1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/of_device.h> 10 #include <linux/delay.h> 11 #include <linux/mmc/mmc.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/pm_opp.h> 14 #include <linux/slab.h> 15 #include <linux/iopoll.h> 16 #include <linux/qcom_scm.h> 17 #include <linux/regulator/consumer.h> 18 #include <linux/interconnect.h> 19 #include <linux/pinctrl/consumer.h> 20 #include <linux/reset.h> 21 22 #include "sdhci-pltfm.h" 23 #include "cqhci.h" 24 25 #define CORE_MCI_VERSION 0x50 26 #define CORE_VERSION_MAJOR_SHIFT 28 27 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 28 #define CORE_VERSION_MINOR_MASK 0xff 29 30 #define CORE_MCI_GENERICS 0x70 31 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 32 33 #define HC_MODE_EN 0x1 34 #define CORE_POWER 0x0 35 #define CORE_SW_RST BIT(7) 36 #define FF_CLK_SW_RST_DIS BIT(13) 37 38 #define CORE_PWRCTL_BUS_OFF BIT(0) 39 #define CORE_PWRCTL_BUS_ON BIT(1) 40 #define CORE_PWRCTL_IO_LOW BIT(2) 41 #define CORE_PWRCTL_IO_HIGH BIT(3) 42 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 43 #define CORE_PWRCTL_BUS_FAIL BIT(1) 44 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 45 #define CORE_PWRCTL_IO_FAIL BIT(3) 46 #define REQ_BUS_OFF BIT(0) 47 #define REQ_BUS_ON BIT(1) 48 #define REQ_IO_LOW BIT(2) 49 #define REQ_IO_HIGH BIT(3) 50 #define INT_MASK 0xf 51 #define MAX_PHASES 16 52 #define CORE_DLL_LOCK BIT(7) 53 #define CORE_DDR_DLL_LOCK BIT(11) 54 #define CORE_DLL_EN BIT(16) 55 #define CORE_CDR_EN BIT(17) 56 #define CORE_CK_OUT_EN BIT(18) 57 #define CORE_CDR_EXT_EN BIT(19) 58 #define CORE_DLL_PDN BIT(29) 59 #define CORE_DLL_RST BIT(30) 60 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 61 62 #define CORE_DDR_CAL_EN BIT(0) 63 #define CORE_FLL_CYCLE_CNT BIT(18) 64 #define CORE_DLL_CLOCK_DISABLE BIT(21) 65 66 #define DLL_USR_CTL_POR_VAL 0x10800 67 #define ENABLE_DLL_LOCK_STATUS BIT(26) 68 #define FINE_TUNE_MODE_EN BIT(27) 69 #define BIAS_OK_SIGNAL BIT(29) 70 71 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 72 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 73 74 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 75 #define CORE_CLK_PWRSAVE BIT(1) 76 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 77 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 78 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 79 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 80 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 81 #define CORE_HC_SELECT_IN_EN BIT(18) 82 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 83 #define CORE_HC_SELECT_IN_MASK (7 << 19) 84 85 #define CORE_3_0V_SUPPORT BIT(25) 86 #define CORE_1_8V_SUPPORT BIT(26) 87 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 88 89 #define CORE_CSR_CDC_CTLR_CFG0 0x130 90 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 91 #define CORE_HW_AUTOCAL_ENA BIT(17) 92 93 #define CORE_CSR_CDC_CTLR_CFG1 0x134 94 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 95 #define CORE_TIMER_ENA BIT(16) 96 97 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 98 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 99 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 100 #define CORE_CDC_OFFSET_CFG 0x14C 101 #define CORE_CSR_CDC_DELAY_CFG 0x150 102 #define CORE_CDC_SLAVE_DDA_CFG 0x160 103 #define CORE_CSR_CDC_STATUS0 0x164 104 #define CORE_CALIBRATION_DONE BIT(0) 105 106 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 107 108 #define CORE_CSR_CDC_GEN_CFG 0x178 109 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 110 #define CORE_CDC_SWITCH_RC_EN BIT(1) 111 112 #define CORE_CDC_T4_DLY_SEL BIT(0) 113 #define CORE_CMDIN_RCLK_EN BIT(1) 114 #define CORE_START_CDC_TRAFFIC BIT(6) 115 116 #define CORE_PWRSAVE_DLL BIT(3) 117 118 #define DDR_CONFIG_POR_VAL 0x80040873 119 120 121 #define INVALID_TUNING_PHASE -1 122 #define SDHCI_MSM_MIN_CLOCK 400000 123 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 124 125 #define CDR_SELEXT_SHIFT 20 126 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 127 #define CMUX_SHIFT_PHASE_SHIFT 24 128 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 129 130 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 131 132 /* Timeout value to avoid infinite waiting for pwr_irq */ 133 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 134 135 /* Max load for eMMC Vdd-io supply */ 136 #define MMC_VQMMC_MAX_LOAD_UA 325000 137 138 #define msm_host_readl(msm_host, host, offset) \ 139 msm_host->var_ops->msm_readl_relaxed(host, offset) 140 141 #define msm_host_writel(msm_host, val, host, offset) \ 142 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 143 144 /* CQHCI vendor specific registers */ 145 #define CQHCI_VENDOR_CFG1 0xA00 146 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 147 148 struct sdhci_msm_offset { 149 u32 core_hc_mode; 150 u32 core_mci_data_cnt; 151 u32 core_mci_status; 152 u32 core_mci_fifo_cnt; 153 u32 core_mci_version; 154 u32 core_generics; 155 u32 core_testbus_config; 156 u32 core_testbus_sel2_bit; 157 u32 core_testbus_ena; 158 u32 core_testbus_sel2; 159 u32 core_pwrctl_status; 160 u32 core_pwrctl_mask; 161 u32 core_pwrctl_clear; 162 u32 core_pwrctl_ctl; 163 u32 core_sdcc_debug_reg; 164 u32 core_dll_config; 165 u32 core_dll_status; 166 u32 core_vendor_spec; 167 u32 core_vendor_spec_adma_err_addr0; 168 u32 core_vendor_spec_adma_err_addr1; 169 u32 core_vendor_spec_func2; 170 u32 core_vendor_spec_capabilities0; 171 u32 core_ddr_200_cfg; 172 u32 core_vendor_spec3; 173 u32 core_dll_config_2; 174 u32 core_dll_config_3; 175 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 176 u32 core_ddr_config; 177 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 178 }; 179 180 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 181 .core_mci_data_cnt = 0x35c, 182 .core_mci_status = 0x324, 183 .core_mci_fifo_cnt = 0x308, 184 .core_mci_version = 0x318, 185 .core_generics = 0x320, 186 .core_testbus_config = 0x32c, 187 .core_testbus_sel2_bit = 3, 188 .core_testbus_ena = (1 << 31), 189 .core_testbus_sel2 = (1 << 3), 190 .core_pwrctl_status = 0x240, 191 .core_pwrctl_mask = 0x244, 192 .core_pwrctl_clear = 0x248, 193 .core_pwrctl_ctl = 0x24c, 194 .core_sdcc_debug_reg = 0x358, 195 .core_dll_config = 0x200, 196 .core_dll_status = 0x208, 197 .core_vendor_spec = 0x20c, 198 .core_vendor_spec_adma_err_addr0 = 0x214, 199 .core_vendor_spec_adma_err_addr1 = 0x218, 200 .core_vendor_spec_func2 = 0x210, 201 .core_vendor_spec_capabilities0 = 0x21c, 202 .core_ddr_200_cfg = 0x224, 203 .core_vendor_spec3 = 0x250, 204 .core_dll_config_2 = 0x254, 205 .core_dll_config_3 = 0x258, 206 .core_ddr_config = 0x25c, 207 .core_dll_usr_ctl = 0x388, 208 }; 209 210 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 211 .core_hc_mode = 0x78, 212 .core_mci_data_cnt = 0x30, 213 .core_mci_status = 0x34, 214 .core_mci_fifo_cnt = 0x44, 215 .core_mci_version = 0x050, 216 .core_generics = 0x70, 217 .core_testbus_config = 0x0cc, 218 .core_testbus_sel2_bit = 4, 219 .core_testbus_ena = (1 << 3), 220 .core_testbus_sel2 = (1 << 4), 221 .core_pwrctl_status = 0xdc, 222 .core_pwrctl_mask = 0xe0, 223 .core_pwrctl_clear = 0xe4, 224 .core_pwrctl_ctl = 0xe8, 225 .core_sdcc_debug_reg = 0x124, 226 .core_dll_config = 0x100, 227 .core_dll_status = 0x108, 228 .core_vendor_spec = 0x10c, 229 .core_vendor_spec_adma_err_addr0 = 0x114, 230 .core_vendor_spec_adma_err_addr1 = 0x118, 231 .core_vendor_spec_func2 = 0x110, 232 .core_vendor_spec_capabilities0 = 0x11c, 233 .core_ddr_200_cfg = 0x184, 234 .core_vendor_spec3 = 0x1b0, 235 .core_dll_config_2 = 0x1b4, 236 .core_ddr_config_old = 0x1b8, 237 .core_ddr_config = 0x1bc, 238 }; 239 240 struct sdhci_msm_variant_ops { 241 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 242 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 243 u32 offset); 244 }; 245 246 /* 247 * From V5, register spaces have changed. Wrap this info in a structure 248 * and choose the data_structure based on version info mentioned in DT. 249 */ 250 struct sdhci_msm_variant_info { 251 bool mci_removed; 252 bool restore_dll_config; 253 const struct sdhci_msm_variant_ops *var_ops; 254 const struct sdhci_msm_offset *offset; 255 }; 256 257 struct sdhci_msm_host { 258 struct platform_device *pdev; 259 void __iomem *core_mem; /* MSM SDCC mapped address */ 260 void __iomem *ice_mem; /* MSM ICE mapped address (if available) */ 261 int pwr_irq; /* power irq */ 262 struct clk *bus_clk; /* SDHC bus voter clock */ 263 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 264 /* core, iface, cal, sleep, and ice clocks */ 265 struct clk_bulk_data bulk_clks[5]; 266 unsigned long clk_rate; 267 struct mmc_host *mmc; 268 bool use_14lpp_dll_reset; 269 bool tuning_done; 270 bool calibration_done; 271 u8 saved_tuning_phase; 272 bool use_cdclp533; 273 u32 curr_pwr_state; 274 u32 curr_io_level; 275 wait_queue_head_t pwr_irq_wait; 276 bool pwr_irq_flag; 277 u32 caps_0; 278 bool mci_removed; 279 bool restore_dll_config; 280 const struct sdhci_msm_variant_ops *var_ops; 281 const struct sdhci_msm_offset *offset; 282 bool use_cdr; 283 u32 transfer_mode; 284 bool updated_ddr_cfg; 285 bool uses_tassadar_dll; 286 u32 dll_config; 287 u32 ddr_config; 288 bool vqmmc_enabled; 289 }; 290 291 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 292 { 293 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 294 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 295 296 return msm_host->offset; 297 } 298 299 /* 300 * APIs to read/write to vendor specific registers which were there in the 301 * core_mem region before MCI was removed. 302 */ 303 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 304 u32 offset) 305 { 306 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 307 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 308 309 return readl_relaxed(msm_host->core_mem + offset); 310 } 311 312 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 313 u32 offset) 314 { 315 return readl_relaxed(host->ioaddr + offset); 316 } 317 318 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 319 struct sdhci_host *host, u32 offset) 320 { 321 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 322 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 323 324 writel_relaxed(val, msm_host->core_mem + offset); 325 } 326 327 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 328 struct sdhci_host *host, u32 offset) 329 { 330 writel_relaxed(val, host->ioaddr + offset); 331 } 332 333 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host) 334 { 335 struct mmc_ios ios = host->mmc->ios; 336 /* 337 * The SDHC requires internal clock frequency to be double the 338 * actual clock that will be set for DDR mode. The controller 339 * uses the faster clock(100/400MHz) for some of its parts and 340 * send the actual required clock (50/200MHz) to the card. 341 */ 342 if (ios.timing == MMC_TIMING_UHS_DDR50 || 343 ios.timing == MMC_TIMING_MMC_DDR52 || 344 ios.timing == MMC_TIMING_MMC_HS400 || 345 host->flags & SDHCI_HS400_TUNING) 346 return 2; 347 return 1; 348 } 349 350 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 351 unsigned int clock) 352 { 353 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 354 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 355 struct mmc_ios curr_ios = host->mmc->ios; 356 struct clk *core_clk = msm_host->bulk_clks[0].clk; 357 unsigned long achieved_rate; 358 unsigned int desired_rate; 359 unsigned int mult; 360 int rc; 361 362 mult = msm_get_clock_mult_for_bus_mode(host); 363 desired_rate = clock * mult; 364 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate); 365 if (rc) { 366 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 367 mmc_hostname(host->mmc), desired_rate, curr_ios.timing); 368 return; 369 } 370 371 /* 372 * Qualcomm clock drivers by default round clock _up_ if they can't 373 * make the requested rate. This is not good for SD. Yell if we 374 * encounter it. 375 */ 376 achieved_rate = clk_get_rate(core_clk); 377 if (achieved_rate > desired_rate) 378 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n", 379 mmc_hostname(host->mmc), desired_rate, achieved_rate); 380 host->mmc->actual_clock = achieved_rate / mult; 381 382 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */ 383 msm_host->clk_rate = desired_rate; 384 385 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 386 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing); 387 } 388 389 /* Platform specific tuning */ 390 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 391 { 392 u32 wait_cnt = 50; 393 u8 ck_out_en; 394 struct mmc_host *mmc = host->mmc; 395 const struct sdhci_msm_offset *msm_offset = 396 sdhci_priv_msm_offset(host); 397 398 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 399 ck_out_en = !!(readl_relaxed(host->ioaddr + 400 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 401 402 while (ck_out_en != poll) { 403 if (--wait_cnt == 0) { 404 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 405 mmc_hostname(mmc), poll); 406 return -ETIMEDOUT; 407 } 408 udelay(1); 409 410 ck_out_en = !!(readl_relaxed(host->ioaddr + 411 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 412 } 413 414 return 0; 415 } 416 417 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 418 { 419 int rc; 420 static const u8 grey_coded_phase_table[] = { 421 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 422 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 423 }; 424 unsigned long flags; 425 u32 config; 426 struct mmc_host *mmc = host->mmc; 427 const struct sdhci_msm_offset *msm_offset = 428 sdhci_priv_msm_offset(host); 429 430 if (phase > 0xf) 431 return -EINVAL; 432 433 spin_lock_irqsave(&host->lock, flags); 434 435 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 436 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 437 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 438 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 439 440 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 441 rc = msm_dll_poll_ck_out_en(host, 0); 442 if (rc) 443 goto err_out; 444 445 /* 446 * Write the selected DLL clock output phase (0 ... 15) 447 * to CDR_SELEXT bit field of DLL_CONFIG register. 448 */ 449 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 450 config &= ~CDR_SELEXT_MASK; 451 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 452 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 453 454 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 455 config |= CORE_CK_OUT_EN; 456 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 457 458 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 459 rc = msm_dll_poll_ck_out_en(host, 1); 460 if (rc) 461 goto err_out; 462 463 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 464 config |= CORE_CDR_EN; 465 config &= ~CORE_CDR_EXT_EN; 466 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 467 goto out; 468 469 err_out: 470 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 471 mmc_hostname(mmc), phase); 472 out: 473 spin_unlock_irqrestore(&host->lock, flags); 474 return rc; 475 } 476 477 /* 478 * Find out the greatest range of consecuitive selected 479 * DLL clock output phases that can be used as sampling 480 * setting for SD3.0 UHS-I card read operation (in SDR104 481 * timing mode) or for eMMC4.5 card read operation (in 482 * HS400/HS200 timing mode). 483 * Select the 3/4 of the range and configure the DLL with the 484 * selected DLL clock output phase. 485 */ 486 487 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 488 u8 *phase_table, u8 total_phases) 489 { 490 int ret; 491 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 492 u8 phases_per_row[MAX_PHASES] = { 0 }; 493 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 494 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 495 bool phase_0_found = false, phase_15_found = false; 496 struct mmc_host *mmc = host->mmc; 497 498 if (!total_phases || (total_phases > MAX_PHASES)) { 499 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 500 mmc_hostname(mmc), total_phases); 501 return -EINVAL; 502 } 503 504 for (cnt = 0; cnt < total_phases; cnt++) { 505 ranges[row_index][col_index] = phase_table[cnt]; 506 phases_per_row[row_index] += 1; 507 col_index++; 508 509 if ((cnt + 1) == total_phases) { 510 continue; 511 /* check if next phase in phase_table is consecutive or not */ 512 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 513 row_index++; 514 col_index = 0; 515 } 516 } 517 518 if (row_index >= MAX_PHASES) 519 return -EINVAL; 520 521 /* Check if phase-0 is present in first valid window? */ 522 if (!ranges[0][0]) { 523 phase_0_found = true; 524 phase_0_raw_index = 0; 525 /* Check if cycle exist between 2 valid windows */ 526 for (cnt = 1; cnt <= row_index; cnt++) { 527 if (phases_per_row[cnt]) { 528 for (i = 0; i < phases_per_row[cnt]; i++) { 529 if (ranges[cnt][i] == 15) { 530 phase_15_found = true; 531 phase_15_raw_index = cnt; 532 break; 533 } 534 } 535 } 536 } 537 } 538 539 /* If 2 valid windows form cycle then merge them as single window */ 540 if (phase_0_found && phase_15_found) { 541 /* number of phases in raw where phase 0 is present */ 542 u8 phases_0 = phases_per_row[phase_0_raw_index]; 543 /* number of phases in raw where phase 15 is present */ 544 u8 phases_15 = phases_per_row[phase_15_raw_index]; 545 546 if (phases_0 + phases_15 >= MAX_PHASES) 547 /* 548 * If there are more than 1 phase windows then total 549 * number of phases in both the windows should not be 550 * more than or equal to MAX_PHASES. 551 */ 552 return -EINVAL; 553 554 /* Merge 2 cyclic windows */ 555 i = phases_15; 556 for (cnt = 0; cnt < phases_0; cnt++) { 557 ranges[phase_15_raw_index][i] = 558 ranges[phase_0_raw_index][cnt]; 559 if (++i >= MAX_PHASES) 560 break; 561 } 562 563 phases_per_row[phase_0_raw_index] = 0; 564 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 565 } 566 567 for (cnt = 0; cnt <= row_index; cnt++) { 568 if (phases_per_row[cnt] > curr_max) { 569 curr_max = phases_per_row[cnt]; 570 selected_row_index = cnt; 571 } 572 } 573 574 i = (curr_max * 3) / 4; 575 if (i) 576 i--; 577 578 ret = ranges[selected_row_index][i]; 579 580 if (ret >= MAX_PHASES) { 581 ret = -EINVAL; 582 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 583 mmc_hostname(mmc), ret); 584 } 585 586 return ret; 587 } 588 589 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 590 { 591 u32 mclk_freq = 0, config; 592 const struct sdhci_msm_offset *msm_offset = 593 sdhci_priv_msm_offset(host); 594 595 /* Program the MCLK value to MCLK_FREQ bit field */ 596 if (host->clock <= 112000000) 597 mclk_freq = 0; 598 else if (host->clock <= 125000000) 599 mclk_freq = 1; 600 else if (host->clock <= 137000000) 601 mclk_freq = 2; 602 else if (host->clock <= 150000000) 603 mclk_freq = 3; 604 else if (host->clock <= 162000000) 605 mclk_freq = 4; 606 else if (host->clock <= 175000000) 607 mclk_freq = 5; 608 else if (host->clock <= 187000000) 609 mclk_freq = 6; 610 else if (host->clock <= 200000000) 611 mclk_freq = 7; 612 613 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 614 config &= ~CMUX_SHIFT_PHASE_MASK; 615 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 616 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 617 } 618 619 /* Initialize the DLL (Programmable Delay Line) */ 620 static int msm_init_cm_dll(struct sdhci_host *host) 621 { 622 struct mmc_host *mmc = host->mmc; 623 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 624 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 625 int wait_cnt = 50; 626 unsigned long flags, xo_clk = 0; 627 u32 config; 628 const struct sdhci_msm_offset *msm_offset = 629 msm_host->offset; 630 631 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 632 xo_clk = clk_get_rate(msm_host->xo_clk); 633 634 spin_lock_irqsave(&host->lock, flags); 635 636 /* 637 * Make sure that clock is always enabled when DLL 638 * tuning is in progress. Keeping PWRSAVE ON may 639 * turn off the clock. 640 */ 641 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 642 config &= ~CORE_CLK_PWRSAVE; 643 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 644 645 if (msm_host->dll_config) 646 writel_relaxed(msm_host->dll_config, 647 host->ioaddr + msm_offset->core_dll_config); 648 649 if (msm_host->use_14lpp_dll_reset) { 650 config = readl_relaxed(host->ioaddr + 651 msm_offset->core_dll_config); 652 config &= ~CORE_CK_OUT_EN; 653 writel_relaxed(config, host->ioaddr + 654 msm_offset->core_dll_config); 655 656 config = readl_relaxed(host->ioaddr + 657 msm_offset->core_dll_config_2); 658 config |= CORE_DLL_CLOCK_DISABLE; 659 writel_relaxed(config, host->ioaddr + 660 msm_offset->core_dll_config_2); 661 } 662 663 config = readl_relaxed(host->ioaddr + 664 msm_offset->core_dll_config); 665 config |= CORE_DLL_RST; 666 writel_relaxed(config, host->ioaddr + 667 msm_offset->core_dll_config); 668 669 config = readl_relaxed(host->ioaddr + 670 msm_offset->core_dll_config); 671 config |= CORE_DLL_PDN; 672 writel_relaxed(config, host->ioaddr + 673 msm_offset->core_dll_config); 674 675 if (!msm_host->dll_config) 676 msm_cm_dll_set_freq(host); 677 678 if (msm_host->use_14lpp_dll_reset && 679 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 680 u32 mclk_freq = 0; 681 682 config = readl_relaxed(host->ioaddr + 683 msm_offset->core_dll_config_2); 684 config &= CORE_FLL_CYCLE_CNT; 685 if (config) 686 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 687 xo_clk); 688 else 689 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 690 xo_clk); 691 692 config = readl_relaxed(host->ioaddr + 693 msm_offset->core_dll_config_2); 694 config &= ~(0xFF << 10); 695 config |= mclk_freq << 10; 696 697 writel_relaxed(config, host->ioaddr + 698 msm_offset->core_dll_config_2); 699 /* wait for 5us before enabling DLL clock */ 700 udelay(5); 701 } 702 703 config = readl_relaxed(host->ioaddr + 704 msm_offset->core_dll_config); 705 config &= ~CORE_DLL_RST; 706 writel_relaxed(config, host->ioaddr + 707 msm_offset->core_dll_config); 708 709 config = readl_relaxed(host->ioaddr + 710 msm_offset->core_dll_config); 711 config &= ~CORE_DLL_PDN; 712 writel_relaxed(config, host->ioaddr + 713 msm_offset->core_dll_config); 714 715 if (msm_host->use_14lpp_dll_reset) { 716 if (!msm_host->dll_config) 717 msm_cm_dll_set_freq(host); 718 config = readl_relaxed(host->ioaddr + 719 msm_offset->core_dll_config_2); 720 config &= ~CORE_DLL_CLOCK_DISABLE; 721 writel_relaxed(config, host->ioaddr + 722 msm_offset->core_dll_config_2); 723 } 724 725 /* 726 * Configure DLL user control register to enable DLL status. 727 * This setting is applicable to SDCC v5.1 onwards only. 728 */ 729 if (msm_host->uses_tassadar_dll) { 730 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 731 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 732 writel_relaxed(config, host->ioaddr + 733 msm_offset->core_dll_usr_ctl); 734 735 config = readl_relaxed(host->ioaddr + 736 msm_offset->core_dll_config_3); 737 config &= ~0xFF; 738 if (msm_host->clk_rate < 150000000) 739 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 740 else 741 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 742 writel_relaxed(config, host->ioaddr + 743 msm_offset->core_dll_config_3); 744 } 745 746 config = readl_relaxed(host->ioaddr + 747 msm_offset->core_dll_config); 748 config |= CORE_DLL_EN; 749 writel_relaxed(config, host->ioaddr + 750 msm_offset->core_dll_config); 751 752 config = readl_relaxed(host->ioaddr + 753 msm_offset->core_dll_config); 754 config |= CORE_CK_OUT_EN; 755 writel_relaxed(config, host->ioaddr + 756 msm_offset->core_dll_config); 757 758 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 759 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 760 CORE_DLL_LOCK)) { 761 /* max. wait for 50us sec for LOCK bit to be set */ 762 if (--wait_cnt == 0) { 763 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 764 mmc_hostname(mmc)); 765 spin_unlock_irqrestore(&host->lock, flags); 766 return -ETIMEDOUT; 767 } 768 udelay(1); 769 } 770 771 spin_unlock_irqrestore(&host->lock, flags); 772 return 0; 773 } 774 775 static void msm_hc_select_default(struct sdhci_host *host) 776 { 777 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 778 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 779 u32 config; 780 const struct sdhci_msm_offset *msm_offset = 781 msm_host->offset; 782 783 if (!msm_host->use_cdclp533) { 784 config = readl_relaxed(host->ioaddr + 785 msm_offset->core_vendor_spec3); 786 config &= ~CORE_PWRSAVE_DLL; 787 writel_relaxed(config, host->ioaddr + 788 msm_offset->core_vendor_spec3); 789 } 790 791 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 792 config &= ~CORE_HC_MCLK_SEL_MASK; 793 config |= CORE_HC_MCLK_SEL_DFLT; 794 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 795 796 /* 797 * Disable HC_SELECT_IN to be able to use the UHS mode select 798 * configuration from Host Control2 register for all other 799 * modes. 800 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 801 * in VENDOR_SPEC_FUNC 802 */ 803 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 804 config &= ~CORE_HC_SELECT_IN_EN; 805 config &= ~CORE_HC_SELECT_IN_MASK; 806 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 807 808 /* 809 * Make sure above writes impacting free running MCLK are completed 810 * before changing the clk_rate at GCC. 811 */ 812 wmb(); 813 } 814 815 static void msm_hc_select_hs400(struct sdhci_host *host) 816 { 817 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 818 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 819 struct mmc_ios ios = host->mmc->ios; 820 u32 config, dll_lock; 821 int rc; 822 const struct sdhci_msm_offset *msm_offset = 823 msm_host->offset; 824 825 /* Select the divided clock (free running MCLK/2) */ 826 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 827 config &= ~CORE_HC_MCLK_SEL_MASK; 828 config |= CORE_HC_MCLK_SEL_HS400; 829 830 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 831 /* 832 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 833 * register 834 */ 835 if ((msm_host->tuning_done || ios.enhanced_strobe) && 836 !msm_host->calibration_done) { 837 config = readl_relaxed(host->ioaddr + 838 msm_offset->core_vendor_spec); 839 config |= CORE_HC_SELECT_IN_HS400; 840 config |= CORE_HC_SELECT_IN_EN; 841 writel_relaxed(config, host->ioaddr + 842 msm_offset->core_vendor_spec); 843 } 844 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 845 /* 846 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 847 * core_dll_status to be set. This should get set 848 * within 15 us at 200 MHz. 849 */ 850 rc = readl_relaxed_poll_timeout(host->ioaddr + 851 msm_offset->core_dll_status, 852 dll_lock, 853 (dll_lock & 854 (CORE_DLL_LOCK | 855 CORE_DDR_DLL_LOCK)), 10, 856 1000); 857 if (rc == -ETIMEDOUT) 858 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 859 mmc_hostname(host->mmc), dll_lock); 860 } 861 /* 862 * Make sure above writes impacting free running MCLK are completed 863 * before changing the clk_rate at GCC. 864 */ 865 wmb(); 866 } 867 868 /* 869 * sdhci_msm_hc_select_mode :- In general all timing modes are 870 * controlled via UHS mode select in Host Control2 register. 871 * eMMC specific HS200/HS400 doesn't have their respective modes 872 * defined here, hence we use these values. 873 * 874 * HS200 - SDR104 (Since they both are equivalent in functionality) 875 * HS400 - This involves multiple configurations 876 * Initially SDR104 - when tuning is required as HS200 877 * Then when switching to DDR @ 400MHz (HS400) we use 878 * the vendor specific HC_SELECT_IN to control the mode. 879 * 880 * In addition to controlling the modes we also need to select the 881 * correct input clock for DLL depending on the mode. 882 * 883 * HS400 - divided clock (free running MCLK/2) 884 * All other modes - default (free running MCLK) 885 */ 886 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 887 { 888 struct mmc_ios ios = host->mmc->ios; 889 890 if (ios.timing == MMC_TIMING_MMC_HS400 || 891 host->flags & SDHCI_HS400_TUNING) 892 msm_hc_select_hs400(host); 893 else 894 msm_hc_select_default(host); 895 } 896 897 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 898 { 899 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 900 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 901 u32 config, calib_done; 902 int ret; 903 const struct sdhci_msm_offset *msm_offset = 904 msm_host->offset; 905 906 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 907 908 /* 909 * Retuning in HS400 (DDR mode) will fail, just reset the 910 * tuning block and restore the saved tuning phase. 911 */ 912 ret = msm_init_cm_dll(host); 913 if (ret) 914 goto out; 915 916 /* Set the selected phase in delay line hw block */ 917 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 918 if (ret) 919 goto out; 920 921 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 922 config |= CORE_CMD_DAT_TRACK_SEL; 923 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 924 925 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 926 config &= ~CORE_CDC_T4_DLY_SEL; 927 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 928 929 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 930 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 931 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 932 933 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 934 config |= CORE_CDC_SWITCH_RC_EN; 935 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 936 937 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 938 config &= ~CORE_START_CDC_TRAFFIC; 939 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 940 941 /* Perform CDC Register Initialization Sequence */ 942 943 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 944 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 945 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 946 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 947 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 948 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 949 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 950 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 951 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 952 953 /* CDC HW Calibration */ 954 955 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 956 config |= CORE_SW_TRIG_FULL_CALIB; 957 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 958 959 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 960 config &= ~CORE_SW_TRIG_FULL_CALIB; 961 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 962 963 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 964 config |= CORE_HW_AUTOCAL_ENA; 965 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 966 967 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 968 config |= CORE_TIMER_ENA; 969 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 970 971 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 972 calib_done, 973 (calib_done & CORE_CALIBRATION_DONE), 974 1, 50); 975 976 if (ret == -ETIMEDOUT) { 977 pr_err("%s: %s: CDC calibration was not completed\n", 978 mmc_hostname(host->mmc), __func__); 979 goto out; 980 } 981 982 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 983 & CORE_CDC_ERROR_CODE_MASK; 984 if (ret) { 985 pr_err("%s: %s: CDC error code %d\n", 986 mmc_hostname(host->mmc), __func__, ret); 987 ret = -EINVAL; 988 goto out; 989 } 990 991 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 992 config |= CORE_START_CDC_TRAFFIC; 993 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 994 out: 995 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 996 __func__, ret); 997 return ret; 998 } 999 1000 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 1001 { 1002 struct mmc_host *mmc = host->mmc; 1003 u32 dll_status, config, ddr_cfg_offset; 1004 int ret; 1005 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1006 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1007 const struct sdhci_msm_offset *msm_offset = 1008 sdhci_priv_msm_offset(host); 1009 1010 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1011 1012 /* 1013 * Currently the core_ddr_config register defaults to desired 1014 * configuration on reset. Currently reprogramming the power on 1015 * reset (POR) value in case it might have been modified by 1016 * bootloaders. In the future, if this changes, then the desired 1017 * values will need to be programmed appropriately. 1018 */ 1019 if (msm_host->updated_ddr_cfg) 1020 ddr_cfg_offset = msm_offset->core_ddr_config; 1021 else 1022 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1023 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1024 1025 if (mmc->ios.enhanced_strobe) { 1026 config = readl_relaxed(host->ioaddr + 1027 msm_offset->core_ddr_200_cfg); 1028 config |= CORE_CMDIN_RCLK_EN; 1029 writel_relaxed(config, host->ioaddr + 1030 msm_offset->core_ddr_200_cfg); 1031 } 1032 1033 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1034 config |= CORE_DDR_CAL_EN; 1035 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1036 1037 ret = readl_relaxed_poll_timeout(host->ioaddr + 1038 msm_offset->core_dll_status, 1039 dll_status, 1040 (dll_status & CORE_DDR_DLL_LOCK), 1041 10, 1000); 1042 1043 if (ret == -ETIMEDOUT) { 1044 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1045 mmc_hostname(host->mmc), __func__); 1046 goto out; 1047 } 1048 1049 /* 1050 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1051 * When MCLK is gated OFF, it is not gated for less than 0.5us 1052 * and MCLK must be switched on for at-least 1us before DATA 1053 * starts coming. Controllers with 14lpp and later tech DLL cannot 1054 * guarantee above requirement. So PWRSAVE_DLL should not be 1055 * turned on for host controllers using this DLL. 1056 */ 1057 if (!msm_host->use_14lpp_dll_reset) { 1058 config = readl_relaxed(host->ioaddr + 1059 msm_offset->core_vendor_spec3); 1060 config |= CORE_PWRSAVE_DLL; 1061 writel_relaxed(config, host->ioaddr + 1062 msm_offset->core_vendor_spec3); 1063 } 1064 1065 /* 1066 * Drain writebuffer to ensure above DLL calibration 1067 * and PWRSAVE DLL is enabled. 1068 */ 1069 wmb(); 1070 out: 1071 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1072 __func__, ret); 1073 return ret; 1074 } 1075 1076 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1077 { 1078 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1079 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1080 struct mmc_host *mmc = host->mmc; 1081 int ret; 1082 u32 config; 1083 const struct sdhci_msm_offset *msm_offset = 1084 msm_host->offset; 1085 1086 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1087 1088 /* 1089 * Retuning in HS400 (DDR mode) will fail, just reset the 1090 * tuning block and restore the saved tuning phase. 1091 */ 1092 ret = msm_init_cm_dll(host); 1093 if (ret) 1094 goto out; 1095 1096 if (!mmc->ios.enhanced_strobe) { 1097 /* Set the selected phase in delay line hw block */ 1098 ret = msm_config_cm_dll_phase(host, 1099 msm_host->saved_tuning_phase); 1100 if (ret) 1101 goto out; 1102 config = readl_relaxed(host->ioaddr + 1103 msm_offset->core_dll_config); 1104 config |= CORE_CMD_DAT_TRACK_SEL; 1105 writel_relaxed(config, host->ioaddr + 1106 msm_offset->core_dll_config); 1107 } 1108 1109 if (msm_host->use_cdclp533) 1110 ret = sdhci_msm_cdclp533_calibration(host); 1111 else 1112 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1113 out: 1114 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1115 __func__, ret); 1116 return ret; 1117 } 1118 1119 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1120 { 1121 struct mmc_ios *ios = &host->mmc->ios; 1122 1123 /* 1124 * Tuning is required for SDR104, HS200 and HS400 cards and 1125 * if clock frequency is greater than 100MHz in these modes. 1126 */ 1127 if (host->clock <= CORE_FREQ_100MHZ || 1128 !(ios->timing == MMC_TIMING_MMC_HS400 || 1129 ios->timing == MMC_TIMING_MMC_HS200 || 1130 ios->timing == MMC_TIMING_UHS_SDR104) || 1131 ios->enhanced_strobe) 1132 return false; 1133 1134 return true; 1135 } 1136 1137 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1138 { 1139 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1140 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1141 int ret; 1142 1143 /* 1144 * SDR DLL comes into picture only for timing modes which needs 1145 * tuning. 1146 */ 1147 if (!sdhci_msm_is_tuning_needed(host)) 1148 return 0; 1149 1150 /* Reset the tuning block */ 1151 ret = msm_init_cm_dll(host); 1152 if (ret) 1153 return ret; 1154 1155 /* Restore the tuning block */ 1156 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1157 1158 return ret; 1159 } 1160 1161 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1162 { 1163 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1164 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1165 msm_offset->core_dll_config); 1166 1167 config = oldconfig; 1168 if (enable) { 1169 config |= CORE_CDR_EN; 1170 config &= ~CORE_CDR_EXT_EN; 1171 } else { 1172 config &= ~CORE_CDR_EN; 1173 config |= CORE_CDR_EXT_EN; 1174 } 1175 1176 if (config != oldconfig) { 1177 writel_relaxed(config, host->ioaddr + 1178 msm_offset->core_dll_config); 1179 } 1180 } 1181 1182 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1183 { 1184 struct sdhci_host *host = mmc_priv(mmc); 1185 int tuning_seq_cnt = 10; 1186 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1187 int rc; 1188 struct mmc_ios ios = host->mmc->ios; 1189 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1190 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1191 1192 if (!sdhci_msm_is_tuning_needed(host)) { 1193 msm_host->use_cdr = false; 1194 sdhci_msm_set_cdr(host, false); 1195 return 0; 1196 } 1197 1198 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1199 msm_host->use_cdr = true; 1200 1201 /* 1202 * Clear tuning_done flag before tuning to ensure proper 1203 * HS400 settings. 1204 */ 1205 msm_host->tuning_done = 0; 1206 1207 /* 1208 * For HS400 tuning in HS200 timing requires: 1209 * - select MCLK/2 in VENDOR_SPEC 1210 * - program MCLK to 400MHz (or nearest supported) in GCC 1211 */ 1212 if (host->flags & SDHCI_HS400_TUNING) { 1213 sdhci_msm_hc_select_mode(host); 1214 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1215 host->flags &= ~SDHCI_HS400_TUNING; 1216 } 1217 1218 retry: 1219 /* First of all reset the tuning block */ 1220 rc = msm_init_cm_dll(host); 1221 if (rc) 1222 return rc; 1223 1224 phase = 0; 1225 do { 1226 /* Set the phase in delay line hw block */ 1227 rc = msm_config_cm_dll_phase(host, phase); 1228 if (rc) 1229 return rc; 1230 1231 rc = mmc_send_tuning(mmc, opcode, NULL); 1232 if (!rc) { 1233 /* Tuning is successful at this tuning point */ 1234 tuned_phases[tuned_phase_cnt++] = phase; 1235 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1236 mmc_hostname(mmc), phase); 1237 } 1238 } while (++phase < ARRAY_SIZE(tuned_phases)); 1239 1240 if (tuned_phase_cnt) { 1241 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) { 1242 /* 1243 * All phases valid is _almost_ as bad as no phases 1244 * valid. Probably all phases are not really reliable 1245 * but we didn't detect where the unreliable place is. 1246 * That means we'll essentially be guessing and hoping 1247 * we get a good phase. Better to try a few times. 1248 */ 1249 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n", 1250 mmc_hostname(mmc)); 1251 if (--tuning_seq_cnt) { 1252 tuned_phase_cnt = 0; 1253 goto retry; 1254 } 1255 } 1256 1257 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1258 tuned_phase_cnt); 1259 if (rc < 0) 1260 return rc; 1261 else 1262 phase = rc; 1263 1264 /* 1265 * Finally set the selected phase in delay 1266 * line hw block. 1267 */ 1268 rc = msm_config_cm_dll_phase(host, phase); 1269 if (rc) 1270 return rc; 1271 msm_host->saved_tuning_phase = phase; 1272 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1273 mmc_hostname(mmc), phase); 1274 } else { 1275 if (--tuning_seq_cnt) 1276 goto retry; 1277 /* Tuning failed */ 1278 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1279 mmc_hostname(mmc)); 1280 rc = -EIO; 1281 } 1282 1283 if (!rc) 1284 msm_host->tuning_done = true; 1285 return rc; 1286 } 1287 1288 /* 1289 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1290 * This needs to be done for both tuning and enhanced_strobe mode. 1291 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1292 * fixed feedback clock is used. 1293 */ 1294 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1295 { 1296 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1297 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1298 int ret; 1299 1300 if (host->clock > CORE_FREQ_100MHZ && 1301 (msm_host->tuning_done || ios->enhanced_strobe) && 1302 !msm_host->calibration_done) { 1303 ret = sdhci_msm_hs400_dll_calibration(host); 1304 if (!ret) 1305 msm_host->calibration_done = true; 1306 else 1307 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1308 mmc_hostname(host->mmc), ret); 1309 } 1310 } 1311 1312 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1313 unsigned int uhs) 1314 { 1315 struct mmc_host *mmc = host->mmc; 1316 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1317 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1318 u16 ctrl_2; 1319 u32 config; 1320 const struct sdhci_msm_offset *msm_offset = 1321 msm_host->offset; 1322 1323 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1324 /* Select Bus Speed Mode for host */ 1325 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1326 switch (uhs) { 1327 case MMC_TIMING_UHS_SDR12: 1328 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1329 break; 1330 case MMC_TIMING_UHS_SDR25: 1331 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1332 break; 1333 case MMC_TIMING_UHS_SDR50: 1334 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1335 break; 1336 case MMC_TIMING_MMC_HS400: 1337 case MMC_TIMING_MMC_HS200: 1338 case MMC_TIMING_UHS_SDR104: 1339 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1340 break; 1341 case MMC_TIMING_UHS_DDR50: 1342 case MMC_TIMING_MMC_DDR52: 1343 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1344 break; 1345 } 1346 1347 /* 1348 * When clock frequency is less than 100MHz, the feedback clock must be 1349 * provided and DLL must not be used so that tuning can be skipped. To 1350 * provide feedback clock, the mode selection can be any value less 1351 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1352 */ 1353 if (host->clock <= CORE_FREQ_100MHZ) { 1354 if (uhs == MMC_TIMING_MMC_HS400 || 1355 uhs == MMC_TIMING_MMC_HS200 || 1356 uhs == MMC_TIMING_UHS_SDR104) 1357 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1358 /* 1359 * DLL is not required for clock <= 100MHz 1360 * Thus, make sure DLL it is disabled when not required 1361 */ 1362 config = readl_relaxed(host->ioaddr + 1363 msm_offset->core_dll_config); 1364 config |= CORE_DLL_RST; 1365 writel_relaxed(config, host->ioaddr + 1366 msm_offset->core_dll_config); 1367 1368 config = readl_relaxed(host->ioaddr + 1369 msm_offset->core_dll_config); 1370 config |= CORE_DLL_PDN; 1371 writel_relaxed(config, host->ioaddr + 1372 msm_offset->core_dll_config); 1373 1374 /* 1375 * The DLL needs to be restored and CDCLP533 recalibrated 1376 * when the clock frequency is set back to 400MHz. 1377 */ 1378 msm_host->calibration_done = false; 1379 } 1380 1381 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1382 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1383 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1384 1385 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1386 sdhci_msm_hs400(host, &mmc->ios); 1387 } 1388 1389 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1390 { 1391 struct platform_device *pdev = msm_host->pdev; 1392 int ret; 1393 1394 if (level) 1395 ret = pinctrl_pm_select_default_state(&pdev->dev); 1396 else 1397 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1398 1399 return ret; 1400 } 1401 1402 static int sdhci_msm_set_vmmc(struct mmc_host *mmc) 1403 { 1404 if (IS_ERR(mmc->supply.vmmc)) 1405 return 0; 1406 1407 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1408 } 1409 1410 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1411 struct mmc_host *mmc, bool level) 1412 { 1413 int ret; 1414 struct mmc_ios ios; 1415 1416 if (msm_host->vqmmc_enabled == level) 1417 return 0; 1418 1419 if (level) { 1420 /* Set the IO voltage regulator to default voltage level */ 1421 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1422 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1423 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1424 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1425 1426 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1427 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1428 if (ret < 0) { 1429 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1430 mmc_hostname(mmc), ret); 1431 goto out; 1432 } 1433 } 1434 ret = regulator_enable(mmc->supply.vqmmc); 1435 } else { 1436 ret = regulator_disable(mmc->supply.vqmmc); 1437 } 1438 1439 if (ret) 1440 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1441 mmc_hostname(mmc), level ? "en":"dis", ret); 1442 else 1443 msm_host->vqmmc_enabled = level; 1444 out: 1445 return ret; 1446 } 1447 1448 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1449 struct mmc_host *mmc, bool hpm) 1450 { 1451 int load, ret; 1452 1453 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1454 ret = regulator_set_load(mmc->supply.vqmmc, load); 1455 if (ret) 1456 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1457 mmc_hostname(mmc), ret); 1458 return ret; 1459 } 1460 1461 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1462 struct mmc_host *mmc, bool level) 1463 { 1464 int ret; 1465 bool always_on; 1466 1467 if (IS_ERR(mmc->supply.vqmmc) || 1468 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1469 return 0; 1470 /* 1471 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1472 * and HPM modes by setting the corresponding load. 1473 * 1474 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1475 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1476 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1477 * Vqmmc should remain ON, So just set the load instead of turning it 1478 * off/on. 1479 */ 1480 always_on = !mmc_card_is_removable(mmc) && 1481 mmc->card && mmc_card_mmc(mmc->card); 1482 1483 if (always_on) 1484 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1485 else 1486 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1487 1488 return ret; 1489 } 1490 1491 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1492 { 1493 init_waitqueue_head(&msm_host->pwr_irq_wait); 1494 } 1495 1496 static inline void sdhci_msm_complete_pwr_irq_wait( 1497 struct sdhci_msm_host *msm_host) 1498 { 1499 wake_up(&msm_host->pwr_irq_wait); 1500 } 1501 1502 /* 1503 * sdhci_msm_check_power_status API should be called when registers writes 1504 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1505 * To what state the register writes will change the IO lines should be passed 1506 * as the argument req_type. This API will check whether the IO line's state 1507 * is already the expected state and will wait for power irq only if 1508 * power irq is expected to be triggered based on the current IO line state 1509 * and expected IO line state. 1510 */ 1511 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1512 { 1513 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1514 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1515 bool done = false; 1516 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1517 const struct sdhci_msm_offset *msm_offset = 1518 msm_host->offset; 1519 1520 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1521 mmc_hostname(host->mmc), __func__, req_type, 1522 msm_host->curr_pwr_state, msm_host->curr_io_level); 1523 1524 /* 1525 * The power interrupt will not be generated for signal voltage 1526 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1527 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1528 * it as always set. 1529 */ 1530 if (!msm_host->mci_removed) 1531 val = msm_host_readl(msm_host, host, 1532 msm_offset->core_generics); 1533 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1534 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1535 return; 1536 } 1537 1538 /* 1539 * The IRQ for request type IO High/LOW will be generated when - 1540 * there is a state change in 1.8V enable bit (bit 3) of 1541 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1542 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1543 * to set it to 3.3V before card detection happens, the 1544 * IRQ doesn't get triggered as there is no state change in this bit. 1545 * The driver already handles this case by changing the IO voltage 1546 * level to high as part of controller power up sequence. Hence, check 1547 * for host->pwr to handle a case where IO voltage high request is 1548 * issued even before controller power up. 1549 */ 1550 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1551 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1552 mmc_hostname(host->mmc), req_type); 1553 return; 1554 } 1555 if ((req_type & msm_host->curr_pwr_state) || 1556 (req_type & msm_host->curr_io_level)) 1557 done = true; 1558 /* 1559 * This is needed here to handle cases where register writes will 1560 * not change the current bus state or io level of the controller. 1561 * In this case, no power irq will be triggerred and we should 1562 * not wait. 1563 */ 1564 if (!done) { 1565 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1566 msm_host->pwr_irq_flag, 1567 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1568 dev_warn(&msm_host->pdev->dev, 1569 "%s: pwr_irq for req: (%d) timed out\n", 1570 mmc_hostname(host->mmc), req_type); 1571 } 1572 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1573 __func__, req_type); 1574 } 1575 1576 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1577 { 1578 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1579 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1580 const struct sdhci_msm_offset *msm_offset = 1581 msm_host->offset; 1582 1583 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1584 mmc_hostname(host->mmc), 1585 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1586 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1587 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1588 } 1589 1590 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1591 { 1592 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1593 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1594 struct mmc_host *mmc = host->mmc; 1595 u32 irq_status, irq_ack = 0; 1596 int retry = 10, ret; 1597 u32 pwr_state = 0, io_level = 0; 1598 u32 config; 1599 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1600 1601 irq_status = msm_host_readl(msm_host, host, 1602 msm_offset->core_pwrctl_status); 1603 irq_status &= INT_MASK; 1604 1605 msm_host_writel(msm_host, irq_status, host, 1606 msm_offset->core_pwrctl_clear); 1607 1608 /* 1609 * There is a rare HW scenario where the first clear pulse could be 1610 * lost when actual reset and clear/read of status register is 1611 * happening at a time. Hence, retry for at least 10 times to make 1612 * sure status register is cleared. Otherwise, this will result in 1613 * a spurious power IRQ resulting in system instability. 1614 */ 1615 while (irq_status & msm_host_readl(msm_host, host, 1616 msm_offset->core_pwrctl_status)) { 1617 if (retry == 0) { 1618 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1619 mmc_hostname(host->mmc), irq_status); 1620 sdhci_msm_dump_pwr_ctrl_regs(host); 1621 WARN_ON(1); 1622 break; 1623 } 1624 msm_host_writel(msm_host, irq_status, host, 1625 msm_offset->core_pwrctl_clear); 1626 retry--; 1627 udelay(10); 1628 } 1629 1630 /* Handle BUS ON/OFF*/ 1631 if (irq_status & CORE_PWRCTL_BUS_ON) { 1632 pwr_state = REQ_BUS_ON; 1633 io_level = REQ_IO_HIGH; 1634 } 1635 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1636 pwr_state = REQ_BUS_OFF; 1637 io_level = REQ_IO_LOW; 1638 } 1639 1640 if (pwr_state) { 1641 ret = sdhci_msm_set_vmmc(mmc); 1642 if (!ret) 1643 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1644 pwr_state & REQ_BUS_ON); 1645 if (!ret) 1646 ret = sdhci_msm_set_pincfg(msm_host, 1647 pwr_state & REQ_BUS_ON); 1648 if (!ret) 1649 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1650 else 1651 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1652 } 1653 1654 /* Handle IO LOW/HIGH */ 1655 if (irq_status & CORE_PWRCTL_IO_LOW) 1656 io_level = REQ_IO_LOW; 1657 1658 if (irq_status & CORE_PWRCTL_IO_HIGH) 1659 io_level = REQ_IO_HIGH; 1660 1661 if (io_level) 1662 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1663 1664 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1665 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1666 if (ret < 0) { 1667 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1668 mmc_hostname(mmc), ret, 1669 mmc->ios.signal_voltage, mmc->ios.vdd, 1670 irq_status); 1671 irq_ack |= CORE_PWRCTL_IO_FAIL; 1672 } 1673 } 1674 1675 /* 1676 * The driver has to acknowledge the interrupt, switch voltages and 1677 * report back if it succeded or not to this register. The voltage 1678 * switches are handled by the sdhci core, so just report success. 1679 */ 1680 msm_host_writel(msm_host, irq_ack, host, 1681 msm_offset->core_pwrctl_ctl); 1682 1683 /* 1684 * If we don't have info regarding the voltage levels supported by 1685 * regulators, don't change the IO PAD PWR SWITCH. 1686 */ 1687 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1688 u32 new_config; 1689 /* 1690 * We should unset IO PAD PWR switch only if the register write 1691 * can set IO lines high and the regulator also switches to 3 V. 1692 * Else, we should keep the IO PAD PWR switch set. 1693 * This is applicable to certain targets where eMMC vccq supply 1694 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1695 * IO PAD PWR switch must be kept set to reflect actual 1696 * regulator voltage. This way, during initialization of 1697 * controllers with only 1.8V, we will set the IO PAD bit 1698 * without waiting for a REQ_IO_LOW. 1699 */ 1700 config = readl_relaxed(host->ioaddr + 1701 msm_offset->core_vendor_spec); 1702 new_config = config; 1703 1704 if ((io_level & REQ_IO_HIGH) && 1705 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1706 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1707 else if ((io_level & REQ_IO_LOW) || 1708 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1709 new_config |= CORE_IO_PAD_PWR_SWITCH; 1710 1711 if (config ^ new_config) 1712 writel_relaxed(new_config, host->ioaddr + 1713 msm_offset->core_vendor_spec); 1714 } 1715 1716 if (pwr_state) 1717 msm_host->curr_pwr_state = pwr_state; 1718 if (io_level) 1719 msm_host->curr_io_level = io_level; 1720 1721 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1722 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1723 irq_ack); 1724 } 1725 1726 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1727 { 1728 struct sdhci_host *host = (struct sdhci_host *)data; 1729 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1730 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1731 1732 sdhci_msm_handle_pwr_irq(host, irq); 1733 msm_host->pwr_irq_flag = 1; 1734 sdhci_msm_complete_pwr_irq_wait(msm_host); 1735 1736 1737 return IRQ_HANDLED; 1738 } 1739 1740 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1741 { 1742 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1743 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1744 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1745 1746 return clk_round_rate(core_clk, ULONG_MAX); 1747 } 1748 1749 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1750 { 1751 return SDHCI_MSM_MIN_CLOCK; 1752 } 1753 1754 /* 1755 * __sdhci_msm_set_clock - sdhci_msm clock control. 1756 * 1757 * Description: 1758 * MSM controller does not use internal divider and 1759 * instead directly control the GCC clock as per 1760 * HW recommendation. 1761 **/ 1762 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1763 { 1764 u16 clk; 1765 1766 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1767 1768 if (clock == 0) 1769 return; 1770 1771 /* 1772 * MSM controller do not use clock divider. 1773 * Thus read SDHCI_CLOCK_CONTROL and only enable 1774 * clock with no divider value programmed. 1775 */ 1776 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1777 sdhci_enable_clk(host, clk); 1778 } 1779 1780 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1781 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1782 { 1783 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1784 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1785 1786 if (!clock) { 1787 host->mmc->actual_clock = msm_host->clk_rate = 0; 1788 goto out; 1789 } 1790 1791 sdhci_msm_hc_select_mode(host); 1792 1793 msm_set_clock_rate_for_bus_mode(host, clock); 1794 out: 1795 __sdhci_msm_set_clock(host, clock); 1796 } 1797 1798 /*****************************************************************************\ 1799 * * 1800 * Inline Crypto Engine (ICE) support * 1801 * * 1802 \*****************************************************************************/ 1803 1804 #ifdef CONFIG_MMC_CRYPTO 1805 1806 #define AES_256_XTS_KEY_SIZE 64 1807 1808 /* QCOM ICE registers */ 1809 1810 #define QCOM_ICE_REG_VERSION 0x0008 1811 1812 #define QCOM_ICE_REG_FUSE_SETTING 0x0010 1813 #define QCOM_ICE_FUSE_SETTING_MASK 0x1 1814 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2 1815 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4 1816 1817 #define QCOM_ICE_REG_BIST_STATUS 0x0070 1818 #define QCOM_ICE_BIST_STATUS_MASK 0xF0000000 1819 1820 #define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000 1821 1822 #define sdhci_msm_ice_writel(host, val, reg) \ 1823 writel((val), (host)->ice_mem + (reg)) 1824 #define sdhci_msm_ice_readl(host, reg) \ 1825 readl((host)->ice_mem + (reg)) 1826 1827 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host) 1828 { 1829 struct device *dev = mmc_dev(msm_host->mmc); 1830 u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION); 1831 int major = regval >> 24; 1832 int minor = (regval >> 16) & 0xFF; 1833 int step = regval & 0xFFFF; 1834 1835 /* For now this driver only supports ICE version 3. */ 1836 if (major != 3) { 1837 dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n", 1838 major, minor, step); 1839 return false; 1840 } 1841 1842 dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n", 1843 major, minor, step); 1844 1845 /* If fuses are blown, ICE might not work in the standard way. */ 1846 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING); 1847 if (regval & (QCOM_ICE_FUSE_SETTING_MASK | 1848 QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK | 1849 QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) { 1850 dev_warn(dev, "Fuses are blown; ICE is unusable!\n"); 1851 return false; 1852 } 1853 return true; 1854 } 1855 1856 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev) 1857 { 1858 return devm_clk_get(dev, "ice"); 1859 } 1860 1861 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 1862 struct cqhci_host *cq_host) 1863 { 1864 struct mmc_host *mmc = msm_host->mmc; 1865 struct device *dev = mmc_dev(mmc); 1866 struct resource *res; 1867 1868 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) 1869 return 0; 1870 1871 res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM, 1872 "ice"); 1873 if (!res) { 1874 dev_warn(dev, "ICE registers not found\n"); 1875 goto disable; 1876 } 1877 1878 if (!qcom_scm_ice_available()) { 1879 dev_warn(dev, "ICE SCM interface not found\n"); 1880 goto disable; 1881 } 1882 1883 msm_host->ice_mem = devm_ioremap_resource(dev, res); 1884 if (IS_ERR(msm_host->ice_mem)) 1885 return PTR_ERR(msm_host->ice_mem); 1886 1887 if (!sdhci_msm_ice_supported(msm_host)) 1888 goto disable; 1889 1890 mmc->caps2 |= MMC_CAP2_CRYPTO; 1891 return 0; 1892 1893 disable: 1894 dev_warn(dev, "Disabling inline encryption support\n"); 1895 return 0; 1896 } 1897 1898 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host) 1899 { 1900 u32 regval; 1901 1902 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL); 1903 /* 1904 * Enable low power mode sequence 1905 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0 1906 */ 1907 regval |= 0x7000; 1908 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL); 1909 } 1910 1911 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host) 1912 { 1913 u32 regval; 1914 1915 /* ICE Optimizations Enable Sequence */ 1916 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL); 1917 regval |= 0xD807100; 1918 /* ICE HPG requires delay before writing */ 1919 udelay(5); 1920 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL); 1921 udelay(5); 1922 } 1923 1924 /* 1925 * Wait until the ICE BIST (built-in self-test) has completed. 1926 * 1927 * This may be necessary before ICE can be used. 1928 * 1929 * Note that we don't really care whether the BIST passed or failed; we really 1930 * just want to make sure that it isn't still running. This is because (a) the 1931 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is 1932 * documented to reject crypto requests if the BIST fails, so we needn't do it 1933 * in software too, and (c) properly testing storage encryption requires testing 1934 * the full storage stack anyway, and not relying on hardware-level self-tests. 1935 */ 1936 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host) 1937 { 1938 u32 regval; 1939 int err; 1940 1941 err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS, 1942 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK), 1943 50, 5000); 1944 if (err) 1945 dev_err(mmc_dev(msm_host->mmc), 1946 "Timed out waiting for ICE self-test to complete\n"); 1947 return err; 1948 } 1949 1950 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 1951 { 1952 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)) 1953 return; 1954 sdhci_msm_ice_low_power_mode_enable(msm_host); 1955 sdhci_msm_ice_optimization_enable(msm_host); 1956 sdhci_msm_ice_wait_bist_status(msm_host); 1957 } 1958 1959 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 1960 { 1961 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)) 1962 return 0; 1963 return sdhci_msm_ice_wait_bist_status(msm_host); 1964 } 1965 1966 /* 1967 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires 1968 * vendor-specific SCM calls for this; it doesn't support the standard way. 1969 */ 1970 static int sdhci_msm_program_key(struct cqhci_host *cq_host, 1971 const union cqhci_crypto_cfg_entry *cfg, 1972 int slot) 1973 { 1974 struct device *dev = mmc_dev(cq_host->mmc); 1975 union cqhci_crypto_cap_entry cap; 1976 union { 1977 u8 bytes[AES_256_XTS_KEY_SIZE]; 1978 u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)]; 1979 } key; 1980 int i; 1981 int err; 1982 1983 if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE)) 1984 return qcom_scm_ice_invalidate_key(slot); 1985 1986 /* Only AES-256-XTS has been tested so far. */ 1987 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx]; 1988 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS || 1989 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) { 1990 dev_err_ratelimited(dev, 1991 "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n", 1992 cap.algorithm_id, cap.key_size); 1993 return -EINVAL; 1994 } 1995 1996 memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE); 1997 1998 /* 1999 * The SCM call byte-swaps the 32-bit words of the key. So we have to 2000 * do the same, in order for the final key be correct. 2001 */ 2002 for (i = 0; i < ARRAY_SIZE(key.words); i++) 2003 __cpu_to_be32s(&key.words[i]); 2004 2005 err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE, 2006 QCOM_SCM_ICE_CIPHER_AES_256_XTS, 2007 cfg->data_unit_size); 2008 memzero_explicit(&key, sizeof(key)); 2009 return err; 2010 } 2011 #else /* CONFIG_MMC_CRYPTO */ 2012 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev) 2013 { 2014 return NULL; 2015 } 2016 2017 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 2018 struct cqhci_host *cq_host) 2019 { 2020 return 0; 2021 } 2022 2023 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 2024 { 2025 } 2026 2027 static inline int __maybe_unused 2028 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 2029 { 2030 return 0; 2031 } 2032 #endif /* !CONFIG_MMC_CRYPTO */ 2033 2034 /*****************************************************************************\ 2035 * * 2036 * MSM Command Queue Engine (CQE) * 2037 * * 2038 \*****************************************************************************/ 2039 2040 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 2041 { 2042 int cmd_error = 0; 2043 int data_error = 0; 2044 2045 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 2046 return intmask; 2047 2048 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 2049 return 0; 2050 } 2051 2052 static void sdhci_msm_cqe_enable(struct mmc_host *mmc) 2053 { 2054 struct sdhci_host *host = mmc_priv(mmc); 2055 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2056 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2057 2058 sdhci_cqe_enable(mmc); 2059 sdhci_msm_ice_enable(msm_host); 2060 } 2061 2062 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 2063 { 2064 struct sdhci_host *host = mmc_priv(mmc); 2065 unsigned long flags; 2066 u32 ctrl; 2067 2068 /* 2069 * When CQE is halted, the legacy SDHCI path operates only 2070 * on 16-byte descriptors in 64bit mode. 2071 */ 2072 if (host->flags & SDHCI_USE_64_BIT_DMA) 2073 host->desc_sz = 16; 2074 2075 spin_lock_irqsave(&host->lock, flags); 2076 2077 /* 2078 * During CQE command transfers, command complete bit gets latched. 2079 * So s/w should clear command complete interrupt status when CQE is 2080 * either halted or disabled. Otherwise unexpected SDCHI legacy 2081 * interrupt gets triggered when CQE is halted/disabled. 2082 */ 2083 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 2084 ctrl |= SDHCI_INT_RESPONSE; 2085 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 2086 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 2087 2088 spin_unlock_irqrestore(&host->lock, flags); 2089 2090 sdhci_cqe_disable(mmc, recovery); 2091 } 2092 2093 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd) 2094 { 2095 u32 count, start = 15; 2096 2097 __sdhci_set_timeout(host, cmd); 2098 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL); 2099 /* 2100 * Update software timeout value if its value is less than hardware data 2101 * timeout value. Qcom SoC hardware data timeout value was calculated 2102 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock. 2103 */ 2104 if (cmd && cmd->data && host->clock > 400000 && 2105 host->clock <= 50000000 && 2106 ((1 << (count + start)) > (10 * host->clock))) 2107 host->data_timeout = 22LL * NSEC_PER_SEC; 2108 } 2109 2110 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 2111 .enable = sdhci_msm_cqe_enable, 2112 .disable = sdhci_msm_cqe_disable, 2113 #ifdef CONFIG_MMC_CRYPTO 2114 .program_key = sdhci_msm_program_key, 2115 #endif 2116 }; 2117 2118 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 2119 struct platform_device *pdev) 2120 { 2121 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2122 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2123 struct cqhci_host *cq_host; 2124 bool dma64; 2125 u32 cqcfg; 2126 int ret; 2127 2128 /* 2129 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 2130 * So ensure ADMA table is allocated for 16byte descriptors. 2131 */ 2132 if (host->caps & SDHCI_CAN_64BIT) 2133 host->alloc_desc_sz = 16; 2134 2135 ret = sdhci_setup_host(host); 2136 if (ret) 2137 return ret; 2138 2139 cq_host = cqhci_pltfm_init(pdev); 2140 if (IS_ERR(cq_host)) { 2141 ret = PTR_ERR(cq_host); 2142 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 2143 goto cleanup; 2144 } 2145 2146 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 2147 cq_host->ops = &sdhci_msm_cqhci_ops; 2148 2149 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 2150 2151 ret = sdhci_msm_ice_init(msm_host, cq_host); 2152 if (ret) 2153 goto cleanup; 2154 2155 ret = cqhci_init(cq_host, host->mmc, dma64); 2156 if (ret) { 2157 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 2158 mmc_hostname(host->mmc), ret); 2159 goto cleanup; 2160 } 2161 2162 /* Disable cqe reset due to cqe enable signal */ 2163 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 2164 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 2165 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 2166 2167 /* 2168 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 2169 * So limit desc_sz to 12 so that the data commands that are sent 2170 * during card initialization (before CQE gets enabled) would 2171 * get executed without any issues. 2172 */ 2173 if (host->flags & SDHCI_USE_64_BIT_DMA) 2174 host->desc_sz = 12; 2175 2176 ret = __sdhci_add_host(host); 2177 if (ret) 2178 goto cleanup; 2179 2180 dev_info(&pdev->dev, "%s: CQE init: success\n", 2181 mmc_hostname(host->mmc)); 2182 return ret; 2183 2184 cleanup: 2185 sdhci_cleanup_host(host); 2186 return ret; 2187 } 2188 2189 /* 2190 * Platform specific register write functions. This is so that, if any 2191 * register write needs to be followed up by platform specific actions, 2192 * they can be added here. These functions can go to sleep when writes 2193 * to certain registers are done. 2194 * These functions are relying on sdhci_set_ios not using spinlock. 2195 */ 2196 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 2197 { 2198 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2199 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2200 u32 req_type = 0; 2201 2202 switch (reg) { 2203 case SDHCI_HOST_CONTROL2: 2204 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 2205 REQ_IO_HIGH; 2206 break; 2207 case SDHCI_SOFTWARE_RESET: 2208 if (host->pwr && (val & SDHCI_RESET_ALL)) 2209 req_type = REQ_BUS_OFF; 2210 break; 2211 case SDHCI_POWER_CONTROL: 2212 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 2213 break; 2214 case SDHCI_TRANSFER_MODE: 2215 msm_host->transfer_mode = val; 2216 break; 2217 case SDHCI_COMMAND: 2218 if (!msm_host->use_cdr) 2219 break; 2220 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 2221 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 && 2222 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK) 2223 sdhci_msm_set_cdr(host, true); 2224 else 2225 sdhci_msm_set_cdr(host, false); 2226 break; 2227 } 2228 2229 if (req_type) { 2230 msm_host->pwr_irq_flag = 0; 2231 /* 2232 * Since this register write may trigger a power irq, ensure 2233 * all previous register writes are complete by this point. 2234 */ 2235 mb(); 2236 } 2237 return req_type; 2238 } 2239 2240 /* This function may sleep*/ 2241 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 2242 { 2243 u32 req_type = 0; 2244 2245 req_type = __sdhci_msm_check_write(host, val, reg); 2246 writew_relaxed(val, host->ioaddr + reg); 2247 2248 if (req_type) 2249 sdhci_msm_check_power_status(host, req_type); 2250 } 2251 2252 /* This function may sleep*/ 2253 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 2254 { 2255 u32 req_type = 0; 2256 2257 req_type = __sdhci_msm_check_write(host, val, reg); 2258 2259 writeb_relaxed(val, host->ioaddr + reg); 2260 2261 if (req_type) 2262 sdhci_msm_check_power_status(host, req_type); 2263 } 2264 2265 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 2266 { 2267 struct mmc_host *mmc = msm_host->mmc; 2268 struct regulator *supply = mmc->supply.vqmmc; 2269 u32 caps = 0, config; 2270 struct sdhci_host *host = mmc_priv(mmc); 2271 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2272 2273 if (!IS_ERR(mmc->supply.vqmmc)) { 2274 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 2275 caps |= CORE_1_8V_SUPPORT; 2276 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 2277 caps |= CORE_3_0V_SUPPORT; 2278 2279 if (!caps) 2280 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 2281 mmc_hostname(mmc)); 2282 } 2283 2284 if (caps) { 2285 /* 2286 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 2287 * bit can be used as required later on. 2288 */ 2289 u32 io_level = msm_host->curr_io_level; 2290 2291 config = readl_relaxed(host->ioaddr + 2292 msm_offset->core_vendor_spec); 2293 config |= CORE_IO_PAD_PWR_SWITCH_EN; 2294 2295 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2296 config &= ~CORE_IO_PAD_PWR_SWITCH; 2297 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2298 config |= CORE_IO_PAD_PWR_SWITCH; 2299 2300 writel_relaxed(config, 2301 host->ioaddr + msm_offset->core_vendor_spec); 2302 } 2303 msm_host->caps_0 |= caps; 2304 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2305 } 2306 2307 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask) 2308 { 2309 if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL)) 2310 cqhci_deactivate(host->mmc); 2311 sdhci_reset(host, mask); 2312 } 2313 2314 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2315 { 2316 int ret; 2317 2318 ret = mmc_regulator_get_supply(msm_host->mmc); 2319 if (ret) 2320 return ret; 2321 2322 sdhci_msm_set_regulator_caps(msm_host); 2323 2324 return 0; 2325 } 2326 2327 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2328 struct mmc_ios *ios) 2329 { 2330 struct sdhci_host *host = mmc_priv(mmc); 2331 u16 ctrl, status; 2332 2333 /* 2334 * Signal Voltage Switching is only applicable for Host Controllers 2335 * v3.00 and above. 2336 */ 2337 if (host->version < SDHCI_SPEC_300) 2338 return 0; 2339 2340 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2341 2342 switch (ios->signal_voltage) { 2343 case MMC_SIGNAL_VOLTAGE_330: 2344 if (!(host->flags & SDHCI_SIGNALING_330)) 2345 return -EINVAL; 2346 2347 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2348 ctrl &= ~SDHCI_CTRL_VDD_180; 2349 break; 2350 case MMC_SIGNAL_VOLTAGE_180: 2351 if (!(host->flags & SDHCI_SIGNALING_180)) 2352 return -EINVAL; 2353 2354 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2355 ctrl |= SDHCI_CTRL_VDD_180; 2356 break; 2357 2358 default: 2359 return -EINVAL; 2360 } 2361 2362 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2363 2364 /* Wait for 5ms */ 2365 usleep_range(5000, 5500); 2366 2367 /* regulator output should be stable within 5 ms */ 2368 status = ctrl & SDHCI_CTRL_VDD_180; 2369 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2370 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2371 return 0; 2372 2373 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2374 mmc_hostname(mmc)); 2375 2376 return -EAGAIN; 2377 } 2378 2379 #define DRIVER_NAME "sdhci_msm" 2380 #define SDHCI_MSM_DUMP(f, x...) \ 2381 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2382 2383 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2384 { 2385 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2386 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2387 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2388 2389 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2390 2391 SDHCI_MSM_DUMP( 2392 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2393 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2394 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2395 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2396 SDHCI_MSM_DUMP( 2397 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2398 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2399 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2400 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2401 SDHCI_MSM_DUMP( 2402 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2403 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2404 readl_relaxed(host->ioaddr + 2405 msm_offset->core_vendor_spec_func2), 2406 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2407 } 2408 2409 static const struct sdhci_msm_variant_ops mci_var_ops = { 2410 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2411 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2412 }; 2413 2414 static const struct sdhci_msm_variant_ops v5_var_ops = { 2415 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2416 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2417 }; 2418 2419 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2420 .var_ops = &mci_var_ops, 2421 .offset = &sdhci_msm_mci_offset, 2422 }; 2423 2424 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2425 .mci_removed = true, 2426 .var_ops = &v5_var_ops, 2427 .offset = &sdhci_msm_v5_offset, 2428 }; 2429 2430 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2431 .mci_removed = true, 2432 .restore_dll_config = true, 2433 .var_ops = &v5_var_ops, 2434 .offset = &sdhci_msm_v5_offset, 2435 }; 2436 2437 static const struct of_device_id sdhci_msm_dt_match[] = { 2438 /* 2439 * Do not add new variants to the driver which are compatible with 2440 * generic ones, unless they need customization. 2441 */ 2442 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2443 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2444 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var}, 2445 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2446 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var}, 2447 {}, 2448 }; 2449 2450 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2451 2452 static const struct sdhci_ops sdhci_msm_ops = { 2453 .reset = sdhci_msm_reset, 2454 .set_clock = sdhci_msm_set_clock, 2455 .get_min_clock = sdhci_msm_get_min_clock, 2456 .get_max_clock = sdhci_msm_get_max_clock, 2457 .set_bus_width = sdhci_set_bus_width, 2458 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2459 .write_w = sdhci_msm_writew, 2460 .write_b = sdhci_msm_writeb, 2461 .irq = sdhci_msm_cqe_irq, 2462 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2463 .set_power = sdhci_set_power_noreg, 2464 .set_timeout = sdhci_msm_set_timeout, 2465 }; 2466 2467 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2468 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2469 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2470 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2471 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2472 2473 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2474 .ops = &sdhci_msm_ops, 2475 }; 2476 2477 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2478 struct sdhci_host *host) 2479 { 2480 struct device_node *node = pdev->dev.of_node; 2481 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2482 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2483 2484 if (of_property_read_u32(node, "qcom,ddr-config", 2485 &msm_host->ddr_config)) 2486 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2487 2488 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2489 } 2490 2491 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host) 2492 { 2493 struct reset_control *reset; 2494 int ret = 0; 2495 2496 reset = reset_control_get_optional_exclusive(dev, NULL); 2497 if (IS_ERR(reset)) 2498 return dev_err_probe(dev, PTR_ERR(reset), 2499 "unable to acquire core_reset\n"); 2500 2501 if (!reset) 2502 return ret; 2503 2504 ret = reset_control_assert(reset); 2505 if (ret) { 2506 reset_control_put(reset); 2507 return dev_err_probe(dev, ret, "core_reset assert failed\n"); 2508 } 2509 2510 /* 2511 * The hardware requirement for delay between assert/deassert 2512 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to 2513 * ~125us (4/32768). To be on the safe side add 200us delay. 2514 */ 2515 usleep_range(200, 210); 2516 2517 ret = reset_control_deassert(reset); 2518 if (ret) { 2519 reset_control_put(reset); 2520 return dev_err_probe(dev, ret, "core_reset deassert failed\n"); 2521 } 2522 2523 usleep_range(200, 210); 2524 reset_control_put(reset); 2525 2526 return ret; 2527 } 2528 2529 static int sdhci_msm_probe(struct platform_device *pdev) 2530 { 2531 struct sdhci_host *host; 2532 struct sdhci_pltfm_host *pltfm_host; 2533 struct sdhci_msm_host *msm_host; 2534 struct clk *clk; 2535 int ret; 2536 u16 host_version, core_minor; 2537 u32 core_version, config; 2538 u8 core_major; 2539 const struct sdhci_msm_offset *msm_offset; 2540 const struct sdhci_msm_variant_info *var_info; 2541 struct device_node *node = pdev->dev.of_node; 2542 2543 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2544 if (IS_ERR(host)) 2545 return PTR_ERR(host); 2546 2547 host->sdma_boundary = 0; 2548 pltfm_host = sdhci_priv(host); 2549 msm_host = sdhci_pltfm_priv(pltfm_host); 2550 msm_host->mmc = host->mmc; 2551 msm_host->pdev = pdev; 2552 2553 ret = mmc_of_parse(host->mmc); 2554 if (ret) 2555 goto pltfm_free; 2556 2557 /* 2558 * Based on the compatible string, load the required msm host info from 2559 * the data associated with the version info. 2560 */ 2561 var_info = of_device_get_match_data(&pdev->dev); 2562 2563 msm_host->mci_removed = var_info->mci_removed; 2564 msm_host->restore_dll_config = var_info->restore_dll_config; 2565 msm_host->var_ops = var_info->var_ops; 2566 msm_host->offset = var_info->offset; 2567 2568 msm_offset = msm_host->offset; 2569 2570 sdhci_get_of_property(pdev); 2571 sdhci_msm_get_of_property(pdev, host); 2572 2573 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2574 2575 ret = sdhci_msm_gcc_reset(&pdev->dev, host); 2576 if (ret) 2577 goto pltfm_free; 2578 2579 /* Setup SDCC bus voter clock. */ 2580 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2581 if (!IS_ERR(msm_host->bus_clk)) { 2582 /* Vote for max. clk rate for max. performance */ 2583 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2584 if (ret) 2585 goto pltfm_free; 2586 ret = clk_prepare_enable(msm_host->bus_clk); 2587 if (ret) 2588 goto pltfm_free; 2589 } 2590 2591 /* Setup main peripheral bus clock */ 2592 clk = devm_clk_get(&pdev->dev, "iface"); 2593 if (IS_ERR(clk)) { 2594 ret = PTR_ERR(clk); 2595 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2596 goto bus_clk_disable; 2597 } 2598 msm_host->bulk_clks[1].clk = clk; 2599 2600 /* Setup SDC MMC clock */ 2601 clk = devm_clk_get(&pdev->dev, "core"); 2602 if (IS_ERR(clk)) { 2603 ret = PTR_ERR(clk); 2604 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2605 goto bus_clk_disable; 2606 } 2607 msm_host->bulk_clks[0].clk = clk; 2608 2609 /* Check for optional interconnect paths */ 2610 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2611 if (ret) 2612 goto bus_clk_disable; 2613 2614 ret = devm_pm_opp_set_clkname(&pdev->dev, "core"); 2615 if (ret) 2616 goto bus_clk_disable; 2617 2618 /* OPP table is optional */ 2619 ret = devm_pm_opp_of_add_table(&pdev->dev); 2620 if (ret && ret != -ENODEV) { 2621 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2622 goto bus_clk_disable; 2623 } 2624 2625 /* Vote for maximum clock rate for maximum performance */ 2626 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2627 if (ret) 2628 dev_warn(&pdev->dev, "core clock boost failed\n"); 2629 2630 clk = devm_clk_get(&pdev->dev, "cal"); 2631 if (IS_ERR(clk)) 2632 clk = NULL; 2633 msm_host->bulk_clks[2].clk = clk; 2634 2635 clk = devm_clk_get(&pdev->dev, "sleep"); 2636 if (IS_ERR(clk)) 2637 clk = NULL; 2638 msm_host->bulk_clks[3].clk = clk; 2639 2640 clk = sdhci_msm_ice_get_clk(&pdev->dev); 2641 if (IS_ERR(clk)) 2642 clk = NULL; 2643 msm_host->bulk_clks[4].clk = clk; 2644 2645 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2646 msm_host->bulk_clks); 2647 if (ret) 2648 goto bus_clk_disable; 2649 2650 /* 2651 * xo clock is needed for FLL feature of cm_dll. 2652 * In case if xo clock is not mentioned in DT, warn and proceed. 2653 */ 2654 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2655 if (IS_ERR(msm_host->xo_clk)) { 2656 ret = PTR_ERR(msm_host->xo_clk); 2657 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2658 } 2659 2660 if (!msm_host->mci_removed) { 2661 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2662 if (IS_ERR(msm_host->core_mem)) { 2663 ret = PTR_ERR(msm_host->core_mem); 2664 goto clk_disable; 2665 } 2666 } 2667 2668 /* Reset the vendor spec register to power on reset state */ 2669 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2670 host->ioaddr + msm_offset->core_vendor_spec); 2671 2672 if (!msm_host->mci_removed) { 2673 /* Set HC_MODE_EN bit in HC_MODE register */ 2674 msm_host_writel(msm_host, HC_MODE_EN, host, 2675 msm_offset->core_hc_mode); 2676 config = msm_host_readl(msm_host, host, 2677 msm_offset->core_hc_mode); 2678 config |= FF_CLK_SW_RST_DIS; 2679 msm_host_writel(msm_host, config, host, 2680 msm_offset->core_hc_mode); 2681 } 2682 2683 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2684 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2685 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2686 SDHCI_VENDOR_VER_SHIFT)); 2687 2688 core_version = msm_host_readl(msm_host, host, 2689 msm_offset->core_mci_version); 2690 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2691 CORE_VERSION_MAJOR_SHIFT; 2692 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2693 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2694 core_version, core_major, core_minor); 2695 2696 if (core_major == 1 && core_minor >= 0x42) 2697 msm_host->use_14lpp_dll_reset = true; 2698 2699 /* 2700 * SDCC 5 controller with major version 1, minor version 0x34 and later 2701 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2702 */ 2703 if (core_major == 1 && core_minor < 0x34) 2704 msm_host->use_cdclp533 = true; 2705 2706 /* 2707 * Support for some capabilities is not advertised by newer 2708 * controller versions and must be explicitly enabled. 2709 */ 2710 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2711 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2712 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2713 writel_relaxed(config, host->ioaddr + 2714 msm_offset->core_vendor_spec_capabilities0); 2715 } 2716 2717 if (core_major == 1 && core_minor >= 0x49) 2718 msm_host->updated_ddr_cfg = true; 2719 2720 if (core_major == 1 && core_minor >= 0x71) 2721 msm_host->uses_tassadar_dll = true; 2722 2723 ret = sdhci_msm_register_vreg(msm_host); 2724 if (ret) 2725 goto clk_disable; 2726 2727 /* 2728 * Power on reset state may trigger power irq if previous status of 2729 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2730 * interrupt in GIC, any pending power irq interrupt should be 2731 * acknowledged. Otherwise power irq interrupt handler would be 2732 * fired prematurely. 2733 */ 2734 sdhci_msm_handle_pwr_irq(host, 0); 2735 2736 /* 2737 * Ensure that above writes are propogated before interrupt enablement 2738 * in GIC. 2739 */ 2740 mb(); 2741 2742 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2743 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2744 if (msm_host->pwr_irq < 0) { 2745 ret = msm_host->pwr_irq; 2746 goto clk_disable; 2747 } 2748 2749 sdhci_msm_init_pwr_irq_wait(msm_host); 2750 /* Enable pwr irq interrupts */ 2751 msm_host_writel(msm_host, INT_MASK, host, 2752 msm_offset->core_pwrctl_mask); 2753 2754 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2755 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2756 dev_name(&pdev->dev), host); 2757 if (ret) { 2758 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2759 goto clk_disable; 2760 } 2761 2762 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2763 2764 /* Set the timeout value to max possible */ 2765 host->max_timeout_count = 0xF; 2766 2767 pm_runtime_get_noresume(&pdev->dev); 2768 pm_runtime_set_active(&pdev->dev); 2769 pm_runtime_enable(&pdev->dev); 2770 pm_runtime_set_autosuspend_delay(&pdev->dev, 2771 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2772 pm_runtime_use_autosuspend(&pdev->dev); 2773 2774 host->mmc_host_ops.start_signal_voltage_switch = 2775 sdhci_msm_start_signal_voltage_switch; 2776 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2777 if (of_property_read_bool(node, "supports-cqe")) 2778 ret = sdhci_msm_cqe_add_host(host, pdev); 2779 else 2780 ret = sdhci_add_host(host); 2781 if (ret) 2782 goto pm_runtime_disable; 2783 2784 pm_runtime_mark_last_busy(&pdev->dev); 2785 pm_runtime_put_autosuspend(&pdev->dev); 2786 2787 return 0; 2788 2789 pm_runtime_disable: 2790 pm_runtime_disable(&pdev->dev); 2791 pm_runtime_set_suspended(&pdev->dev); 2792 pm_runtime_put_noidle(&pdev->dev); 2793 clk_disable: 2794 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2795 msm_host->bulk_clks); 2796 bus_clk_disable: 2797 if (!IS_ERR(msm_host->bus_clk)) 2798 clk_disable_unprepare(msm_host->bus_clk); 2799 pltfm_free: 2800 sdhci_pltfm_free(pdev); 2801 return ret; 2802 } 2803 2804 static int sdhci_msm_remove(struct platform_device *pdev) 2805 { 2806 struct sdhci_host *host = platform_get_drvdata(pdev); 2807 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2808 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2809 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2810 0xffffffff); 2811 2812 sdhci_remove_host(host, dead); 2813 2814 pm_runtime_get_sync(&pdev->dev); 2815 pm_runtime_disable(&pdev->dev); 2816 pm_runtime_put_noidle(&pdev->dev); 2817 2818 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2819 msm_host->bulk_clks); 2820 if (!IS_ERR(msm_host->bus_clk)) 2821 clk_disable_unprepare(msm_host->bus_clk); 2822 sdhci_pltfm_free(pdev); 2823 return 0; 2824 } 2825 2826 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2827 { 2828 struct sdhci_host *host = dev_get_drvdata(dev); 2829 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2830 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2831 2832 /* Drop the performance vote */ 2833 dev_pm_opp_set_rate(dev, 0); 2834 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2835 msm_host->bulk_clks); 2836 2837 return 0; 2838 } 2839 2840 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2841 { 2842 struct sdhci_host *host = dev_get_drvdata(dev); 2843 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2844 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2845 int ret; 2846 2847 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2848 msm_host->bulk_clks); 2849 if (ret) 2850 return ret; 2851 /* 2852 * Whenever core-clock is gated dynamically, it's needed to 2853 * restore the SDR DLL settings when the clock is ungated. 2854 */ 2855 if (msm_host->restore_dll_config && msm_host->clk_rate) { 2856 ret = sdhci_msm_restore_sdr_dll_config(host); 2857 if (ret) 2858 return ret; 2859 } 2860 2861 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2862 2863 return sdhci_msm_ice_resume(msm_host); 2864 } 2865 2866 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2867 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2868 pm_runtime_force_resume) 2869 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2870 sdhci_msm_runtime_resume, 2871 NULL) 2872 }; 2873 2874 static struct platform_driver sdhci_msm_driver = { 2875 .probe = sdhci_msm_probe, 2876 .remove = sdhci_msm_remove, 2877 .driver = { 2878 .name = "sdhci_msm", 2879 .of_match_table = sdhci_msm_dt_match, 2880 .pm = &sdhci_msm_pm_ops, 2881 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2882 }, 2883 }; 2884 2885 module_platform_driver(sdhci_msm_driver); 2886 2887 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2888 MODULE_LICENSE("GPL v2"); 2889