xref: /linux/drivers/mmc/host/sdhci-msm.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/regulator/consumer.h>
17 
18 #include "sdhci-pltfm.h"
19 #include "cqhci.h"
20 
21 #define CORE_MCI_VERSION		0x50
22 #define CORE_VERSION_MAJOR_SHIFT	28
23 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
24 #define CORE_VERSION_MINOR_MASK		0xff
25 
26 #define CORE_MCI_GENERICS		0x70
27 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
28 
29 #define HC_MODE_EN		0x1
30 #define CORE_POWER		0x0
31 #define CORE_SW_RST		BIT(7)
32 #define FF_CLK_SW_RST_DIS	BIT(13)
33 
34 #define CORE_PWRCTL_BUS_OFF	BIT(0)
35 #define CORE_PWRCTL_BUS_ON	BIT(1)
36 #define CORE_PWRCTL_IO_LOW	BIT(2)
37 #define CORE_PWRCTL_IO_HIGH	BIT(3)
38 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
39 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
40 #define REQ_BUS_OFF		BIT(0)
41 #define REQ_BUS_ON		BIT(1)
42 #define REQ_IO_LOW		BIT(2)
43 #define REQ_IO_HIGH		BIT(3)
44 #define INT_MASK		0xf
45 #define MAX_PHASES		16
46 #define CORE_DLL_LOCK		BIT(7)
47 #define CORE_DDR_DLL_LOCK	BIT(11)
48 #define CORE_DLL_EN		BIT(16)
49 #define CORE_CDR_EN		BIT(17)
50 #define CORE_CK_OUT_EN		BIT(18)
51 #define CORE_CDR_EXT_EN		BIT(19)
52 #define CORE_DLL_PDN		BIT(29)
53 #define CORE_DLL_RST		BIT(30)
54 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
55 
56 #define CORE_DDR_CAL_EN		BIT(0)
57 #define CORE_FLL_CYCLE_CNT	BIT(18)
58 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
59 
60 #define DLL_USR_CTL_POR_VAL	0x10800
61 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
62 #define FINE_TUNE_MODE_EN	BIT(27)
63 #define BIAS_OK_SIGNAL		BIT(29)
64 
65 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
66 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
67 
68 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
69 #define CORE_CLK_PWRSAVE	BIT(1)
70 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
71 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
72 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
73 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
74 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
75 #define CORE_HC_SELECT_IN_EN	BIT(18)
76 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
77 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
78 
79 #define CORE_3_0V_SUPPORT	BIT(25)
80 #define CORE_1_8V_SUPPORT	BIT(26)
81 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
82 
83 #define CORE_CSR_CDC_CTLR_CFG0		0x130
84 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
85 #define CORE_HW_AUTOCAL_ENA		BIT(17)
86 
87 #define CORE_CSR_CDC_CTLR_CFG1		0x134
88 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
89 #define CORE_TIMER_ENA			BIT(16)
90 
91 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
92 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
93 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
94 #define CORE_CDC_OFFSET_CFG		0x14C
95 #define CORE_CSR_CDC_DELAY_CFG		0x150
96 #define CORE_CDC_SLAVE_DDA_CFG		0x160
97 #define CORE_CSR_CDC_STATUS0		0x164
98 #define CORE_CALIBRATION_DONE		BIT(0)
99 
100 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
101 
102 #define CORE_CSR_CDC_GEN_CFG		0x178
103 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
104 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
105 
106 #define CORE_CDC_T4_DLY_SEL		BIT(0)
107 #define CORE_CMDIN_RCLK_EN		BIT(1)
108 #define CORE_START_CDC_TRAFFIC		BIT(6)
109 
110 #define CORE_PWRSAVE_DLL	BIT(3)
111 
112 #define DDR_CONFIG_POR_VAL	0x80040873
113 
114 
115 #define INVALID_TUNING_PHASE	-1
116 #define SDHCI_MSM_MIN_CLOCK	400000
117 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
118 
119 #define CDR_SELEXT_SHIFT	20
120 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
121 #define CMUX_SHIFT_PHASE_SHIFT	24
122 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
123 
124 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
125 
126 /* Timeout value to avoid infinite waiting for pwr_irq */
127 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
128 
129 #define msm_host_readl(msm_host, host, offset) \
130 	msm_host->var_ops->msm_readl_relaxed(host, offset)
131 
132 #define msm_host_writel(msm_host, val, host, offset) \
133 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
134 
135 /* CQHCI vendor specific registers */
136 #define CQHCI_VENDOR_CFG1	0xA00
137 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
138 
139 struct sdhci_msm_offset {
140 	u32 core_hc_mode;
141 	u32 core_mci_data_cnt;
142 	u32 core_mci_status;
143 	u32 core_mci_fifo_cnt;
144 	u32 core_mci_version;
145 	u32 core_generics;
146 	u32 core_testbus_config;
147 	u32 core_testbus_sel2_bit;
148 	u32 core_testbus_ena;
149 	u32 core_testbus_sel2;
150 	u32 core_pwrctl_status;
151 	u32 core_pwrctl_mask;
152 	u32 core_pwrctl_clear;
153 	u32 core_pwrctl_ctl;
154 	u32 core_sdcc_debug_reg;
155 	u32 core_dll_config;
156 	u32 core_dll_status;
157 	u32 core_vendor_spec;
158 	u32 core_vendor_spec_adma_err_addr0;
159 	u32 core_vendor_spec_adma_err_addr1;
160 	u32 core_vendor_spec_func2;
161 	u32 core_vendor_spec_capabilities0;
162 	u32 core_ddr_200_cfg;
163 	u32 core_vendor_spec3;
164 	u32 core_dll_config_2;
165 	u32 core_dll_config_3;
166 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
167 	u32 core_ddr_config;
168 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
169 };
170 
171 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
172 	.core_mci_data_cnt = 0x35c,
173 	.core_mci_status = 0x324,
174 	.core_mci_fifo_cnt = 0x308,
175 	.core_mci_version = 0x318,
176 	.core_generics = 0x320,
177 	.core_testbus_config = 0x32c,
178 	.core_testbus_sel2_bit = 3,
179 	.core_testbus_ena = (1 << 31),
180 	.core_testbus_sel2 = (1 << 3),
181 	.core_pwrctl_status = 0x240,
182 	.core_pwrctl_mask = 0x244,
183 	.core_pwrctl_clear = 0x248,
184 	.core_pwrctl_ctl = 0x24c,
185 	.core_sdcc_debug_reg = 0x358,
186 	.core_dll_config = 0x200,
187 	.core_dll_status = 0x208,
188 	.core_vendor_spec = 0x20c,
189 	.core_vendor_spec_adma_err_addr0 = 0x214,
190 	.core_vendor_spec_adma_err_addr1 = 0x218,
191 	.core_vendor_spec_func2 = 0x210,
192 	.core_vendor_spec_capabilities0 = 0x21c,
193 	.core_ddr_200_cfg = 0x224,
194 	.core_vendor_spec3 = 0x250,
195 	.core_dll_config_2 = 0x254,
196 	.core_dll_config_3 = 0x258,
197 	.core_ddr_config = 0x25c,
198 	.core_dll_usr_ctl = 0x388,
199 };
200 
201 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
202 	.core_hc_mode = 0x78,
203 	.core_mci_data_cnt = 0x30,
204 	.core_mci_status = 0x34,
205 	.core_mci_fifo_cnt = 0x44,
206 	.core_mci_version = 0x050,
207 	.core_generics = 0x70,
208 	.core_testbus_config = 0x0cc,
209 	.core_testbus_sel2_bit = 4,
210 	.core_testbus_ena = (1 << 3),
211 	.core_testbus_sel2 = (1 << 4),
212 	.core_pwrctl_status = 0xdc,
213 	.core_pwrctl_mask = 0xe0,
214 	.core_pwrctl_clear = 0xe4,
215 	.core_pwrctl_ctl = 0xe8,
216 	.core_sdcc_debug_reg = 0x124,
217 	.core_dll_config = 0x100,
218 	.core_dll_status = 0x108,
219 	.core_vendor_spec = 0x10c,
220 	.core_vendor_spec_adma_err_addr0 = 0x114,
221 	.core_vendor_spec_adma_err_addr1 = 0x118,
222 	.core_vendor_spec_func2 = 0x110,
223 	.core_vendor_spec_capabilities0 = 0x11c,
224 	.core_ddr_200_cfg = 0x184,
225 	.core_vendor_spec3 = 0x1b0,
226 	.core_dll_config_2 = 0x1b4,
227 	.core_ddr_config_old = 0x1b8,
228 	.core_ddr_config = 0x1bc,
229 };
230 
231 struct sdhci_msm_variant_ops {
232 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
233 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
234 			u32 offset);
235 };
236 
237 /*
238  * From V5, register spaces have changed. Wrap this info in a structure
239  * and choose the data_structure based on version info mentioned in DT.
240  */
241 struct sdhci_msm_variant_info {
242 	bool mci_removed;
243 	bool restore_dll_config;
244 	bool uses_tassadar_dll;
245 	const struct sdhci_msm_variant_ops *var_ops;
246 	const struct sdhci_msm_offset *offset;
247 };
248 
249 struct sdhci_msm_host {
250 	struct platform_device *pdev;
251 	void __iomem *core_mem;	/* MSM SDCC mapped address */
252 	int pwr_irq;		/* power irq */
253 	struct clk *bus_clk;	/* SDHC bus voter clock */
254 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
255 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
256 	unsigned long clk_rate;
257 	struct mmc_host *mmc;
258 	struct opp_table *opp_table;
259 	bool has_opp_table;
260 	bool use_14lpp_dll_reset;
261 	bool tuning_done;
262 	bool calibration_done;
263 	u8 saved_tuning_phase;
264 	bool use_cdclp533;
265 	u32 curr_pwr_state;
266 	u32 curr_io_level;
267 	wait_queue_head_t pwr_irq_wait;
268 	bool pwr_irq_flag;
269 	u32 caps_0;
270 	bool mci_removed;
271 	bool restore_dll_config;
272 	const struct sdhci_msm_variant_ops *var_ops;
273 	const struct sdhci_msm_offset *offset;
274 	bool use_cdr;
275 	u32 transfer_mode;
276 	bool updated_ddr_cfg;
277 	bool uses_tassadar_dll;
278 	u32 dll_config;
279 	u32 ddr_config;
280 };
281 
282 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
283 {
284 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
285 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
286 
287 	return msm_host->offset;
288 }
289 
290 /*
291  * APIs to read/write to vendor specific registers which were there in the
292  * core_mem region before MCI was removed.
293  */
294 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
295 		u32 offset)
296 {
297 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
298 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
299 
300 	return readl_relaxed(msm_host->core_mem + offset);
301 }
302 
303 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
304 		u32 offset)
305 {
306 	return readl_relaxed(host->ioaddr + offset);
307 }
308 
309 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
310 		struct sdhci_host *host, u32 offset)
311 {
312 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
313 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
314 
315 	writel_relaxed(val, msm_host->core_mem + offset);
316 }
317 
318 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
319 		struct sdhci_host *host, u32 offset)
320 {
321 	writel_relaxed(val, host->ioaddr + offset);
322 }
323 
324 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
325 						    unsigned int clock)
326 {
327 	struct mmc_ios ios = host->mmc->ios;
328 	/*
329 	 * The SDHC requires internal clock frequency to be double the
330 	 * actual clock that will be set for DDR mode. The controller
331 	 * uses the faster clock(100/400MHz) for some of its parts and
332 	 * send the actual required clock (50/200MHz) to the card.
333 	 */
334 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
335 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
336 	    ios.timing == MMC_TIMING_MMC_HS400 ||
337 	    host->flags & SDHCI_HS400_TUNING)
338 		clock *= 2;
339 	return clock;
340 }
341 
342 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
343 					    unsigned int clock)
344 {
345 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
346 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
347 	struct mmc_ios curr_ios = host->mmc->ios;
348 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
349 	int rc;
350 
351 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
352 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock);
353 	if (rc) {
354 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
355 		       mmc_hostname(host->mmc), clock,
356 		       curr_ios.timing);
357 		return;
358 	}
359 	msm_host->clk_rate = clock;
360 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
361 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
362 		 curr_ios.timing);
363 }
364 
365 /* Platform specific tuning */
366 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
367 {
368 	u32 wait_cnt = 50;
369 	u8 ck_out_en;
370 	struct mmc_host *mmc = host->mmc;
371 	const struct sdhci_msm_offset *msm_offset =
372 					sdhci_priv_msm_offset(host);
373 
374 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
375 	ck_out_en = !!(readl_relaxed(host->ioaddr +
376 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
377 
378 	while (ck_out_en != poll) {
379 		if (--wait_cnt == 0) {
380 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
381 			       mmc_hostname(mmc), poll);
382 			return -ETIMEDOUT;
383 		}
384 		udelay(1);
385 
386 		ck_out_en = !!(readl_relaxed(host->ioaddr +
387 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
388 	}
389 
390 	return 0;
391 }
392 
393 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
394 {
395 	int rc;
396 	static const u8 grey_coded_phase_table[] = {
397 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
398 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
399 	};
400 	unsigned long flags;
401 	u32 config;
402 	struct mmc_host *mmc = host->mmc;
403 	const struct sdhci_msm_offset *msm_offset =
404 					sdhci_priv_msm_offset(host);
405 
406 	if (phase > 0xf)
407 		return -EINVAL;
408 
409 	spin_lock_irqsave(&host->lock, flags);
410 
411 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
412 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
413 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
414 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
415 
416 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
417 	rc = msm_dll_poll_ck_out_en(host, 0);
418 	if (rc)
419 		goto err_out;
420 
421 	/*
422 	 * Write the selected DLL clock output phase (0 ... 15)
423 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
424 	 */
425 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
426 	config &= ~CDR_SELEXT_MASK;
427 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
428 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
429 
430 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
431 	config |= CORE_CK_OUT_EN;
432 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
433 
434 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
435 	rc = msm_dll_poll_ck_out_en(host, 1);
436 	if (rc)
437 		goto err_out;
438 
439 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
440 	config |= CORE_CDR_EN;
441 	config &= ~CORE_CDR_EXT_EN;
442 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
443 	goto out;
444 
445 err_out:
446 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
447 	       mmc_hostname(mmc), phase);
448 out:
449 	spin_unlock_irqrestore(&host->lock, flags);
450 	return rc;
451 }
452 
453 /*
454  * Find out the greatest range of consecuitive selected
455  * DLL clock output phases that can be used as sampling
456  * setting for SD3.0 UHS-I card read operation (in SDR104
457  * timing mode) or for eMMC4.5 card read operation (in
458  * HS400/HS200 timing mode).
459  * Select the 3/4 of the range and configure the DLL with the
460  * selected DLL clock output phase.
461  */
462 
463 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
464 					   u8 *phase_table, u8 total_phases)
465 {
466 	int ret;
467 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
468 	u8 phases_per_row[MAX_PHASES] = { 0 };
469 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
470 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
471 	bool phase_0_found = false, phase_15_found = false;
472 	struct mmc_host *mmc = host->mmc;
473 
474 	if (!total_phases || (total_phases > MAX_PHASES)) {
475 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
476 		       mmc_hostname(mmc), total_phases);
477 		return -EINVAL;
478 	}
479 
480 	for (cnt = 0; cnt < total_phases; cnt++) {
481 		ranges[row_index][col_index] = phase_table[cnt];
482 		phases_per_row[row_index] += 1;
483 		col_index++;
484 
485 		if ((cnt + 1) == total_phases) {
486 			continue;
487 		/* check if next phase in phase_table is consecutive or not */
488 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
489 			row_index++;
490 			col_index = 0;
491 		}
492 	}
493 
494 	if (row_index >= MAX_PHASES)
495 		return -EINVAL;
496 
497 	/* Check if phase-0 is present in first valid window? */
498 	if (!ranges[0][0]) {
499 		phase_0_found = true;
500 		phase_0_raw_index = 0;
501 		/* Check if cycle exist between 2 valid windows */
502 		for (cnt = 1; cnt <= row_index; cnt++) {
503 			if (phases_per_row[cnt]) {
504 				for (i = 0; i < phases_per_row[cnt]; i++) {
505 					if (ranges[cnt][i] == 15) {
506 						phase_15_found = true;
507 						phase_15_raw_index = cnt;
508 						break;
509 					}
510 				}
511 			}
512 		}
513 	}
514 
515 	/* If 2 valid windows form cycle then merge them as single window */
516 	if (phase_0_found && phase_15_found) {
517 		/* number of phases in raw where phase 0 is present */
518 		u8 phases_0 = phases_per_row[phase_0_raw_index];
519 		/* number of phases in raw where phase 15 is present */
520 		u8 phases_15 = phases_per_row[phase_15_raw_index];
521 
522 		if (phases_0 + phases_15 >= MAX_PHASES)
523 			/*
524 			 * If there are more than 1 phase windows then total
525 			 * number of phases in both the windows should not be
526 			 * more than or equal to MAX_PHASES.
527 			 */
528 			return -EINVAL;
529 
530 		/* Merge 2 cyclic windows */
531 		i = phases_15;
532 		for (cnt = 0; cnt < phases_0; cnt++) {
533 			ranges[phase_15_raw_index][i] =
534 			    ranges[phase_0_raw_index][cnt];
535 			if (++i >= MAX_PHASES)
536 				break;
537 		}
538 
539 		phases_per_row[phase_0_raw_index] = 0;
540 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
541 	}
542 
543 	for (cnt = 0; cnt <= row_index; cnt++) {
544 		if (phases_per_row[cnt] > curr_max) {
545 			curr_max = phases_per_row[cnt];
546 			selected_row_index = cnt;
547 		}
548 	}
549 
550 	i = (curr_max * 3) / 4;
551 	if (i)
552 		i--;
553 
554 	ret = ranges[selected_row_index][i];
555 
556 	if (ret >= MAX_PHASES) {
557 		ret = -EINVAL;
558 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
559 		       mmc_hostname(mmc), ret);
560 	}
561 
562 	return ret;
563 }
564 
565 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
566 {
567 	u32 mclk_freq = 0, config;
568 	const struct sdhci_msm_offset *msm_offset =
569 					sdhci_priv_msm_offset(host);
570 
571 	/* Program the MCLK value to MCLK_FREQ bit field */
572 	if (host->clock <= 112000000)
573 		mclk_freq = 0;
574 	else if (host->clock <= 125000000)
575 		mclk_freq = 1;
576 	else if (host->clock <= 137000000)
577 		mclk_freq = 2;
578 	else if (host->clock <= 150000000)
579 		mclk_freq = 3;
580 	else if (host->clock <= 162000000)
581 		mclk_freq = 4;
582 	else if (host->clock <= 175000000)
583 		mclk_freq = 5;
584 	else if (host->clock <= 187000000)
585 		mclk_freq = 6;
586 	else if (host->clock <= 200000000)
587 		mclk_freq = 7;
588 
589 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
590 	config &= ~CMUX_SHIFT_PHASE_MASK;
591 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
592 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
593 }
594 
595 /* Initialize the DLL (Programmable Delay Line) */
596 static int msm_init_cm_dll(struct sdhci_host *host)
597 {
598 	struct mmc_host *mmc = host->mmc;
599 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
600 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
601 	int wait_cnt = 50;
602 	unsigned long flags, xo_clk = 0;
603 	u32 config;
604 	const struct sdhci_msm_offset *msm_offset =
605 					msm_host->offset;
606 
607 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
608 		xo_clk = clk_get_rate(msm_host->xo_clk);
609 
610 	spin_lock_irqsave(&host->lock, flags);
611 
612 	/*
613 	 * Make sure that clock is always enabled when DLL
614 	 * tuning is in progress. Keeping PWRSAVE ON may
615 	 * turn off the clock.
616 	 */
617 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
618 	config &= ~CORE_CLK_PWRSAVE;
619 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
620 
621 	if (msm_host->dll_config)
622 		writel_relaxed(msm_host->dll_config,
623 				host->ioaddr + msm_offset->core_dll_config);
624 
625 	if (msm_host->use_14lpp_dll_reset) {
626 		config = readl_relaxed(host->ioaddr +
627 				msm_offset->core_dll_config);
628 		config &= ~CORE_CK_OUT_EN;
629 		writel_relaxed(config, host->ioaddr +
630 				msm_offset->core_dll_config);
631 
632 		config = readl_relaxed(host->ioaddr +
633 				msm_offset->core_dll_config_2);
634 		config |= CORE_DLL_CLOCK_DISABLE;
635 		writel_relaxed(config, host->ioaddr +
636 				msm_offset->core_dll_config_2);
637 	}
638 
639 	config = readl_relaxed(host->ioaddr +
640 			msm_offset->core_dll_config);
641 	config |= CORE_DLL_RST;
642 	writel_relaxed(config, host->ioaddr +
643 			msm_offset->core_dll_config);
644 
645 	config = readl_relaxed(host->ioaddr +
646 			msm_offset->core_dll_config);
647 	config |= CORE_DLL_PDN;
648 	writel_relaxed(config, host->ioaddr +
649 			msm_offset->core_dll_config);
650 
651 	if (!msm_host->dll_config)
652 		msm_cm_dll_set_freq(host);
653 
654 	if (msm_host->use_14lpp_dll_reset &&
655 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
656 		u32 mclk_freq = 0;
657 
658 		config = readl_relaxed(host->ioaddr +
659 				msm_offset->core_dll_config_2);
660 		config &= CORE_FLL_CYCLE_CNT;
661 		if (config)
662 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
663 					xo_clk);
664 		else
665 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
666 					xo_clk);
667 
668 		config = readl_relaxed(host->ioaddr +
669 				msm_offset->core_dll_config_2);
670 		config &= ~(0xFF << 10);
671 		config |= mclk_freq << 10;
672 
673 		writel_relaxed(config, host->ioaddr +
674 				msm_offset->core_dll_config_2);
675 		/* wait for 5us before enabling DLL clock */
676 		udelay(5);
677 	}
678 
679 	config = readl_relaxed(host->ioaddr +
680 			msm_offset->core_dll_config);
681 	config &= ~CORE_DLL_RST;
682 	writel_relaxed(config, host->ioaddr +
683 			msm_offset->core_dll_config);
684 
685 	config = readl_relaxed(host->ioaddr +
686 			msm_offset->core_dll_config);
687 	config &= ~CORE_DLL_PDN;
688 	writel_relaxed(config, host->ioaddr +
689 			msm_offset->core_dll_config);
690 
691 	if (msm_host->use_14lpp_dll_reset) {
692 		if (!msm_host->dll_config)
693 			msm_cm_dll_set_freq(host);
694 		config = readl_relaxed(host->ioaddr +
695 				msm_offset->core_dll_config_2);
696 		config &= ~CORE_DLL_CLOCK_DISABLE;
697 		writel_relaxed(config, host->ioaddr +
698 				msm_offset->core_dll_config_2);
699 	}
700 
701 	/*
702 	 * Configure DLL user control register to enable DLL status.
703 	 * This setting is applicable to SDCC v5.1 onwards only.
704 	 */
705 	if (msm_host->uses_tassadar_dll) {
706 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
707 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
708 		writel_relaxed(config, host->ioaddr +
709 				msm_offset->core_dll_usr_ctl);
710 
711 		config = readl_relaxed(host->ioaddr +
712 				msm_offset->core_dll_config_3);
713 		config &= ~0xFF;
714 		if (msm_host->clk_rate < 150000000)
715 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
716 		else
717 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
718 		writel_relaxed(config, host->ioaddr +
719 			msm_offset->core_dll_config_3);
720 	}
721 
722 	config = readl_relaxed(host->ioaddr +
723 			msm_offset->core_dll_config);
724 	config |= CORE_DLL_EN;
725 	writel_relaxed(config, host->ioaddr +
726 			msm_offset->core_dll_config);
727 
728 	config = readl_relaxed(host->ioaddr +
729 			msm_offset->core_dll_config);
730 	config |= CORE_CK_OUT_EN;
731 	writel_relaxed(config, host->ioaddr +
732 			msm_offset->core_dll_config);
733 
734 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
735 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
736 		 CORE_DLL_LOCK)) {
737 		/* max. wait for 50us sec for LOCK bit to be set */
738 		if (--wait_cnt == 0) {
739 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
740 			       mmc_hostname(mmc));
741 			spin_unlock_irqrestore(&host->lock, flags);
742 			return -ETIMEDOUT;
743 		}
744 		udelay(1);
745 	}
746 
747 	spin_unlock_irqrestore(&host->lock, flags);
748 	return 0;
749 }
750 
751 static void msm_hc_select_default(struct sdhci_host *host)
752 {
753 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
754 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
755 	u32 config;
756 	const struct sdhci_msm_offset *msm_offset =
757 					msm_host->offset;
758 
759 	if (!msm_host->use_cdclp533) {
760 		config = readl_relaxed(host->ioaddr +
761 				msm_offset->core_vendor_spec3);
762 		config &= ~CORE_PWRSAVE_DLL;
763 		writel_relaxed(config, host->ioaddr +
764 				msm_offset->core_vendor_spec3);
765 	}
766 
767 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
768 	config &= ~CORE_HC_MCLK_SEL_MASK;
769 	config |= CORE_HC_MCLK_SEL_DFLT;
770 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
771 
772 	/*
773 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
774 	 * configuration from Host Control2 register for all other
775 	 * modes.
776 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
777 	 * in VENDOR_SPEC_FUNC
778 	 */
779 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
780 	config &= ~CORE_HC_SELECT_IN_EN;
781 	config &= ~CORE_HC_SELECT_IN_MASK;
782 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
783 
784 	/*
785 	 * Make sure above writes impacting free running MCLK are completed
786 	 * before changing the clk_rate at GCC.
787 	 */
788 	wmb();
789 }
790 
791 static void msm_hc_select_hs400(struct sdhci_host *host)
792 {
793 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
794 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
795 	struct mmc_ios ios = host->mmc->ios;
796 	u32 config, dll_lock;
797 	int rc;
798 	const struct sdhci_msm_offset *msm_offset =
799 					msm_host->offset;
800 
801 	/* Select the divided clock (free running MCLK/2) */
802 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
803 	config &= ~CORE_HC_MCLK_SEL_MASK;
804 	config |= CORE_HC_MCLK_SEL_HS400;
805 
806 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
807 	/*
808 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
809 	 * register
810 	 */
811 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
812 	    !msm_host->calibration_done) {
813 		config = readl_relaxed(host->ioaddr +
814 				msm_offset->core_vendor_spec);
815 		config |= CORE_HC_SELECT_IN_HS400;
816 		config |= CORE_HC_SELECT_IN_EN;
817 		writel_relaxed(config, host->ioaddr +
818 				msm_offset->core_vendor_spec);
819 	}
820 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
821 		/*
822 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
823 		 * core_dll_status to be set. This should get set
824 		 * within 15 us at 200 MHz.
825 		 */
826 		rc = readl_relaxed_poll_timeout(host->ioaddr +
827 						msm_offset->core_dll_status,
828 						dll_lock,
829 						(dll_lock &
830 						(CORE_DLL_LOCK |
831 						CORE_DDR_DLL_LOCK)), 10,
832 						1000);
833 		if (rc == -ETIMEDOUT)
834 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
835 			       mmc_hostname(host->mmc), dll_lock);
836 	}
837 	/*
838 	 * Make sure above writes impacting free running MCLK are completed
839 	 * before changing the clk_rate at GCC.
840 	 */
841 	wmb();
842 }
843 
844 /*
845  * sdhci_msm_hc_select_mode :- In general all timing modes are
846  * controlled via UHS mode select in Host Control2 register.
847  * eMMC specific HS200/HS400 doesn't have their respective modes
848  * defined here, hence we use these values.
849  *
850  * HS200 - SDR104 (Since they both are equivalent in functionality)
851  * HS400 - This involves multiple configurations
852  *		Initially SDR104 - when tuning is required as HS200
853  *		Then when switching to DDR @ 400MHz (HS400) we use
854  *		the vendor specific HC_SELECT_IN to control the mode.
855  *
856  * In addition to controlling the modes we also need to select the
857  * correct input clock for DLL depending on the mode.
858  *
859  * HS400 - divided clock (free running MCLK/2)
860  * All other modes - default (free running MCLK)
861  */
862 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
863 {
864 	struct mmc_ios ios = host->mmc->ios;
865 
866 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
867 	    host->flags & SDHCI_HS400_TUNING)
868 		msm_hc_select_hs400(host);
869 	else
870 		msm_hc_select_default(host);
871 }
872 
873 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
874 {
875 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
876 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
877 	u32 config, calib_done;
878 	int ret;
879 	const struct sdhci_msm_offset *msm_offset =
880 					msm_host->offset;
881 
882 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
883 
884 	/*
885 	 * Retuning in HS400 (DDR mode) will fail, just reset the
886 	 * tuning block and restore the saved tuning phase.
887 	 */
888 	ret = msm_init_cm_dll(host);
889 	if (ret)
890 		goto out;
891 
892 	/* Set the selected phase in delay line hw block */
893 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
894 	if (ret)
895 		goto out;
896 
897 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
898 	config |= CORE_CMD_DAT_TRACK_SEL;
899 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
900 
901 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
902 	config &= ~CORE_CDC_T4_DLY_SEL;
903 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
904 
905 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
906 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
907 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
908 
909 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
910 	config |= CORE_CDC_SWITCH_RC_EN;
911 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
912 
913 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
914 	config &= ~CORE_START_CDC_TRAFFIC;
915 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
916 
917 	/* Perform CDC Register Initialization Sequence */
918 
919 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
920 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
921 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
922 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
923 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
924 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
925 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
926 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
927 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
928 
929 	/* CDC HW Calibration */
930 
931 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
932 	config |= CORE_SW_TRIG_FULL_CALIB;
933 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
934 
935 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
936 	config &= ~CORE_SW_TRIG_FULL_CALIB;
937 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
938 
939 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
940 	config |= CORE_HW_AUTOCAL_ENA;
941 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
942 
943 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
944 	config |= CORE_TIMER_ENA;
945 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
946 
947 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
948 					 calib_done,
949 					 (calib_done & CORE_CALIBRATION_DONE),
950 					 1, 50);
951 
952 	if (ret == -ETIMEDOUT) {
953 		pr_err("%s: %s: CDC calibration was not completed\n",
954 		       mmc_hostname(host->mmc), __func__);
955 		goto out;
956 	}
957 
958 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
959 			& CORE_CDC_ERROR_CODE_MASK;
960 	if (ret) {
961 		pr_err("%s: %s: CDC error code %d\n",
962 		       mmc_hostname(host->mmc), __func__, ret);
963 		ret = -EINVAL;
964 		goto out;
965 	}
966 
967 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
968 	config |= CORE_START_CDC_TRAFFIC;
969 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
970 out:
971 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
972 		 __func__, ret);
973 	return ret;
974 }
975 
976 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
977 {
978 	struct mmc_host *mmc = host->mmc;
979 	u32 dll_status, config, ddr_cfg_offset;
980 	int ret;
981 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
982 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
983 	const struct sdhci_msm_offset *msm_offset =
984 					sdhci_priv_msm_offset(host);
985 
986 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
987 
988 	/*
989 	 * Currently the core_ddr_config register defaults to desired
990 	 * configuration on reset. Currently reprogramming the power on
991 	 * reset (POR) value in case it might have been modified by
992 	 * bootloaders. In the future, if this changes, then the desired
993 	 * values will need to be programmed appropriately.
994 	 */
995 	if (msm_host->updated_ddr_cfg)
996 		ddr_cfg_offset = msm_offset->core_ddr_config;
997 	else
998 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
999 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1000 
1001 	if (mmc->ios.enhanced_strobe) {
1002 		config = readl_relaxed(host->ioaddr +
1003 				msm_offset->core_ddr_200_cfg);
1004 		config |= CORE_CMDIN_RCLK_EN;
1005 		writel_relaxed(config, host->ioaddr +
1006 				msm_offset->core_ddr_200_cfg);
1007 	}
1008 
1009 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1010 	config |= CORE_DDR_CAL_EN;
1011 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1012 
1013 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1014 					msm_offset->core_dll_status,
1015 					dll_status,
1016 					(dll_status & CORE_DDR_DLL_LOCK),
1017 					10, 1000);
1018 
1019 	if (ret == -ETIMEDOUT) {
1020 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1021 		       mmc_hostname(host->mmc), __func__);
1022 		goto out;
1023 	}
1024 
1025 	/*
1026 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1027 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1028 	 * and MCLK must be switched on for at-least 1us before DATA
1029 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1030 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1031 	 * turned on for host controllers using this DLL.
1032 	 */
1033 	if (!msm_host->use_14lpp_dll_reset) {
1034 		config = readl_relaxed(host->ioaddr +
1035 				msm_offset->core_vendor_spec3);
1036 		config |= CORE_PWRSAVE_DLL;
1037 		writel_relaxed(config, host->ioaddr +
1038 				msm_offset->core_vendor_spec3);
1039 	}
1040 
1041 	/*
1042 	 * Drain writebuffer to ensure above DLL calibration
1043 	 * and PWRSAVE DLL is enabled.
1044 	 */
1045 	wmb();
1046 out:
1047 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1048 		 __func__, ret);
1049 	return ret;
1050 }
1051 
1052 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1053 {
1054 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1055 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1056 	struct mmc_host *mmc = host->mmc;
1057 	int ret;
1058 	u32 config;
1059 	const struct sdhci_msm_offset *msm_offset =
1060 					msm_host->offset;
1061 
1062 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1063 
1064 	/*
1065 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1066 	 * tuning block and restore the saved tuning phase.
1067 	 */
1068 	ret = msm_init_cm_dll(host);
1069 	if (ret)
1070 		goto out;
1071 
1072 	if (!mmc->ios.enhanced_strobe) {
1073 		/* Set the selected phase in delay line hw block */
1074 		ret = msm_config_cm_dll_phase(host,
1075 					      msm_host->saved_tuning_phase);
1076 		if (ret)
1077 			goto out;
1078 		config = readl_relaxed(host->ioaddr +
1079 				msm_offset->core_dll_config);
1080 		config |= CORE_CMD_DAT_TRACK_SEL;
1081 		writel_relaxed(config, host->ioaddr +
1082 				msm_offset->core_dll_config);
1083 	}
1084 
1085 	if (msm_host->use_cdclp533)
1086 		ret = sdhci_msm_cdclp533_calibration(host);
1087 	else
1088 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1089 out:
1090 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1091 		 __func__, ret);
1092 	return ret;
1093 }
1094 
1095 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1096 {
1097 	struct mmc_ios *ios = &host->mmc->ios;
1098 
1099 	/*
1100 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1101 	 * if clock frequency is greater than 100MHz in these modes.
1102 	 */
1103 	if (host->clock <= CORE_FREQ_100MHZ ||
1104 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1105 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1106 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1107 	    ios->enhanced_strobe)
1108 		return false;
1109 
1110 	return true;
1111 }
1112 
1113 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1114 {
1115 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1116 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1117 	int ret;
1118 
1119 	/*
1120 	 * SDR DLL comes into picture only for timing modes which needs
1121 	 * tuning.
1122 	 */
1123 	if (!sdhci_msm_is_tuning_needed(host))
1124 		return 0;
1125 
1126 	/* Reset the tuning block */
1127 	ret = msm_init_cm_dll(host);
1128 	if (ret)
1129 		return ret;
1130 
1131 	/* Restore the tuning block */
1132 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1133 
1134 	return ret;
1135 }
1136 
1137 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1138 {
1139 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1140 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1141 					      msm_offset->core_dll_config);
1142 
1143 	config = oldconfig;
1144 	if (enable) {
1145 		config |= CORE_CDR_EN;
1146 		config &= ~CORE_CDR_EXT_EN;
1147 	} else {
1148 		config &= ~CORE_CDR_EN;
1149 		config |= CORE_CDR_EXT_EN;
1150 	}
1151 
1152 	if (config != oldconfig) {
1153 		writel_relaxed(config, host->ioaddr +
1154 			       msm_offset->core_dll_config);
1155 	}
1156 }
1157 
1158 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1159 {
1160 	struct sdhci_host *host = mmc_priv(mmc);
1161 	int tuning_seq_cnt = 3;
1162 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1163 	int rc;
1164 	struct mmc_ios ios = host->mmc->ios;
1165 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1166 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1167 
1168 	if (!sdhci_msm_is_tuning_needed(host)) {
1169 		msm_host->use_cdr = false;
1170 		sdhci_msm_set_cdr(host, false);
1171 		return 0;
1172 	}
1173 
1174 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1175 	msm_host->use_cdr = true;
1176 
1177 	/*
1178 	 * Clear tuning_done flag before tuning to ensure proper
1179 	 * HS400 settings.
1180 	 */
1181 	msm_host->tuning_done = 0;
1182 
1183 	/*
1184 	 * For HS400 tuning in HS200 timing requires:
1185 	 * - select MCLK/2 in VENDOR_SPEC
1186 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1187 	 */
1188 	if (host->flags & SDHCI_HS400_TUNING) {
1189 		sdhci_msm_hc_select_mode(host);
1190 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1191 		host->flags &= ~SDHCI_HS400_TUNING;
1192 	}
1193 
1194 retry:
1195 	/* First of all reset the tuning block */
1196 	rc = msm_init_cm_dll(host);
1197 	if (rc)
1198 		return rc;
1199 
1200 	phase = 0;
1201 	do {
1202 		/* Set the phase in delay line hw block */
1203 		rc = msm_config_cm_dll_phase(host, phase);
1204 		if (rc)
1205 			return rc;
1206 
1207 		rc = mmc_send_tuning(mmc, opcode, NULL);
1208 		if (!rc) {
1209 			/* Tuning is successful at this tuning point */
1210 			tuned_phases[tuned_phase_cnt++] = phase;
1211 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1212 				 mmc_hostname(mmc), phase);
1213 		}
1214 	} while (++phase < ARRAY_SIZE(tuned_phases));
1215 
1216 	if (tuned_phase_cnt) {
1217 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1218 						     tuned_phase_cnt);
1219 		if (rc < 0)
1220 			return rc;
1221 		else
1222 			phase = rc;
1223 
1224 		/*
1225 		 * Finally set the selected phase in delay
1226 		 * line hw block.
1227 		 */
1228 		rc = msm_config_cm_dll_phase(host, phase);
1229 		if (rc)
1230 			return rc;
1231 		msm_host->saved_tuning_phase = phase;
1232 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1233 			 mmc_hostname(mmc), phase);
1234 	} else {
1235 		if (--tuning_seq_cnt)
1236 			goto retry;
1237 		/* Tuning failed */
1238 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1239 		       mmc_hostname(mmc));
1240 		rc = -EIO;
1241 	}
1242 
1243 	if (!rc)
1244 		msm_host->tuning_done = true;
1245 	return rc;
1246 }
1247 
1248 /*
1249  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1250  * This needs to be done for both tuning and enhanced_strobe mode.
1251  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1252  * fixed feedback clock is used.
1253  */
1254 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1255 {
1256 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1257 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1258 	int ret;
1259 
1260 	if (host->clock > CORE_FREQ_100MHZ &&
1261 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1262 	    !msm_host->calibration_done) {
1263 		ret = sdhci_msm_hs400_dll_calibration(host);
1264 		if (!ret)
1265 			msm_host->calibration_done = true;
1266 		else
1267 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1268 			       mmc_hostname(host->mmc), ret);
1269 	}
1270 }
1271 
1272 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1273 					unsigned int uhs)
1274 {
1275 	struct mmc_host *mmc = host->mmc;
1276 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1277 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1278 	u16 ctrl_2;
1279 	u32 config;
1280 	const struct sdhci_msm_offset *msm_offset =
1281 					msm_host->offset;
1282 
1283 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1284 	/* Select Bus Speed Mode for host */
1285 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1286 	switch (uhs) {
1287 	case MMC_TIMING_UHS_SDR12:
1288 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1289 		break;
1290 	case MMC_TIMING_UHS_SDR25:
1291 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1292 		break;
1293 	case MMC_TIMING_UHS_SDR50:
1294 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1295 		break;
1296 	case MMC_TIMING_MMC_HS400:
1297 	case MMC_TIMING_MMC_HS200:
1298 	case MMC_TIMING_UHS_SDR104:
1299 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1300 		break;
1301 	case MMC_TIMING_UHS_DDR50:
1302 	case MMC_TIMING_MMC_DDR52:
1303 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1304 		break;
1305 	}
1306 
1307 	/*
1308 	 * When clock frequency is less than 100MHz, the feedback clock must be
1309 	 * provided and DLL must not be used so that tuning can be skipped. To
1310 	 * provide feedback clock, the mode selection can be any value less
1311 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1312 	 */
1313 	if (host->clock <= CORE_FREQ_100MHZ) {
1314 		if (uhs == MMC_TIMING_MMC_HS400 ||
1315 		    uhs == MMC_TIMING_MMC_HS200 ||
1316 		    uhs == MMC_TIMING_UHS_SDR104)
1317 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1318 		/*
1319 		 * DLL is not required for clock <= 100MHz
1320 		 * Thus, make sure DLL it is disabled when not required
1321 		 */
1322 		config = readl_relaxed(host->ioaddr +
1323 				msm_offset->core_dll_config);
1324 		config |= CORE_DLL_RST;
1325 		writel_relaxed(config, host->ioaddr +
1326 				msm_offset->core_dll_config);
1327 
1328 		config = readl_relaxed(host->ioaddr +
1329 				msm_offset->core_dll_config);
1330 		config |= CORE_DLL_PDN;
1331 		writel_relaxed(config, host->ioaddr +
1332 				msm_offset->core_dll_config);
1333 
1334 		/*
1335 		 * The DLL needs to be restored and CDCLP533 recalibrated
1336 		 * when the clock frequency is set back to 400MHz.
1337 		 */
1338 		msm_host->calibration_done = false;
1339 	}
1340 
1341 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1342 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1343 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1344 
1345 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1346 		sdhci_msm_hs400(host, &mmc->ios);
1347 }
1348 
1349 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1350 {
1351 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1352 }
1353 
1354 static inline void sdhci_msm_complete_pwr_irq_wait(
1355 		struct sdhci_msm_host *msm_host)
1356 {
1357 	wake_up(&msm_host->pwr_irq_wait);
1358 }
1359 
1360 /*
1361  * sdhci_msm_check_power_status API should be called when registers writes
1362  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1363  * To what state the register writes will change the IO lines should be passed
1364  * as the argument req_type. This API will check whether the IO line's state
1365  * is already the expected state and will wait for power irq only if
1366  * power irq is expected to be trigerred based on the current IO line state
1367  * and expected IO line state.
1368  */
1369 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1370 {
1371 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1372 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1373 	bool done = false;
1374 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1375 	const struct sdhci_msm_offset *msm_offset =
1376 					msm_host->offset;
1377 
1378 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1379 			mmc_hostname(host->mmc), __func__, req_type,
1380 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1381 
1382 	/*
1383 	 * The power interrupt will not be generated for signal voltage
1384 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1385 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1386 	 * it as always set.
1387 	 */
1388 	if (!msm_host->mci_removed)
1389 		val = msm_host_readl(msm_host, host,
1390 				msm_offset->core_generics);
1391 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1392 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1393 		return;
1394 	}
1395 
1396 	/*
1397 	 * The IRQ for request type IO High/LOW will be generated when -
1398 	 * there is a state change in 1.8V enable bit (bit 3) of
1399 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1400 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1401 	 * to set it to 3.3V before card detection happens, the
1402 	 * IRQ doesn't get triggered as there is no state change in this bit.
1403 	 * The driver already handles this case by changing the IO voltage
1404 	 * level to high as part of controller power up sequence. Hence, check
1405 	 * for host->pwr to handle a case where IO voltage high request is
1406 	 * issued even before controller power up.
1407 	 */
1408 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1409 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1410 				mmc_hostname(host->mmc), req_type);
1411 		return;
1412 	}
1413 	if ((req_type & msm_host->curr_pwr_state) ||
1414 			(req_type & msm_host->curr_io_level))
1415 		done = true;
1416 	/*
1417 	 * This is needed here to handle cases where register writes will
1418 	 * not change the current bus state or io level of the controller.
1419 	 * In this case, no power irq will be triggerred and we should
1420 	 * not wait.
1421 	 */
1422 	if (!done) {
1423 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1424 				msm_host->pwr_irq_flag,
1425 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1426 			dev_warn(&msm_host->pdev->dev,
1427 				 "%s: pwr_irq for req: (%d) timed out\n",
1428 				 mmc_hostname(host->mmc), req_type);
1429 	}
1430 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1431 			__func__, req_type);
1432 }
1433 
1434 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1435 {
1436 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1437 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1438 	const struct sdhci_msm_offset *msm_offset =
1439 					msm_host->offset;
1440 
1441 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1442 		mmc_hostname(host->mmc),
1443 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1444 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1445 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1446 }
1447 
1448 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1449 {
1450 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1451 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1452 	u32 irq_status, irq_ack = 0;
1453 	int retry = 10;
1454 	u32 pwr_state = 0, io_level = 0;
1455 	u32 config;
1456 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1457 
1458 	irq_status = msm_host_readl(msm_host, host,
1459 			msm_offset->core_pwrctl_status);
1460 	irq_status &= INT_MASK;
1461 
1462 	msm_host_writel(msm_host, irq_status, host,
1463 			msm_offset->core_pwrctl_clear);
1464 
1465 	/*
1466 	 * There is a rare HW scenario where the first clear pulse could be
1467 	 * lost when actual reset and clear/read of status register is
1468 	 * happening at a time. Hence, retry for at least 10 times to make
1469 	 * sure status register is cleared. Otherwise, this will result in
1470 	 * a spurious power IRQ resulting in system instability.
1471 	 */
1472 	while (irq_status & msm_host_readl(msm_host, host,
1473 				msm_offset->core_pwrctl_status)) {
1474 		if (retry == 0) {
1475 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1476 					mmc_hostname(host->mmc), irq_status);
1477 			sdhci_msm_dump_pwr_ctrl_regs(host);
1478 			WARN_ON(1);
1479 			break;
1480 		}
1481 		msm_host_writel(msm_host, irq_status, host,
1482 			msm_offset->core_pwrctl_clear);
1483 		retry--;
1484 		udelay(10);
1485 	}
1486 
1487 	/* Handle BUS ON/OFF*/
1488 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1489 		pwr_state = REQ_BUS_ON;
1490 		io_level = REQ_IO_HIGH;
1491 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1492 	}
1493 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1494 		pwr_state = REQ_BUS_OFF;
1495 		io_level = REQ_IO_LOW;
1496 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1497 	}
1498 	/* Handle IO LOW/HIGH */
1499 	if (irq_status & CORE_PWRCTL_IO_LOW) {
1500 		io_level = REQ_IO_LOW;
1501 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1502 	}
1503 	if (irq_status & CORE_PWRCTL_IO_HIGH) {
1504 		io_level = REQ_IO_HIGH;
1505 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1506 	}
1507 
1508 	/*
1509 	 * The driver has to acknowledge the interrupt, switch voltages and
1510 	 * report back if it succeded or not to this register. The voltage
1511 	 * switches are handled by the sdhci core, so just report success.
1512 	 */
1513 	msm_host_writel(msm_host, irq_ack, host,
1514 			msm_offset->core_pwrctl_ctl);
1515 
1516 	/*
1517 	 * If we don't have info regarding the voltage levels supported by
1518 	 * regulators, don't change the IO PAD PWR SWITCH.
1519 	 */
1520 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1521 		u32 new_config;
1522 		/*
1523 		 * We should unset IO PAD PWR switch only if the register write
1524 		 * can set IO lines high and the regulator also switches to 3 V.
1525 		 * Else, we should keep the IO PAD PWR switch set.
1526 		 * This is applicable to certain targets where eMMC vccq supply
1527 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1528 		 * IO PAD PWR switch must be kept set to reflect actual
1529 		 * regulator voltage. This way, during initialization of
1530 		 * controllers with only 1.8V, we will set the IO PAD bit
1531 		 * without waiting for a REQ_IO_LOW.
1532 		 */
1533 		config = readl_relaxed(host->ioaddr +
1534 				msm_offset->core_vendor_spec);
1535 		new_config = config;
1536 
1537 		if ((io_level & REQ_IO_HIGH) &&
1538 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1539 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1540 		else if ((io_level & REQ_IO_LOW) ||
1541 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1542 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1543 
1544 		if (config ^ new_config)
1545 			writel_relaxed(new_config, host->ioaddr +
1546 					msm_offset->core_vendor_spec);
1547 	}
1548 
1549 	if (pwr_state)
1550 		msm_host->curr_pwr_state = pwr_state;
1551 	if (io_level)
1552 		msm_host->curr_io_level = io_level;
1553 
1554 	pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1555 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1556 		irq_ack);
1557 }
1558 
1559 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1560 {
1561 	struct sdhci_host *host = (struct sdhci_host *)data;
1562 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1563 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1564 
1565 	sdhci_msm_handle_pwr_irq(host, irq);
1566 	msm_host->pwr_irq_flag = 1;
1567 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1568 
1569 
1570 	return IRQ_HANDLED;
1571 }
1572 
1573 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1574 {
1575 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1576 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1577 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1578 
1579 	return clk_round_rate(core_clk, ULONG_MAX);
1580 }
1581 
1582 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1583 {
1584 	return SDHCI_MSM_MIN_CLOCK;
1585 }
1586 
1587 /**
1588  * __sdhci_msm_set_clock - sdhci_msm clock control.
1589  *
1590  * Description:
1591  * MSM controller does not use internal divider and
1592  * instead directly control the GCC clock as per
1593  * HW recommendation.
1594  **/
1595 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1596 {
1597 	u16 clk;
1598 	/*
1599 	 * Keep actual_clock as zero -
1600 	 * - since there is no divider used so no need of having actual_clock.
1601 	 * - MSM controller uses SDCLK for data timeout calculation. If
1602 	 *   actual_clock is zero, host->clock is taken for calculation.
1603 	 */
1604 	host->mmc->actual_clock = 0;
1605 
1606 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1607 
1608 	if (clock == 0)
1609 		return;
1610 
1611 	/*
1612 	 * MSM controller do not use clock divider.
1613 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1614 	 * clock with no divider value programmed.
1615 	 */
1616 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1617 	sdhci_enable_clk(host, clk);
1618 }
1619 
1620 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1621 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1622 {
1623 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1624 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1625 
1626 	if (!clock) {
1627 		msm_host->clk_rate = clock;
1628 		goto out;
1629 	}
1630 
1631 	sdhci_msm_hc_select_mode(host);
1632 
1633 	msm_set_clock_rate_for_bus_mode(host, clock);
1634 out:
1635 	__sdhci_msm_set_clock(host, clock);
1636 }
1637 
1638 /*****************************************************************************\
1639  *                                                                           *
1640  * MSM Command Queue Engine (CQE)                                            *
1641  *                                                                           *
1642 \*****************************************************************************/
1643 
1644 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1645 {
1646 	int cmd_error = 0;
1647 	int data_error = 0;
1648 
1649 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1650 		return intmask;
1651 
1652 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1653 	return 0;
1654 }
1655 
1656 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1657 {
1658 	struct sdhci_host *host = mmc_priv(mmc);
1659 	unsigned long flags;
1660 	u32 ctrl;
1661 
1662 	/*
1663 	 * When CQE is halted, the legacy SDHCI path operates only
1664 	 * on 16-byte descriptors in 64bit mode.
1665 	 */
1666 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1667 		host->desc_sz = 16;
1668 
1669 	spin_lock_irqsave(&host->lock, flags);
1670 
1671 	/*
1672 	 * During CQE command transfers, command complete bit gets latched.
1673 	 * So s/w should clear command complete interrupt status when CQE is
1674 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1675 	 * interrupt gets triggered when CQE is halted/disabled.
1676 	 */
1677 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1678 	ctrl |= SDHCI_INT_RESPONSE;
1679 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1680 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1681 
1682 	spin_unlock_irqrestore(&host->lock, flags);
1683 
1684 	sdhci_cqe_disable(mmc, recovery);
1685 }
1686 
1687 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1688 	.enable		= sdhci_cqe_enable,
1689 	.disable	= sdhci_msm_cqe_disable,
1690 };
1691 
1692 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1693 				struct platform_device *pdev)
1694 {
1695 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1696 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1697 	struct cqhci_host *cq_host;
1698 	bool dma64;
1699 	u32 cqcfg;
1700 	int ret;
1701 
1702 	/*
1703 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
1704 	 * So ensure ADMA table is allocated for 16byte descriptors.
1705 	 */
1706 	if (host->caps & SDHCI_CAN_64BIT)
1707 		host->alloc_desc_sz = 16;
1708 
1709 	ret = sdhci_setup_host(host);
1710 	if (ret)
1711 		return ret;
1712 
1713 	cq_host = cqhci_pltfm_init(pdev);
1714 	if (IS_ERR(cq_host)) {
1715 		ret = PTR_ERR(cq_host);
1716 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
1717 		goto cleanup;
1718 	}
1719 
1720 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
1721 	cq_host->ops = &sdhci_msm_cqhci_ops;
1722 
1723 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
1724 
1725 	ret = cqhci_init(cq_host, host->mmc, dma64);
1726 	if (ret) {
1727 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
1728 				mmc_hostname(host->mmc), ret);
1729 		goto cleanup;
1730 	}
1731 
1732 	/* Disable cqe reset due to cqe enable signal */
1733 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
1734 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
1735 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
1736 
1737 	/*
1738 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
1739 	 * So limit desc_sz to 12 so that the data commands that are sent
1740 	 * during card initialization (before CQE gets enabled) would
1741 	 * get executed without any issues.
1742 	 */
1743 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1744 		host->desc_sz = 12;
1745 
1746 	ret = __sdhci_add_host(host);
1747 	if (ret)
1748 		goto cleanup;
1749 
1750 	dev_info(&pdev->dev, "%s: CQE init: success\n",
1751 			mmc_hostname(host->mmc));
1752 	return ret;
1753 
1754 cleanup:
1755 	sdhci_cleanup_host(host);
1756 	return ret;
1757 }
1758 
1759 /*
1760  * Platform specific register write functions. This is so that, if any
1761  * register write needs to be followed up by platform specific actions,
1762  * they can be added here. These functions can go to sleep when writes
1763  * to certain registers are done.
1764  * These functions are relying on sdhci_set_ios not using spinlock.
1765  */
1766 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1767 {
1768 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1769 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1770 	u32 req_type = 0;
1771 
1772 	switch (reg) {
1773 	case SDHCI_HOST_CONTROL2:
1774 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1775 			REQ_IO_HIGH;
1776 		break;
1777 	case SDHCI_SOFTWARE_RESET:
1778 		if (host->pwr && (val & SDHCI_RESET_ALL))
1779 			req_type = REQ_BUS_OFF;
1780 		break;
1781 	case SDHCI_POWER_CONTROL:
1782 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1783 		break;
1784 	case SDHCI_TRANSFER_MODE:
1785 		msm_host->transfer_mode = val;
1786 		break;
1787 	case SDHCI_COMMAND:
1788 		if (!msm_host->use_cdr)
1789 			break;
1790 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1791 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1792 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1793 			sdhci_msm_set_cdr(host, true);
1794 		else
1795 			sdhci_msm_set_cdr(host, false);
1796 		break;
1797 	}
1798 
1799 	if (req_type) {
1800 		msm_host->pwr_irq_flag = 0;
1801 		/*
1802 		 * Since this register write may trigger a power irq, ensure
1803 		 * all previous register writes are complete by this point.
1804 		 */
1805 		mb();
1806 	}
1807 	return req_type;
1808 }
1809 
1810 /* This function may sleep*/
1811 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1812 {
1813 	u32 req_type = 0;
1814 
1815 	req_type = __sdhci_msm_check_write(host, val, reg);
1816 	writew_relaxed(val, host->ioaddr + reg);
1817 
1818 	if (req_type)
1819 		sdhci_msm_check_power_status(host, req_type);
1820 }
1821 
1822 /* This function may sleep*/
1823 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1824 {
1825 	u32 req_type = 0;
1826 
1827 	req_type = __sdhci_msm_check_write(host, val, reg);
1828 
1829 	writeb_relaxed(val, host->ioaddr + reg);
1830 
1831 	if (req_type)
1832 		sdhci_msm_check_power_status(host, req_type);
1833 }
1834 
1835 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1836 {
1837 	struct mmc_host *mmc = msm_host->mmc;
1838 	struct regulator *supply = mmc->supply.vqmmc;
1839 	u32 caps = 0, config;
1840 	struct sdhci_host *host = mmc_priv(mmc);
1841 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1842 
1843 	if (!IS_ERR(mmc->supply.vqmmc)) {
1844 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1845 			caps |= CORE_1_8V_SUPPORT;
1846 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1847 			caps |= CORE_3_0V_SUPPORT;
1848 
1849 		if (!caps)
1850 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
1851 					mmc_hostname(mmc));
1852 	}
1853 
1854 	if (caps) {
1855 		/*
1856 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
1857 		 * bit can be used as required later on.
1858 		 */
1859 		u32 io_level = msm_host->curr_io_level;
1860 
1861 		config = readl_relaxed(host->ioaddr +
1862 				msm_offset->core_vendor_spec);
1863 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
1864 
1865 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
1866 			config &= ~CORE_IO_PAD_PWR_SWITCH;
1867 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
1868 			config |= CORE_IO_PAD_PWR_SWITCH;
1869 
1870 		writel_relaxed(config,
1871 				host->ioaddr + msm_offset->core_vendor_spec);
1872 	}
1873 	msm_host->caps_0 |= caps;
1874 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
1875 }
1876 
1877 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
1878 {
1879 	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
1880 		cqhci_deactivate(host->mmc);
1881 	sdhci_reset(host, mask);
1882 }
1883 
1884 #define DRIVER_NAME "sdhci_msm"
1885 #define SDHCI_MSM_DUMP(f, x...) \
1886 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
1887 
1888 void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
1889 {
1890 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1891 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1892 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1893 
1894 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
1895 
1896 	SDHCI_MSM_DUMP(
1897 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
1898 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
1899 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
1900 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
1901 	SDHCI_MSM_DUMP(
1902 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
1903 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
1904 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
1905 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
1906 	SDHCI_MSM_DUMP(
1907 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
1908 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
1909 		readl_relaxed(host->ioaddr +
1910 			msm_offset->core_vendor_spec_func2),
1911 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
1912 }
1913 
1914 static const struct sdhci_msm_variant_ops mci_var_ops = {
1915 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
1916 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
1917 };
1918 
1919 static const struct sdhci_msm_variant_ops v5_var_ops = {
1920 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
1921 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
1922 };
1923 
1924 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
1925 	.var_ops = &mci_var_ops,
1926 	.offset = &sdhci_msm_mci_offset,
1927 };
1928 
1929 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
1930 	.mci_removed = true,
1931 	.var_ops = &v5_var_ops,
1932 	.offset = &sdhci_msm_v5_offset,
1933 };
1934 
1935 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
1936 	.mci_removed = true,
1937 	.restore_dll_config = true,
1938 	.var_ops = &v5_var_ops,
1939 	.offset = &sdhci_msm_v5_offset,
1940 };
1941 
1942 static const struct sdhci_msm_variant_info sm8250_sdhci_var = {
1943 	.mci_removed = true,
1944 	.uses_tassadar_dll = true,
1945 	.var_ops = &v5_var_ops,
1946 	.offset = &sdhci_msm_v5_offset,
1947 };
1948 
1949 static const struct of_device_id sdhci_msm_dt_match[] = {
1950 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
1951 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
1952 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
1953 	{.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var},
1954 	{},
1955 };
1956 
1957 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1958 
1959 static const struct sdhci_ops sdhci_msm_ops = {
1960 	.reset = sdhci_msm_reset,
1961 	.set_clock = sdhci_msm_set_clock,
1962 	.get_min_clock = sdhci_msm_get_min_clock,
1963 	.get_max_clock = sdhci_msm_get_max_clock,
1964 	.set_bus_width = sdhci_set_bus_width,
1965 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1966 	.write_w = sdhci_msm_writew,
1967 	.write_b = sdhci_msm_writeb,
1968 	.irq	= sdhci_msm_cqe_irq,
1969 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
1970 };
1971 
1972 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1973 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1974 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
1975 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
1976 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
1977 
1978 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1979 	.ops = &sdhci_msm_ops,
1980 };
1981 
1982 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
1983 		struct sdhci_host *host)
1984 {
1985 	struct device_node *node = pdev->dev.of_node;
1986 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1987 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1988 
1989 	if (of_property_read_u32(node, "qcom,ddr-config",
1990 				&msm_host->ddr_config))
1991 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
1992 
1993 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
1994 }
1995 
1996 
1997 static int sdhci_msm_probe(struct platform_device *pdev)
1998 {
1999 	struct sdhci_host *host;
2000 	struct sdhci_pltfm_host *pltfm_host;
2001 	struct sdhci_msm_host *msm_host;
2002 	struct clk *clk;
2003 	int ret;
2004 	u16 host_version, core_minor;
2005 	u32 core_version, config;
2006 	u8 core_major;
2007 	const struct sdhci_msm_offset *msm_offset;
2008 	const struct sdhci_msm_variant_info *var_info;
2009 	struct device_node *node = pdev->dev.of_node;
2010 
2011 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2012 	if (IS_ERR(host))
2013 		return PTR_ERR(host);
2014 
2015 	host->sdma_boundary = 0;
2016 	pltfm_host = sdhci_priv(host);
2017 	msm_host = sdhci_pltfm_priv(pltfm_host);
2018 	msm_host->mmc = host->mmc;
2019 	msm_host->pdev = pdev;
2020 
2021 	ret = mmc_of_parse(host->mmc);
2022 	if (ret)
2023 		goto pltfm_free;
2024 
2025 	/*
2026 	 * Based on the compatible string, load the required msm host info from
2027 	 * the data associated with the version info.
2028 	 */
2029 	var_info = of_device_get_match_data(&pdev->dev);
2030 
2031 	msm_host->mci_removed = var_info->mci_removed;
2032 	msm_host->restore_dll_config = var_info->restore_dll_config;
2033 	msm_host->var_ops = var_info->var_ops;
2034 	msm_host->offset = var_info->offset;
2035 	msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll;
2036 
2037 	msm_offset = msm_host->offset;
2038 
2039 	sdhci_get_of_property(pdev);
2040 	sdhci_msm_get_of_property(pdev, host);
2041 
2042 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2043 
2044 	/* Setup SDCC bus voter clock. */
2045 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2046 	if (!IS_ERR(msm_host->bus_clk)) {
2047 		/* Vote for max. clk rate for max. performance */
2048 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2049 		if (ret)
2050 			goto pltfm_free;
2051 		ret = clk_prepare_enable(msm_host->bus_clk);
2052 		if (ret)
2053 			goto pltfm_free;
2054 	}
2055 
2056 	/* Setup main peripheral bus clock */
2057 	clk = devm_clk_get(&pdev->dev, "iface");
2058 	if (IS_ERR(clk)) {
2059 		ret = PTR_ERR(clk);
2060 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2061 		goto bus_clk_disable;
2062 	}
2063 	msm_host->bulk_clks[1].clk = clk;
2064 
2065 	/* Setup SDC MMC clock */
2066 	clk = devm_clk_get(&pdev->dev, "core");
2067 	if (IS_ERR(clk)) {
2068 		ret = PTR_ERR(clk);
2069 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2070 		goto bus_clk_disable;
2071 	}
2072 	msm_host->bulk_clks[0].clk = clk;
2073 
2074 	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
2075 	if (IS_ERR(msm_host->opp_table)) {
2076 		ret = PTR_ERR(msm_host->opp_table);
2077 		goto bus_clk_disable;
2078 	}
2079 
2080 	/* OPP table is optional */
2081 	ret = dev_pm_opp_of_add_table(&pdev->dev);
2082 	if (!ret) {
2083 		msm_host->has_opp_table = true;
2084 	} else if (ret != -ENODEV) {
2085 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2086 		goto opp_cleanup;
2087 	}
2088 
2089 	/* Vote for maximum clock rate for maximum performance */
2090 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2091 	if (ret)
2092 		dev_warn(&pdev->dev, "core clock boost failed\n");
2093 
2094 	clk = devm_clk_get(&pdev->dev, "cal");
2095 	if (IS_ERR(clk))
2096 		clk = NULL;
2097 	msm_host->bulk_clks[2].clk = clk;
2098 
2099 	clk = devm_clk_get(&pdev->dev, "sleep");
2100 	if (IS_ERR(clk))
2101 		clk = NULL;
2102 	msm_host->bulk_clks[3].clk = clk;
2103 
2104 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2105 				      msm_host->bulk_clks);
2106 	if (ret)
2107 		goto opp_cleanup;
2108 
2109 	/*
2110 	 * xo clock is needed for FLL feature of cm_dll.
2111 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2112 	 */
2113 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2114 	if (IS_ERR(msm_host->xo_clk)) {
2115 		ret = PTR_ERR(msm_host->xo_clk);
2116 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2117 	}
2118 
2119 	if (!msm_host->mci_removed) {
2120 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2121 		if (IS_ERR(msm_host->core_mem)) {
2122 			ret = PTR_ERR(msm_host->core_mem);
2123 			goto clk_disable;
2124 		}
2125 	}
2126 
2127 	/* Reset the vendor spec register to power on reset state */
2128 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2129 			host->ioaddr + msm_offset->core_vendor_spec);
2130 
2131 	if (!msm_host->mci_removed) {
2132 		/* Set HC_MODE_EN bit in HC_MODE register */
2133 		msm_host_writel(msm_host, HC_MODE_EN, host,
2134 				msm_offset->core_hc_mode);
2135 		config = msm_host_readl(msm_host, host,
2136 				msm_offset->core_hc_mode);
2137 		config |= FF_CLK_SW_RST_DIS;
2138 		msm_host_writel(msm_host, config, host,
2139 				msm_offset->core_hc_mode);
2140 	}
2141 
2142 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2143 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2144 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2145 			       SDHCI_VENDOR_VER_SHIFT));
2146 
2147 	core_version = msm_host_readl(msm_host, host,
2148 			msm_offset->core_mci_version);
2149 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2150 		      CORE_VERSION_MAJOR_SHIFT;
2151 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2152 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2153 		core_version, core_major, core_minor);
2154 
2155 	if (core_major == 1 && core_minor >= 0x42)
2156 		msm_host->use_14lpp_dll_reset = true;
2157 
2158 	/*
2159 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2160 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2161 	 */
2162 	if (core_major == 1 && core_minor < 0x34)
2163 		msm_host->use_cdclp533 = true;
2164 
2165 	/*
2166 	 * Support for some capabilities is not advertised by newer
2167 	 * controller versions and must be explicitly enabled.
2168 	 */
2169 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2170 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2171 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2172 		writel_relaxed(config, host->ioaddr +
2173 				msm_offset->core_vendor_spec_capabilities0);
2174 	}
2175 
2176 	if (core_major == 1 && core_minor >= 0x49)
2177 		msm_host->updated_ddr_cfg = true;
2178 
2179 	/*
2180 	 * Power on reset state may trigger power irq if previous status of
2181 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2182 	 * interrupt in GIC, any pending power irq interrupt should be
2183 	 * acknowledged. Otherwise power irq interrupt handler would be
2184 	 * fired prematurely.
2185 	 */
2186 	sdhci_msm_handle_pwr_irq(host, 0);
2187 
2188 	/*
2189 	 * Ensure that above writes are propogated before interrupt enablement
2190 	 * in GIC.
2191 	 */
2192 	mb();
2193 
2194 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2195 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2196 	if (msm_host->pwr_irq < 0) {
2197 		ret = msm_host->pwr_irq;
2198 		goto clk_disable;
2199 	}
2200 
2201 	sdhci_msm_init_pwr_irq_wait(msm_host);
2202 	/* Enable pwr irq interrupts */
2203 	msm_host_writel(msm_host, INT_MASK, host,
2204 		msm_offset->core_pwrctl_mask);
2205 
2206 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2207 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2208 					dev_name(&pdev->dev), host);
2209 	if (ret) {
2210 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2211 		goto clk_disable;
2212 	}
2213 
2214 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2215 
2216 	pm_runtime_get_noresume(&pdev->dev);
2217 	pm_runtime_set_active(&pdev->dev);
2218 	pm_runtime_enable(&pdev->dev);
2219 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2220 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2221 	pm_runtime_use_autosuspend(&pdev->dev);
2222 
2223 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2224 	if (of_property_read_bool(node, "supports-cqe"))
2225 		ret = sdhci_msm_cqe_add_host(host, pdev);
2226 	else
2227 		ret = sdhci_add_host(host);
2228 	if (ret)
2229 		goto pm_runtime_disable;
2230 	sdhci_msm_set_regulator_caps(msm_host);
2231 
2232 	pm_runtime_mark_last_busy(&pdev->dev);
2233 	pm_runtime_put_autosuspend(&pdev->dev);
2234 
2235 	return 0;
2236 
2237 pm_runtime_disable:
2238 	pm_runtime_disable(&pdev->dev);
2239 	pm_runtime_set_suspended(&pdev->dev);
2240 	pm_runtime_put_noidle(&pdev->dev);
2241 clk_disable:
2242 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2243 				   msm_host->bulk_clks);
2244 opp_cleanup:
2245 	if (msm_host->has_opp_table)
2246 		dev_pm_opp_of_remove_table(&pdev->dev);
2247 	dev_pm_opp_put_clkname(msm_host->opp_table);
2248 bus_clk_disable:
2249 	if (!IS_ERR(msm_host->bus_clk))
2250 		clk_disable_unprepare(msm_host->bus_clk);
2251 pltfm_free:
2252 	sdhci_pltfm_free(pdev);
2253 	return ret;
2254 }
2255 
2256 static int sdhci_msm_remove(struct platform_device *pdev)
2257 {
2258 	struct sdhci_host *host = platform_get_drvdata(pdev);
2259 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2260 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2261 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2262 		    0xffffffff);
2263 
2264 	sdhci_remove_host(host, dead);
2265 
2266 	if (msm_host->has_opp_table)
2267 		dev_pm_opp_of_remove_table(&pdev->dev);
2268 	dev_pm_opp_put_clkname(msm_host->opp_table);
2269 	pm_runtime_get_sync(&pdev->dev);
2270 	pm_runtime_disable(&pdev->dev);
2271 	pm_runtime_put_noidle(&pdev->dev);
2272 
2273 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2274 				   msm_host->bulk_clks);
2275 	if (!IS_ERR(msm_host->bus_clk))
2276 		clk_disable_unprepare(msm_host->bus_clk);
2277 	sdhci_pltfm_free(pdev);
2278 	return 0;
2279 }
2280 
2281 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2282 {
2283 	struct sdhci_host *host = dev_get_drvdata(dev);
2284 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2285 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2286 
2287 	/* Drop the performance vote */
2288 	dev_pm_opp_set_rate(dev, 0);
2289 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2290 				   msm_host->bulk_clks);
2291 
2292 	return 0;
2293 }
2294 
2295 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2296 {
2297 	struct sdhci_host *host = dev_get_drvdata(dev);
2298 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2299 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2300 	int ret;
2301 
2302 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2303 				       msm_host->bulk_clks);
2304 	if (ret)
2305 		return ret;
2306 	/*
2307 	 * Whenever core-clock is gated dynamically, it's needed to
2308 	 * restore the SDR DLL settings when the clock is ungated.
2309 	 */
2310 	if (msm_host->restore_dll_config && msm_host->clk_rate)
2311 		ret = sdhci_msm_restore_sdr_dll_config(host);
2312 
2313 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2314 
2315 	return ret;
2316 }
2317 
2318 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2319 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2320 				pm_runtime_force_resume)
2321 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2322 			   sdhci_msm_runtime_resume,
2323 			   NULL)
2324 };
2325 
2326 static struct platform_driver sdhci_msm_driver = {
2327 	.probe = sdhci_msm_probe,
2328 	.remove = sdhci_msm_remove,
2329 	.driver = {
2330 		   .name = "sdhci_msm",
2331 		   .of_match_table = sdhci_msm_dt_match,
2332 		   .pm = &sdhci_msm_pm_ops,
2333 	},
2334 };
2335 
2336 module_platform_driver(sdhci_msm_driver);
2337 
2338 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2339 MODULE_LICENSE("GPL v2");
2340