xref: /linux/drivers/mmc/host/sdhci-msm.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/interconnect.h>
18 #include <linux/pinctrl/consumer.h>
19 
20 #include "sdhci-pltfm.h"
21 #include "cqhci.h"
22 
23 #define CORE_MCI_VERSION		0x50
24 #define CORE_VERSION_MAJOR_SHIFT	28
25 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
26 #define CORE_VERSION_MINOR_MASK		0xff
27 
28 #define CORE_MCI_GENERICS		0x70
29 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
30 
31 #define HC_MODE_EN		0x1
32 #define CORE_POWER		0x0
33 #define CORE_SW_RST		BIT(7)
34 #define FF_CLK_SW_RST_DIS	BIT(13)
35 
36 #define CORE_PWRCTL_BUS_OFF	BIT(0)
37 #define CORE_PWRCTL_BUS_ON	BIT(1)
38 #define CORE_PWRCTL_IO_LOW	BIT(2)
39 #define CORE_PWRCTL_IO_HIGH	BIT(3)
40 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
41 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
42 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
43 #define CORE_PWRCTL_IO_FAIL     BIT(3)
44 #define REQ_BUS_OFF		BIT(0)
45 #define REQ_BUS_ON		BIT(1)
46 #define REQ_IO_LOW		BIT(2)
47 #define REQ_IO_HIGH		BIT(3)
48 #define INT_MASK		0xf
49 #define MAX_PHASES		16
50 #define CORE_DLL_LOCK		BIT(7)
51 #define CORE_DDR_DLL_LOCK	BIT(11)
52 #define CORE_DLL_EN		BIT(16)
53 #define CORE_CDR_EN		BIT(17)
54 #define CORE_CK_OUT_EN		BIT(18)
55 #define CORE_CDR_EXT_EN		BIT(19)
56 #define CORE_DLL_PDN		BIT(29)
57 #define CORE_DLL_RST		BIT(30)
58 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
59 
60 #define CORE_DDR_CAL_EN		BIT(0)
61 #define CORE_FLL_CYCLE_CNT	BIT(18)
62 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
63 
64 #define DLL_USR_CTL_POR_VAL	0x10800
65 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
66 #define FINE_TUNE_MODE_EN	BIT(27)
67 #define BIAS_OK_SIGNAL		BIT(29)
68 
69 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
70 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
71 
72 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
73 #define CORE_CLK_PWRSAVE	BIT(1)
74 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
75 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
76 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
77 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
78 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
79 #define CORE_HC_SELECT_IN_EN	BIT(18)
80 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
81 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
82 
83 #define CORE_3_0V_SUPPORT	BIT(25)
84 #define CORE_1_8V_SUPPORT	BIT(26)
85 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
86 
87 #define CORE_CSR_CDC_CTLR_CFG0		0x130
88 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
89 #define CORE_HW_AUTOCAL_ENA		BIT(17)
90 
91 #define CORE_CSR_CDC_CTLR_CFG1		0x134
92 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
93 #define CORE_TIMER_ENA			BIT(16)
94 
95 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
96 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
97 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
98 #define CORE_CDC_OFFSET_CFG		0x14C
99 #define CORE_CSR_CDC_DELAY_CFG		0x150
100 #define CORE_CDC_SLAVE_DDA_CFG		0x160
101 #define CORE_CSR_CDC_STATUS0		0x164
102 #define CORE_CALIBRATION_DONE		BIT(0)
103 
104 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
105 
106 #define CORE_CSR_CDC_GEN_CFG		0x178
107 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
108 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
109 
110 #define CORE_CDC_T4_DLY_SEL		BIT(0)
111 #define CORE_CMDIN_RCLK_EN		BIT(1)
112 #define CORE_START_CDC_TRAFFIC		BIT(6)
113 
114 #define CORE_PWRSAVE_DLL	BIT(3)
115 
116 #define DDR_CONFIG_POR_VAL	0x80040873
117 
118 
119 #define INVALID_TUNING_PHASE	-1
120 #define SDHCI_MSM_MIN_CLOCK	400000
121 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
122 
123 #define CDR_SELEXT_SHIFT	20
124 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
125 #define CMUX_SHIFT_PHASE_SHIFT	24
126 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
127 
128 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
129 
130 /* Timeout value to avoid infinite waiting for pwr_irq */
131 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
132 
133 /* Max load for eMMC Vdd-io supply */
134 #define MMC_VQMMC_MAX_LOAD_UA	325000
135 
136 #define msm_host_readl(msm_host, host, offset) \
137 	msm_host->var_ops->msm_readl_relaxed(host, offset)
138 
139 #define msm_host_writel(msm_host, val, host, offset) \
140 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
141 
142 /* CQHCI vendor specific registers */
143 #define CQHCI_VENDOR_CFG1	0xA00
144 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
145 
146 struct sdhci_msm_offset {
147 	u32 core_hc_mode;
148 	u32 core_mci_data_cnt;
149 	u32 core_mci_status;
150 	u32 core_mci_fifo_cnt;
151 	u32 core_mci_version;
152 	u32 core_generics;
153 	u32 core_testbus_config;
154 	u32 core_testbus_sel2_bit;
155 	u32 core_testbus_ena;
156 	u32 core_testbus_sel2;
157 	u32 core_pwrctl_status;
158 	u32 core_pwrctl_mask;
159 	u32 core_pwrctl_clear;
160 	u32 core_pwrctl_ctl;
161 	u32 core_sdcc_debug_reg;
162 	u32 core_dll_config;
163 	u32 core_dll_status;
164 	u32 core_vendor_spec;
165 	u32 core_vendor_spec_adma_err_addr0;
166 	u32 core_vendor_spec_adma_err_addr1;
167 	u32 core_vendor_spec_func2;
168 	u32 core_vendor_spec_capabilities0;
169 	u32 core_ddr_200_cfg;
170 	u32 core_vendor_spec3;
171 	u32 core_dll_config_2;
172 	u32 core_dll_config_3;
173 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
174 	u32 core_ddr_config;
175 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
176 };
177 
178 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
179 	.core_mci_data_cnt = 0x35c,
180 	.core_mci_status = 0x324,
181 	.core_mci_fifo_cnt = 0x308,
182 	.core_mci_version = 0x318,
183 	.core_generics = 0x320,
184 	.core_testbus_config = 0x32c,
185 	.core_testbus_sel2_bit = 3,
186 	.core_testbus_ena = (1 << 31),
187 	.core_testbus_sel2 = (1 << 3),
188 	.core_pwrctl_status = 0x240,
189 	.core_pwrctl_mask = 0x244,
190 	.core_pwrctl_clear = 0x248,
191 	.core_pwrctl_ctl = 0x24c,
192 	.core_sdcc_debug_reg = 0x358,
193 	.core_dll_config = 0x200,
194 	.core_dll_status = 0x208,
195 	.core_vendor_spec = 0x20c,
196 	.core_vendor_spec_adma_err_addr0 = 0x214,
197 	.core_vendor_spec_adma_err_addr1 = 0x218,
198 	.core_vendor_spec_func2 = 0x210,
199 	.core_vendor_spec_capabilities0 = 0x21c,
200 	.core_ddr_200_cfg = 0x224,
201 	.core_vendor_spec3 = 0x250,
202 	.core_dll_config_2 = 0x254,
203 	.core_dll_config_3 = 0x258,
204 	.core_ddr_config = 0x25c,
205 	.core_dll_usr_ctl = 0x388,
206 };
207 
208 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
209 	.core_hc_mode = 0x78,
210 	.core_mci_data_cnt = 0x30,
211 	.core_mci_status = 0x34,
212 	.core_mci_fifo_cnt = 0x44,
213 	.core_mci_version = 0x050,
214 	.core_generics = 0x70,
215 	.core_testbus_config = 0x0cc,
216 	.core_testbus_sel2_bit = 4,
217 	.core_testbus_ena = (1 << 3),
218 	.core_testbus_sel2 = (1 << 4),
219 	.core_pwrctl_status = 0xdc,
220 	.core_pwrctl_mask = 0xe0,
221 	.core_pwrctl_clear = 0xe4,
222 	.core_pwrctl_ctl = 0xe8,
223 	.core_sdcc_debug_reg = 0x124,
224 	.core_dll_config = 0x100,
225 	.core_dll_status = 0x108,
226 	.core_vendor_spec = 0x10c,
227 	.core_vendor_spec_adma_err_addr0 = 0x114,
228 	.core_vendor_spec_adma_err_addr1 = 0x118,
229 	.core_vendor_spec_func2 = 0x110,
230 	.core_vendor_spec_capabilities0 = 0x11c,
231 	.core_ddr_200_cfg = 0x184,
232 	.core_vendor_spec3 = 0x1b0,
233 	.core_dll_config_2 = 0x1b4,
234 	.core_ddr_config_old = 0x1b8,
235 	.core_ddr_config = 0x1bc,
236 };
237 
238 struct sdhci_msm_variant_ops {
239 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
240 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
241 			u32 offset);
242 };
243 
244 /*
245  * From V5, register spaces have changed. Wrap this info in a structure
246  * and choose the data_structure based on version info mentioned in DT.
247  */
248 struct sdhci_msm_variant_info {
249 	bool mci_removed;
250 	bool restore_dll_config;
251 	const struct sdhci_msm_variant_ops *var_ops;
252 	const struct sdhci_msm_offset *offset;
253 };
254 
255 struct sdhci_msm_host {
256 	struct platform_device *pdev;
257 	void __iomem *core_mem;	/* MSM SDCC mapped address */
258 	int pwr_irq;		/* power irq */
259 	struct clk *bus_clk;	/* SDHC bus voter clock */
260 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
261 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
262 	unsigned long clk_rate;
263 	struct mmc_host *mmc;
264 	struct opp_table *opp_table;
265 	bool use_14lpp_dll_reset;
266 	bool tuning_done;
267 	bool calibration_done;
268 	u8 saved_tuning_phase;
269 	bool use_cdclp533;
270 	u32 curr_pwr_state;
271 	u32 curr_io_level;
272 	wait_queue_head_t pwr_irq_wait;
273 	bool pwr_irq_flag;
274 	u32 caps_0;
275 	bool mci_removed;
276 	bool restore_dll_config;
277 	const struct sdhci_msm_variant_ops *var_ops;
278 	const struct sdhci_msm_offset *offset;
279 	bool use_cdr;
280 	u32 transfer_mode;
281 	bool updated_ddr_cfg;
282 	bool uses_tassadar_dll;
283 	u32 dll_config;
284 	u32 ddr_config;
285 	bool vqmmc_enabled;
286 };
287 
288 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
289 {
290 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
291 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
292 
293 	return msm_host->offset;
294 }
295 
296 /*
297  * APIs to read/write to vendor specific registers which were there in the
298  * core_mem region before MCI was removed.
299  */
300 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
301 		u32 offset)
302 {
303 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
304 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
305 
306 	return readl_relaxed(msm_host->core_mem + offset);
307 }
308 
309 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
310 		u32 offset)
311 {
312 	return readl_relaxed(host->ioaddr + offset);
313 }
314 
315 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
316 		struct sdhci_host *host, u32 offset)
317 {
318 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
319 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
320 
321 	writel_relaxed(val, msm_host->core_mem + offset);
322 }
323 
324 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
325 		struct sdhci_host *host, u32 offset)
326 {
327 	writel_relaxed(val, host->ioaddr + offset);
328 }
329 
330 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
331 						    unsigned int clock)
332 {
333 	struct mmc_ios ios = host->mmc->ios;
334 	/*
335 	 * The SDHC requires internal clock frequency to be double the
336 	 * actual clock that will be set for DDR mode. The controller
337 	 * uses the faster clock(100/400MHz) for some of its parts and
338 	 * send the actual required clock (50/200MHz) to the card.
339 	 */
340 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
341 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
342 	    ios.timing == MMC_TIMING_MMC_HS400 ||
343 	    host->flags & SDHCI_HS400_TUNING)
344 		clock *= 2;
345 	return clock;
346 }
347 
348 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
349 					    unsigned int clock)
350 {
351 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
352 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
353 	struct mmc_ios curr_ios = host->mmc->ios;
354 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
355 	int rc;
356 
357 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
358 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock);
359 	if (rc) {
360 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
361 		       mmc_hostname(host->mmc), clock,
362 		       curr_ios.timing);
363 		return;
364 	}
365 	msm_host->clk_rate = clock;
366 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
367 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
368 		 curr_ios.timing);
369 }
370 
371 /* Platform specific tuning */
372 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
373 {
374 	u32 wait_cnt = 50;
375 	u8 ck_out_en;
376 	struct mmc_host *mmc = host->mmc;
377 	const struct sdhci_msm_offset *msm_offset =
378 					sdhci_priv_msm_offset(host);
379 
380 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
381 	ck_out_en = !!(readl_relaxed(host->ioaddr +
382 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
383 
384 	while (ck_out_en != poll) {
385 		if (--wait_cnt == 0) {
386 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
387 			       mmc_hostname(mmc), poll);
388 			return -ETIMEDOUT;
389 		}
390 		udelay(1);
391 
392 		ck_out_en = !!(readl_relaxed(host->ioaddr +
393 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
394 	}
395 
396 	return 0;
397 }
398 
399 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
400 {
401 	int rc;
402 	static const u8 grey_coded_phase_table[] = {
403 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
404 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
405 	};
406 	unsigned long flags;
407 	u32 config;
408 	struct mmc_host *mmc = host->mmc;
409 	const struct sdhci_msm_offset *msm_offset =
410 					sdhci_priv_msm_offset(host);
411 
412 	if (phase > 0xf)
413 		return -EINVAL;
414 
415 	spin_lock_irqsave(&host->lock, flags);
416 
417 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
418 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
419 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
420 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
421 
422 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
423 	rc = msm_dll_poll_ck_out_en(host, 0);
424 	if (rc)
425 		goto err_out;
426 
427 	/*
428 	 * Write the selected DLL clock output phase (0 ... 15)
429 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
430 	 */
431 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
432 	config &= ~CDR_SELEXT_MASK;
433 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
434 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
435 
436 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
437 	config |= CORE_CK_OUT_EN;
438 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
439 
440 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
441 	rc = msm_dll_poll_ck_out_en(host, 1);
442 	if (rc)
443 		goto err_out;
444 
445 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
446 	config |= CORE_CDR_EN;
447 	config &= ~CORE_CDR_EXT_EN;
448 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
449 	goto out;
450 
451 err_out:
452 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
453 	       mmc_hostname(mmc), phase);
454 out:
455 	spin_unlock_irqrestore(&host->lock, flags);
456 	return rc;
457 }
458 
459 /*
460  * Find out the greatest range of consecuitive selected
461  * DLL clock output phases that can be used as sampling
462  * setting for SD3.0 UHS-I card read operation (in SDR104
463  * timing mode) or for eMMC4.5 card read operation (in
464  * HS400/HS200 timing mode).
465  * Select the 3/4 of the range and configure the DLL with the
466  * selected DLL clock output phase.
467  */
468 
469 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
470 					   u8 *phase_table, u8 total_phases)
471 {
472 	int ret;
473 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
474 	u8 phases_per_row[MAX_PHASES] = { 0 };
475 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
476 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
477 	bool phase_0_found = false, phase_15_found = false;
478 	struct mmc_host *mmc = host->mmc;
479 
480 	if (!total_phases || (total_phases > MAX_PHASES)) {
481 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
482 		       mmc_hostname(mmc), total_phases);
483 		return -EINVAL;
484 	}
485 
486 	for (cnt = 0; cnt < total_phases; cnt++) {
487 		ranges[row_index][col_index] = phase_table[cnt];
488 		phases_per_row[row_index] += 1;
489 		col_index++;
490 
491 		if ((cnt + 1) == total_phases) {
492 			continue;
493 		/* check if next phase in phase_table is consecutive or not */
494 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
495 			row_index++;
496 			col_index = 0;
497 		}
498 	}
499 
500 	if (row_index >= MAX_PHASES)
501 		return -EINVAL;
502 
503 	/* Check if phase-0 is present in first valid window? */
504 	if (!ranges[0][0]) {
505 		phase_0_found = true;
506 		phase_0_raw_index = 0;
507 		/* Check if cycle exist between 2 valid windows */
508 		for (cnt = 1; cnt <= row_index; cnt++) {
509 			if (phases_per_row[cnt]) {
510 				for (i = 0; i < phases_per_row[cnt]; i++) {
511 					if (ranges[cnt][i] == 15) {
512 						phase_15_found = true;
513 						phase_15_raw_index = cnt;
514 						break;
515 					}
516 				}
517 			}
518 		}
519 	}
520 
521 	/* If 2 valid windows form cycle then merge them as single window */
522 	if (phase_0_found && phase_15_found) {
523 		/* number of phases in raw where phase 0 is present */
524 		u8 phases_0 = phases_per_row[phase_0_raw_index];
525 		/* number of phases in raw where phase 15 is present */
526 		u8 phases_15 = phases_per_row[phase_15_raw_index];
527 
528 		if (phases_0 + phases_15 >= MAX_PHASES)
529 			/*
530 			 * If there are more than 1 phase windows then total
531 			 * number of phases in both the windows should not be
532 			 * more than or equal to MAX_PHASES.
533 			 */
534 			return -EINVAL;
535 
536 		/* Merge 2 cyclic windows */
537 		i = phases_15;
538 		for (cnt = 0; cnt < phases_0; cnt++) {
539 			ranges[phase_15_raw_index][i] =
540 			    ranges[phase_0_raw_index][cnt];
541 			if (++i >= MAX_PHASES)
542 				break;
543 		}
544 
545 		phases_per_row[phase_0_raw_index] = 0;
546 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
547 	}
548 
549 	for (cnt = 0; cnt <= row_index; cnt++) {
550 		if (phases_per_row[cnt] > curr_max) {
551 			curr_max = phases_per_row[cnt];
552 			selected_row_index = cnt;
553 		}
554 	}
555 
556 	i = (curr_max * 3) / 4;
557 	if (i)
558 		i--;
559 
560 	ret = ranges[selected_row_index][i];
561 
562 	if (ret >= MAX_PHASES) {
563 		ret = -EINVAL;
564 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
565 		       mmc_hostname(mmc), ret);
566 	}
567 
568 	return ret;
569 }
570 
571 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
572 {
573 	u32 mclk_freq = 0, config;
574 	const struct sdhci_msm_offset *msm_offset =
575 					sdhci_priv_msm_offset(host);
576 
577 	/* Program the MCLK value to MCLK_FREQ bit field */
578 	if (host->clock <= 112000000)
579 		mclk_freq = 0;
580 	else if (host->clock <= 125000000)
581 		mclk_freq = 1;
582 	else if (host->clock <= 137000000)
583 		mclk_freq = 2;
584 	else if (host->clock <= 150000000)
585 		mclk_freq = 3;
586 	else if (host->clock <= 162000000)
587 		mclk_freq = 4;
588 	else if (host->clock <= 175000000)
589 		mclk_freq = 5;
590 	else if (host->clock <= 187000000)
591 		mclk_freq = 6;
592 	else if (host->clock <= 200000000)
593 		mclk_freq = 7;
594 
595 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
596 	config &= ~CMUX_SHIFT_PHASE_MASK;
597 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
598 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
599 }
600 
601 /* Initialize the DLL (Programmable Delay Line) */
602 static int msm_init_cm_dll(struct sdhci_host *host)
603 {
604 	struct mmc_host *mmc = host->mmc;
605 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
606 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
607 	int wait_cnt = 50;
608 	unsigned long flags, xo_clk = 0;
609 	u32 config;
610 	const struct sdhci_msm_offset *msm_offset =
611 					msm_host->offset;
612 
613 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
614 		xo_clk = clk_get_rate(msm_host->xo_clk);
615 
616 	spin_lock_irqsave(&host->lock, flags);
617 
618 	/*
619 	 * Make sure that clock is always enabled when DLL
620 	 * tuning is in progress. Keeping PWRSAVE ON may
621 	 * turn off the clock.
622 	 */
623 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
624 	config &= ~CORE_CLK_PWRSAVE;
625 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
626 
627 	if (msm_host->dll_config)
628 		writel_relaxed(msm_host->dll_config,
629 				host->ioaddr + msm_offset->core_dll_config);
630 
631 	if (msm_host->use_14lpp_dll_reset) {
632 		config = readl_relaxed(host->ioaddr +
633 				msm_offset->core_dll_config);
634 		config &= ~CORE_CK_OUT_EN;
635 		writel_relaxed(config, host->ioaddr +
636 				msm_offset->core_dll_config);
637 
638 		config = readl_relaxed(host->ioaddr +
639 				msm_offset->core_dll_config_2);
640 		config |= CORE_DLL_CLOCK_DISABLE;
641 		writel_relaxed(config, host->ioaddr +
642 				msm_offset->core_dll_config_2);
643 	}
644 
645 	config = readl_relaxed(host->ioaddr +
646 			msm_offset->core_dll_config);
647 	config |= CORE_DLL_RST;
648 	writel_relaxed(config, host->ioaddr +
649 			msm_offset->core_dll_config);
650 
651 	config = readl_relaxed(host->ioaddr +
652 			msm_offset->core_dll_config);
653 	config |= CORE_DLL_PDN;
654 	writel_relaxed(config, host->ioaddr +
655 			msm_offset->core_dll_config);
656 
657 	if (!msm_host->dll_config)
658 		msm_cm_dll_set_freq(host);
659 
660 	if (msm_host->use_14lpp_dll_reset &&
661 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
662 		u32 mclk_freq = 0;
663 
664 		config = readl_relaxed(host->ioaddr +
665 				msm_offset->core_dll_config_2);
666 		config &= CORE_FLL_CYCLE_CNT;
667 		if (config)
668 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
669 					xo_clk);
670 		else
671 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
672 					xo_clk);
673 
674 		config = readl_relaxed(host->ioaddr +
675 				msm_offset->core_dll_config_2);
676 		config &= ~(0xFF << 10);
677 		config |= mclk_freq << 10;
678 
679 		writel_relaxed(config, host->ioaddr +
680 				msm_offset->core_dll_config_2);
681 		/* wait for 5us before enabling DLL clock */
682 		udelay(5);
683 	}
684 
685 	config = readl_relaxed(host->ioaddr +
686 			msm_offset->core_dll_config);
687 	config &= ~CORE_DLL_RST;
688 	writel_relaxed(config, host->ioaddr +
689 			msm_offset->core_dll_config);
690 
691 	config = readl_relaxed(host->ioaddr +
692 			msm_offset->core_dll_config);
693 	config &= ~CORE_DLL_PDN;
694 	writel_relaxed(config, host->ioaddr +
695 			msm_offset->core_dll_config);
696 
697 	if (msm_host->use_14lpp_dll_reset) {
698 		if (!msm_host->dll_config)
699 			msm_cm_dll_set_freq(host);
700 		config = readl_relaxed(host->ioaddr +
701 				msm_offset->core_dll_config_2);
702 		config &= ~CORE_DLL_CLOCK_DISABLE;
703 		writel_relaxed(config, host->ioaddr +
704 				msm_offset->core_dll_config_2);
705 	}
706 
707 	/*
708 	 * Configure DLL user control register to enable DLL status.
709 	 * This setting is applicable to SDCC v5.1 onwards only.
710 	 */
711 	if (msm_host->uses_tassadar_dll) {
712 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
713 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
714 		writel_relaxed(config, host->ioaddr +
715 				msm_offset->core_dll_usr_ctl);
716 
717 		config = readl_relaxed(host->ioaddr +
718 				msm_offset->core_dll_config_3);
719 		config &= ~0xFF;
720 		if (msm_host->clk_rate < 150000000)
721 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
722 		else
723 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
724 		writel_relaxed(config, host->ioaddr +
725 			msm_offset->core_dll_config_3);
726 	}
727 
728 	config = readl_relaxed(host->ioaddr +
729 			msm_offset->core_dll_config);
730 	config |= CORE_DLL_EN;
731 	writel_relaxed(config, host->ioaddr +
732 			msm_offset->core_dll_config);
733 
734 	config = readl_relaxed(host->ioaddr +
735 			msm_offset->core_dll_config);
736 	config |= CORE_CK_OUT_EN;
737 	writel_relaxed(config, host->ioaddr +
738 			msm_offset->core_dll_config);
739 
740 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
741 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
742 		 CORE_DLL_LOCK)) {
743 		/* max. wait for 50us sec for LOCK bit to be set */
744 		if (--wait_cnt == 0) {
745 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
746 			       mmc_hostname(mmc));
747 			spin_unlock_irqrestore(&host->lock, flags);
748 			return -ETIMEDOUT;
749 		}
750 		udelay(1);
751 	}
752 
753 	spin_unlock_irqrestore(&host->lock, flags);
754 	return 0;
755 }
756 
757 static void msm_hc_select_default(struct sdhci_host *host)
758 {
759 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
760 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
761 	u32 config;
762 	const struct sdhci_msm_offset *msm_offset =
763 					msm_host->offset;
764 
765 	if (!msm_host->use_cdclp533) {
766 		config = readl_relaxed(host->ioaddr +
767 				msm_offset->core_vendor_spec3);
768 		config &= ~CORE_PWRSAVE_DLL;
769 		writel_relaxed(config, host->ioaddr +
770 				msm_offset->core_vendor_spec3);
771 	}
772 
773 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
774 	config &= ~CORE_HC_MCLK_SEL_MASK;
775 	config |= CORE_HC_MCLK_SEL_DFLT;
776 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
777 
778 	/*
779 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
780 	 * configuration from Host Control2 register for all other
781 	 * modes.
782 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
783 	 * in VENDOR_SPEC_FUNC
784 	 */
785 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
786 	config &= ~CORE_HC_SELECT_IN_EN;
787 	config &= ~CORE_HC_SELECT_IN_MASK;
788 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
789 
790 	/*
791 	 * Make sure above writes impacting free running MCLK are completed
792 	 * before changing the clk_rate at GCC.
793 	 */
794 	wmb();
795 }
796 
797 static void msm_hc_select_hs400(struct sdhci_host *host)
798 {
799 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
800 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
801 	struct mmc_ios ios = host->mmc->ios;
802 	u32 config, dll_lock;
803 	int rc;
804 	const struct sdhci_msm_offset *msm_offset =
805 					msm_host->offset;
806 
807 	/* Select the divided clock (free running MCLK/2) */
808 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
809 	config &= ~CORE_HC_MCLK_SEL_MASK;
810 	config |= CORE_HC_MCLK_SEL_HS400;
811 
812 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
813 	/*
814 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
815 	 * register
816 	 */
817 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
818 	    !msm_host->calibration_done) {
819 		config = readl_relaxed(host->ioaddr +
820 				msm_offset->core_vendor_spec);
821 		config |= CORE_HC_SELECT_IN_HS400;
822 		config |= CORE_HC_SELECT_IN_EN;
823 		writel_relaxed(config, host->ioaddr +
824 				msm_offset->core_vendor_spec);
825 	}
826 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
827 		/*
828 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
829 		 * core_dll_status to be set. This should get set
830 		 * within 15 us at 200 MHz.
831 		 */
832 		rc = readl_relaxed_poll_timeout(host->ioaddr +
833 						msm_offset->core_dll_status,
834 						dll_lock,
835 						(dll_lock &
836 						(CORE_DLL_LOCK |
837 						CORE_DDR_DLL_LOCK)), 10,
838 						1000);
839 		if (rc == -ETIMEDOUT)
840 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
841 			       mmc_hostname(host->mmc), dll_lock);
842 	}
843 	/*
844 	 * Make sure above writes impacting free running MCLK are completed
845 	 * before changing the clk_rate at GCC.
846 	 */
847 	wmb();
848 }
849 
850 /*
851  * sdhci_msm_hc_select_mode :- In general all timing modes are
852  * controlled via UHS mode select in Host Control2 register.
853  * eMMC specific HS200/HS400 doesn't have their respective modes
854  * defined here, hence we use these values.
855  *
856  * HS200 - SDR104 (Since they both are equivalent in functionality)
857  * HS400 - This involves multiple configurations
858  *		Initially SDR104 - when tuning is required as HS200
859  *		Then when switching to DDR @ 400MHz (HS400) we use
860  *		the vendor specific HC_SELECT_IN to control the mode.
861  *
862  * In addition to controlling the modes we also need to select the
863  * correct input clock for DLL depending on the mode.
864  *
865  * HS400 - divided clock (free running MCLK/2)
866  * All other modes - default (free running MCLK)
867  */
868 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
869 {
870 	struct mmc_ios ios = host->mmc->ios;
871 
872 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
873 	    host->flags & SDHCI_HS400_TUNING)
874 		msm_hc_select_hs400(host);
875 	else
876 		msm_hc_select_default(host);
877 }
878 
879 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
880 {
881 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
882 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
883 	u32 config, calib_done;
884 	int ret;
885 	const struct sdhci_msm_offset *msm_offset =
886 					msm_host->offset;
887 
888 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
889 
890 	/*
891 	 * Retuning in HS400 (DDR mode) will fail, just reset the
892 	 * tuning block and restore the saved tuning phase.
893 	 */
894 	ret = msm_init_cm_dll(host);
895 	if (ret)
896 		goto out;
897 
898 	/* Set the selected phase in delay line hw block */
899 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
900 	if (ret)
901 		goto out;
902 
903 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
904 	config |= CORE_CMD_DAT_TRACK_SEL;
905 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
906 
907 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
908 	config &= ~CORE_CDC_T4_DLY_SEL;
909 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
910 
911 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
912 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
913 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
914 
915 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
916 	config |= CORE_CDC_SWITCH_RC_EN;
917 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
918 
919 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
920 	config &= ~CORE_START_CDC_TRAFFIC;
921 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
922 
923 	/* Perform CDC Register Initialization Sequence */
924 
925 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
926 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
927 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
928 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
929 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
930 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
931 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
932 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
933 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
934 
935 	/* CDC HW Calibration */
936 
937 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
938 	config |= CORE_SW_TRIG_FULL_CALIB;
939 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
940 
941 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
942 	config &= ~CORE_SW_TRIG_FULL_CALIB;
943 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
944 
945 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
946 	config |= CORE_HW_AUTOCAL_ENA;
947 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
948 
949 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
950 	config |= CORE_TIMER_ENA;
951 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
952 
953 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
954 					 calib_done,
955 					 (calib_done & CORE_CALIBRATION_DONE),
956 					 1, 50);
957 
958 	if (ret == -ETIMEDOUT) {
959 		pr_err("%s: %s: CDC calibration was not completed\n",
960 		       mmc_hostname(host->mmc), __func__);
961 		goto out;
962 	}
963 
964 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
965 			& CORE_CDC_ERROR_CODE_MASK;
966 	if (ret) {
967 		pr_err("%s: %s: CDC error code %d\n",
968 		       mmc_hostname(host->mmc), __func__, ret);
969 		ret = -EINVAL;
970 		goto out;
971 	}
972 
973 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
974 	config |= CORE_START_CDC_TRAFFIC;
975 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
976 out:
977 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
978 		 __func__, ret);
979 	return ret;
980 }
981 
982 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
983 {
984 	struct mmc_host *mmc = host->mmc;
985 	u32 dll_status, config, ddr_cfg_offset;
986 	int ret;
987 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
988 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
989 	const struct sdhci_msm_offset *msm_offset =
990 					sdhci_priv_msm_offset(host);
991 
992 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
993 
994 	/*
995 	 * Currently the core_ddr_config register defaults to desired
996 	 * configuration on reset. Currently reprogramming the power on
997 	 * reset (POR) value in case it might have been modified by
998 	 * bootloaders. In the future, if this changes, then the desired
999 	 * values will need to be programmed appropriately.
1000 	 */
1001 	if (msm_host->updated_ddr_cfg)
1002 		ddr_cfg_offset = msm_offset->core_ddr_config;
1003 	else
1004 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1005 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1006 
1007 	if (mmc->ios.enhanced_strobe) {
1008 		config = readl_relaxed(host->ioaddr +
1009 				msm_offset->core_ddr_200_cfg);
1010 		config |= CORE_CMDIN_RCLK_EN;
1011 		writel_relaxed(config, host->ioaddr +
1012 				msm_offset->core_ddr_200_cfg);
1013 	}
1014 
1015 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1016 	config |= CORE_DDR_CAL_EN;
1017 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1018 
1019 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1020 					msm_offset->core_dll_status,
1021 					dll_status,
1022 					(dll_status & CORE_DDR_DLL_LOCK),
1023 					10, 1000);
1024 
1025 	if (ret == -ETIMEDOUT) {
1026 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1027 		       mmc_hostname(host->mmc), __func__);
1028 		goto out;
1029 	}
1030 
1031 	/*
1032 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1033 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1034 	 * and MCLK must be switched on for at-least 1us before DATA
1035 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1036 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1037 	 * turned on for host controllers using this DLL.
1038 	 */
1039 	if (!msm_host->use_14lpp_dll_reset) {
1040 		config = readl_relaxed(host->ioaddr +
1041 				msm_offset->core_vendor_spec3);
1042 		config |= CORE_PWRSAVE_DLL;
1043 		writel_relaxed(config, host->ioaddr +
1044 				msm_offset->core_vendor_spec3);
1045 	}
1046 
1047 	/*
1048 	 * Drain writebuffer to ensure above DLL calibration
1049 	 * and PWRSAVE DLL is enabled.
1050 	 */
1051 	wmb();
1052 out:
1053 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1054 		 __func__, ret);
1055 	return ret;
1056 }
1057 
1058 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1059 {
1060 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1061 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1062 	struct mmc_host *mmc = host->mmc;
1063 	int ret;
1064 	u32 config;
1065 	const struct sdhci_msm_offset *msm_offset =
1066 					msm_host->offset;
1067 
1068 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1069 
1070 	/*
1071 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1072 	 * tuning block and restore the saved tuning phase.
1073 	 */
1074 	ret = msm_init_cm_dll(host);
1075 	if (ret)
1076 		goto out;
1077 
1078 	if (!mmc->ios.enhanced_strobe) {
1079 		/* Set the selected phase in delay line hw block */
1080 		ret = msm_config_cm_dll_phase(host,
1081 					      msm_host->saved_tuning_phase);
1082 		if (ret)
1083 			goto out;
1084 		config = readl_relaxed(host->ioaddr +
1085 				msm_offset->core_dll_config);
1086 		config |= CORE_CMD_DAT_TRACK_SEL;
1087 		writel_relaxed(config, host->ioaddr +
1088 				msm_offset->core_dll_config);
1089 	}
1090 
1091 	if (msm_host->use_cdclp533)
1092 		ret = sdhci_msm_cdclp533_calibration(host);
1093 	else
1094 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1095 out:
1096 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1097 		 __func__, ret);
1098 	return ret;
1099 }
1100 
1101 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1102 {
1103 	struct mmc_ios *ios = &host->mmc->ios;
1104 
1105 	/*
1106 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1107 	 * if clock frequency is greater than 100MHz in these modes.
1108 	 */
1109 	if (host->clock <= CORE_FREQ_100MHZ ||
1110 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1111 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1112 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1113 	    ios->enhanced_strobe)
1114 		return false;
1115 
1116 	return true;
1117 }
1118 
1119 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1120 {
1121 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1122 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1123 	int ret;
1124 
1125 	/*
1126 	 * SDR DLL comes into picture only for timing modes which needs
1127 	 * tuning.
1128 	 */
1129 	if (!sdhci_msm_is_tuning_needed(host))
1130 		return 0;
1131 
1132 	/* Reset the tuning block */
1133 	ret = msm_init_cm_dll(host);
1134 	if (ret)
1135 		return ret;
1136 
1137 	/* Restore the tuning block */
1138 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1139 
1140 	return ret;
1141 }
1142 
1143 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1144 {
1145 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1146 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1147 					      msm_offset->core_dll_config);
1148 
1149 	config = oldconfig;
1150 	if (enable) {
1151 		config |= CORE_CDR_EN;
1152 		config &= ~CORE_CDR_EXT_EN;
1153 	} else {
1154 		config &= ~CORE_CDR_EN;
1155 		config |= CORE_CDR_EXT_EN;
1156 	}
1157 
1158 	if (config != oldconfig) {
1159 		writel_relaxed(config, host->ioaddr +
1160 			       msm_offset->core_dll_config);
1161 	}
1162 }
1163 
1164 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1165 {
1166 	struct sdhci_host *host = mmc_priv(mmc);
1167 	int tuning_seq_cnt = 10;
1168 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1169 	int rc;
1170 	struct mmc_ios ios = host->mmc->ios;
1171 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1172 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1173 
1174 	if (!sdhci_msm_is_tuning_needed(host)) {
1175 		msm_host->use_cdr = false;
1176 		sdhci_msm_set_cdr(host, false);
1177 		return 0;
1178 	}
1179 
1180 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1181 	msm_host->use_cdr = true;
1182 
1183 	/*
1184 	 * Clear tuning_done flag before tuning to ensure proper
1185 	 * HS400 settings.
1186 	 */
1187 	msm_host->tuning_done = 0;
1188 
1189 	/*
1190 	 * For HS400 tuning in HS200 timing requires:
1191 	 * - select MCLK/2 in VENDOR_SPEC
1192 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1193 	 */
1194 	if (host->flags & SDHCI_HS400_TUNING) {
1195 		sdhci_msm_hc_select_mode(host);
1196 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1197 		host->flags &= ~SDHCI_HS400_TUNING;
1198 	}
1199 
1200 retry:
1201 	/* First of all reset the tuning block */
1202 	rc = msm_init_cm_dll(host);
1203 	if (rc)
1204 		return rc;
1205 
1206 	phase = 0;
1207 	do {
1208 		/* Set the phase in delay line hw block */
1209 		rc = msm_config_cm_dll_phase(host, phase);
1210 		if (rc)
1211 			return rc;
1212 
1213 		rc = mmc_send_tuning(mmc, opcode, NULL);
1214 		if (!rc) {
1215 			/* Tuning is successful at this tuning point */
1216 			tuned_phases[tuned_phase_cnt++] = phase;
1217 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1218 				 mmc_hostname(mmc), phase);
1219 		}
1220 	} while (++phase < ARRAY_SIZE(tuned_phases));
1221 
1222 	if (tuned_phase_cnt) {
1223 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1224 			/*
1225 			 * All phases valid is _almost_ as bad as no phases
1226 			 * valid.  Probably all phases are not really reliable
1227 			 * but we didn't detect where the unreliable place is.
1228 			 * That means we'll essentially be guessing and hoping
1229 			 * we get a good phase.  Better to try a few times.
1230 			 */
1231 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1232 				mmc_hostname(mmc));
1233 			if (--tuning_seq_cnt) {
1234 				tuned_phase_cnt = 0;
1235 				goto retry;
1236 			}
1237 		}
1238 
1239 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1240 						     tuned_phase_cnt);
1241 		if (rc < 0)
1242 			return rc;
1243 		else
1244 			phase = rc;
1245 
1246 		/*
1247 		 * Finally set the selected phase in delay
1248 		 * line hw block.
1249 		 */
1250 		rc = msm_config_cm_dll_phase(host, phase);
1251 		if (rc)
1252 			return rc;
1253 		msm_host->saved_tuning_phase = phase;
1254 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1255 			 mmc_hostname(mmc), phase);
1256 	} else {
1257 		if (--tuning_seq_cnt)
1258 			goto retry;
1259 		/* Tuning failed */
1260 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1261 		       mmc_hostname(mmc));
1262 		rc = -EIO;
1263 	}
1264 
1265 	if (!rc)
1266 		msm_host->tuning_done = true;
1267 	return rc;
1268 }
1269 
1270 /*
1271  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1272  * This needs to be done for both tuning and enhanced_strobe mode.
1273  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1274  * fixed feedback clock is used.
1275  */
1276 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1277 {
1278 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1279 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1280 	int ret;
1281 
1282 	if (host->clock > CORE_FREQ_100MHZ &&
1283 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1284 	    !msm_host->calibration_done) {
1285 		ret = sdhci_msm_hs400_dll_calibration(host);
1286 		if (!ret)
1287 			msm_host->calibration_done = true;
1288 		else
1289 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1290 			       mmc_hostname(host->mmc), ret);
1291 	}
1292 }
1293 
1294 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1295 					unsigned int uhs)
1296 {
1297 	struct mmc_host *mmc = host->mmc;
1298 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1299 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1300 	u16 ctrl_2;
1301 	u32 config;
1302 	const struct sdhci_msm_offset *msm_offset =
1303 					msm_host->offset;
1304 
1305 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1306 	/* Select Bus Speed Mode for host */
1307 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1308 	switch (uhs) {
1309 	case MMC_TIMING_UHS_SDR12:
1310 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1311 		break;
1312 	case MMC_TIMING_UHS_SDR25:
1313 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1314 		break;
1315 	case MMC_TIMING_UHS_SDR50:
1316 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1317 		break;
1318 	case MMC_TIMING_MMC_HS400:
1319 	case MMC_TIMING_MMC_HS200:
1320 	case MMC_TIMING_UHS_SDR104:
1321 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1322 		break;
1323 	case MMC_TIMING_UHS_DDR50:
1324 	case MMC_TIMING_MMC_DDR52:
1325 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1326 		break;
1327 	}
1328 
1329 	/*
1330 	 * When clock frequency is less than 100MHz, the feedback clock must be
1331 	 * provided and DLL must not be used so that tuning can be skipped. To
1332 	 * provide feedback clock, the mode selection can be any value less
1333 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1334 	 */
1335 	if (host->clock <= CORE_FREQ_100MHZ) {
1336 		if (uhs == MMC_TIMING_MMC_HS400 ||
1337 		    uhs == MMC_TIMING_MMC_HS200 ||
1338 		    uhs == MMC_TIMING_UHS_SDR104)
1339 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1340 		/*
1341 		 * DLL is not required for clock <= 100MHz
1342 		 * Thus, make sure DLL it is disabled when not required
1343 		 */
1344 		config = readl_relaxed(host->ioaddr +
1345 				msm_offset->core_dll_config);
1346 		config |= CORE_DLL_RST;
1347 		writel_relaxed(config, host->ioaddr +
1348 				msm_offset->core_dll_config);
1349 
1350 		config = readl_relaxed(host->ioaddr +
1351 				msm_offset->core_dll_config);
1352 		config |= CORE_DLL_PDN;
1353 		writel_relaxed(config, host->ioaddr +
1354 				msm_offset->core_dll_config);
1355 
1356 		/*
1357 		 * The DLL needs to be restored and CDCLP533 recalibrated
1358 		 * when the clock frequency is set back to 400MHz.
1359 		 */
1360 		msm_host->calibration_done = false;
1361 	}
1362 
1363 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1364 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1365 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1366 
1367 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1368 		sdhci_msm_hs400(host, &mmc->ios);
1369 }
1370 
1371 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1372 {
1373 	struct platform_device *pdev = msm_host->pdev;
1374 	int ret;
1375 
1376 	if (level)
1377 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1378 	else
1379 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1380 
1381 	return ret;
1382 }
1383 
1384 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1385 {
1386 	if (IS_ERR(mmc->supply.vmmc))
1387 		return 0;
1388 
1389 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1390 }
1391 
1392 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1393 			      struct mmc_host *mmc, bool level)
1394 {
1395 	int ret;
1396 	struct mmc_ios ios;
1397 
1398 	if (msm_host->vqmmc_enabled == level)
1399 		return 0;
1400 
1401 	if (level) {
1402 		/* Set the IO voltage regulator to default voltage level */
1403 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1404 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1405 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1406 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1407 
1408 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1409 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1410 			if (ret < 0) {
1411 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1412 					mmc_hostname(mmc), ret);
1413 				goto out;
1414 			}
1415 		}
1416 		ret = regulator_enable(mmc->supply.vqmmc);
1417 	} else {
1418 		ret = regulator_disable(mmc->supply.vqmmc);
1419 	}
1420 
1421 	if (ret)
1422 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1423 			mmc_hostname(mmc), level ? "en":"dis", ret);
1424 	else
1425 		msm_host->vqmmc_enabled = level;
1426 out:
1427 	return ret;
1428 }
1429 
1430 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1431 			      struct mmc_host *mmc, bool hpm)
1432 {
1433 	int load, ret;
1434 
1435 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1436 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1437 	if (ret)
1438 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1439 			mmc_hostname(mmc), ret);
1440 	return ret;
1441 }
1442 
1443 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1444 			      struct mmc_host *mmc, bool level)
1445 {
1446 	int ret;
1447 	bool always_on;
1448 
1449 	if (IS_ERR(mmc->supply.vqmmc) ||
1450 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1451 		return 0;
1452 	/*
1453 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1454 	 * and HPM modes by setting the corresponding load.
1455 	 *
1456 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1457 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1458 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1459 	 * Vqmmc should remain ON, So just set the load instead of turning it
1460 	 * off/on.
1461 	 */
1462 	always_on = !mmc_card_is_removable(mmc) &&
1463 			mmc->card && mmc_card_mmc(mmc->card);
1464 
1465 	if (always_on)
1466 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1467 	else
1468 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1469 
1470 	return ret;
1471 }
1472 
1473 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1474 {
1475 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1476 }
1477 
1478 static inline void sdhci_msm_complete_pwr_irq_wait(
1479 		struct sdhci_msm_host *msm_host)
1480 {
1481 	wake_up(&msm_host->pwr_irq_wait);
1482 }
1483 
1484 /*
1485  * sdhci_msm_check_power_status API should be called when registers writes
1486  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1487  * To what state the register writes will change the IO lines should be passed
1488  * as the argument req_type. This API will check whether the IO line's state
1489  * is already the expected state and will wait for power irq only if
1490  * power irq is expected to be triggered based on the current IO line state
1491  * and expected IO line state.
1492  */
1493 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1494 {
1495 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1496 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1497 	bool done = false;
1498 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1499 	const struct sdhci_msm_offset *msm_offset =
1500 					msm_host->offset;
1501 
1502 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1503 			mmc_hostname(host->mmc), __func__, req_type,
1504 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1505 
1506 	/*
1507 	 * The power interrupt will not be generated for signal voltage
1508 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1509 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1510 	 * it as always set.
1511 	 */
1512 	if (!msm_host->mci_removed)
1513 		val = msm_host_readl(msm_host, host,
1514 				msm_offset->core_generics);
1515 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1516 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1517 		return;
1518 	}
1519 
1520 	/*
1521 	 * The IRQ for request type IO High/LOW will be generated when -
1522 	 * there is a state change in 1.8V enable bit (bit 3) of
1523 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1524 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1525 	 * to set it to 3.3V before card detection happens, the
1526 	 * IRQ doesn't get triggered as there is no state change in this bit.
1527 	 * The driver already handles this case by changing the IO voltage
1528 	 * level to high as part of controller power up sequence. Hence, check
1529 	 * for host->pwr to handle a case where IO voltage high request is
1530 	 * issued even before controller power up.
1531 	 */
1532 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1533 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1534 				mmc_hostname(host->mmc), req_type);
1535 		return;
1536 	}
1537 	if ((req_type & msm_host->curr_pwr_state) ||
1538 			(req_type & msm_host->curr_io_level))
1539 		done = true;
1540 	/*
1541 	 * This is needed here to handle cases where register writes will
1542 	 * not change the current bus state or io level of the controller.
1543 	 * In this case, no power irq will be triggerred and we should
1544 	 * not wait.
1545 	 */
1546 	if (!done) {
1547 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1548 				msm_host->pwr_irq_flag,
1549 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1550 			dev_warn(&msm_host->pdev->dev,
1551 				 "%s: pwr_irq for req: (%d) timed out\n",
1552 				 mmc_hostname(host->mmc), req_type);
1553 	}
1554 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1555 			__func__, req_type);
1556 }
1557 
1558 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1559 {
1560 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1561 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1562 	const struct sdhci_msm_offset *msm_offset =
1563 					msm_host->offset;
1564 
1565 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1566 		mmc_hostname(host->mmc),
1567 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1568 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1569 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1570 }
1571 
1572 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1573 {
1574 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1575 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1576 	struct mmc_host *mmc = host->mmc;
1577 	u32 irq_status, irq_ack = 0;
1578 	int retry = 10, ret;
1579 	u32 pwr_state = 0, io_level = 0;
1580 	u32 config;
1581 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1582 
1583 	irq_status = msm_host_readl(msm_host, host,
1584 			msm_offset->core_pwrctl_status);
1585 	irq_status &= INT_MASK;
1586 
1587 	msm_host_writel(msm_host, irq_status, host,
1588 			msm_offset->core_pwrctl_clear);
1589 
1590 	/*
1591 	 * There is a rare HW scenario where the first clear pulse could be
1592 	 * lost when actual reset and clear/read of status register is
1593 	 * happening at a time. Hence, retry for at least 10 times to make
1594 	 * sure status register is cleared. Otherwise, this will result in
1595 	 * a spurious power IRQ resulting in system instability.
1596 	 */
1597 	while (irq_status & msm_host_readl(msm_host, host,
1598 				msm_offset->core_pwrctl_status)) {
1599 		if (retry == 0) {
1600 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1601 					mmc_hostname(host->mmc), irq_status);
1602 			sdhci_msm_dump_pwr_ctrl_regs(host);
1603 			WARN_ON(1);
1604 			break;
1605 		}
1606 		msm_host_writel(msm_host, irq_status, host,
1607 			msm_offset->core_pwrctl_clear);
1608 		retry--;
1609 		udelay(10);
1610 	}
1611 
1612 	/* Handle BUS ON/OFF*/
1613 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1614 		pwr_state = REQ_BUS_ON;
1615 		io_level = REQ_IO_HIGH;
1616 	}
1617 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1618 		pwr_state = REQ_BUS_OFF;
1619 		io_level = REQ_IO_LOW;
1620 	}
1621 
1622 	if (pwr_state) {
1623 		ret = sdhci_msm_set_vmmc(mmc);
1624 		if (!ret)
1625 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1626 					pwr_state & REQ_BUS_ON);
1627 		if (!ret)
1628 			ret = sdhci_msm_set_pincfg(msm_host,
1629 					pwr_state & REQ_BUS_ON);
1630 		if (!ret)
1631 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1632 		else
1633 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1634 	}
1635 
1636 	/* Handle IO LOW/HIGH */
1637 	if (irq_status & CORE_PWRCTL_IO_LOW)
1638 		io_level = REQ_IO_LOW;
1639 
1640 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1641 		io_level = REQ_IO_HIGH;
1642 
1643 	if (io_level)
1644 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1645 
1646 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1647 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1648 		if (ret < 0) {
1649 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1650 					mmc_hostname(mmc), ret,
1651 					mmc->ios.signal_voltage, mmc->ios.vdd,
1652 					irq_status);
1653 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1654 		}
1655 	}
1656 
1657 	/*
1658 	 * The driver has to acknowledge the interrupt, switch voltages and
1659 	 * report back if it succeded or not to this register. The voltage
1660 	 * switches are handled by the sdhci core, so just report success.
1661 	 */
1662 	msm_host_writel(msm_host, irq_ack, host,
1663 			msm_offset->core_pwrctl_ctl);
1664 
1665 	/*
1666 	 * If we don't have info regarding the voltage levels supported by
1667 	 * regulators, don't change the IO PAD PWR SWITCH.
1668 	 */
1669 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1670 		u32 new_config;
1671 		/*
1672 		 * We should unset IO PAD PWR switch only if the register write
1673 		 * can set IO lines high and the regulator also switches to 3 V.
1674 		 * Else, we should keep the IO PAD PWR switch set.
1675 		 * This is applicable to certain targets where eMMC vccq supply
1676 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1677 		 * IO PAD PWR switch must be kept set to reflect actual
1678 		 * regulator voltage. This way, during initialization of
1679 		 * controllers with only 1.8V, we will set the IO PAD bit
1680 		 * without waiting for a REQ_IO_LOW.
1681 		 */
1682 		config = readl_relaxed(host->ioaddr +
1683 				msm_offset->core_vendor_spec);
1684 		new_config = config;
1685 
1686 		if ((io_level & REQ_IO_HIGH) &&
1687 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1688 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1689 		else if ((io_level & REQ_IO_LOW) ||
1690 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1691 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1692 
1693 		if (config ^ new_config)
1694 			writel_relaxed(new_config, host->ioaddr +
1695 					msm_offset->core_vendor_spec);
1696 	}
1697 
1698 	if (pwr_state)
1699 		msm_host->curr_pwr_state = pwr_state;
1700 	if (io_level)
1701 		msm_host->curr_io_level = io_level;
1702 
1703 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1704 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1705 		irq_ack);
1706 }
1707 
1708 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1709 {
1710 	struct sdhci_host *host = (struct sdhci_host *)data;
1711 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1712 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1713 
1714 	sdhci_msm_handle_pwr_irq(host, irq);
1715 	msm_host->pwr_irq_flag = 1;
1716 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1717 
1718 
1719 	return IRQ_HANDLED;
1720 }
1721 
1722 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1723 {
1724 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1725 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1726 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1727 
1728 	return clk_round_rate(core_clk, ULONG_MAX);
1729 }
1730 
1731 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1732 {
1733 	return SDHCI_MSM_MIN_CLOCK;
1734 }
1735 
1736 /*
1737  * __sdhci_msm_set_clock - sdhci_msm clock control.
1738  *
1739  * Description:
1740  * MSM controller does not use internal divider and
1741  * instead directly control the GCC clock as per
1742  * HW recommendation.
1743  **/
1744 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1745 {
1746 	u16 clk;
1747 	/*
1748 	 * Keep actual_clock as zero -
1749 	 * - since there is no divider used so no need of having actual_clock.
1750 	 * - MSM controller uses SDCLK for data timeout calculation. If
1751 	 *   actual_clock is zero, host->clock is taken for calculation.
1752 	 */
1753 	host->mmc->actual_clock = 0;
1754 
1755 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1756 
1757 	if (clock == 0)
1758 		return;
1759 
1760 	/*
1761 	 * MSM controller do not use clock divider.
1762 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1763 	 * clock with no divider value programmed.
1764 	 */
1765 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1766 	sdhci_enable_clk(host, clk);
1767 }
1768 
1769 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1770 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1771 {
1772 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1773 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1774 
1775 	if (!clock) {
1776 		msm_host->clk_rate = clock;
1777 		goto out;
1778 	}
1779 
1780 	sdhci_msm_hc_select_mode(host);
1781 
1782 	msm_set_clock_rate_for_bus_mode(host, clock);
1783 out:
1784 	__sdhci_msm_set_clock(host, clock);
1785 }
1786 
1787 /*****************************************************************************\
1788  *                                                                           *
1789  * MSM Command Queue Engine (CQE)                                            *
1790  *                                                                           *
1791 \*****************************************************************************/
1792 
1793 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1794 {
1795 	int cmd_error = 0;
1796 	int data_error = 0;
1797 
1798 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1799 		return intmask;
1800 
1801 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1802 	return 0;
1803 }
1804 
1805 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1806 {
1807 	struct sdhci_host *host = mmc_priv(mmc);
1808 	unsigned long flags;
1809 	u32 ctrl;
1810 
1811 	/*
1812 	 * When CQE is halted, the legacy SDHCI path operates only
1813 	 * on 16-byte descriptors in 64bit mode.
1814 	 */
1815 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1816 		host->desc_sz = 16;
1817 
1818 	spin_lock_irqsave(&host->lock, flags);
1819 
1820 	/*
1821 	 * During CQE command transfers, command complete bit gets latched.
1822 	 * So s/w should clear command complete interrupt status when CQE is
1823 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1824 	 * interrupt gets triggered when CQE is halted/disabled.
1825 	 */
1826 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1827 	ctrl |= SDHCI_INT_RESPONSE;
1828 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1829 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1830 
1831 	spin_unlock_irqrestore(&host->lock, flags);
1832 
1833 	sdhci_cqe_disable(mmc, recovery);
1834 }
1835 
1836 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1837 	.enable		= sdhci_cqe_enable,
1838 	.disable	= sdhci_msm_cqe_disable,
1839 };
1840 
1841 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1842 				struct platform_device *pdev)
1843 {
1844 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1845 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1846 	struct cqhci_host *cq_host;
1847 	bool dma64;
1848 	u32 cqcfg;
1849 	int ret;
1850 
1851 	/*
1852 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
1853 	 * So ensure ADMA table is allocated for 16byte descriptors.
1854 	 */
1855 	if (host->caps & SDHCI_CAN_64BIT)
1856 		host->alloc_desc_sz = 16;
1857 
1858 	ret = sdhci_setup_host(host);
1859 	if (ret)
1860 		return ret;
1861 
1862 	cq_host = cqhci_pltfm_init(pdev);
1863 	if (IS_ERR(cq_host)) {
1864 		ret = PTR_ERR(cq_host);
1865 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
1866 		goto cleanup;
1867 	}
1868 
1869 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
1870 	cq_host->ops = &sdhci_msm_cqhci_ops;
1871 
1872 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
1873 
1874 	ret = cqhci_init(cq_host, host->mmc, dma64);
1875 	if (ret) {
1876 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
1877 				mmc_hostname(host->mmc), ret);
1878 		goto cleanup;
1879 	}
1880 
1881 	/* Disable cqe reset due to cqe enable signal */
1882 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
1883 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
1884 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
1885 
1886 	/*
1887 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
1888 	 * So limit desc_sz to 12 so that the data commands that are sent
1889 	 * during card initialization (before CQE gets enabled) would
1890 	 * get executed without any issues.
1891 	 */
1892 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1893 		host->desc_sz = 12;
1894 
1895 	ret = __sdhci_add_host(host);
1896 	if (ret)
1897 		goto cleanup;
1898 
1899 	dev_info(&pdev->dev, "%s: CQE init: success\n",
1900 			mmc_hostname(host->mmc));
1901 	return ret;
1902 
1903 cleanup:
1904 	sdhci_cleanup_host(host);
1905 	return ret;
1906 }
1907 
1908 /*
1909  * Platform specific register write functions. This is so that, if any
1910  * register write needs to be followed up by platform specific actions,
1911  * they can be added here. These functions can go to sleep when writes
1912  * to certain registers are done.
1913  * These functions are relying on sdhci_set_ios not using spinlock.
1914  */
1915 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1916 {
1917 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1918 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1919 	u32 req_type = 0;
1920 
1921 	switch (reg) {
1922 	case SDHCI_HOST_CONTROL2:
1923 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1924 			REQ_IO_HIGH;
1925 		break;
1926 	case SDHCI_SOFTWARE_RESET:
1927 		if (host->pwr && (val & SDHCI_RESET_ALL))
1928 			req_type = REQ_BUS_OFF;
1929 		break;
1930 	case SDHCI_POWER_CONTROL:
1931 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1932 		break;
1933 	case SDHCI_TRANSFER_MODE:
1934 		msm_host->transfer_mode = val;
1935 		break;
1936 	case SDHCI_COMMAND:
1937 		if (!msm_host->use_cdr)
1938 			break;
1939 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1940 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1941 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1942 			sdhci_msm_set_cdr(host, true);
1943 		else
1944 			sdhci_msm_set_cdr(host, false);
1945 		break;
1946 	}
1947 
1948 	if (req_type) {
1949 		msm_host->pwr_irq_flag = 0;
1950 		/*
1951 		 * Since this register write may trigger a power irq, ensure
1952 		 * all previous register writes are complete by this point.
1953 		 */
1954 		mb();
1955 	}
1956 	return req_type;
1957 }
1958 
1959 /* This function may sleep*/
1960 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1961 {
1962 	u32 req_type = 0;
1963 
1964 	req_type = __sdhci_msm_check_write(host, val, reg);
1965 	writew_relaxed(val, host->ioaddr + reg);
1966 
1967 	if (req_type)
1968 		sdhci_msm_check_power_status(host, req_type);
1969 }
1970 
1971 /* This function may sleep*/
1972 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1973 {
1974 	u32 req_type = 0;
1975 
1976 	req_type = __sdhci_msm_check_write(host, val, reg);
1977 
1978 	writeb_relaxed(val, host->ioaddr + reg);
1979 
1980 	if (req_type)
1981 		sdhci_msm_check_power_status(host, req_type);
1982 }
1983 
1984 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1985 {
1986 	struct mmc_host *mmc = msm_host->mmc;
1987 	struct regulator *supply = mmc->supply.vqmmc;
1988 	u32 caps = 0, config;
1989 	struct sdhci_host *host = mmc_priv(mmc);
1990 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1991 
1992 	if (!IS_ERR(mmc->supply.vqmmc)) {
1993 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1994 			caps |= CORE_1_8V_SUPPORT;
1995 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1996 			caps |= CORE_3_0V_SUPPORT;
1997 
1998 		if (!caps)
1999 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2000 					mmc_hostname(mmc));
2001 	}
2002 
2003 	if (caps) {
2004 		/*
2005 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2006 		 * bit can be used as required later on.
2007 		 */
2008 		u32 io_level = msm_host->curr_io_level;
2009 
2010 		config = readl_relaxed(host->ioaddr +
2011 				msm_offset->core_vendor_spec);
2012 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2013 
2014 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2015 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2016 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2017 			config |= CORE_IO_PAD_PWR_SWITCH;
2018 
2019 		writel_relaxed(config,
2020 				host->ioaddr + msm_offset->core_vendor_spec);
2021 	}
2022 	msm_host->caps_0 |= caps;
2023 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2024 }
2025 
2026 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2027 {
2028 	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2029 		cqhci_deactivate(host->mmc);
2030 	sdhci_reset(host, mask);
2031 }
2032 
2033 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2034 {
2035 	int ret;
2036 
2037 	ret = mmc_regulator_get_supply(msm_host->mmc);
2038 	if (ret)
2039 		return ret;
2040 
2041 	sdhci_msm_set_regulator_caps(msm_host);
2042 
2043 	return 0;
2044 }
2045 
2046 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2047 				      struct mmc_ios *ios)
2048 {
2049 	struct sdhci_host *host = mmc_priv(mmc);
2050 	u16 ctrl, status;
2051 
2052 	/*
2053 	 * Signal Voltage Switching is only applicable for Host Controllers
2054 	 * v3.00 and above.
2055 	 */
2056 	if (host->version < SDHCI_SPEC_300)
2057 		return 0;
2058 
2059 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2060 
2061 	switch (ios->signal_voltage) {
2062 	case MMC_SIGNAL_VOLTAGE_330:
2063 		if (!(host->flags & SDHCI_SIGNALING_330))
2064 			return -EINVAL;
2065 
2066 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2067 		ctrl &= ~SDHCI_CTRL_VDD_180;
2068 		break;
2069 	case MMC_SIGNAL_VOLTAGE_180:
2070 		if (!(host->flags & SDHCI_SIGNALING_180))
2071 			return -EINVAL;
2072 
2073 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2074 		ctrl |= SDHCI_CTRL_VDD_180;
2075 		break;
2076 
2077 	default:
2078 		return -EINVAL;
2079 	}
2080 
2081 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2082 
2083 	/* Wait for 5ms */
2084 	usleep_range(5000, 5500);
2085 
2086 	/* regulator output should be stable within 5 ms */
2087 	status = ctrl & SDHCI_CTRL_VDD_180;
2088 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2089 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2090 		return 0;
2091 
2092 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2093 		mmc_hostname(mmc));
2094 
2095 	return -EAGAIN;
2096 }
2097 
2098 #define DRIVER_NAME "sdhci_msm"
2099 #define SDHCI_MSM_DUMP(f, x...) \
2100 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2101 
2102 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2103 {
2104 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2105 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2106 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2107 
2108 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2109 
2110 	SDHCI_MSM_DUMP(
2111 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2112 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2113 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2114 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2115 	SDHCI_MSM_DUMP(
2116 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2117 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2118 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2119 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2120 	SDHCI_MSM_DUMP(
2121 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2122 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2123 		readl_relaxed(host->ioaddr +
2124 			msm_offset->core_vendor_spec_func2),
2125 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2126 }
2127 
2128 static const struct sdhci_msm_variant_ops mci_var_ops = {
2129 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2130 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2131 };
2132 
2133 static const struct sdhci_msm_variant_ops v5_var_ops = {
2134 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2135 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2136 };
2137 
2138 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2139 	.var_ops = &mci_var_ops,
2140 	.offset = &sdhci_msm_mci_offset,
2141 };
2142 
2143 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2144 	.mci_removed = true,
2145 	.var_ops = &v5_var_ops,
2146 	.offset = &sdhci_msm_v5_offset,
2147 };
2148 
2149 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2150 	.mci_removed = true,
2151 	.restore_dll_config = true,
2152 	.var_ops = &v5_var_ops,
2153 	.offset = &sdhci_msm_v5_offset,
2154 };
2155 
2156 static const struct of_device_id sdhci_msm_dt_match[] = {
2157 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2158 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2159 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2160 	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2161 	{},
2162 };
2163 
2164 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2165 
2166 static const struct sdhci_ops sdhci_msm_ops = {
2167 	.reset = sdhci_msm_reset,
2168 	.set_clock = sdhci_msm_set_clock,
2169 	.get_min_clock = sdhci_msm_get_min_clock,
2170 	.get_max_clock = sdhci_msm_get_max_clock,
2171 	.set_bus_width = sdhci_set_bus_width,
2172 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2173 	.write_w = sdhci_msm_writew,
2174 	.write_b = sdhci_msm_writeb,
2175 	.irq	= sdhci_msm_cqe_irq,
2176 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2177 	.set_power = sdhci_set_power_noreg,
2178 };
2179 
2180 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2181 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2182 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2183 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2184 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2185 
2186 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2187 	.ops = &sdhci_msm_ops,
2188 };
2189 
2190 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2191 		struct sdhci_host *host)
2192 {
2193 	struct device_node *node = pdev->dev.of_node;
2194 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2195 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2196 
2197 	if (of_property_read_u32(node, "qcom,ddr-config",
2198 				&msm_host->ddr_config))
2199 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2200 
2201 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2202 }
2203 
2204 
2205 static int sdhci_msm_probe(struct platform_device *pdev)
2206 {
2207 	struct sdhci_host *host;
2208 	struct sdhci_pltfm_host *pltfm_host;
2209 	struct sdhci_msm_host *msm_host;
2210 	struct clk *clk;
2211 	int ret;
2212 	u16 host_version, core_minor;
2213 	u32 core_version, config;
2214 	u8 core_major;
2215 	const struct sdhci_msm_offset *msm_offset;
2216 	const struct sdhci_msm_variant_info *var_info;
2217 	struct device_node *node = pdev->dev.of_node;
2218 
2219 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2220 	if (IS_ERR(host))
2221 		return PTR_ERR(host);
2222 
2223 	host->sdma_boundary = 0;
2224 	pltfm_host = sdhci_priv(host);
2225 	msm_host = sdhci_pltfm_priv(pltfm_host);
2226 	msm_host->mmc = host->mmc;
2227 	msm_host->pdev = pdev;
2228 
2229 	ret = mmc_of_parse(host->mmc);
2230 	if (ret)
2231 		goto pltfm_free;
2232 
2233 	/*
2234 	 * Based on the compatible string, load the required msm host info from
2235 	 * the data associated with the version info.
2236 	 */
2237 	var_info = of_device_get_match_data(&pdev->dev);
2238 
2239 	msm_host->mci_removed = var_info->mci_removed;
2240 	msm_host->restore_dll_config = var_info->restore_dll_config;
2241 	msm_host->var_ops = var_info->var_ops;
2242 	msm_host->offset = var_info->offset;
2243 
2244 	msm_offset = msm_host->offset;
2245 
2246 	sdhci_get_of_property(pdev);
2247 	sdhci_msm_get_of_property(pdev, host);
2248 
2249 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2250 
2251 	/* Setup SDCC bus voter clock. */
2252 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2253 	if (!IS_ERR(msm_host->bus_clk)) {
2254 		/* Vote for max. clk rate for max. performance */
2255 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2256 		if (ret)
2257 			goto pltfm_free;
2258 		ret = clk_prepare_enable(msm_host->bus_clk);
2259 		if (ret)
2260 			goto pltfm_free;
2261 	}
2262 
2263 	/* Setup main peripheral bus clock */
2264 	clk = devm_clk_get(&pdev->dev, "iface");
2265 	if (IS_ERR(clk)) {
2266 		ret = PTR_ERR(clk);
2267 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2268 		goto bus_clk_disable;
2269 	}
2270 	msm_host->bulk_clks[1].clk = clk;
2271 
2272 	/* Setup SDC MMC clock */
2273 	clk = devm_clk_get(&pdev->dev, "core");
2274 	if (IS_ERR(clk)) {
2275 		ret = PTR_ERR(clk);
2276 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2277 		goto bus_clk_disable;
2278 	}
2279 	msm_host->bulk_clks[0].clk = clk;
2280 
2281 	 /* Check for optional interconnect paths */
2282 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2283 	if (ret)
2284 		goto bus_clk_disable;
2285 
2286 	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
2287 	if (IS_ERR(msm_host->opp_table)) {
2288 		ret = PTR_ERR(msm_host->opp_table);
2289 		goto bus_clk_disable;
2290 	}
2291 
2292 	/* OPP table is optional */
2293 	ret = dev_pm_opp_of_add_table(&pdev->dev);
2294 	if (ret && ret != -ENODEV) {
2295 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2296 		goto opp_put_clkname;
2297 	}
2298 
2299 	/* Vote for maximum clock rate for maximum performance */
2300 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2301 	if (ret)
2302 		dev_warn(&pdev->dev, "core clock boost failed\n");
2303 
2304 	clk = devm_clk_get(&pdev->dev, "cal");
2305 	if (IS_ERR(clk))
2306 		clk = NULL;
2307 	msm_host->bulk_clks[2].clk = clk;
2308 
2309 	clk = devm_clk_get(&pdev->dev, "sleep");
2310 	if (IS_ERR(clk))
2311 		clk = NULL;
2312 	msm_host->bulk_clks[3].clk = clk;
2313 
2314 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2315 				      msm_host->bulk_clks);
2316 	if (ret)
2317 		goto opp_cleanup;
2318 
2319 	/*
2320 	 * xo clock is needed for FLL feature of cm_dll.
2321 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2322 	 */
2323 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2324 	if (IS_ERR(msm_host->xo_clk)) {
2325 		ret = PTR_ERR(msm_host->xo_clk);
2326 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2327 	}
2328 
2329 	if (!msm_host->mci_removed) {
2330 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2331 		if (IS_ERR(msm_host->core_mem)) {
2332 			ret = PTR_ERR(msm_host->core_mem);
2333 			goto clk_disable;
2334 		}
2335 	}
2336 
2337 	/* Reset the vendor spec register to power on reset state */
2338 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2339 			host->ioaddr + msm_offset->core_vendor_spec);
2340 
2341 	if (!msm_host->mci_removed) {
2342 		/* Set HC_MODE_EN bit in HC_MODE register */
2343 		msm_host_writel(msm_host, HC_MODE_EN, host,
2344 				msm_offset->core_hc_mode);
2345 		config = msm_host_readl(msm_host, host,
2346 				msm_offset->core_hc_mode);
2347 		config |= FF_CLK_SW_RST_DIS;
2348 		msm_host_writel(msm_host, config, host,
2349 				msm_offset->core_hc_mode);
2350 	}
2351 
2352 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2353 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2354 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2355 			       SDHCI_VENDOR_VER_SHIFT));
2356 
2357 	core_version = msm_host_readl(msm_host, host,
2358 			msm_offset->core_mci_version);
2359 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2360 		      CORE_VERSION_MAJOR_SHIFT;
2361 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2362 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2363 		core_version, core_major, core_minor);
2364 
2365 	if (core_major == 1 && core_minor >= 0x42)
2366 		msm_host->use_14lpp_dll_reset = true;
2367 
2368 	/*
2369 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2370 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2371 	 */
2372 	if (core_major == 1 && core_minor < 0x34)
2373 		msm_host->use_cdclp533 = true;
2374 
2375 	/*
2376 	 * Support for some capabilities is not advertised by newer
2377 	 * controller versions and must be explicitly enabled.
2378 	 */
2379 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2380 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2381 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2382 		writel_relaxed(config, host->ioaddr +
2383 				msm_offset->core_vendor_spec_capabilities0);
2384 	}
2385 
2386 	if (core_major == 1 && core_minor >= 0x49)
2387 		msm_host->updated_ddr_cfg = true;
2388 
2389 	if (core_major == 1 && core_minor >= 0x71)
2390 		msm_host->uses_tassadar_dll = true;
2391 
2392 	ret = sdhci_msm_register_vreg(msm_host);
2393 	if (ret)
2394 		goto clk_disable;
2395 
2396 	/*
2397 	 * Power on reset state may trigger power irq if previous status of
2398 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2399 	 * interrupt in GIC, any pending power irq interrupt should be
2400 	 * acknowledged. Otherwise power irq interrupt handler would be
2401 	 * fired prematurely.
2402 	 */
2403 	sdhci_msm_handle_pwr_irq(host, 0);
2404 
2405 	/*
2406 	 * Ensure that above writes are propogated before interrupt enablement
2407 	 * in GIC.
2408 	 */
2409 	mb();
2410 
2411 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2412 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2413 	if (msm_host->pwr_irq < 0) {
2414 		ret = msm_host->pwr_irq;
2415 		goto clk_disable;
2416 	}
2417 
2418 	sdhci_msm_init_pwr_irq_wait(msm_host);
2419 	/* Enable pwr irq interrupts */
2420 	msm_host_writel(msm_host, INT_MASK, host,
2421 		msm_offset->core_pwrctl_mask);
2422 
2423 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2424 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2425 					dev_name(&pdev->dev), host);
2426 	if (ret) {
2427 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2428 		goto clk_disable;
2429 	}
2430 
2431 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2432 
2433 	pm_runtime_get_noresume(&pdev->dev);
2434 	pm_runtime_set_active(&pdev->dev);
2435 	pm_runtime_enable(&pdev->dev);
2436 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2437 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2438 	pm_runtime_use_autosuspend(&pdev->dev);
2439 
2440 	host->mmc_host_ops.start_signal_voltage_switch =
2441 		sdhci_msm_start_signal_voltage_switch;
2442 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2443 	if (of_property_read_bool(node, "supports-cqe"))
2444 		ret = sdhci_msm_cqe_add_host(host, pdev);
2445 	else
2446 		ret = sdhci_add_host(host);
2447 	if (ret)
2448 		goto pm_runtime_disable;
2449 
2450 	pm_runtime_mark_last_busy(&pdev->dev);
2451 	pm_runtime_put_autosuspend(&pdev->dev);
2452 
2453 	return 0;
2454 
2455 pm_runtime_disable:
2456 	pm_runtime_disable(&pdev->dev);
2457 	pm_runtime_set_suspended(&pdev->dev);
2458 	pm_runtime_put_noidle(&pdev->dev);
2459 clk_disable:
2460 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2461 				   msm_host->bulk_clks);
2462 opp_cleanup:
2463 	dev_pm_opp_of_remove_table(&pdev->dev);
2464 opp_put_clkname:
2465 	dev_pm_opp_put_clkname(msm_host->opp_table);
2466 bus_clk_disable:
2467 	if (!IS_ERR(msm_host->bus_clk))
2468 		clk_disable_unprepare(msm_host->bus_clk);
2469 pltfm_free:
2470 	sdhci_pltfm_free(pdev);
2471 	return ret;
2472 }
2473 
2474 static int sdhci_msm_remove(struct platform_device *pdev)
2475 {
2476 	struct sdhci_host *host = platform_get_drvdata(pdev);
2477 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2478 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2479 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2480 		    0xffffffff);
2481 
2482 	sdhci_remove_host(host, dead);
2483 
2484 	dev_pm_opp_of_remove_table(&pdev->dev);
2485 	dev_pm_opp_put_clkname(msm_host->opp_table);
2486 	pm_runtime_get_sync(&pdev->dev);
2487 	pm_runtime_disable(&pdev->dev);
2488 	pm_runtime_put_noidle(&pdev->dev);
2489 
2490 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2491 				   msm_host->bulk_clks);
2492 	if (!IS_ERR(msm_host->bus_clk))
2493 		clk_disable_unprepare(msm_host->bus_clk);
2494 	sdhci_pltfm_free(pdev);
2495 	return 0;
2496 }
2497 
2498 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2499 {
2500 	struct sdhci_host *host = dev_get_drvdata(dev);
2501 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2502 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2503 
2504 	/* Drop the performance vote */
2505 	dev_pm_opp_set_rate(dev, 0);
2506 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2507 				   msm_host->bulk_clks);
2508 
2509 	return 0;
2510 }
2511 
2512 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2513 {
2514 	struct sdhci_host *host = dev_get_drvdata(dev);
2515 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2516 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2517 	int ret;
2518 
2519 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2520 				       msm_host->bulk_clks);
2521 	if (ret)
2522 		return ret;
2523 	/*
2524 	 * Whenever core-clock is gated dynamically, it's needed to
2525 	 * restore the SDR DLL settings when the clock is ungated.
2526 	 */
2527 	if (msm_host->restore_dll_config && msm_host->clk_rate)
2528 		ret = sdhci_msm_restore_sdr_dll_config(host);
2529 
2530 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2531 
2532 	return ret;
2533 }
2534 
2535 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2536 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2537 				pm_runtime_force_resume)
2538 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2539 			   sdhci_msm_runtime_resume,
2540 			   NULL)
2541 };
2542 
2543 static struct platform_driver sdhci_msm_driver = {
2544 	.probe = sdhci_msm_probe,
2545 	.remove = sdhci_msm_remove,
2546 	.driver = {
2547 		   .name = "sdhci_msm",
2548 		   .of_match_table = sdhci_msm_dt_match,
2549 		   .pm = &sdhci_msm_pm_ops,
2550 		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2551 	},
2552 };
2553 
2554 module_platform_driver(sdhci_msm_driver);
2555 
2556 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2557 MODULE_LICENSE("GPL v2");
2558