1245 if (!rc) { 1246 /* Tuning is successful at this tuning point */ 1247 tuned_phases[tuned_phase_cnt++] = phase; 1248 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1249 mmc_hostname(mmc), phase); 1250 } 1251 } while (++phase < ARRAY_SIZE(tuned_phases)); 1252 1253 if (tuned_phase_cnt) { 1254 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) { 1255 /* 1256 * All phases valid is _almost_ as bad as no phases 1257 * valid. Probably all phases are not really reliable 1258 * but we didn't detect where the unreliable place is. 1259 * That means we'll essentially be guessing and hoping 1260 * we get a good phase. Better to try a few times. 1261 */ 1262 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n", 1263 mmc_hostname(mmc)); 1264 if (--tuning_seq_cnt) { 1265 tuned_phase_cnt = 0; 1266 goto retry; 1267 } 1268 } 1269 1270 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1271 tuned_phase_cnt); 1272 if (rc < 0) 1273 return rc; 1274 else 1275 phase = rc; 1276 1277 /* 1278 * Finally set the selected phase in delay 1279 * line hw block. 1280 */ 1281 rc = msm_config_cm_dll_phase(host, phase); 1282 if (rc) 1283 return rc; 1284 msm_host->saved_tuning_phase = phase; 1285 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1286 mmc_hostname(mmc), phase); 1287 } else { 1288 if (--tuning_seq_cnt) 1289 goto retry; 1290 /* Tuning failed */ 1291 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1292 mmc_hostname(mmc)); 1293 rc = -EIO; 1294 } 1295 1296 if (!rc) 1297 msm_host->tuning_done = true; 1298 return rc; 1299 } 1300 1301 /* 1302 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1303 * This needs to be done for both tuning and enhanced_strobe mode. 1304 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1305 * fixed feedback clock is used. 1306 */ 1307 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1308 { 1309 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1310 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1311 int ret; 1312 1313 if (host->clock > CORE_FREQ_100MHZ && 1314 (msm_host->tuning_done || ios->enhanced_strobe) && 1315 !msm_host->calibration_done) { 1316 ret = sdhci_msm_hs400_dll_calibration(host); 1317 if (!ret) 1318 msm_host->calibration_done = true; 1319 else 1320 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1321 mmc_hostname(host->mmc), ret); 1322 } 1323 } 1324 1325 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1326 unsigned int uhs) 1327 { 1328 struct mmc_host *mmc = host->mmc; 1329 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1330 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1331 u16 ctrl_2; 1332 u32 config; 1333 const struct sdhci_msm_offset *msm_offset = 1334 msm_host->offset; 1335 1336 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1337 /* Select Bus Speed Mode for host */ 1338 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1339 switch (uhs) { 1340 case MMC_TIMING_UHS_SDR12: 1341 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1342 break; 1343 case MMC_TIMING_UHS_SDR25: 1344 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1345 break; 1346 case MMC_TIMING_UHS_SDR50: 1347 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1348 break; 1349 case MMC_TIMING_MMC_HS400: 1350 case MMC_TIMING_MMC_HS200: 1351 case MMC_TIMING_UHS_SDR104: 1352 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1353 break; 1354 case MMC_TIMING_UHS_DDR50: 1355 case MMC_TIMING_MMC_DDR52: 1356 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1357 break; 1358 } 1359 1360 /* 1361 * When clock frequency is less than 100MHz, the feedback clock must be 1362 * provided and DLL must not be used so that tuning can be skipped. To 1363 * provide feedback clock, the mode selection can be any value less 1364 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1365 */ 1366 if (host->clock <= CORE_FREQ_100MHZ) { 1367 if (uhs == MMC_TIMING_MMC_HS400 || 1368 uhs == MMC_TIMING_MMC_HS200 || 1369 uhs == MMC_TIMING_UHS_SDR104) 1370 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1371 /* 1372 * DLL is not required for clock <= 100MHz 1373 * Thus, make sure DLL it is disabled when not required 1374 */ 1375 config = readl_relaxed(host->ioaddr + 1376 msm_offset->core_dll_config); 1377 config |= CORE_DLL_RST; 1378 writel_relaxed(config, host->ioaddr + 1379 msm_offset->core_dll_config); 1380 1381 config = readl_relaxed(host->ioaddr + 1382 msm_offset->core_dll_config); 1383 config |= CORE_DLL_PDN; 1384 writel_relaxed(config, host->ioaddr + 1385 msm_offset->core_dll_config); 1386 1387 /* 1388 * The DLL needs to be restored and CDCLP533 recalibrated 1389 * when the clock frequency is set back to 400MHz. 1390 */ 1391 msm_host->calibration_done = false; 1392 } 1393 1394 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1395 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1396 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1397 1398 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1399 sdhci_msm_hs400(host, &mmc->ios); 1400 } 1401 1402 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1403 { 1404 struct platform_device *pdev = msm_host->pdev; 1405 int ret; 1406 1407 if (level) 1408 ret = pinctrl_pm_select_default_state(&pdev->dev); 1409 else 1410 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1411 1412 return ret; 1413 } 1414 1415 static void msm_config_vmmc_regulator(struct mmc_host *mmc, bool hpm) 1416 { 1417 int load; 1418 1419 if (!hpm) 1420 load = 0; 1421 else if (!mmc->card) 1422 load = max(MMC_VMMC_MAX_LOAD_UA, SD_VMMC_MAX_LOAD_UA); 1423 else if (mmc_card_mmc(mmc->card)) 1424 load = MMC_VMMC_MAX_LOAD_UA; 1425 else if (mmc_card_sd(mmc->card)) 1426 load = SD_VMMC_MAX_LOAD_UA; 1427 else 1428 return; 1429 1430 regulator_set_load(mmc->supply.vmmc, load); 1431 } 1432 1433 static void msm_config_vqmmc_regulator(struct mmc_host *mmc, bool hpm) 1434 { 1435 int load; 1436 1437 if (!hpm) 1438 load = 0; 1439 else if (!mmc->card) 1440 load = max(MMC_VQMMC_MAX_LOAD_UA, SD_VQMMC_MAX_LOAD_UA); 1441 else if (mmc_card_sd(mmc->card)) 1442 load = SD_VQMMC_MAX_LOAD_UA; 1443 else 1444 return; 1445 1446 regulator_set_load(mmc->supply.vqmmc, load); 1447 } 1448 1449 static int sdhci_msm_set_vmmc(struct sdhci_msm_host *msm_host, 1450 struct mmc_host *mmc, bool hpm) 1451 { 1452 if (IS_ERR(mmc->supply.vmmc)) 1453 return 0; 1454 1455 msm_config_vmmc_regulator(mmc, hpm); 1456 1457 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1458 } 1459 1460 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1461 struct mmc_host *mmc, bool level) 1462 { 1463 int ret; 1464 struct mmc_ios ios; 1465 1466 if (msm_host->vqmmc_enabled == level) 1467 return 0; 1468 1469 msm_config_vqmmc_regulator(mmc, level); 1470 1471 if (level) { 1472 /* Set the IO voltage regulator to default voltage level */ 1473 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1474 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1475 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1476 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1477 1478 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1479 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1480 if (ret < 0) { 1481 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1482 mmc_hostname(mmc), ret); 1483 goto out; 1484 } 1485 } 1486 ret = regulator_enable(mmc->supply.vqmmc); 1487 } else { 1488 ret = regulator_disable(mmc->supply.vqmmc); 1489 } 1490 1491 if (ret) 1492 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1493 mmc_hostname(mmc), level ? "en":"dis", ret); 1494 else 1495 msm_host->vqmmc_enabled = level; 1496 out: 1497 return ret; 1498 } 1499 1500 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1501 struct mmc_host *mmc, bool hpm) 1502 { 1503 int load, ret; 1504 1505 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1506 ret = regulator_set_load(mmc->supply.vqmmc, load); 1507 if (ret) 1508 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1509 mmc_hostname(mmc), ret); 1510 return ret; 1511 } 1512 1513 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1514 struct mmc_host *mmc, bool level) 1515 { 1516 int ret; 1517 bool always_on; 1518 1519 if (IS_ERR(mmc->supply.vqmmc) || 1520 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1521 return 0; 1522 /* 1523 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1524 * and HPM modes by setting the corresponding load. 1525 * 1526 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1527 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1528 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1529 * Vqmmc should remain ON, So just set the load instead of turning it 1530 * off/on. 1531 */ 1532 always_on = !mmc_card_is_removable(mmc) && 1533 mmc->card && mmc_card_mmc(mmc->card); 1534 1535 if (always_on) 1536 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1537 else 1538 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1539 1540 return ret; 1541 } 1542 1543 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1544 { 1545 init_waitqueue_head(&msm_host->pwr_irq_wait); 1546 } 1547 1548 static inline void sdhci_msm_complete_pwr_irq_wait( 1549 struct sdhci_msm_host *msm_host) 1550 { 1551 wake_up(&msm_host->pwr_irq_wait); 1552 } 1553 1554 /* 1555 * sdhci_msm_check_power_status API should be called when registers writes 1556 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1557 * To what state the register writes will change the IO lines should be passed 1558 * as the argument req_type. This API will check whether the IO line's state 1559 * is already the expected state and will wait for power irq only if 1560 * power irq is expected to be triggered based on the current IO line state 1561 * and expected IO line state. 1562 */ 1563 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1564 { 1565 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1566 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1567 bool done = false; 1568 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1569 const struct sdhci_msm_offset *msm_offset = 1570 msm_host->offset; 1571 1572 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1573 mmc_hostname(host->mmc), __func__, req_type, 1574 msm_host->curr_pwr_state, msm_host->curr_io_level); 1575 1576 /* 1577 * The power interrupt will not be generated for signal voltage 1578 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1579 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1580 * it as always set. 1581 */ 1582 if (!msm_host->mci_removed) 1583 val = msm_host_readl(msm_host, host, 1584 msm_offset->core_generics); 1585 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1586 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1587 return; 1588 } 1589 1590 /* 1591 * The IRQ for request type IO High/LOW will be generated when - 1592 * there is a state change in 1.8V enable bit (bit 3) of 1593 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1594 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1595 * to set it to 3.3V before card detection happens, the 1596 * IRQ doesn't get triggered as there is no state change in this bit. 1597 * The driver already handles this case by changing the IO voltage 1598 * level to high as part of controller power up sequence. Hence, check 1599 * for host->pwr to handle a case where IO voltage high request is 1600 * issued even before controller power up. 1601 */ 1602 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1603 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1604 mmc_hostname(host->mmc), req_type); 1605 return; 1606 } 1607 if ((req_type & msm_host->curr_pwr_state) || 1608 (req_type & msm_host->curr_io_level)) 1609 done = true; 1610 /* 1611 * This is needed here to handle cases where register writes will 1612 * not change the current bus state or io level of the controller. 1613 * In this case, no power irq will be triggerred and we should 1614 * not wait. 1615 */ 1616 if (!done) { 1617 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1618 msm_host->pwr_irq_flag, 1619 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1620 dev_warn(&msm_host->pdev->dev, 1621 "%s: pwr_irq for req: (%d) timed out\n", 1622 mmc_hostname(host->mmc), req_type); 1623 } 1624 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1625 __func__, req_type); 1626 } 1627 1628 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1629 { 1630 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1631 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1632 const struct sdhci_msm_offset *msm_offset = 1633 msm_host->offset; 1634 1635 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1636 mmc_hostname(host->mmc), 1637 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1638 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1639 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1640 } 1641 1642 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1643 { 1644 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1645 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1646 struct mmc_host *mmc = host->mmc; 1647 u32 irq_status, irq_ack = 0; 1648 int retry = 10, ret; 1649 u32 pwr_state = 0, io_level = 0; 1650 u32 config; 1651 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1652 1653 irq_status = msm_host_readl(msm_host, host, 1654 msm_offset->core_pwrctl_status); 1655 irq_status &= INT_MASK; 1656 1657 msm_host_writel(msm_host, irq_status, host, 1658 msm_offset->core_pwrctl_clear); 1659 1660 /* 1661 * There is a rare HW scenario where the first clear pulse could be 1662 * lost when actual reset and clear/read of status register is 1663 * happening at a time. Hence, retry for at least 10 times to make 1664 * sure status register is cleared. Otherwise, this will result in 1665 * a spurious power IRQ resulting in system instability. 1666 */ 1667 while (irq_status & msm_host_readl(msm_host, host, 1668 msm_offset->core_pwrctl_status)) { 1669 if (retry == 0) { 1670 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1671 mmc_hostname(host->mmc), irq_status); 1672 sdhci_msm_dump_pwr_ctrl_regs(host); 1673 WARN_ON(1); 1674 break; 1675 } 1676 msm_host_writel(msm_host, irq_status, host, 1677 msm_offset->core_pwrctl_clear); 1678 retry--; 1679 udelay(10); 1680 } 1681 1682 /* Handle BUS ON/OFF*/ 1683 if (irq_status & CORE_PWRCTL_BUS_ON) { 1684 pwr_state = REQ_BUS_ON; 1685 io_level = REQ_IO_HIGH; 1686 } 1687 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1688 pwr_state = REQ_BUS_OFF; 1689 io_level = REQ_IO_LOW; 1690 } 1691 1692 if (pwr_state) { 1693 ret = sdhci_msm_set_vmmc(msm_host, mmc, 1694 pwr_state & REQ_BUS_ON); 1695 if (!ret) 1696 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1697 pwr_state & REQ_BUS_ON); 1698 if (!ret) 1699 ret = sdhci_msm_set_pincfg(msm_host, 1700 pwr_state & REQ_BUS_ON); 1701 if (!ret) 1702 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1703 else 1704 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1705 } 1706 1707 /* Handle IO LOW/HIGH */ 1708 if (irq_status & CORE_PWRCTL_IO_LOW) 1709 io_level = REQ_IO_LOW; 1710 1711 if (irq_status & CORE_PWRCTL_IO_HIGH) 1712 io_level = REQ_IO_HIGH; 1713 1714 if (io_level) 1715 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1716 1717 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1718 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1719 if (ret < 0) { 1720 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1721 mmc_hostname(mmc), ret, 1722 mmc->ios.signal_voltage, mmc->ios.vdd, 1723 irq_status); 1724 irq_ack |= CORE_PWRCTL_IO_FAIL; 1725 } 1726 } 1727 1728 /* 1729 * The driver has to acknowledge the interrupt, switch voltages and 1730 * report back if it succeded or not to this register. The voltage 1731 * switches are handled by the sdhci core, so just report success. 1732 */ 1733 msm_host_writel(msm_host, irq_ack, host, 1734 msm_offset->core_pwrctl_ctl); 1735 1736 /* 1737 * If we don't have info regarding the voltage levels supported by 1738 * regulators, don't change the IO PAD PWR SWITCH. 1739 */ 1740 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1741 u32 new_config; 1742 /* 1743 * We should unset IO PAD PWR switch only if the register write 1744 * can set IO lines high and the regulator also switches to 3 V. 1745 * Else, we should keep the IO PAD PWR switch set. 1746 * This is applicable to certain targets where eMMC vccq supply 1747 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1748 * IO PAD PWR switch must be kept set to reflect actual 1749 * regulator voltage. This way, during initialization of 1750 * controllers with only 1.8V, we will set the IO PAD bit 1751 * without waiting for a REQ_IO_LOW. 1752 */ 1753 config = readl_relaxed(host->ioaddr + 1754 msm_offset->core_vendor_spec); 1755 new_config = config; 1756 1757 if ((io_level & REQ_IO_HIGH) && 1758 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1759 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1760 else if ((io_level & REQ_IO_LOW) || 1761 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1762 new_config |= CORE_IO_PAD_PWR_SWITCH; 1763 1764 if (config ^ new_config) 1765 writel_relaxed(new_config, host->ioaddr + 1766 msm_offset->core_vendor_spec); 1767 } 1768 1769 if (pwr_state) 1770 msm_host->curr_pwr_state = pwr_state; 1771 if (io_level) 1772 msm_host->curr_io_level = io_level; 1773 1774 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1775 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1776 irq_ack); 1777 } 1778 1779 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1780 { 1781 struct sdhci_host *host = (struct sdhci_host *)data; 1782 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1783 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1784 1785 sdhci_msm_handle_pwr_irq(host, irq); 1786 msm_host->pwr_irq_flag = 1; 1787 sdhci_msm_complete_pwr_irq_wait(msm_host); 1788 1789 1790 return IRQ_HANDLED; 1791 } 1792 1793 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1794 { 1795 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1796 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1797 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1798 1799 return clk_round_rate(core_clk, ULONG_MAX); 1800 } 1801 1802 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1803 { 1804 return SDHCI_MSM_MIN_CLOCK; 1805 } 1806 1807 /* 1808 * __sdhci_msm_set_clock - sdhci_msm clock control. 1809 * 1810 * Description: 1811 * MSM controller does not use internal divider and 1812 * instead directly control the GCC clock as per 1813 * HW recommendation. 1814 **/ 1815 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1816 { 1817 u16 clk; 1818 1819 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1820 1821 if (clock == 0) 1822 return; 1823 1824 /* 1825 * MSM controller do not use clock divider. 1826 * Thus read SDHCI_CLOCK_CONTROL and only enable 1827 * clock with no divider value programmed. 1828 */ 1829 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1830 sdhci_enable_clk(host, clk); 1831 } 1832 1833 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1834 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1835 { 1836 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1837 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1838 1839 if (!clock) { 1840 host->mmc->actual_clock = msm_host->clk_rate = 0; 1841 goto out; 1842 } 1843 1844 sdhci_msm_hc_select_mode(host); 1845 1846 msm_set_clock_rate_for_bus_mode(host, clock); 1847 out: 1848 __sdhci_msm_set_clock(host, clock); 1849 } 1850 1851 /*****************************************************************************\ 1852 * * 1853 * Inline Crypto Engine (ICE) support * 1854 * * 1855 \*****************************************************************************/ 1856 1857 #ifdef CONFIG_MMC_CRYPTO 1858 1859 static const struct blk_crypto_ll_ops sdhci_msm_crypto_ops; /* forward decl */ 1860 1861 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 1862 struct cqhci_host *cq_host) 1863 { 1864 struct mmc_host *mmc = msm_host->mmc; 1865 struct blk_crypto_profile *profile = &mmc->crypto_profile; 1866 struct device *dev = mmc_dev(mmc); 1867 struct qcom_ice *ice; 1868 union cqhci_crypto_capabilities caps; 1869 union cqhci_crypto_cap_entry cap; 1870 int err; 1871 int i; 1872 1873 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) 1874 return 0; 1875 1876 ice = of_qcom_ice_get(dev); 1877 if (ice == ERR_PTR(-EOPNOTSUPP)) { 1878 dev_warn(dev, "Disabling inline encryption support\n"); 1879 ice = NULL; 1880 } 1881 1882 if (IS_ERR_OR_NULL(ice)) 1883 return PTR_ERR_OR_ZERO(ice); 1884 1885 msm_host->ice = ice; 1886 1887 /* Initialize the blk_crypto_profile */ 1888 1889 caps.reg_val = cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP)); 1890 1891 /* The number of keyslots supported is (CFGC+1) */ 1892 err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1); 1893 if (err) 1894 return err; 1895 1896 profile->ll_ops = sdhci_msm_crypto_ops; 1897 profile->max_dun_bytes_supported = 4; 1898 profile->dev = dev; 1899 1900 /* 1901 * Currently this driver only supports AES-256-XTS. All known versions 1902 * of ICE support it, but to be safe make sure it is really declared in 1903 * the crypto capability registers. The crypto capability registers 1904 * also give the supported data unit size(s). 1905 */ 1906 for (i = 0; i < caps.num_crypto_cap; i++) { 1907 cap.reg_val = cpu_to_le32(cqhci_readl(cq_host, 1908 CQHCI_CRYPTOCAP + 1909 i * sizeof(__le32))); 1910 if (cap.algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS && 1911 cap.key_size == CQHCI_CRYPTO_KEY_SIZE_256) 1912 profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |= 1913 cap.sdus_mask * 512; 1914 } 1915 1916 mmc->caps2 |= MMC_CAP2_CRYPTO; 1917 return 0; 1918 } 1919 1920 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 1921 { 1922 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1923 qcom_ice_enable(msm_host->ice); 1924 } 1925 1926 static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 1927 { 1928 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1929 return qcom_ice_resume(msm_host->ice); 1930 1931 return 0; 1932 } 1933 1934 static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host) 1935 { 1936 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1937 return qcom_ice_suspend(msm_host->ice); 1938 1939 return 0; 1940 } 1941 1942 static inline struct sdhci_msm_host * 1943 sdhci_msm_host_from_crypto_profile(struct blk_crypto_profile *profile) 1944 { 1945 struct mmc_host *mmc = mmc_from_crypto_profile(profile); 1946 struct sdhci_host *host = mmc_priv(mmc); 1947 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1948 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1949 1950 return msm_host; 1951 } 1952 1953 /* 1954 * Program a key into a QC ICE keyslot. QC ICE requires a QC-specific SCM call 1955 * for this; it doesn't support the standard way. 1956 */ 1957 static int sdhci_msm_ice_keyslot_program(struct blk_crypto_profile *profile, 1958 const struct blk_crypto_key *key, 1959 unsigned int slot) 1960 { 1961 struct sdhci_msm_host *msm_host = 1962 sdhci_msm_host_from_crypto_profile(profile); 1963 1964 /* Only AES-256-XTS has been tested so far. */ 1965 if (key->crypto_cfg.crypto_mode != BLK_ENCRYPTION_MODE_AES_256_XTS) 1966 return -EOPNOTSUPP; 1967 1968 return qcom_ice_program_key(msm_host->ice, 1969 QCOM_ICE_CRYPTO_ALG_AES_XTS, 1970 QCOM_ICE_CRYPTO_KEY_SIZE_256, 1971 key->raw, 1972 key->crypto_cfg.data_unit_size / 512, 1973 slot); 1974 } 1975 1976 static int sdhci_msm_ice_keyslot_evict(struct blk_crypto_profile *profile, 1977 const struct blk_crypto_key *key, 1978 unsigned int slot) 1979 { 1980 struct sdhci_msm_host *msm_host = 1981 sdhci_msm_host_from_crypto_profile(profile); 1982 1983 return qcom_ice_evict_key(msm_host->ice, slot); 1984 } 1985 1986 static const struct blk_crypto_ll_ops sdhci_msm_crypto_ops = { 1987 .keyslot_program = sdhci_msm_ice_keyslot_program, 1988 .keyslot_evict = sdhci_msm_ice_keyslot_evict, 1989 }; 1990 1991 #else /* CONFIG_MMC_CRYPTO */ 1992 1993 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 1994 struct cqhci_host *cq_host) 1995 { 1996 return 0; 1997 } 1998 1999 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 2000 { 2001 } 2002 2003 static inline __maybe_unused int 2004 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 2005 { 2006 return 0; 2007 } 2008 2009 static inline __maybe_unused int 2010 sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host) 2011 { 2012 return 0; 2013 } 2014 #endif /* !CONFIG_MMC_CRYPTO */ 2015 2016 /*****************************************************************************\ 2017 * * 2018 * MSM Command Queue Engine (CQE) * 2019 * * 2020 \*****************************************************************************/ 2021 2022 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 2023 { 2024 int cmd_error = 0; 2025 int data_error = 0; 2026 2027 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 2028 return intmask; 2029 2030 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 2031 return 0; 2032 } 2033 2034 static void sdhci_msm_cqe_enable(struct mmc_host *mmc) 2035 { 2036 struct sdhci_host *host = mmc_priv(mmc); 2037 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2038 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2039 2040 sdhci_cqe_enable(mmc); 2041 sdhci_msm_ice_enable(msm_host); 2042 } 2043 2044 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 2045 { 2046 struct sdhci_host *host = mmc_priv(mmc); 2047 unsigned long flags; 2048 u32 ctrl; 2049 2050 /* 2051 * When CQE is halted, the legacy SDHCI path operates only 2052 * on 16-byte descriptors in 64bit mode. 2053 */ 2054 if (host->flags & SDHCI_USE_64_BIT_DMA) 2055 host->desc_sz = 16; 2056 2057 spin_lock_irqsave(&host->lock, flags); 2058 2059 /* 2060 * During CQE command transfers, command complete bit gets latched. 2061 * So s/w should clear command complete interrupt status when CQE is 2062 * either halted or disabled. Otherwise unexpected SDCHI legacy 2063 * interrupt gets triggered when CQE is halted/disabled. 2064 */ 2065 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 2066 ctrl |= SDHCI_INT_RESPONSE; 2067 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 2068 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 2069 2070 spin_unlock_irqrestore(&host->lock, flags); 2071 2072 sdhci_cqe_disable(mmc, recovery); 2073 } 2074 2075 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd) 2076 { 2077 u32 count, start = 15; 2078 2079 __sdhci_set_timeout(host, cmd); 2080 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL); 2081 /* 2082 * Update software timeout value if its value is less than hardware data 2083 * timeout value. Qcom SoC hardware data timeout value was calculated 2084 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock. 2085 */ 2086 if (cmd && cmd->data && host->clock > 400000 && 2087 host->clock <= 50000000 && 2088 ((1 << (count + start)) > (10 * host->clock))) 2089 host->data_timeout = 22LL * NSEC_PER_SEC; 2090 } 2091 2092 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 2093 .enable = sdhci_msm_cqe_enable, 2094 .disable = sdhci_msm_cqe_disable, 2095 #ifdef CONFIG_MMC_CRYPTO 2096 .uses_custom_crypto_profile = true, 2097 #endif 2098 }; 2099 2100 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 2101 struct platform_device *pdev) 2102 { 2103 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2104 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2105 struct cqhci_host *cq_host; 2106 bool dma64; 2107 u32 cqcfg; 2108 int ret; 2109 2110 /* 2111 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 2112 * So ensure ADMA table is allocated for 16byte descriptors. 2113 */ 2114 if (host->caps & SDHCI_CAN_64BIT) 2115 host->alloc_desc_sz = 16; 2116 2117 ret = sdhci_setup_host(host); 2118 if (ret) 2119 return ret; 2120 2121 cq_host = cqhci_pltfm_init(pdev); 2122 if (IS_ERR(cq_host)) { 2123 ret = PTR_ERR(cq_host); 2124 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 2125 goto cleanup; 2126 } 2127 2128 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 2129 cq_host->ops = &sdhci_msm_cqhci_ops; 2130 2131 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 2132 2133 ret = sdhci_msm_ice_init(msm_host, cq_host); 2134 if (ret) 2135 goto cleanup; 2136 2137 ret = cqhci_init(cq_host, host->mmc, dma64); 2138 if (ret) { 2139 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 2140 mmc_hostname(host->mmc), ret); 2141 goto cleanup; 2142 } 2143 2144 /* Disable cqe reset due to cqe enable signal */ 2145 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 2146 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 2147 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 2148 2149 /* 2150 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 2151 * So limit desc_sz to 12 so that the data commands that are sent 2152 * during card initialization (before CQE gets enabled) would 2153 * get executed without any issues. 2154 */ 2155 if (host->flags & SDHCI_USE_64_BIT_DMA) 2156 host->desc_sz = 12; 2157 2158 ret = __sdhci_add_host(host); 2159 if (ret) 2160 goto cleanup; 2161 2162 dev_info(&pdev->dev, "%s: CQE init: success\n", 2163 mmc_hostname(host->mmc)); 2164 return ret; 2165 2166 cleanup: 2167 sdhci_cleanup_host(host); 2168 return ret; 2169 } 2170 2171 /* 2172 * Platform specific register write functions. This is so that, if any 2173 * register write needs to be followed up by platform specific actions, 2174 * they can be added here. These functions can go to sleep when writes 2175 * to certain registers are done. 2176 * These functions are relying on sdhci_set_ios not using spinlock. 2177 */ 2178 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 2179 { 2180 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2181 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2182 u32 req_type = 0; 2183 2184 switch (reg) { 2185 case SDHCI_HOST_CONTROL2: 2186 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 2187 REQ_IO_HIGH; 2188 break; 2189 case SDHCI_SOFTWARE_RESET: 2190 if (host->pwr && (val & SDHCI_RESET_ALL)) 2191 req_type = REQ_BUS_OFF; 2192 break; 2193 case SDHCI_POWER_CONTROL: 2194 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 2195 break; 2196 case SDHCI_TRANSFER_MODE: 2197 msm_host->transfer_mode = val; 2198 break; 2199 case SDHCI_COMMAND: 2200 if (!msm_host->use_cdr) 2201 break; 2202 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 2203 !mmc_op_tuning(SDHCI_GET_CMD(val))) 2204 sdhci_msm_set_cdr(host, true); 2205 else 2206 sdhci_msm_set_cdr(host, false); 2207 break; 2208 } 2209 2210 if (req_type) { 2211 msm_host->pwr_irq_flag = 0; 2212 /* 2213 * Since this register write may trigger a power irq, ensure 2214 * all previous register writes are complete by this point. 2215 */ 2216 mb(); 2217 } 2218 return req_type; 2219 } 2220 2221 /* This function may sleep*/ 2222 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 2223 { 2224 u32 req_type = 0; 2225 2226 req_type = __sdhci_msm_check_write(host, val, reg); 2227 writew_relaxed(val, host->ioaddr + reg); 2228 2229 if (req_type) 2230 sdhci_msm_check_power_status(host, req_type); 2231 } 2232 2233 /* This function may sleep*/ 2234 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 2235 { 2236 u32 req_type = 0; 2237 2238 req_type = __sdhci_msm_check_write(host, val, reg); 2239 2240 writeb_relaxed(val, host->ioaddr + reg); 2241 2242 if (req_type) 2243 sdhci_msm_check_power_status(host, req_type); 2244 } 2245 2246 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 2247 { 2248 struct mmc_host *mmc = msm_host->mmc; 2249 struct regulator *supply = mmc->supply.vqmmc; 2250 u32 caps = 0, config; 2251 struct sdhci_host *host = mmc_priv(mmc); 2252 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2253 2254 if (!IS_ERR(mmc->supply.vqmmc)) { 2255 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 2256 caps |= CORE_1_8V_SUPPORT; 2257 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 2258 caps |= CORE_3_0V_SUPPORT; 2259 2260 if (!caps) 2261 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 2262 mmc_hostname(mmc)); 2263 } 2264 2265 if (caps) { 2266 /* 2267 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 2268 * bit can be used as required later on. 2269 */ 2270 u32 io_level = msm_host->curr_io_level; 2271 2272 config = readl_relaxed(host->ioaddr + 2273 msm_offset->core_vendor_spec); 2274 config |= CORE_IO_PAD_PWR_SWITCH_EN; 2275 2276 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2277 config &= ~CORE_IO_PAD_PWR_SWITCH; 2278 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2279 config |= CORE_IO_PAD_PWR_SWITCH; 2280 2281 writel_relaxed(config, 2282 host->ioaddr + msm_offset->core_vendor_spec); 2283 } 2284 msm_host->caps_0 |= caps; 2285 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2286 } 2287 2288 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2289 { 2290 int ret; 2291 2292 ret = mmc_regulator_get_supply(msm_host->mmc); 2293 if (ret) 2294 return ret; 2295 2296 sdhci_msm_set_regulator_caps(msm_host); 2297 2298 return 0; 2299 } 2300 2301 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2302 struct mmc_ios *ios) 2303 { 2304 struct sdhci_host *host = mmc_priv(mmc); 2305 u16 ctrl, status; 2306 2307 /* 2308 * Signal Voltage Switching is only applicable for Host Controllers 2309 * v3.00 and above. 2310 */ 2311 if (host->version < SDHCI_SPEC_300) 2312 return 0; 2313 2314 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2315 2316 switch (ios->signal_voltage) { 2317 case MMC_SIGNAL_VOLTAGE_330: 2318 if (!(host->flags & SDHCI_SIGNALING_330)) 2319 return -EINVAL; 2320 2321 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2322 ctrl &= ~SDHCI_CTRL_VDD_180; 2323 break; 2324 case MMC_SIGNAL_VOLTAGE_180: 2325 if (!(host->flags & SDHCI_SIGNALING_180)) 2326 return -EINVAL; 2327 2328 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2329 ctrl |= SDHCI_CTRL_VDD_180; 2330 break; 2331 2332 default: 2333 return -EINVAL; 2334 } 2335 2336 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2337 2338 /* Wait for 5ms */ 2339 usleep_range(5000, 5500); 2340 2341 /* regulator output should be stable within 5 ms */ 2342 status = ctrl & SDHCI_CTRL_VDD_180; 2343 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2344 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2345 return 0; 2346 2347 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2348 mmc_hostname(mmc)); 2349 2350 return -EAGAIN; 2351 } 2352 2353 #define DRIVER_NAME "sdhci_msm" 2354 #define SDHCI_MSM_DUMP(f, x...) \ 2355 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2356 2357 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2358 { 2359 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2360 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2361 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2362 2363 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2364 2365 SDHCI_MSM_DUMP( 2366 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2367 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2368 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2369 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2370 SDHCI_MSM_DUMP( 2371 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2372 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2373 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2374 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2375 SDHCI_MSM_DUMP( 2376 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2377 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2378 readl_relaxed(host->ioaddr + 2379 msm_offset->core_vendor_spec_func2), 2380 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2381 } 2382 2383 static const struct sdhci_msm_variant_ops mci_var_ops = { 2384 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2385 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2386 }; 2387 2388 static const struct sdhci_msm_variant_ops v5_var_ops = { 2389 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2390 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2391 }; 2392 2393 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2394 .var_ops = &mci_var_ops, 2395 .offset = &sdhci_msm_mci_offset, 2396 }; 2397 2398 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2399 .mci_removed = true, 2400 .var_ops = &v5_var_ops, 2401 .offset = &sdhci_msm_v5_offset, 2402 }; 2403 2404 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2405 .mci_removed = true, 2406 .restore_dll_config = true, 2407 .var_ops = &v5_var_ops, 2408 .offset = &sdhci_msm_v5_offset, 2409 }; 2410 2411 static const struct of_device_id sdhci_msm_dt_match[] = { 2412 /* 2413 * Do not add new variants to the driver which are compatible with 2414 * generic ones, unless they need customization. 2415 */ 2416 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2417 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2418 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var}, 2419 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2420 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var}, 2421 {}, 2422 }; 2423 2424 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2425 2426 static const struct sdhci_ops sdhci_msm_ops = { 2427 .reset = sdhci_and_cqhci_reset, 2428 .set_clock = sdhci_msm_set_clock, 2429 .get_min_clock = sdhci_msm_get_min_clock, 2430 .get_max_clock = sdhci_msm_get_max_clock, 2431 .set_bus_width = sdhci_set_bus_width, 2432 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2433 .write_w = sdhci_msm_writew, 2434 .write_b = sdhci_msm_writeb, 2435 .irq = sdhci_msm_cqe_irq, 2436 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2437 .set_power = sdhci_set_power_noreg, 2438 .set_timeout = sdhci_msm_set_timeout, 2439 }; 2440 2441 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2442 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2443 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2444 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2445 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2446 2447 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2448 .ops = &sdhci_msm_ops, 2449 }; 2450 2451 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2452 struct sdhci_host *host) 2453 { 2454 struct device_node *node = pdev->dev.of_node; 2455 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2456 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2457 2458 if (of_property_read_u32(node, "qcom,ddr-config", 2459 &msm_host->ddr_config)) 2460 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2461 2462 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2463 2464 if (of_device_is_compatible(node, "qcom,msm8916-sdhci")) 2465 host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA; 2466 } 2467 2468 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host) 2469 { 2470 struct reset_control *reset; 2471 int ret = 0; 2472 2473 reset = reset_control_get_optional_exclusive(dev, NULL); 2474 if (IS_ERR(reset)) 2475 return dev_err_probe(dev, PTR_ERR(reset), 2476 "unable to acquire core_reset\n"); 2477 2478 if (!reset) 2479 return ret; 2480 2481 ret = reset_control_assert(reset); 2482 if (ret) { 2483 reset_control_put(reset); 2484 return dev_err_probe(dev, ret, "core_reset assert failed\n"); 2485 } 2486 2487 /* 2488 * The hardware requirement for delay between assert/deassert 2489 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to 2490 * ~125us (4/32768). To be on the safe side add 200us delay. 2491 */ 2492 usleep_range(200, 210); 2493 2494 ret = reset_control_deassert(reset); 2495 if (ret) { 2496 reset_control_put(reset); 2497 return dev_err_probe(dev, ret, "core_reset deassert failed\n"); 2498 } 2499 2500 usleep_range(200, 210); 2501 reset_control_put(reset); 2502 2503 return ret; 2504 } 2505 2506 static int sdhci_msm_probe(struct platform_device *pdev) 2507 { 2508 struct sdhci_host *host; 2509 struct sdhci_pltfm_host *pltfm_host; 2510 struct sdhci_msm_host *msm_host; 2511 struct clk *clk; 2512 int ret; 2513 u16 host_version, core_minor; 2514 u32 core_version, config; 2515 u8 core_major; 2516 const struct sdhci_msm_offset *msm_offset; 2517 const struct sdhci_msm_variant_info *var_info; 2518 struct device_node *node = pdev->dev.of_node; 2519 2520 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2521 if (IS_ERR(host)) 2522 return PTR_ERR(host); 2523 2524 host->sdma_boundary = 0; 2525 pltfm_host = sdhci_priv(host); 2526 msm_host = sdhci_pltfm_priv(pltfm_host); 2527 msm_host->mmc = host->mmc; 2528 msm_host->pdev = pdev; 2529 2530 ret = mmc_of_parse(host->mmc); 2531 if (ret) 2532 goto pltfm_free; 2533 2534 /* 2535 * Based on the compatible string, load the required msm host info from 2536 * the data associated with the version info. 2537 */ 2538 var_info = of_device_get_match_data(&pdev->dev); 2539 2540 msm_host->mci_removed = var_info->mci_removed; 2541 msm_host->restore_dll_config = var_info->restore_dll_config; 2542 msm_host->var_ops = var_info->var_ops; 2543 msm_host->offset = var_info->offset; 2544 2545 msm_offset = msm_host->offset; 2546 2547 sdhci_get_of_property(pdev); 2548 sdhci_msm_get_of_property(pdev, host); 2549 2550 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2551 2552 ret = sdhci_msm_gcc_reset(&pdev->dev, host); 2553 if (ret) 2554 goto pltfm_free; 2555 2556 /* Setup SDCC bus voter clock. */ 2557 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2558 if (!IS_ERR(msm_host->bus_clk)) { 2559 /* Vote for max. clk rate for max. performance */ 2560 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2561 if (ret) 2562 goto pltfm_free; 2563 ret = clk_prepare_enable(msm_host->bus_clk); 2564 if (ret) 2565 goto pltfm_free; 2566 } 2567 2568 /* Setup main peripheral bus clock */ 2569 clk = devm_clk_get(&pdev->dev, "iface"); 2570 if (IS_ERR(clk)) { 2571 ret = PTR_ERR(clk); 2572 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2573 goto bus_clk_disable; 2574 } 2575 msm_host->bulk_clks[1].clk = clk; 2576 2577 /* Setup SDC MMC clock */ 2578 clk = devm_clk_get(&pdev->dev, "core"); 2579 if (IS_ERR(clk)) { 2580 ret = PTR_ERR(clk); 2581 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2582 goto bus_clk_disable; 2583 } 2584 msm_host->bulk_clks[0].clk = clk; 2585 2586 /* Check for optional interconnect paths */ 2587 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2588 if (ret) 2589 goto bus_clk_disable; 2590 2591 ret = devm_pm_opp_set_clkname(&pdev->dev, "core"); 2592 if (ret) 2593 goto bus_clk_disable; 2594 2595 /* OPP table is optional */ 2596 ret = devm_pm_opp_of_add_table(&pdev->dev); 2597 if (ret && ret != -ENODEV) { 2598 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2599 goto bus_clk_disable; 2600 } 2601 2602 /* Vote for maximum clock rate for maximum performance */ 2603 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2604 if (ret) 2605 dev_warn(&pdev->dev, "core clock boost failed\n"); 2606 2607 clk = devm_clk_get(&pdev->dev, "cal"); 2608 if (IS_ERR(clk)) 2609 clk = NULL; 2610 msm_host->bulk_clks[2].clk = clk; 2611 2612 clk = devm_clk_get(&pdev->dev, "sleep"); 2613 if (IS_ERR(clk)) 2614 clk = NULL; 2615 msm_host->bulk_clks[3].clk = clk; 2616 2617 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2618 msm_host->bulk_clks); 2619 if (ret) 2620 goto bus_clk_disable; 2621 2622 /* 2623 * xo clock is needed for FLL feature of cm_dll. 2624 * In case if xo clock is not mentioned in DT, warn and proceed. 2625 */ 2626 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2627 if (IS_ERR(msm_host->xo_clk)) { 2628 ret = PTR_ERR(msm_host->xo_clk); 2629 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2630 } 2631 2632 if (!msm_host->mci_removed) { 2633 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2634 if (IS_ERR(msm_host->core_mem)) { 2635 ret = PTR_ERR(msm_host->core_mem); 2636 goto clk_disable; 2637 } 2638 } 2639 2640 /* Reset the vendor spec register to power on reset state */ 2641 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2642 host->ioaddr + msm_offset->core_vendor_spec); 2643 2644 if (!msm_host->mci_removed) { 2645 /* Set HC_MODE_EN bit in HC_MODE register */ 2646 msm_host_writel(msm_host, HC_MODE_EN, host, 2647 msm_offset->core_hc_mode); 2648 config = msm_host_readl(msm_host, host, 2649 msm_offset->core_hc_mode); 2650 config |= FF_CLK_SW_RST_DIS; 2651 msm_host_writel(msm_host, config, host, 2652 msm_offset->core_hc_mode); 2653 } 2654 2655 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2656 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2657 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2658 SDHCI_VENDOR_VER_SHIFT)); 2659 2660 core_version = msm_host_readl(msm_host, host, 2661 msm_offset->core_mci_version); 2662 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2663 CORE_VERSION_MAJOR_SHIFT; 2664 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2665 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2666 core_version, core_major, core_minor); 2667 2668 if (core_major == 1 && core_minor >= 0x42) 2669 msm_host->use_14lpp_dll_reset = true; 2670 2671 /* 2672 * SDCC 5 controller with major version 1, minor version 0x34 and later 2673 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2674 */ 2675 if (core_major == 1 && core_minor < 0x34) 2676 msm_host->use_cdclp533 = true; 2677 2678 /* 2679 * Support for some capabilities is not advertised by newer 2680 * controller versions and must be explicitly enabled. 2681 */ 2682 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2683 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2684 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2685 writel_relaxed(config, host->ioaddr + 2686 msm_offset->core_vendor_spec_capabilities0); 2687 } 2688 2689 if (core_major == 1 && core_minor >= 0x49) 2690 msm_host->updated_ddr_cfg = true; 2691 2692 if (core_major == 1 && core_minor >= 0x71) 2693 msm_host->uses_tassadar_dll = true; 2694 2695 ret = sdhci_msm_register_vreg(msm_host); 2696 if (ret) 2697 goto clk_disable; 2698 2699 /* 2700 * Power on reset state may trigger power irq if previous status of 2701 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2702 * interrupt in GIC, any pending power irq interrupt should be 2703 * acknowledged. Otherwise power irq interrupt handler would be 2704 * fired prematurely. 2705 */ 2706 sdhci_msm_handle_pwr_irq(host, 0); 2707 2708 /* 2709 * Ensure that above writes are propagated before interrupt enablement 2710 * in GIC. 2711 */ 2712 mb(); 2713 2714 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2715 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2716 if (msm_host->pwr_irq < 0) { 2717 ret = msm_host->pwr_irq; 2718 goto clk_disable; 2719 } 2720 2721 sdhci_msm_init_pwr_irq_wait(msm_host); 2722 /* Enable pwr irq interrupts */ 2723 msm_host_writel(msm_host, INT_MASK, host, 2724 msm_offset->core_pwrctl_mask); 2725 2726 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2727 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2728 dev_name(&pdev->dev), host); 2729 if (ret) { 2730 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2731 goto clk_disable; 2732 } 2733 2734 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2735 2736 /* Set the timeout value to max possible */ 2737 host->max_timeout_count = 0xF; 2738 2739 pm_runtime_get_noresume(&pdev->dev); 2740 pm_runtime_set_active(&pdev->dev); 2741 pm_runtime_enable(&pdev->dev); 2742 pm_runtime_set_autosuspend_delay(&pdev->dev, 2743 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2744 pm_runtime_use_autosuspend(&pdev->dev); 2745 2746 host->mmc_host_ops.start_signal_voltage_switch = 2747 sdhci_msm_start_signal_voltage_switch; 2748 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2749 if (of_property_read_bool(node, "supports-cqe")) 2750 ret = sdhci_msm_cqe_add_host(host, pdev); 2751 else 2752 ret = sdhci_add_host(host); 2753 if (ret) 2754 goto pm_runtime_disable; 2755 2756 pm_runtime_mark_last_busy(&pdev->dev); 2757 pm_runtime_put_autosuspend(&pdev->dev); 2758 2759 return 0; 2760 2761 pm_runtime_disable: 2762 pm_runtime_disable(&pdev->dev); 2763 pm_runtime_set_suspended(&pdev->dev); 2764 pm_runtime_put_noidle(&pdev->dev); 2765 clk_disable: 2766 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2767 msm_host->bulk_clks); 2768 bus_clk_disable: 2769 if (!IS_ERR(msm_host->bus_clk)) 2770 clk_disable_unprepare(msm_host->bus_clk); 2771 pltfm_free: 2772 sdhci_pltfm_free(pdev); 2773 return ret; 2774 } 2775 2776 static void sdhci_msm_remove(struct platform_device *pdev) 2777 { 2778 struct sdhci_host *host = platform_get_drvdata(pdev); 2779 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2780 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2781 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2782 0xffffffff); 2783 2784 sdhci_remove_host(host, dead); 2785 2786 pm_runtime_get_sync(&pdev->dev); 2787 pm_runtime_disable(&pdev->dev); 2788 pm_runtime_put_noidle(&pdev->dev); 2789 2790 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2791 msm_host->bulk_clks); 2792 if (!IS_ERR(msm_host->bus_clk)) 2793 clk_disable_unprepare(msm_host->bus_clk); 2794 sdhci_pltfm_free(pdev); 2795 } 2796 2797 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2798 { 2799 struct sdhci_host *host = dev_get_drvdata(dev); 2800 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2801 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2802 unsigned long flags; 2803 2804 spin_lock_irqsave(&host->lock, flags); 2805 host->runtime_suspended = true; 2806 spin_unlock_irqrestore(&host->lock, flags); 2807 2808 /* Drop the performance vote */ 2809 dev_pm_opp_set_rate(dev, 0); 2810 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2811 msm_host->bulk_clks); 2812 2813 return sdhci_msm_ice_suspend(msm_host); 2814 } 2815 2816 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2817 { 2818 struct sdhci_host *host = dev_get_drvdata(dev); 2819 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2820 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2821 unsigned long flags; 2822 int ret; 2823 2824 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2825 msm_host->bulk_clks); 2826 if (ret) 2827 return ret; 2828 /* 2829 * Whenever core-clock is gated dynamically, it's needed to 2830 * restore the SDR DLL settings when the clock is ungated. 2831 */ 2832 if (msm_host->restore_dll_config && msm_host->clk_rate) { 2833 ret = sdhci_msm_restore_sdr_dll_config(host); 2834 if (ret) 2835 return ret; 2836 } 2837 2838 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2839 2840 ret = sdhci_msm_ice_resume(msm_host); 2841 if (ret) 2842 return ret; 2843 2844 spin_lock_irqsave(&host->lock, flags); 2845 host->runtime_suspended = false; 2846 spin_unlock_irqrestore(&host->lock, flags); 2847 2848 return ret; 2849 } 2850 2851 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2852 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2853 pm_runtime_force_resume) 2854 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2855 sdhci_msm_runtime_resume, 2856 NULL) 2857 }; 2858 2859 static struct platform_driver sdhci_msm_driver = { 2860 .probe = sdhci_msm_probe, 2861 .remove = sdhci_msm_remove, 2862 .driver = { 2863 .name = "sdhci_msm", 2864 .of_match_table = sdhci_msm_dt_match, 2865 .pm = &sdhci_msm_pm_ops, 2866 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2867 }, 2868 }; 2869 2870 module_platform_driver(sdhci_msm_driver); 2871 2872 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2873 MODULE_LICENSE("GPL v2"); 2874