1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/of_device.h> 10 #include <linux/delay.h> 11 #include <linux/mmc/mmc.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/pm_opp.h> 14 #include <linux/slab.h> 15 #include <linux/iopoll.h> 16 #include <linux/qcom_scm.h> 17 #include <linux/regulator/consumer.h> 18 #include <linux/interconnect.h> 19 #include <linux/pinctrl/consumer.h> 20 21 #include "sdhci-pltfm.h" 22 #include "cqhci.h" 23 24 #define CORE_MCI_VERSION 0x50 25 #define CORE_VERSION_MAJOR_SHIFT 28 26 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 27 #define CORE_VERSION_MINOR_MASK 0xff 28 29 #define CORE_MCI_GENERICS 0x70 30 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 31 32 #define HC_MODE_EN 0x1 33 #define CORE_POWER 0x0 34 #define CORE_SW_RST BIT(7) 35 #define FF_CLK_SW_RST_DIS BIT(13) 36 37 #define CORE_PWRCTL_BUS_OFF BIT(0) 38 #define CORE_PWRCTL_BUS_ON BIT(1) 39 #define CORE_PWRCTL_IO_LOW BIT(2) 40 #define CORE_PWRCTL_IO_HIGH BIT(3) 41 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 42 #define CORE_PWRCTL_BUS_FAIL BIT(1) 43 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 44 #define CORE_PWRCTL_IO_FAIL BIT(3) 45 #define REQ_BUS_OFF BIT(0) 46 #define REQ_BUS_ON BIT(1) 47 #define REQ_IO_LOW BIT(2) 48 #define REQ_IO_HIGH BIT(3) 49 #define INT_MASK 0xf 50 #define MAX_PHASES 16 51 #define CORE_DLL_LOCK BIT(7) 52 #define CORE_DDR_DLL_LOCK BIT(11) 53 #define CORE_DLL_EN BIT(16) 54 #define CORE_CDR_EN BIT(17) 55 #define CORE_CK_OUT_EN BIT(18) 56 #define CORE_CDR_EXT_EN BIT(19) 57 #define CORE_DLL_PDN BIT(29) 58 #define CORE_DLL_RST BIT(30) 59 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 60 61 #define CORE_DDR_CAL_EN BIT(0) 62 #define CORE_FLL_CYCLE_CNT BIT(18) 63 #define CORE_DLL_CLOCK_DISABLE BIT(21) 64 65 #define DLL_USR_CTL_POR_VAL 0x10800 66 #define ENABLE_DLL_LOCK_STATUS BIT(26) 67 #define FINE_TUNE_MODE_EN BIT(27) 68 #define BIAS_OK_SIGNAL BIT(29) 69 70 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 71 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 72 73 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 74 #define CORE_CLK_PWRSAVE BIT(1) 75 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 76 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 77 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 78 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 79 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 80 #define CORE_HC_SELECT_IN_EN BIT(18) 81 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 82 #define CORE_HC_SELECT_IN_MASK (7 << 19) 83 84 #define CORE_3_0V_SUPPORT BIT(25) 85 #define CORE_1_8V_SUPPORT BIT(26) 86 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 87 88 #define CORE_CSR_CDC_CTLR_CFG0 0x130 89 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 90 #define CORE_HW_AUTOCAL_ENA BIT(17) 91 92 #define CORE_CSR_CDC_CTLR_CFG1 0x134 93 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 94 #define CORE_TIMER_ENA BIT(16) 95 96 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 97 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 98 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 99 #define CORE_CDC_OFFSET_CFG 0x14C 100 #define CORE_CSR_CDC_DELAY_CFG 0x150 101 #define CORE_CDC_SLAVE_DDA_CFG 0x160 102 #define CORE_CSR_CDC_STATUS0 0x164 103 #define CORE_CALIBRATION_DONE BIT(0) 104 105 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 106 107 #define CORE_CSR_CDC_GEN_CFG 0x178 108 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 109 #define CORE_CDC_SWITCH_RC_EN BIT(1) 110 111 #define CORE_CDC_T4_DLY_SEL BIT(0) 112 #define CORE_CMDIN_RCLK_EN BIT(1) 113 #define CORE_START_CDC_TRAFFIC BIT(6) 114 115 #define CORE_PWRSAVE_DLL BIT(3) 116 117 #define DDR_CONFIG_POR_VAL 0x80040873 118 119 120 #define INVALID_TUNING_PHASE -1 121 #define SDHCI_MSM_MIN_CLOCK 400000 122 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 123 124 #define CDR_SELEXT_SHIFT 20 125 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 126 #define CMUX_SHIFT_PHASE_SHIFT 24 127 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 128 129 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 130 131 /* Timeout value to avoid infinite waiting for pwr_irq */ 132 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 133 134 /* Max load for eMMC Vdd-io supply */ 135 #define MMC_VQMMC_MAX_LOAD_UA 325000 136 137 #define msm_host_readl(msm_host, host, offset) \ 138 msm_host->var_ops->msm_readl_relaxed(host, offset) 139 140 #define msm_host_writel(msm_host, val, host, offset) \ 141 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 142 143 /* CQHCI vendor specific registers */ 144 #define CQHCI_VENDOR_CFG1 0xA00 145 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 146 147 struct sdhci_msm_offset { 148 u32 core_hc_mode; 149 u32 core_mci_data_cnt; 150 u32 core_mci_status; 151 u32 core_mci_fifo_cnt; 152 u32 core_mci_version; 153 u32 core_generics; 154 u32 core_testbus_config; 155 u32 core_testbus_sel2_bit; 156 u32 core_testbus_ena; 157 u32 core_testbus_sel2; 158 u32 core_pwrctl_status; 159 u32 core_pwrctl_mask; 160 u32 core_pwrctl_clear; 161 u32 core_pwrctl_ctl; 162 u32 core_sdcc_debug_reg; 163 u32 core_dll_config; 164 u32 core_dll_status; 165 u32 core_vendor_spec; 166 u32 core_vendor_spec_adma_err_addr0; 167 u32 core_vendor_spec_adma_err_addr1; 168 u32 core_vendor_spec_func2; 169 u32 core_vendor_spec_capabilities0; 170 u32 core_ddr_200_cfg; 171 u32 core_vendor_spec3; 172 u32 core_dll_config_2; 173 u32 core_dll_config_3; 174 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 175 u32 core_ddr_config; 176 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 177 }; 178 179 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 180 .core_mci_data_cnt = 0x35c, 181 .core_mci_status = 0x324, 182 .core_mci_fifo_cnt = 0x308, 183 .core_mci_version = 0x318, 184 .core_generics = 0x320, 185 .core_testbus_config = 0x32c, 186 .core_testbus_sel2_bit = 3, 187 .core_testbus_ena = (1 << 31), 188 .core_testbus_sel2 = (1 << 3), 189 .core_pwrctl_status = 0x240, 190 .core_pwrctl_mask = 0x244, 191 .core_pwrctl_clear = 0x248, 192 .core_pwrctl_ctl = 0x24c, 193 .core_sdcc_debug_reg = 0x358, 194 .core_dll_config = 0x200, 195 .core_dll_status = 0x208, 196 .core_vendor_spec = 0x20c, 197 .core_vendor_spec_adma_err_addr0 = 0x214, 198 .core_vendor_spec_adma_err_addr1 = 0x218, 199 .core_vendor_spec_func2 = 0x210, 200 .core_vendor_spec_capabilities0 = 0x21c, 201 .core_ddr_200_cfg = 0x224, 202 .core_vendor_spec3 = 0x250, 203 .core_dll_config_2 = 0x254, 204 .core_dll_config_3 = 0x258, 205 .core_ddr_config = 0x25c, 206 .core_dll_usr_ctl = 0x388, 207 }; 208 209 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 210 .core_hc_mode = 0x78, 211 .core_mci_data_cnt = 0x30, 212 .core_mci_status = 0x34, 213 .core_mci_fifo_cnt = 0x44, 214 .core_mci_version = 0x050, 215 .core_generics = 0x70, 216 .core_testbus_config = 0x0cc, 217 .core_testbus_sel2_bit = 4, 218 .core_testbus_ena = (1 << 3), 219 .core_testbus_sel2 = (1 << 4), 220 .core_pwrctl_status = 0xdc, 221 .core_pwrctl_mask = 0xe0, 222 .core_pwrctl_clear = 0xe4, 223 .core_pwrctl_ctl = 0xe8, 224 .core_sdcc_debug_reg = 0x124, 225 .core_dll_config = 0x100, 226 .core_dll_status = 0x108, 227 .core_vendor_spec = 0x10c, 228 .core_vendor_spec_adma_err_addr0 = 0x114, 229 .core_vendor_spec_adma_err_addr1 = 0x118, 230 .core_vendor_spec_func2 = 0x110, 231 .core_vendor_spec_capabilities0 = 0x11c, 232 .core_ddr_200_cfg = 0x184, 233 .core_vendor_spec3 = 0x1b0, 234 .core_dll_config_2 = 0x1b4, 235 .core_ddr_config_old = 0x1b8, 236 .core_ddr_config = 0x1bc, 237 }; 238 239 struct sdhci_msm_variant_ops { 240 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 241 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 242 u32 offset); 243 }; 244 245 /* 246 * From V5, register spaces have changed. Wrap this info in a structure 247 * and choose the data_structure based on version info mentioned in DT. 248 */ 249 struct sdhci_msm_variant_info { 250 bool mci_removed; 251 bool restore_dll_config; 252 const struct sdhci_msm_variant_ops *var_ops; 253 const struct sdhci_msm_offset *offset; 254 }; 255 256 struct sdhci_msm_host { 257 struct platform_device *pdev; 258 void __iomem *core_mem; /* MSM SDCC mapped address */ 259 void __iomem *ice_mem; /* MSM ICE mapped address (if available) */ 260 int pwr_irq; /* power irq */ 261 struct clk *bus_clk; /* SDHC bus voter clock */ 262 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 263 /* core, iface, cal, sleep, and ice clocks */ 264 struct clk_bulk_data bulk_clks[5]; 265 unsigned long clk_rate; 266 struct mmc_host *mmc; 267 bool use_14lpp_dll_reset; 268 bool tuning_done; 269 bool calibration_done; 270 u8 saved_tuning_phase; 271 bool use_cdclp533; 272 u32 curr_pwr_state; 273 u32 curr_io_level; 274 wait_queue_head_t pwr_irq_wait; 275 bool pwr_irq_flag; 276 u32 caps_0; 277 bool mci_removed; 278 bool restore_dll_config; 279 const struct sdhci_msm_variant_ops *var_ops; 280 const struct sdhci_msm_offset *offset; 281 bool use_cdr; 282 u32 transfer_mode; 283 bool updated_ddr_cfg; 284 bool uses_tassadar_dll; 285 u32 dll_config; 286 u32 ddr_config; 287 bool vqmmc_enabled; 288 }; 289 290 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 291 { 292 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 293 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 294 295 return msm_host->offset; 296 } 297 298 /* 299 * APIs to read/write to vendor specific registers which were there in the 300 * core_mem region before MCI was removed. 301 */ 302 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 303 u32 offset) 304 { 305 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 306 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 307 308 return readl_relaxed(msm_host->core_mem + offset); 309 } 310 311 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 312 u32 offset) 313 { 314 return readl_relaxed(host->ioaddr + offset); 315 } 316 317 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 318 struct sdhci_host *host, u32 offset) 319 { 320 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 321 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 322 323 writel_relaxed(val, msm_host->core_mem + offset); 324 } 325 326 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 327 struct sdhci_host *host, u32 offset) 328 { 329 writel_relaxed(val, host->ioaddr + offset); 330 } 331 332 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host) 333 { 334 struct mmc_ios ios = host->mmc->ios; 335 /* 336 * The SDHC requires internal clock frequency to be double the 337 * actual clock that will be set for DDR mode. The controller 338 * uses the faster clock(100/400MHz) for some of its parts and 339 * send the actual required clock (50/200MHz) to the card. 340 */ 341 if (ios.timing == MMC_TIMING_UHS_DDR50 || 342 ios.timing == MMC_TIMING_MMC_DDR52 || 343 ios.timing == MMC_TIMING_MMC_HS400 || 344 host->flags & SDHCI_HS400_TUNING) 345 return 2; 346 return 1; 347 } 348 349 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 350 unsigned int clock) 351 { 352 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 353 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 354 struct mmc_ios curr_ios = host->mmc->ios; 355 struct clk *core_clk = msm_host->bulk_clks[0].clk; 356 unsigned long achieved_rate; 357 unsigned int desired_rate; 358 unsigned int mult; 359 int rc; 360 361 mult = msm_get_clock_mult_for_bus_mode(host); 362 desired_rate = clock * mult; 363 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate); 364 if (rc) { 365 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 366 mmc_hostname(host->mmc), desired_rate, curr_ios.timing); 367 return; 368 } 369 370 /* 371 * Qualcomm clock drivers by default round clock _up_ if they can't 372 * make the requested rate. This is not good for SD. Yell if we 373 * encounter it. 374 */ 375 achieved_rate = clk_get_rate(core_clk); 376 if (achieved_rate > desired_rate) 377 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n", 378 mmc_hostname(host->mmc), desired_rate, achieved_rate); 379 host->mmc->actual_clock = achieved_rate / mult; 380 381 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */ 382 msm_host->clk_rate = desired_rate; 383 384 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 385 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing); 386 } 387 388 /* Platform specific tuning */ 389 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 390 { 391 u32 wait_cnt = 50; 392 u8 ck_out_en; 393 struct mmc_host *mmc = host->mmc; 394 const struct sdhci_msm_offset *msm_offset = 395 sdhci_priv_msm_offset(host); 396 397 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 398 ck_out_en = !!(readl_relaxed(host->ioaddr + 399 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 400 401 while (ck_out_en != poll) { 402 if (--wait_cnt == 0) { 403 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 404 mmc_hostname(mmc), poll); 405 return -ETIMEDOUT; 406 } 407 udelay(1); 408 409 ck_out_en = !!(readl_relaxed(host->ioaddr + 410 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 411 } 412 413 return 0; 414 } 415 416 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 417 { 418 int rc; 419 static const u8 grey_coded_phase_table[] = { 420 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 421 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 422 }; 423 unsigned long flags; 424 u32 config; 425 struct mmc_host *mmc = host->mmc; 426 const struct sdhci_msm_offset *msm_offset = 427 sdhci_priv_msm_offset(host); 428 429 if (phase > 0xf) 430 return -EINVAL; 431 432 spin_lock_irqsave(&host->lock, flags); 433 434 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 435 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 436 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 437 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 438 439 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 440 rc = msm_dll_poll_ck_out_en(host, 0); 441 if (rc) 442 goto err_out; 443 444 /* 445 * Write the selected DLL clock output phase (0 ... 15) 446 * to CDR_SELEXT bit field of DLL_CONFIG register. 447 */ 448 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 449 config &= ~CDR_SELEXT_MASK; 450 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 451 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 452 453 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 454 config |= CORE_CK_OUT_EN; 455 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 456 457 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 458 rc = msm_dll_poll_ck_out_en(host, 1); 459 if (rc) 460 goto err_out; 461 462 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 463 config |= CORE_CDR_EN; 464 config &= ~CORE_CDR_EXT_EN; 465 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 466 goto out; 467 468 err_out: 469 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 470 mmc_hostname(mmc), phase); 471 out: 472 spin_unlock_irqrestore(&host->lock, flags); 473 return rc; 474 } 475 476 /* 477 * Find out the greatest range of consecuitive selected 478 * DLL clock output phases that can be used as sampling 479 * setting for SD3.0 UHS-I card read operation (in SDR104 480 * timing mode) or for eMMC4.5 card read operation (in 481 * HS400/HS200 timing mode). 482 * Select the 3/4 of the range and configure the DLL with the 483 * selected DLL clock output phase. 484 */ 485 486 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 487 u8 *phase_table, u8 total_phases) 488 { 489 int ret; 490 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 491 u8 phases_per_row[MAX_PHASES] = { 0 }; 492 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 493 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 494 bool phase_0_found = false, phase_15_found = false; 495 struct mmc_host *mmc = host->mmc; 496 497 if (!total_phases || (total_phases > MAX_PHASES)) { 498 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 499 mmc_hostname(mmc), total_phases); 500 return -EINVAL; 501 } 502 503 for (cnt = 0; cnt < total_phases; cnt++) { 504 ranges[row_index][col_index] = phase_table[cnt]; 505 phases_per_row[row_index] += 1; 506 col_index++; 507 508 if ((cnt + 1) == total_phases) { 509 continue; 510 /* check if next phase in phase_table is consecutive or not */ 511 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 512 row_index++; 513 col_index = 0; 514 } 515 } 516 517 if (row_index >= MAX_PHASES) 518 return -EINVAL; 519 520 /* Check if phase-0 is present in first valid window? */ 521 if (!ranges[0][0]) { 522 phase_0_found = true; 523 phase_0_raw_index = 0; 524 /* Check if cycle exist between 2 valid windows */ 525 for (cnt = 1; cnt <= row_index; cnt++) { 526 if (phases_per_row[cnt]) { 527 for (i = 0; i < phases_per_row[cnt]; i++) { 528 if (ranges[cnt][i] == 15) { 529 phase_15_found = true; 530 phase_15_raw_index = cnt; 531 break; 532 } 533 } 534 } 535 } 536 } 537 538 /* If 2 valid windows form cycle then merge them as single window */ 539 if (phase_0_found && phase_15_found) { 540 /* number of phases in raw where phase 0 is present */ 541 u8 phases_0 = phases_per_row[phase_0_raw_index]; 542 /* number of phases in raw where phase 15 is present */ 543 u8 phases_15 = phases_per_row[phase_15_raw_index]; 544 545 if (phases_0 + phases_15 >= MAX_PHASES) 546 /* 547 * If there are more than 1 phase windows then total 548 * number of phases in both the windows should not be 549 * more than or equal to MAX_PHASES. 550 */ 551 return -EINVAL; 552 553 /* Merge 2 cyclic windows */ 554 i = phases_15; 555 for (cnt = 0; cnt < phases_0; cnt++) { 556 ranges[phase_15_raw_index][i] = 557 ranges[phase_0_raw_index][cnt]; 558 if (++i >= MAX_PHASES) 559 break; 560 } 561 562 phases_per_row[phase_0_raw_index] = 0; 563 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 564 } 565 566 for (cnt = 0; cnt <= row_index; cnt++) { 567 if (phases_per_row[cnt] > curr_max) { 568 curr_max = phases_per_row[cnt]; 569 selected_row_index = cnt; 570 } 571 } 572 573 i = (curr_max * 3) / 4; 574 if (i) 575 i--; 576 577 ret = ranges[selected_row_index][i]; 578 579 if (ret >= MAX_PHASES) { 580 ret = -EINVAL; 581 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 582 mmc_hostname(mmc), ret); 583 } 584 585 return ret; 586 } 587 588 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 589 { 590 u32 mclk_freq = 0, config; 591 const struct sdhci_msm_offset *msm_offset = 592 sdhci_priv_msm_offset(host); 593 594 /* Program the MCLK value to MCLK_FREQ bit field */ 595 if (host->clock <= 112000000) 596 mclk_freq = 0; 597 else if (host->clock <= 125000000) 598 mclk_freq = 1; 599 else if (host->clock <= 137000000) 600 mclk_freq = 2; 601 else if (host->clock <= 150000000) 602 mclk_freq = 3; 603 else if (host->clock <= 162000000) 604 mclk_freq = 4; 605 else if (host->clock <= 175000000) 606 mclk_freq = 5; 607 else if (host->clock <= 187000000) 608 mclk_freq = 6; 609 else if (host->clock <= 200000000) 610 mclk_freq = 7; 611 612 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 613 config &= ~CMUX_SHIFT_PHASE_MASK; 614 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 615 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 616 } 617 618 /* Initialize the DLL (Programmable Delay Line) */ 619 static int msm_init_cm_dll(struct sdhci_host *host) 620 { 621 struct mmc_host *mmc = host->mmc; 622 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 623 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 624 int wait_cnt = 50; 625 unsigned long flags, xo_clk = 0; 626 u32 config; 627 const struct sdhci_msm_offset *msm_offset = 628 msm_host->offset; 629 630 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 631 xo_clk = clk_get_rate(msm_host->xo_clk); 632 633 spin_lock_irqsave(&host->lock, flags); 634 635 /* 636 * Make sure that clock is always enabled when DLL 637 * tuning is in progress. Keeping PWRSAVE ON may 638 * turn off the clock. 639 */ 640 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 641 config &= ~CORE_CLK_PWRSAVE; 642 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 643 644 if (msm_host->dll_config) 645 writel_relaxed(msm_host->dll_config, 646 host->ioaddr + msm_offset->core_dll_config); 647 648 if (msm_host->use_14lpp_dll_reset) { 649 config = readl_relaxed(host->ioaddr + 650 msm_offset->core_dll_config); 651 config &= ~CORE_CK_OUT_EN; 652 writel_relaxed(config, host->ioaddr + 653 msm_offset->core_dll_config); 654 655 config = readl_relaxed(host->ioaddr + 656 msm_offset->core_dll_config_2); 657 config |= CORE_DLL_CLOCK_DISABLE; 658 writel_relaxed(config, host->ioaddr + 659 msm_offset->core_dll_config_2); 660 } 661 662 config = readl_relaxed(host->ioaddr + 663 msm_offset->core_dll_config); 664 config |= CORE_DLL_RST; 665 writel_relaxed(config, host->ioaddr + 666 msm_offset->core_dll_config); 667 668 config = readl_relaxed(host->ioaddr + 669 msm_offset->core_dll_config); 670 config |= CORE_DLL_PDN; 671 writel_relaxed(config, host->ioaddr + 672 msm_offset->core_dll_config); 673 674 if (!msm_host->dll_config) 675 msm_cm_dll_set_freq(host); 676 677 if (msm_host->use_14lpp_dll_reset && 678 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 679 u32 mclk_freq = 0; 680 681 config = readl_relaxed(host->ioaddr + 682 msm_offset->core_dll_config_2); 683 config &= CORE_FLL_CYCLE_CNT; 684 if (config) 685 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 686 xo_clk); 687 else 688 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 689 xo_clk); 690 691 config = readl_relaxed(host->ioaddr + 692 msm_offset->core_dll_config_2); 693 config &= ~(0xFF << 10); 694 config |= mclk_freq << 10; 695 696 writel_relaxed(config, host->ioaddr + 697 msm_offset->core_dll_config_2); 698 /* wait for 5us before enabling DLL clock */ 699 udelay(5); 700 } 701 702 config = readl_relaxed(host->ioaddr + 703 msm_offset->core_dll_config); 704 config &= ~CORE_DLL_RST; 705 writel_relaxed(config, host->ioaddr + 706 msm_offset->core_dll_config); 707 708 config = readl_relaxed(host->ioaddr + 709 msm_offset->core_dll_config); 710 config &= ~CORE_DLL_PDN; 711 writel_relaxed(config, host->ioaddr + 712 msm_offset->core_dll_config); 713 714 if (msm_host->use_14lpp_dll_reset) { 715 if (!msm_host->dll_config) 716 msm_cm_dll_set_freq(host); 717 config = readl_relaxed(host->ioaddr + 718 msm_offset->core_dll_config_2); 719 config &= ~CORE_DLL_CLOCK_DISABLE; 720 writel_relaxed(config, host->ioaddr + 721 msm_offset->core_dll_config_2); 722 } 723 724 /* 725 * Configure DLL user control register to enable DLL status. 726 * This setting is applicable to SDCC v5.1 onwards only. 727 */ 728 if (msm_host->uses_tassadar_dll) { 729 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 730 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 731 writel_relaxed(config, host->ioaddr + 732 msm_offset->core_dll_usr_ctl); 733 734 config = readl_relaxed(host->ioaddr + 735 msm_offset->core_dll_config_3); 736 config &= ~0xFF; 737 if (msm_host->clk_rate < 150000000) 738 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 739 else 740 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 741 writel_relaxed(config, host->ioaddr + 742 msm_offset->core_dll_config_3); 743 } 744 745 config = readl_relaxed(host->ioaddr + 746 msm_offset->core_dll_config); 747 config |= CORE_DLL_EN; 748 writel_relaxed(config, host->ioaddr + 749 msm_offset->core_dll_config); 750 751 config = readl_relaxed(host->ioaddr + 752 msm_offset->core_dll_config); 753 config |= CORE_CK_OUT_EN; 754 writel_relaxed(config, host->ioaddr + 755 msm_offset->core_dll_config); 756 757 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 758 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 759 CORE_DLL_LOCK)) { 760 /* max. wait for 50us sec for LOCK bit to be set */ 761 if (--wait_cnt == 0) { 762 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 763 mmc_hostname(mmc)); 764 spin_unlock_irqrestore(&host->lock, flags); 765 return -ETIMEDOUT; 766 } 767 udelay(1); 768 } 769 770 spin_unlock_irqrestore(&host->lock, flags); 771 return 0; 772 } 773 774 static void msm_hc_select_default(struct sdhci_host *host) 775 { 776 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 777 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 778 u32 config; 779 const struct sdhci_msm_offset *msm_offset = 780 msm_host->offset; 781 782 if (!msm_host->use_cdclp533) { 783 config = readl_relaxed(host->ioaddr + 784 msm_offset->core_vendor_spec3); 785 config &= ~CORE_PWRSAVE_DLL; 786 writel_relaxed(config, host->ioaddr + 787 msm_offset->core_vendor_spec3); 788 } 789 790 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 791 config &= ~CORE_HC_MCLK_SEL_MASK; 792 config |= CORE_HC_MCLK_SEL_DFLT; 793 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 794 795 /* 796 * Disable HC_SELECT_IN to be able to use the UHS mode select 797 * configuration from Host Control2 register for all other 798 * modes. 799 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 800 * in VENDOR_SPEC_FUNC 801 */ 802 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 803 config &= ~CORE_HC_SELECT_IN_EN; 804 config &= ~CORE_HC_SELECT_IN_MASK; 805 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 806 807 /* 808 * Make sure above writes impacting free running MCLK are completed 809 * before changing the clk_rate at GCC. 810 */ 811 wmb(); 812 } 813 814 static void msm_hc_select_hs400(struct sdhci_host *host) 815 { 816 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 817 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 818 struct mmc_ios ios = host->mmc->ios; 819 u32 config, dll_lock; 820 int rc; 821 const struct sdhci_msm_offset *msm_offset = 822 msm_host->offset; 823 824 /* Select the divided clock (free running MCLK/2) */ 825 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 826 config &= ~CORE_HC_MCLK_SEL_MASK; 827 config |= CORE_HC_MCLK_SEL_HS400; 828 829 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 830 /* 831 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 832 * register 833 */ 834 if ((msm_host->tuning_done || ios.enhanced_strobe) && 835 !msm_host->calibration_done) { 836 config = readl_relaxed(host->ioaddr + 837 msm_offset->core_vendor_spec); 838 config |= CORE_HC_SELECT_IN_HS400; 839 config |= CORE_HC_SELECT_IN_EN; 840 writel_relaxed(config, host->ioaddr + 841 msm_offset->core_vendor_spec); 842 } 843 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 844 /* 845 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 846 * core_dll_status to be set. This should get set 847 * within 15 us at 200 MHz. 848 */ 849 rc = readl_relaxed_poll_timeout(host->ioaddr + 850 msm_offset->core_dll_status, 851 dll_lock, 852 (dll_lock & 853 (CORE_DLL_LOCK | 854 CORE_DDR_DLL_LOCK)), 10, 855 1000); 856 if (rc == -ETIMEDOUT) 857 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 858 mmc_hostname(host->mmc), dll_lock); 859 } 860 /* 861 * Make sure above writes impacting free running MCLK are completed 862 * before changing the clk_rate at GCC. 863 */ 864 wmb(); 865 } 866 867 /* 868 * sdhci_msm_hc_select_mode :- In general all timing modes are 869 * controlled via UHS mode select in Host Control2 register. 870 * eMMC specific HS200/HS400 doesn't have their respective modes 871 * defined here, hence we use these values. 872 * 873 * HS200 - SDR104 (Since they both are equivalent in functionality) 874 * HS400 - This involves multiple configurations 875 * Initially SDR104 - when tuning is required as HS200 876 * Then when switching to DDR @ 400MHz (HS400) we use 877 * the vendor specific HC_SELECT_IN to control the mode. 878 * 879 * In addition to controlling the modes we also need to select the 880 * correct input clock for DLL depending on the mode. 881 * 882 * HS400 - divided clock (free running MCLK/2) 883 * All other modes - default (free running MCLK) 884 */ 885 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 886 { 887 struct mmc_ios ios = host->mmc->ios; 888 889 if (ios.timing == MMC_TIMING_MMC_HS400 || 890 host->flags & SDHCI_HS400_TUNING) 891 msm_hc_select_hs400(host); 892 else 893 msm_hc_select_default(host); 894 } 895 896 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 897 { 898 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 899 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 900 u32 config, calib_done; 901 int ret; 902 const struct sdhci_msm_offset *msm_offset = 903 msm_host->offset; 904 905 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 906 907 /* 908 * Retuning in HS400 (DDR mode) will fail, just reset the 909 * tuning block and restore the saved tuning phase. 910 */ 911 ret = msm_init_cm_dll(host); 912 if (ret) 913 goto out; 914 915 /* Set the selected phase in delay line hw block */ 916 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 917 if (ret) 918 goto out; 919 920 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 921 config |= CORE_CMD_DAT_TRACK_SEL; 922 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 923 924 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 925 config &= ~CORE_CDC_T4_DLY_SEL; 926 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 927 928 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 929 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 930 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 931 932 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 933 config |= CORE_CDC_SWITCH_RC_EN; 934 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 935 936 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 937 config &= ~CORE_START_CDC_TRAFFIC; 938 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 939 940 /* Perform CDC Register Initialization Sequence */ 941 942 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 943 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 944 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 945 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 946 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 947 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 948 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 949 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 950 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 951 952 /* CDC HW Calibration */ 953 954 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 955 config |= CORE_SW_TRIG_FULL_CALIB; 956 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 957 958 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 959 config &= ~CORE_SW_TRIG_FULL_CALIB; 960 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 961 962 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 963 config |= CORE_HW_AUTOCAL_ENA; 964 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 965 966 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 967 config |= CORE_TIMER_ENA; 968 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 969 970 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 971 calib_done, 972 (calib_done & CORE_CALIBRATION_DONE), 973 1, 50); 974 975 if (ret == -ETIMEDOUT) { 976 pr_err("%s: %s: CDC calibration was not completed\n", 977 mmc_hostname(host->mmc), __func__); 978 goto out; 979 } 980 981 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 982 & CORE_CDC_ERROR_CODE_MASK; 983 if (ret) { 984 pr_err("%s: %s: CDC error code %d\n", 985 mmc_hostname(host->mmc), __func__, ret); 986 ret = -EINVAL; 987 goto out; 988 } 989 990 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 991 config |= CORE_START_CDC_TRAFFIC; 992 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 993 out: 994 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 995 __func__, ret); 996 return ret; 997 } 998 999 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 1000 { 1001 struct mmc_host *mmc = host->mmc; 1002 u32 dll_status, config, ddr_cfg_offset; 1003 int ret; 1004 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1005 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1006 const struct sdhci_msm_offset *msm_offset = 1007 sdhci_priv_msm_offset(host); 1008 1009 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1010 1011 /* 1012 * Currently the core_ddr_config register defaults to desired 1013 * configuration on reset. Currently reprogramming the power on 1014 * reset (POR) value in case it might have been modified by 1015 * bootloaders. In the future, if this changes, then the desired 1016 * values will need to be programmed appropriately. 1017 */ 1018 if (msm_host->updated_ddr_cfg) 1019 ddr_cfg_offset = msm_offset->core_ddr_config; 1020 else 1021 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1022 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1023 1024 if (mmc->ios.enhanced_strobe) { 1025 config = readl_relaxed(host->ioaddr + 1026 msm_offset->core_ddr_200_cfg); 1027 config |= CORE_CMDIN_RCLK_EN; 1028 writel_relaxed(config, host->ioaddr + 1029 msm_offset->core_ddr_200_cfg); 1030 } 1031 1032 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1033 config |= CORE_DDR_CAL_EN; 1034 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1035 1036 ret = readl_relaxed_poll_timeout(host->ioaddr + 1037 msm_offset->core_dll_status, 1038 dll_status, 1039 (dll_status & CORE_DDR_DLL_LOCK), 1040 10, 1000); 1041 1042 if (ret == -ETIMEDOUT) { 1043 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1044 mmc_hostname(host->mmc), __func__); 1045 goto out; 1046 } 1047 1048 /* 1049 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1050 * When MCLK is gated OFF, it is not gated for less than 0.5us 1051 * and MCLK must be switched on for at-least 1us before DATA 1052 * starts coming. Controllers with 14lpp and later tech DLL cannot 1053 * guarantee above requirement. So PWRSAVE_DLL should not be 1054 * turned on for host controllers using this DLL. 1055 */ 1056 if (!msm_host->use_14lpp_dll_reset) { 1057 config = readl_relaxed(host->ioaddr + 1058 msm_offset->core_vendor_spec3); 1059 config |= CORE_PWRSAVE_DLL; 1060 writel_relaxed(config, host->ioaddr + 1061 msm_offset->core_vendor_spec3); 1062 } 1063 1064 /* 1065 * Drain writebuffer to ensure above DLL calibration 1066 * and PWRSAVE DLL is enabled. 1067 */ 1068 wmb(); 1069 out: 1070 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1071 __func__, ret); 1072 return ret; 1073 } 1074 1075 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1076 { 1077 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1078 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1079 struct mmc_host *mmc = host->mmc; 1080 int ret; 1081 u32 config; 1082 const struct sdhci_msm_offset *msm_offset = 1083 msm_host->offset; 1084 1085 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1086 1087 /* 1088 * Retuning in HS400 (DDR mode) will fail, just reset the 1089 * tuning block and restore the saved tuning phase. 1090 */ 1091 ret = msm_init_cm_dll(host); 1092 if (ret) 1093 goto out; 1094 1095 if (!mmc->ios.enhanced_strobe) { 1096 /* Set the selected phase in delay line hw block */ 1097 ret = msm_config_cm_dll_phase(host, 1098 msm_host->saved_tuning_phase); 1099 if (ret) 1100 goto out; 1101 config = readl_relaxed(host->ioaddr + 1102 msm_offset->core_dll_config); 1103 config |= CORE_CMD_DAT_TRACK_SEL; 1104 writel_relaxed(config, host->ioaddr + 1105 msm_offset->core_dll_config); 1106 } 1107 1108 if (msm_host->use_cdclp533) 1109 ret = sdhci_msm_cdclp533_calibration(host); 1110 else 1111 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1112 out: 1113 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1114 __func__, ret); 1115 return ret; 1116 } 1117 1118 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1119 { 1120 struct mmc_ios *ios = &host->mmc->ios; 1121 1122 /* 1123 * Tuning is required for SDR104, HS200 and HS400 cards and 1124 * if clock frequency is greater than 100MHz in these modes. 1125 */ 1126 if (host->clock <= CORE_FREQ_100MHZ || 1127 !(ios->timing == MMC_TIMING_MMC_HS400 || 1128 ios->timing == MMC_TIMING_MMC_HS200 || 1129 ios->timing == MMC_TIMING_UHS_SDR104) || 1130 ios->enhanced_strobe) 1131 return false; 1132 1133 return true; 1134 } 1135 1136 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1137 { 1138 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1139 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1140 int ret; 1141 1142 /* 1143 * SDR DLL comes into picture only for timing modes which needs 1144 * tuning. 1145 */ 1146 if (!sdhci_msm_is_tuning_needed(host)) 1147 return 0; 1148 1149 /* Reset the tuning block */ 1150 ret = msm_init_cm_dll(host); 1151 if (ret) 1152 return ret; 1153 1154 /* Restore the tuning block */ 1155 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1156 1157 return ret; 1158 } 1159 1160 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1161 { 1162 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1163 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1164 msm_offset->core_dll_config); 1165 1166 config = oldconfig; 1167 if (enable) { 1168 config |= CORE_CDR_EN; 1169 config &= ~CORE_CDR_EXT_EN; 1170 } else { 1171 config &= ~CORE_CDR_EN; 1172 config |= CORE_CDR_EXT_EN; 1173 } 1174 1175 if (config != oldconfig) { 1176 writel_relaxed(config, host->ioaddr + 1177 msm_offset->core_dll_config); 1178 } 1179 } 1180 1181 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1182 { 1183 struct sdhci_host *host = mmc_priv(mmc); 1184 int tuning_seq_cnt = 10; 1185 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1186 int rc; 1187 struct mmc_ios ios = host->mmc->ios; 1188 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1189 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1190 1191 if (!sdhci_msm_is_tuning_needed(host)) { 1192 msm_host->use_cdr = false; 1193 sdhci_msm_set_cdr(host, false); 1194 return 0; 1195 } 1196 1197 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1198 msm_host->use_cdr = true; 1199 1200 /* 1201 * Clear tuning_done flag before tuning to ensure proper 1202 * HS400 settings. 1203 */ 1204 msm_host->tuning_done = 0; 1205 1206 /* 1207 * For HS400 tuning in HS200 timing requires: 1208 * - select MCLK/2 in VENDOR_SPEC 1209 * - program MCLK to 400MHz (or nearest supported) in GCC 1210 */ 1211 if (host->flags & SDHCI_HS400_TUNING) { 1212 sdhci_msm_hc_select_mode(host); 1213 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1214 host->flags &= ~SDHCI_HS400_TUNING; 1215 } 1216 1217 retry: 1218 /* First of all reset the tuning block */ 1219 rc = msm_init_cm_dll(host); 1220 if (rc) 1221 return rc; 1222 1223 phase = 0; 1224 do { 1225 /* Set the phase in delay line hw block */ 1226 rc = msm_config_cm_dll_phase(host, phase); 1227 if (rc) 1228 return rc; 1229 1230 rc = mmc_send_tuning(mmc, opcode, NULL); 1231 if (!rc) { 1232 /* Tuning is successful at this tuning point */ 1233 tuned_phases[tuned_phase_cnt++] = phase; 1234 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1235 mmc_hostname(mmc), phase); 1236 } 1237 } while (++phase < ARRAY_SIZE(tuned_phases)); 1238 1239 if (tuned_phase_cnt) { 1240 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) { 1241 /* 1242 * All phases valid is _almost_ as bad as no phases 1243 * valid. Probably all phases are not really reliable 1244 * but we didn't detect where the unreliable place is. 1245 * That means we'll essentially be guessing and hoping 1246 * we get a good phase. Better to try a few times. 1247 */ 1248 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n", 1249 mmc_hostname(mmc)); 1250 if (--tuning_seq_cnt) { 1251 tuned_phase_cnt = 0; 1252 goto retry; 1253 } 1254 } 1255 1256 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1257 tuned_phase_cnt); 1258 if (rc < 0) 1259 return rc; 1260 else 1261 phase = rc; 1262 1263 /* 1264 * Finally set the selected phase in delay 1265 * line hw block. 1266 */ 1267 rc = msm_config_cm_dll_phase(host, phase); 1268 if (rc) 1269 return rc; 1270 msm_host->saved_tuning_phase = phase; 1271 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1272 mmc_hostname(mmc), phase); 1273 } else { 1274 if (--tuning_seq_cnt) 1275 goto retry; 1276 /* Tuning failed */ 1277 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1278 mmc_hostname(mmc)); 1279 rc = -EIO; 1280 } 1281 1282 if (!rc) 1283 msm_host->tuning_done = true; 1284 return rc; 1285 } 1286 1287 /* 1288 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1289 * This needs to be done for both tuning and enhanced_strobe mode. 1290 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1291 * fixed feedback clock is used. 1292 */ 1293 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1294 { 1295 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1296 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1297 int ret; 1298 1299 if (host->clock > CORE_FREQ_100MHZ && 1300 (msm_host->tuning_done || ios->enhanced_strobe) && 1301 !msm_host->calibration_done) { 1302 ret = sdhci_msm_hs400_dll_calibration(host); 1303 if (!ret) 1304 msm_host->calibration_done = true; 1305 else 1306 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1307 mmc_hostname(host->mmc), ret); 1308 } 1309 } 1310 1311 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1312 unsigned int uhs) 1313 { 1314 struct mmc_host *mmc = host->mmc; 1315 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1316 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1317 u16 ctrl_2; 1318 u32 config; 1319 const struct sdhci_msm_offset *msm_offset = 1320 msm_host->offset; 1321 1322 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1323 /* Select Bus Speed Mode for host */ 1324 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1325 switch (uhs) { 1326 case MMC_TIMING_UHS_SDR12: 1327 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1328 break; 1329 case MMC_TIMING_UHS_SDR25: 1330 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1331 break; 1332 case MMC_TIMING_UHS_SDR50: 1333 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1334 break; 1335 case MMC_TIMING_MMC_HS400: 1336 case MMC_TIMING_MMC_HS200: 1337 case MMC_TIMING_UHS_SDR104: 1338 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1339 break; 1340 case MMC_TIMING_UHS_DDR50: 1341 case MMC_TIMING_MMC_DDR52: 1342 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1343 break; 1344 } 1345 1346 /* 1347 * When clock frequency is less than 100MHz, the feedback clock must be 1348 * provided and DLL must not be used so that tuning can be skipped. To 1349 * provide feedback clock, the mode selection can be any value less 1350 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1351 */ 1352 if (host->clock <= CORE_FREQ_100MHZ) { 1353 if (uhs == MMC_TIMING_MMC_HS400 || 1354 uhs == MMC_TIMING_MMC_HS200 || 1355 uhs == MMC_TIMING_UHS_SDR104) 1356 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1357 /* 1358 * DLL is not required for clock <= 100MHz 1359 * Thus, make sure DLL it is disabled when not required 1360 */ 1361 config = readl_relaxed(host->ioaddr + 1362 msm_offset->core_dll_config); 1363 config |= CORE_DLL_RST; 1364 writel_relaxed(config, host->ioaddr + 1365 msm_offset->core_dll_config); 1366 1367 config = readl_relaxed(host->ioaddr + 1368 msm_offset->core_dll_config); 1369 config |= CORE_DLL_PDN; 1370 writel_relaxed(config, host->ioaddr + 1371 msm_offset->core_dll_config); 1372 1373 /* 1374 * The DLL needs to be restored and CDCLP533 recalibrated 1375 * when the clock frequency is set back to 400MHz. 1376 */ 1377 msm_host->calibration_done = false; 1378 } 1379 1380 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1381 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1382 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1383 1384 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1385 sdhci_msm_hs400(host, &mmc->ios); 1386 } 1387 1388 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1389 { 1390 struct platform_device *pdev = msm_host->pdev; 1391 int ret; 1392 1393 if (level) 1394 ret = pinctrl_pm_select_default_state(&pdev->dev); 1395 else 1396 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1397 1398 return ret; 1399 } 1400 1401 static int sdhci_msm_set_vmmc(struct mmc_host *mmc) 1402 { 1403 if (IS_ERR(mmc->supply.vmmc)) 1404 return 0; 1405 1406 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1407 } 1408 1409 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1410 struct mmc_host *mmc, bool level) 1411 { 1412 int ret; 1413 struct mmc_ios ios; 1414 1415 if (msm_host->vqmmc_enabled == level) 1416 return 0; 1417 1418 if (level) { 1419 /* Set the IO voltage regulator to default voltage level */ 1420 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1421 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1422 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1423 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1424 1425 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1426 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1427 if (ret < 0) { 1428 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1429 mmc_hostname(mmc), ret); 1430 goto out; 1431 } 1432 } 1433 ret = regulator_enable(mmc->supply.vqmmc); 1434 } else { 1435 ret = regulator_disable(mmc->supply.vqmmc); 1436 } 1437 1438 if (ret) 1439 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1440 mmc_hostname(mmc), level ? "en":"dis", ret); 1441 else 1442 msm_host->vqmmc_enabled = level; 1443 out: 1444 return ret; 1445 } 1446 1447 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1448 struct mmc_host *mmc, bool hpm) 1449 { 1450 int load, ret; 1451 1452 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1453 ret = regulator_set_load(mmc->supply.vqmmc, load); 1454 if (ret) 1455 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1456 mmc_hostname(mmc), ret); 1457 return ret; 1458 } 1459 1460 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1461 struct mmc_host *mmc, bool level) 1462 { 1463 int ret; 1464 bool always_on; 1465 1466 if (IS_ERR(mmc->supply.vqmmc) || 1467 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1468 return 0; 1469 /* 1470 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1471 * and HPM modes by setting the corresponding load. 1472 * 1473 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1474 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1475 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1476 * Vqmmc should remain ON, So just set the load instead of turning it 1477 * off/on. 1478 */ 1479 always_on = !mmc_card_is_removable(mmc) && 1480 mmc->card && mmc_card_mmc(mmc->card); 1481 1482 if (always_on) 1483 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1484 else 1485 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1486 1487 return ret; 1488 } 1489 1490 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1491 { 1492 init_waitqueue_head(&msm_host->pwr_irq_wait); 1493 } 1494 1495 static inline void sdhci_msm_complete_pwr_irq_wait( 1496 struct sdhci_msm_host *msm_host) 1497 { 1498 wake_up(&msm_host->pwr_irq_wait); 1499 } 1500 1501 /* 1502 * sdhci_msm_check_power_status API should be called when registers writes 1503 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1504 * To what state the register writes will change the IO lines should be passed 1505 * as the argument req_type. This API will check whether the IO line's state 1506 * is already the expected state and will wait for power irq only if 1507 * power irq is expected to be triggered based on the current IO line state 1508 * and expected IO line state. 1509 */ 1510 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1511 { 1512 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1513 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1514 bool done = false; 1515 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1516 const struct sdhci_msm_offset *msm_offset = 1517 msm_host->offset; 1518 1519 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1520 mmc_hostname(host->mmc), __func__, req_type, 1521 msm_host->curr_pwr_state, msm_host->curr_io_level); 1522 1523 /* 1524 * The power interrupt will not be generated for signal voltage 1525 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1526 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1527 * it as always set. 1528 */ 1529 if (!msm_host->mci_removed) 1530 val = msm_host_readl(msm_host, host, 1531 msm_offset->core_generics); 1532 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1533 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1534 return; 1535 } 1536 1537 /* 1538 * The IRQ for request type IO High/LOW will be generated when - 1539 * there is a state change in 1.8V enable bit (bit 3) of 1540 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1541 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1542 * to set it to 3.3V before card detection happens, the 1543 * IRQ doesn't get triggered as there is no state change in this bit. 1544 * The driver already handles this case by changing the IO voltage 1545 * level to high as part of controller power up sequence. Hence, check 1546 * for host->pwr to handle a case where IO voltage high request is 1547 * issued even before controller power up. 1548 */ 1549 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1550 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1551 mmc_hostname(host->mmc), req_type); 1552 return; 1553 } 1554 if ((req_type & msm_host->curr_pwr_state) || 1555 (req_type & msm_host->curr_io_level)) 1556 done = true; 1557 /* 1558 * This is needed here to handle cases where register writes will 1559 * not change the current bus state or io level of the controller. 1560 * In this case, no power irq will be triggerred and we should 1561 * not wait. 1562 */ 1563 if (!done) { 1564 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1565 msm_host->pwr_irq_flag, 1566 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1567 dev_warn(&msm_host->pdev->dev, 1568 "%s: pwr_irq for req: (%d) timed out\n", 1569 mmc_hostname(host->mmc), req_type); 1570 } 1571 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1572 __func__, req_type); 1573 } 1574 1575 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1576 { 1577 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1578 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1579 const struct sdhci_msm_offset *msm_offset = 1580 msm_host->offset; 1581 1582 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1583 mmc_hostname(host->mmc), 1584 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1585 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1586 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1587 } 1588 1589 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1590 { 1591 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1592 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1593 struct mmc_host *mmc = host->mmc; 1594 u32 irq_status, irq_ack = 0; 1595 int retry = 10, ret; 1596 u32 pwr_state = 0, io_level = 0; 1597 u32 config; 1598 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1599 1600 irq_status = msm_host_readl(msm_host, host, 1601 msm_offset->core_pwrctl_status); 1602 irq_status &= INT_MASK; 1603 1604 msm_host_writel(msm_host, irq_status, host, 1605 msm_offset->core_pwrctl_clear); 1606 1607 /* 1608 * There is a rare HW scenario where the first clear pulse could be 1609 * lost when actual reset and clear/read of status register is 1610 * happening at a time. Hence, retry for at least 10 times to make 1611 * sure status register is cleared. Otherwise, this will result in 1612 * a spurious power IRQ resulting in system instability. 1613 */ 1614 while (irq_status & msm_host_readl(msm_host, host, 1615 msm_offset->core_pwrctl_status)) { 1616 if (retry == 0) { 1617 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1618 mmc_hostname(host->mmc), irq_status); 1619 sdhci_msm_dump_pwr_ctrl_regs(host); 1620 WARN_ON(1); 1621 break; 1622 } 1623 msm_host_writel(msm_host, irq_status, host, 1624 msm_offset->core_pwrctl_clear); 1625 retry--; 1626 udelay(10); 1627 } 1628 1629 /* Handle BUS ON/OFF*/ 1630 if (irq_status & CORE_PWRCTL_BUS_ON) { 1631 pwr_state = REQ_BUS_ON; 1632 io_level = REQ_IO_HIGH; 1633 } 1634 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1635 pwr_state = REQ_BUS_OFF; 1636 io_level = REQ_IO_LOW; 1637 } 1638 1639 if (pwr_state) { 1640 ret = sdhci_msm_set_vmmc(mmc); 1641 if (!ret) 1642 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1643 pwr_state & REQ_BUS_ON); 1644 if (!ret) 1645 ret = sdhci_msm_set_pincfg(msm_host, 1646 pwr_state & REQ_BUS_ON); 1647 if (!ret) 1648 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1649 else 1650 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1651 } 1652 1653 /* Handle IO LOW/HIGH */ 1654 if (irq_status & CORE_PWRCTL_IO_LOW) 1655 io_level = REQ_IO_LOW; 1656 1657 if (irq_status & CORE_PWRCTL_IO_HIGH) 1658 io_level = REQ_IO_HIGH; 1659 1660 if (io_level) 1661 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1662 1663 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1664 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1665 if (ret < 0) { 1666 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1667 mmc_hostname(mmc), ret, 1668 mmc->ios.signal_voltage, mmc->ios.vdd, 1669 irq_status); 1670 irq_ack |= CORE_PWRCTL_IO_FAIL; 1671 } 1672 } 1673 1674 /* 1675 * The driver has to acknowledge the interrupt, switch voltages and 1676 * report back if it succeded or not to this register. The voltage 1677 * switches are handled by the sdhci core, so just report success. 1678 */ 1679 msm_host_writel(msm_host, irq_ack, host, 1680 msm_offset->core_pwrctl_ctl); 1681 1682 /* 1683 * If we don't have info regarding the voltage levels supported by 1684 * regulators, don't change the IO PAD PWR SWITCH. 1685 */ 1686 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1687 u32 new_config; 1688 /* 1689 * We should unset IO PAD PWR switch only if the register write 1690 * can set IO lines high and the regulator also switches to 3 V. 1691 * Else, we should keep the IO PAD PWR switch set. 1692 * This is applicable to certain targets where eMMC vccq supply 1693 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1694 * IO PAD PWR switch must be kept set to reflect actual 1695 * regulator voltage. This way, during initialization of 1696 * controllers with only 1.8V, we will set the IO PAD bit 1697 * without waiting for a REQ_IO_LOW. 1698 */ 1699 config = readl_relaxed(host->ioaddr + 1700 msm_offset->core_vendor_spec); 1701 new_config = config; 1702 1703 if ((io_level & REQ_IO_HIGH) && 1704 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1705 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1706 else if ((io_level & REQ_IO_LOW) || 1707 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1708 new_config |= CORE_IO_PAD_PWR_SWITCH; 1709 1710 if (config ^ new_config) 1711 writel_relaxed(new_config, host->ioaddr + 1712 msm_offset->core_vendor_spec); 1713 } 1714 1715 if (pwr_state) 1716 msm_host->curr_pwr_state = pwr_state; 1717 if (io_level) 1718 msm_host->curr_io_level = io_level; 1719 1720 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1721 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1722 irq_ack); 1723 } 1724 1725 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1726 { 1727 struct sdhci_host *host = (struct sdhci_host *)data; 1728 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1729 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1730 1731 sdhci_msm_handle_pwr_irq(host, irq); 1732 msm_host->pwr_irq_flag = 1; 1733 sdhci_msm_complete_pwr_irq_wait(msm_host); 1734 1735 1736 return IRQ_HANDLED; 1737 } 1738 1739 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1740 { 1741 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1742 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1743 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1744 1745 return clk_round_rate(core_clk, ULONG_MAX); 1746 } 1747 1748 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1749 { 1750 return SDHCI_MSM_MIN_CLOCK; 1751 } 1752 1753 /* 1754 * __sdhci_msm_set_clock - sdhci_msm clock control. 1755 * 1756 * Description: 1757 * MSM controller does not use internal divider and 1758 * instead directly control the GCC clock as per 1759 * HW recommendation. 1760 **/ 1761 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1762 { 1763 u16 clk; 1764 1765 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1766 1767 if (clock == 0) 1768 return; 1769 1770 /* 1771 * MSM controller do not use clock divider. 1772 * Thus read SDHCI_CLOCK_CONTROL and only enable 1773 * clock with no divider value programmed. 1774 */ 1775 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1776 sdhci_enable_clk(host, clk); 1777 } 1778 1779 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1780 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1781 { 1782 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1783 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1784 1785 if (!clock) { 1786 host->mmc->actual_clock = msm_host->clk_rate = 0; 1787 goto out; 1788 } 1789 1790 sdhci_msm_hc_select_mode(host); 1791 1792 msm_set_clock_rate_for_bus_mode(host, clock); 1793 out: 1794 __sdhci_msm_set_clock(host, clock); 1795 } 1796 1797 /*****************************************************************************\ 1798 * * 1799 * Inline Crypto Engine (ICE) support * 1800 * * 1801 \*****************************************************************************/ 1802 1803 #ifdef CONFIG_MMC_CRYPTO 1804 1805 #define AES_256_XTS_KEY_SIZE 64 1806 1807 /* QCOM ICE registers */ 1808 1809 #define QCOM_ICE_REG_VERSION 0x0008 1810 1811 #define QCOM_ICE_REG_FUSE_SETTING 0x0010 1812 #define QCOM_ICE_FUSE_SETTING_MASK 0x1 1813 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2 1814 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4 1815 1816 #define QCOM_ICE_REG_BIST_STATUS 0x0070 1817 #define QCOM_ICE_BIST_STATUS_MASK 0xF0000000 1818 1819 #define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000 1820 1821 #define sdhci_msm_ice_writel(host, val, reg) \ 1822 writel((val), (host)->ice_mem + (reg)) 1823 #define sdhci_msm_ice_readl(host, reg) \ 1824 readl((host)->ice_mem + (reg)) 1825 1826 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host) 1827 { 1828 struct device *dev = mmc_dev(msm_host->mmc); 1829 u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION); 1830 int major = regval >> 24; 1831 int minor = (regval >> 16) & 0xFF; 1832 int step = regval & 0xFFFF; 1833 1834 /* For now this driver only supports ICE version 3. */ 1835 if (major != 3) { 1836 dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n", 1837 major, minor, step); 1838 return false; 1839 } 1840 1841 dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n", 1842 major, minor, step); 1843 1844 /* If fuses are blown, ICE might not work in the standard way. */ 1845 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING); 1846 if (regval & (QCOM_ICE_FUSE_SETTING_MASK | 1847 QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK | 1848 QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) { 1849 dev_warn(dev, "Fuses are blown; ICE is unusable!\n"); 1850 return false; 1851 } 1852 return true; 1853 } 1854 1855 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev) 1856 { 1857 return devm_clk_get(dev, "ice"); 1858 } 1859 1860 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 1861 struct cqhci_host *cq_host) 1862 { 1863 struct mmc_host *mmc = msm_host->mmc; 1864 struct device *dev = mmc_dev(mmc); 1865 struct resource *res; 1866 1867 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) 1868 return 0; 1869 1870 res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM, 1871 "ice"); 1872 if (!res) { 1873 dev_warn(dev, "ICE registers not found\n"); 1874 goto disable; 1875 } 1876 1877 if (!qcom_scm_ice_available()) { 1878 dev_warn(dev, "ICE SCM interface not found\n"); 1879 goto disable; 1880 } 1881 1882 msm_host->ice_mem = devm_ioremap_resource(dev, res); 1883 if (IS_ERR(msm_host->ice_mem)) 1884 return PTR_ERR(msm_host->ice_mem); 1885 1886 if (!sdhci_msm_ice_supported(msm_host)) 1887 goto disable; 1888 1889 mmc->caps2 |= MMC_CAP2_CRYPTO; 1890 return 0; 1891 1892 disable: 1893 dev_warn(dev, "Disabling inline encryption support\n"); 1894 return 0; 1895 } 1896 1897 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host) 1898 { 1899 u32 regval; 1900 1901 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL); 1902 /* 1903 * Enable low power mode sequence 1904 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0 1905 */ 1906 regval |= 0x7000; 1907 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL); 1908 } 1909 1910 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host) 1911 { 1912 u32 regval; 1913 1914 /* ICE Optimizations Enable Sequence */ 1915 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL); 1916 regval |= 0xD807100; 1917 /* ICE HPG requires delay before writing */ 1918 udelay(5); 1919 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL); 1920 udelay(5); 1921 } 1922 1923 /* 1924 * Wait until the ICE BIST (built-in self-test) has completed. 1925 * 1926 * This may be necessary before ICE can be used. 1927 * 1928 * Note that we don't really care whether the BIST passed or failed; we really 1929 * just want to make sure that it isn't still running. This is because (a) the 1930 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is 1931 * documented to reject crypto requests if the BIST fails, so we needn't do it 1932 * in software too, and (c) properly testing storage encryption requires testing 1933 * the full storage stack anyway, and not relying on hardware-level self-tests. 1934 */ 1935 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host) 1936 { 1937 u32 regval; 1938 int err; 1939 1940 err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS, 1941 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK), 1942 50, 5000); 1943 if (err) 1944 dev_err(mmc_dev(msm_host->mmc), 1945 "Timed out waiting for ICE self-test to complete\n"); 1946 return err; 1947 } 1948 1949 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 1950 { 1951 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)) 1952 return; 1953 sdhci_msm_ice_low_power_mode_enable(msm_host); 1954 sdhci_msm_ice_optimization_enable(msm_host); 1955 sdhci_msm_ice_wait_bist_status(msm_host); 1956 } 1957 1958 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 1959 { 1960 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)) 1961 return 0; 1962 return sdhci_msm_ice_wait_bist_status(msm_host); 1963 } 1964 1965 /* 1966 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires 1967 * vendor-specific SCM calls for this; it doesn't support the standard way. 1968 */ 1969 static int sdhci_msm_program_key(struct cqhci_host *cq_host, 1970 const union cqhci_crypto_cfg_entry *cfg, 1971 int slot) 1972 { 1973 struct device *dev = mmc_dev(cq_host->mmc); 1974 union cqhci_crypto_cap_entry cap; 1975 union { 1976 u8 bytes[AES_256_XTS_KEY_SIZE]; 1977 u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)]; 1978 } key; 1979 int i; 1980 int err; 1981 1982 if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE)) 1983 return qcom_scm_ice_invalidate_key(slot); 1984 1985 /* Only AES-256-XTS has been tested so far. */ 1986 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx]; 1987 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS || 1988 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) { 1989 dev_err_ratelimited(dev, 1990 "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n", 1991 cap.algorithm_id, cap.key_size); 1992 return -EINVAL; 1993 } 1994 1995 memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE); 1996 1997 /* 1998 * The SCM call byte-swaps the 32-bit words of the key. So we have to 1999 * do the same, in order for the final key be correct. 2000 */ 2001 for (i = 0; i < ARRAY_SIZE(key.words); i++) 2002 __cpu_to_be32s(&key.words[i]); 2003 2004 err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE, 2005 QCOM_SCM_ICE_CIPHER_AES_256_XTS, 2006 cfg->data_unit_size); 2007 memzero_explicit(&key, sizeof(key)); 2008 return err; 2009 } 2010 #else /* CONFIG_MMC_CRYPTO */ 2011 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev) 2012 { 2013 return NULL; 2014 } 2015 2016 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 2017 struct cqhci_host *cq_host) 2018 { 2019 return 0; 2020 } 2021 2022 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 2023 { 2024 } 2025 2026 static inline int __maybe_unused 2027 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 2028 { 2029 return 0; 2030 } 2031 #endif /* !CONFIG_MMC_CRYPTO */ 2032 2033 /*****************************************************************************\ 2034 * * 2035 * MSM Command Queue Engine (CQE) * 2036 * * 2037 \*****************************************************************************/ 2038 2039 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 2040 { 2041 int cmd_error = 0; 2042 int data_error = 0; 2043 2044 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 2045 return intmask; 2046 2047 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 2048 return 0; 2049 } 2050 2051 static void sdhci_msm_cqe_enable(struct mmc_host *mmc) 2052 { 2053 struct sdhci_host *host = mmc_priv(mmc); 2054 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2055 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2056 2057 sdhci_cqe_enable(mmc); 2058 sdhci_msm_ice_enable(msm_host); 2059 } 2060 2061 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 2062 { 2063 struct sdhci_host *host = mmc_priv(mmc); 2064 unsigned long flags; 2065 u32 ctrl; 2066 2067 /* 2068 * When CQE is halted, the legacy SDHCI path operates only 2069 * on 16-byte descriptors in 64bit mode. 2070 */ 2071 if (host->flags & SDHCI_USE_64_BIT_DMA) 2072 host->desc_sz = 16; 2073 2074 spin_lock_irqsave(&host->lock, flags); 2075 2076 /* 2077 * During CQE command transfers, command complete bit gets latched. 2078 * So s/w should clear command complete interrupt status when CQE is 2079 * either halted or disabled. Otherwise unexpected SDCHI legacy 2080 * interrupt gets triggered when CQE is halted/disabled. 2081 */ 2082 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 2083 ctrl |= SDHCI_INT_RESPONSE; 2084 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 2085 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 2086 2087 spin_unlock_irqrestore(&host->lock, flags); 2088 2089 sdhci_cqe_disable(mmc, recovery); 2090 } 2091 2092 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 2093 .enable = sdhci_msm_cqe_enable, 2094 .disable = sdhci_msm_cqe_disable, 2095 #ifdef CONFIG_MMC_CRYPTO 2096 .program_key = sdhci_msm_program_key, 2097 #endif 2098 }; 2099 2100 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 2101 struct platform_device *pdev) 2102 { 2103 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2104 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2105 struct cqhci_host *cq_host; 2106 bool dma64; 2107 u32 cqcfg; 2108 int ret; 2109 2110 /* 2111 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 2112 * So ensure ADMA table is allocated for 16byte descriptors. 2113 */ 2114 if (host->caps & SDHCI_CAN_64BIT) 2115 host->alloc_desc_sz = 16; 2116 2117 ret = sdhci_setup_host(host); 2118 if (ret) 2119 return ret; 2120 2121 cq_host = cqhci_pltfm_init(pdev); 2122 if (IS_ERR(cq_host)) { 2123 ret = PTR_ERR(cq_host); 2124 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 2125 goto cleanup; 2126 } 2127 2128 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 2129 cq_host->ops = &sdhci_msm_cqhci_ops; 2130 2131 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 2132 2133 ret = sdhci_msm_ice_init(msm_host, cq_host); 2134 if (ret) 2135 goto cleanup; 2136 2137 ret = cqhci_init(cq_host, host->mmc, dma64); 2138 if (ret) { 2139 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 2140 mmc_hostname(host->mmc), ret); 2141 goto cleanup; 2142 } 2143 2144 /* Disable cqe reset due to cqe enable signal */ 2145 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 2146 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 2147 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 2148 2149 /* 2150 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 2151 * So limit desc_sz to 12 so that the data commands that are sent 2152 * during card initialization (before CQE gets enabled) would 2153 * get executed without any issues. 2154 */ 2155 if (host->flags & SDHCI_USE_64_BIT_DMA) 2156 host->desc_sz = 12; 2157 2158 ret = __sdhci_add_host(host); 2159 if (ret) 2160 goto cleanup; 2161 2162 dev_info(&pdev->dev, "%s: CQE init: success\n", 2163 mmc_hostname(host->mmc)); 2164 return ret; 2165 2166 cleanup: 2167 sdhci_cleanup_host(host); 2168 return ret; 2169 } 2170 2171 /* 2172 * Platform specific register write functions. This is so that, if any 2173 * register write needs to be followed up by platform specific actions, 2174 * they can be added here. These functions can go to sleep when writes 2175 * to certain registers are done. 2176 * These functions are relying on sdhci_set_ios not using spinlock. 2177 */ 2178 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 2179 { 2180 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2181 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2182 u32 req_type = 0; 2183 2184 switch (reg) { 2185 case SDHCI_HOST_CONTROL2: 2186 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 2187 REQ_IO_HIGH; 2188 break; 2189 case SDHCI_SOFTWARE_RESET: 2190 if (host->pwr && (val & SDHCI_RESET_ALL)) 2191 req_type = REQ_BUS_OFF; 2192 break; 2193 case SDHCI_POWER_CONTROL: 2194 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 2195 break; 2196 case SDHCI_TRANSFER_MODE: 2197 msm_host->transfer_mode = val; 2198 break; 2199 case SDHCI_COMMAND: 2200 if (!msm_host->use_cdr) 2201 break; 2202 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 2203 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 && 2204 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK) 2205 sdhci_msm_set_cdr(host, true); 2206 else 2207 sdhci_msm_set_cdr(host, false); 2208 break; 2209 } 2210 2211 if (req_type) { 2212 msm_host->pwr_irq_flag = 0; 2213 /* 2214 * Since this register write may trigger a power irq, ensure 2215 * all previous register writes are complete by this point. 2216 */ 2217 mb(); 2218 } 2219 return req_type; 2220 } 2221 2222 /* This function may sleep*/ 2223 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 2224 { 2225 u32 req_type = 0; 2226 2227 req_type = __sdhci_msm_check_write(host, val, reg); 2228 writew_relaxed(val, host->ioaddr + reg); 2229 2230 if (req_type) 2231 sdhci_msm_check_power_status(host, req_type); 2232 } 2233 2234 /* This function may sleep*/ 2235 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 2236 { 2237 u32 req_type = 0; 2238 2239 req_type = __sdhci_msm_check_write(host, val, reg); 2240 2241 writeb_relaxed(val, host->ioaddr + reg); 2242 2243 if (req_type) 2244 sdhci_msm_check_power_status(host, req_type); 2245 } 2246 2247 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 2248 { 2249 struct mmc_host *mmc = msm_host->mmc; 2250 struct regulator *supply = mmc->supply.vqmmc; 2251 u32 caps = 0, config; 2252 struct sdhci_host *host = mmc_priv(mmc); 2253 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2254 2255 if (!IS_ERR(mmc->supply.vqmmc)) { 2256 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 2257 caps |= CORE_1_8V_SUPPORT; 2258 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 2259 caps |= CORE_3_0V_SUPPORT; 2260 2261 if (!caps) 2262 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 2263 mmc_hostname(mmc)); 2264 } 2265 2266 if (caps) { 2267 /* 2268 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 2269 * bit can be used as required later on. 2270 */ 2271 u32 io_level = msm_host->curr_io_level; 2272 2273 config = readl_relaxed(host->ioaddr + 2274 msm_offset->core_vendor_spec); 2275 config |= CORE_IO_PAD_PWR_SWITCH_EN; 2276 2277 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2278 config &= ~CORE_IO_PAD_PWR_SWITCH; 2279 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2280 config |= CORE_IO_PAD_PWR_SWITCH; 2281 2282 writel_relaxed(config, 2283 host->ioaddr + msm_offset->core_vendor_spec); 2284 } 2285 msm_host->caps_0 |= caps; 2286 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2287 } 2288 2289 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask) 2290 { 2291 if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL)) 2292 cqhci_deactivate(host->mmc); 2293 sdhci_reset(host, mask); 2294 } 2295 2296 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2297 { 2298 int ret; 2299 2300 ret = mmc_regulator_get_supply(msm_host->mmc); 2301 if (ret) 2302 return ret; 2303 2304 sdhci_msm_set_regulator_caps(msm_host); 2305 2306 return 0; 2307 } 2308 2309 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2310 struct mmc_ios *ios) 2311 { 2312 struct sdhci_host *host = mmc_priv(mmc); 2313 u16 ctrl, status; 2314 2315 /* 2316 * Signal Voltage Switching is only applicable for Host Controllers 2317 * v3.00 and above. 2318 */ 2319 if (host->version < SDHCI_SPEC_300) 2320 return 0; 2321 2322 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2323 2324 switch (ios->signal_voltage) { 2325 case MMC_SIGNAL_VOLTAGE_330: 2326 if (!(host->flags & SDHCI_SIGNALING_330)) 2327 return -EINVAL; 2328 2329 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2330 ctrl &= ~SDHCI_CTRL_VDD_180; 2331 break; 2332 case MMC_SIGNAL_VOLTAGE_180: 2333 if (!(host->flags & SDHCI_SIGNALING_180)) 2334 return -EINVAL; 2335 2336 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2337 ctrl |= SDHCI_CTRL_VDD_180; 2338 break; 2339 2340 default: 2341 return -EINVAL; 2342 } 2343 2344 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2345 2346 /* Wait for 5ms */ 2347 usleep_range(5000, 5500); 2348 2349 /* regulator output should be stable within 5 ms */ 2350 status = ctrl & SDHCI_CTRL_VDD_180; 2351 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2352 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2353 return 0; 2354 2355 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2356 mmc_hostname(mmc)); 2357 2358 return -EAGAIN; 2359 } 2360 2361 #define DRIVER_NAME "sdhci_msm" 2362 #define SDHCI_MSM_DUMP(f, x...) \ 2363 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2364 2365 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2366 { 2367 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2368 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2369 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2370 2371 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2372 2373 SDHCI_MSM_DUMP( 2374 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2375 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2376 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2377 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2378 SDHCI_MSM_DUMP( 2379 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2380 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2381 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2382 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2383 SDHCI_MSM_DUMP( 2384 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2385 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2386 readl_relaxed(host->ioaddr + 2387 msm_offset->core_vendor_spec_func2), 2388 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2389 } 2390 2391 static const struct sdhci_msm_variant_ops mci_var_ops = { 2392 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2393 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2394 }; 2395 2396 static const struct sdhci_msm_variant_ops v5_var_ops = { 2397 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2398 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2399 }; 2400 2401 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2402 .var_ops = &mci_var_ops, 2403 .offset = &sdhci_msm_mci_offset, 2404 }; 2405 2406 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2407 .mci_removed = true, 2408 .var_ops = &v5_var_ops, 2409 .offset = &sdhci_msm_v5_offset, 2410 }; 2411 2412 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2413 .mci_removed = true, 2414 .restore_dll_config = true, 2415 .var_ops = &v5_var_ops, 2416 .offset = &sdhci_msm_v5_offset, 2417 }; 2418 2419 static const struct of_device_id sdhci_msm_dt_match[] = { 2420 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2421 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2422 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2423 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var}, 2424 {}, 2425 }; 2426 2427 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2428 2429 static const struct sdhci_ops sdhci_msm_ops = { 2430 .reset = sdhci_msm_reset, 2431 .set_clock = sdhci_msm_set_clock, 2432 .get_min_clock = sdhci_msm_get_min_clock, 2433 .get_max_clock = sdhci_msm_get_max_clock, 2434 .set_bus_width = sdhci_set_bus_width, 2435 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2436 .write_w = sdhci_msm_writew, 2437 .write_b = sdhci_msm_writeb, 2438 .irq = sdhci_msm_cqe_irq, 2439 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2440 .set_power = sdhci_set_power_noreg, 2441 }; 2442 2443 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2444 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2445 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2446 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2447 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2448 2449 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2450 .ops = &sdhci_msm_ops, 2451 }; 2452 2453 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2454 struct sdhci_host *host) 2455 { 2456 struct device_node *node = pdev->dev.of_node; 2457 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2458 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2459 2460 if (of_property_read_u32(node, "qcom,ddr-config", 2461 &msm_host->ddr_config)) 2462 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2463 2464 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2465 } 2466 2467 2468 static int sdhci_msm_probe(struct platform_device *pdev) 2469 { 2470 struct sdhci_host *host; 2471 struct sdhci_pltfm_host *pltfm_host; 2472 struct sdhci_msm_host *msm_host; 2473 struct clk *clk; 2474 int ret; 2475 u16 host_version, core_minor; 2476 u32 core_version, config; 2477 u8 core_major; 2478 const struct sdhci_msm_offset *msm_offset; 2479 const struct sdhci_msm_variant_info *var_info; 2480 struct device_node *node = pdev->dev.of_node; 2481 2482 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2483 if (IS_ERR(host)) 2484 return PTR_ERR(host); 2485 2486 host->sdma_boundary = 0; 2487 pltfm_host = sdhci_priv(host); 2488 msm_host = sdhci_pltfm_priv(pltfm_host); 2489 msm_host->mmc = host->mmc; 2490 msm_host->pdev = pdev; 2491 2492 ret = mmc_of_parse(host->mmc); 2493 if (ret) 2494 goto pltfm_free; 2495 2496 /* 2497 * Based on the compatible string, load the required msm host info from 2498 * the data associated with the version info. 2499 */ 2500 var_info = of_device_get_match_data(&pdev->dev); 2501 2502 msm_host->mci_removed = var_info->mci_removed; 2503 msm_host->restore_dll_config = var_info->restore_dll_config; 2504 msm_host->var_ops = var_info->var_ops; 2505 msm_host->offset = var_info->offset; 2506 2507 msm_offset = msm_host->offset; 2508 2509 sdhci_get_of_property(pdev); 2510 sdhci_msm_get_of_property(pdev, host); 2511 2512 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2513 2514 /* Setup SDCC bus voter clock. */ 2515 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2516 if (!IS_ERR(msm_host->bus_clk)) { 2517 /* Vote for max. clk rate for max. performance */ 2518 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2519 if (ret) 2520 goto pltfm_free; 2521 ret = clk_prepare_enable(msm_host->bus_clk); 2522 if (ret) 2523 goto pltfm_free; 2524 } 2525 2526 /* Setup main peripheral bus clock */ 2527 clk = devm_clk_get(&pdev->dev, "iface"); 2528 if (IS_ERR(clk)) { 2529 ret = PTR_ERR(clk); 2530 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2531 goto bus_clk_disable; 2532 } 2533 msm_host->bulk_clks[1].clk = clk; 2534 2535 /* Setup SDC MMC clock */ 2536 clk = devm_clk_get(&pdev->dev, "core"); 2537 if (IS_ERR(clk)) { 2538 ret = PTR_ERR(clk); 2539 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2540 goto bus_clk_disable; 2541 } 2542 msm_host->bulk_clks[0].clk = clk; 2543 2544 /* Check for optional interconnect paths */ 2545 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2546 if (ret) 2547 goto bus_clk_disable; 2548 2549 ret = devm_pm_opp_set_clkname(&pdev->dev, "core"); 2550 if (ret) 2551 goto bus_clk_disable; 2552 2553 /* OPP table is optional */ 2554 ret = devm_pm_opp_of_add_table(&pdev->dev); 2555 if (ret && ret != -ENODEV) { 2556 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2557 goto bus_clk_disable; 2558 } 2559 2560 /* Vote for maximum clock rate for maximum performance */ 2561 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2562 if (ret) 2563 dev_warn(&pdev->dev, "core clock boost failed\n"); 2564 2565 clk = devm_clk_get(&pdev->dev, "cal"); 2566 if (IS_ERR(clk)) 2567 clk = NULL; 2568 msm_host->bulk_clks[2].clk = clk; 2569 2570 clk = devm_clk_get(&pdev->dev, "sleep"); 2571 if (IS_ERR(clk)) 2572 clk = NULL; 2573 msm_host->bulk_clks[3].clk = clk; 2574 2575 clk = sdhci_msm_ice_get_clk(&pdev->dev); 2576 if (IS_ERR(clk)) 2577 clk = NULL; 2578 msm_host->bulk_clks[4].clk = clk; 2579 2580 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2581 msm_host->bulk_clks); 2582 if (ret) 2583 goto bus_clk_disable; 2584 2585 /* 2586 * xo clock is needed for FLL feature of cm_dll. 2587 * In case if xo clock is not mentioned in DT, warn and proceed. 2588 */ 2589 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2590 if (IS_ERR(msm_host->xo_clk)) { 2591 ret = PTR_ERR(msm_host->xo_clk); 2592 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2593 } 2594 2595 if (!msm_host->mci_removed) { 2596 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2597 if (IS_ERR(msm_host->core_mem)) { 2598 ret = PTR_ERR(msm_host->core_mem); 2599 goto clk_disable; 2600 } 2601 } 2602 2603 /* Reset the vendor spec register to power on reset state */ 2604 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2605 host->ioaddr + msm_offset->core_vendor_spec); 2606 2607 if (!msm_host->mci_removed) { 2608 /* Set HC_MODE_EN bit in HC_MODE register */ 2609 msm_host_writel(msm_host, HC_MODE_EN, host, 2610 msm_offset->core_hc_mode); 2611 config = msm_host_readl(msm_host, host, 2612 msm_offset->core_hc_mode); 2613 config |= FF_CLK_SW_RST_DIS; 2614 msm_host_writel(msm_host, config, host, 2615 msm_offset->core_hc_mode); 2616 } 2617 2618 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2619 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2620 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2621 SDHCI_VENDOR_VER_SHIFT)); 2622 2623 core_version = msm_host_readl(msm_host, host, 2624 msm_offset->core_mci_version); 2625 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2626 CORE_VERSION_MAJOR_SHIFT; 2627 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2628 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2629 core_version, core_major, core_minor); 2630 2631 if (core_major == 1 && core_minor >= 0x42) 2632 msm_host->use_14lpp_dll_reset = true; 2633 2634 /* 2635 * SDCC 5 controller with major version 1, minor version 0x34 and later 2636 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2637 */ 2638 if (core_major == 1 && core_minor < 0x34) 2639 msm_host->use_cdclp533 = true; 2640 2641 /* 2642 * Support for some capabilities is not advertised by newer 2643 * controller versions and must be explicitly enabled. 2644 */ 2645 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2646 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2647 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2648 writel_relaxed(config, host->ioaddr + 2649 msm_offset->core_vendor_spec_capabilities0); 2650 } 2651 2652 if (core_major == 1 && core_minor >= 0x49) 2653 msm_host->updated_ddr_cfg = true; 2654 2655 if (core_major == 1 && core_minor >= 0x71) 2656 msm_host->uses_tassadar_dll = true; 2657 2658 ret = sdhci_msm_register_vreg(msm_host); 2659 if (ret) 2660 goto clk_disable; 2661 2662 /* 2663 * Power on reset state may trigger power irq if previous status of 2664 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2665 * interrupt in GIC, any pending power irq interrupt should be 2666 * acknowledged. Otherwise power irq interrupt handler would be 2667 * fired prematurely. 2668 */ 2669 sdhci_msm_handle_pwr_irq(host, 0); 2670 2671 /* 2672 * Ensure that above writes are propogated before interrupt enablement 2673 * in GIC. 2674 */ 2675 mb(); 2676 2677 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2678 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2679 if (msm_host->pwr_irq < 0) { 2680 ret = msm_host->pwr_irq; 2681 goto clk_disable; 2682 } 2683 2684 sdhci_msm_init_pwr_irq_wait(msm_host); 2685 /* Enable pwr irq interrupts */ 2686 msm_host_writel(msm_host, INT_MASK, host, 2687 msm_offset->core_pwrctl_mask); 2688 2689 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2690 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2691 dev_name(&pdev->dev), host); 2692 if (ret) { 2693 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2694 goto clk_disable; 2695 } 2696 2697 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2698 2699 pm_runtime_get_noresume(&pdev->dev); 2700 pm_runtime_set_active(&pdev->dev); 2701 pm_runtime_enable(&pdev->dev); 2702 pm_runtime_set_autosuspend_delay(&pdev->dev, 2703 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2704 pm_runtime_use_autosuspend(&pdev->dev); 2705 2706 host->mmc_host_ops.start_signal_voltage_switch = 2707 sdhci_msm_start_signal_voltage_switch; 2708 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2709 if (of_property_read_bool(node, "supports-cqe")) 2710 ret = sdhci_msm_cqe_add_host(host, pdev); 2711 else 2712 ret = sdhci_add_host(host); 2713 if (ret) 2714 goto pm_runtime_disable; 2715 2716 pm_runtime_mark_last_busy(&pdev->dev); 2717 pm_runtime_put_autosuspend(&pdev->dev); 2718 2719 return 0; 2720 2721 pm_runtime_disable: 2722 pm_runtime_disable(&pdev->dev); 2723 pm_runtime_set_suspended(&pdev->dev); 2724 pm_runtime_put_noidle(&pdev->dev); 2725 clk_disable: 2726 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2727 msm_host->bulk_clks); 2728 bus_clk_disable: 2729 if (!IS_ERR(msm_host->bus_clk)) 2730 clk_disable_unprepare(msm_host->bus_clk); 2731 pltfm_free: 2732 sdhci_pltfm_free(pdev); 2733 return ret; 2734 } 2735 2736 static int sdhci_msm_remove(struct platform_device *pdev) 2737 { 2738 struct sdhci_host *host = platform_get_drvdata(pdev); 2739 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2740 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2741 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2742 0xffffffff); 2743 2744 sdhci_remove_host(host, dead); 2745 2746 pm_runtime_get_sync(&pdev->dev); 2747 pm_runtime_disable(&pdev->dev); 2748 pm_runtime_put_noidle(&pdev->dev); 2749 2750 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2751 msm_host->bulk_clks); 2752 if (!IS_ERR(msm_host->bus_clk)) 2753 clk_disable_unprepare(msm_host->bus_clk); 2754 sdhci_pltfm_free(pdev); 2755 return 0; 2756 } 2757 2758 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2759 { 2760 struct sdhci_host *host = dev_get_drvdata(dev); 2761 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2762 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2763 2764 /* Drop the performance vote */ 2765 dev_pm_opp_set_rate(dev, 0); 2766 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2767 msm_host->bulk_clks); 2768 2769 return 0; 2770 } 2771 2772 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2773 { 2774 struct sdhci_host *host = dev_get_drvdata(dev); 2775 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2776 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2777 int ret; 2778 2779 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2780 msm_host->bulk_clks); 2781 if (ret) 2782 return ret; 2783 /* 2784 * Whenever core-clock is gated dynamically, it's needed to 2785 * restore the SDR DLL settings when the clock is ungated. 2786 */ 2787 if (msm_host->restore_dll_config && msm_host->clk_rate) { 2788 ret = sdhci_msm_restore_sdr_dll_config(host); 2789 if (ret) 2790 return ret; 2791 } 2792 2793 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2794 2795 return sdhci_msm_ice_resume(msm_host); 2796 } 2797 2798 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2799 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2800 pm_runtime_force_resume) 2801 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2802 sdhci_msm_runtime_resume, 2803 NULL) 2804 }; 2805 2806 static struct platform_driver sdhci_msm_driver = { 2807 .probe = sdhci_msm_probe, 2808 .remove = sdhci_msm_remove, 2809 .driver = { 2810 .name = "sdhci_msm", 2811 .of_match_table = sdhci_msm_dt_match, 2812 .pm = &sdhci_msm_pm_ops, 2813 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2814 }, 2815 }; 2816 2817 module_platform_driver(sdhci_msm_driver); 2818 2819 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2820 MODULE_LICENSE("GPL v2"); 2821