1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/delay.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/pm_opp.h> 13 #include <linux/slab.h> 14 #include <linux/iopoll.h> 15 #include <linux/regulator/consumer.h> 16 #include <linux/interconnect.h> 17 #include <linux/of.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/reset.h> 20 21 #include <soc/qcom/ice.h> 22 23 #include "sdhci-cqhci.h" 24 #include "sdhci-pltfm.h" 25 #include "cqhci.h" 26 27 #define CORE_MCI_VERSION 0x50 28 #define CORE_VERSION_MAJOR_SHIFT 28 29 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 30 #define CORE_VERSION_MINOR_MASK 0xff 31 32 #define CORE_MCI_GENERICS 0x70 33 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 34 35 #define HC_MODE_EN 0x1 36 #define CORE_POWER 0x0 37 #define CORE_SW_RST BIT(7) 38 #define FF_CLK_SW_RST_DIS BIT(13) 39 40 #define CORE_PWRCTL_BUS_OFF BIT(0) 41 #define CORE_PWRCTL_BUS_ON BIT(1) 42 #define CORE_PWRCTL_IO_LOW BIT(2) 43 #define CORE_PWRCTL_IO_HIGH BIT(3) 44 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 45 #define CORE_PWRCTL_BUS_FAIL BIT(1) 46 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 47 #define CORE_PWRCTL_IO_FAIL BIT(3) 48 #define REQ_BUS_OFF BIT(0) 49 #define REQ_BUS_ON BIT(1) 50 #define REQ_IO_LOW BIT(2) 51 #define REQ_IO_HIGH BIT(3) 52 #define INT_MASK 0xf 53 #define MAX_PHASES 16 54 #define CORE_DLL_LOCK BIT(7) 55 #define CORE_DDR_DLL_LOCK BIT(11) 56 #define CORE_DLL_EN BIT(16) 57 #define CORE_CDR_EN BIT(17) 58 #define CORE_CK_OUT_EN BIT(18) 59 #define CORE_CDR_EXT_EN BIT(19) 60 #define CORE_DLL_PDN BIT(29) 61 #define CORE_DLL_RST BIT(30) 62 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 63 64 #define CORE_DDR_CAL_EN BIT(0) 65 #define CORE_FLL_CYCLE_CNT BIT(18) 66 #define CORE_DLL_CLOCK_DISABLE BIT(21) 67 68 #define DLL_USR_CTL_POR_VAL 0x10800 69 #define ENABLE_DLL_LOCK_STATUS BIT(26) 70 #define FINE_TUNE_MODE_EN BIT(27) 71 #define BIAS_OK_SIGNAL BIT(29) 72 73 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 74 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 75 76 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 77 #define CORE_CLK_PWRSAVE BIT(1) 78 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 79 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 80 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 81 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 82 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 83 #define CORE_HC_SELECT_IN_EN BIT(18) 84 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 85 #define CORE_HC_SELECT_IN_MASK (7 << 19) 86 87 #define CORE_3_0V_SUPPORT BIT(25) 88 #define CORE_1_8V_SUPPORT BIT(26) 89 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 90 91 #define CORE_CSR_CDC_CTLR_CFG0 0x130 92 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 93 #define CORE_HW_AUTOCAL_ENA BIT(17) 94 95 #define CORE_CSR_CDC_CTLR_CFG1 0x134 96 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 97 #define CORE_TIMER_ENA BIT(16) 98 99 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 100 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 101 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 102 #define CORE_CDC_OFFSET_CFG 0x14C 103 #define CORE_CSR_CDC_DELAY_CFG 0x150 104 #define CORE_CDC_SLAVE_DDA_CFG 0x160 105 #define CORE_CSR_CDC_STATUS0 0x164 106 #define CORE_CALIBRATION_DONE BIT(0) 107 108 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 109 110 #define CORE_CSR_CDC_GEN_CFG 0x178 111 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 112 #define CORE_CDC_SWITCH_RC_EN BIT(1) 113 114 #define CORE_CDC_T4_DLY_SEL BIT(0) 115 #define CORE_CMDIN_RCLK_EN BIT(1) 116 #define CORE_START_CDC_TRAFFIC BIT(6) 117 118 #define CORE_PWRSAVE_DLL BIT(3) 119 120 #define DDR_CONFIG_POR_VAL 0x80040873 121 122 123 #define INVALID_TUNING_PHASE -1 124 #define SDHCI_MSM_MIN_CLOCK 400000 125 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 126 127 #define CDR_SELEXT_SHIFT 20 128 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 129 #define CMUX_SHIFT_PHASE_SHIFT 24 130 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 131 132 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 133 134 /* Timeout value to avoid infinite waiting for pwr_irq */ 135 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 136 137 /* Max load for eMMC Vdd supply */ 138 #define MMC_VMMC_MAX_LOAD_UA 570000 139 140 /* Max load for eMMC Vdd-io supply */ 141 #define MMC_VQMMC_MAX_LOAD_UA 325000 142 143 /* Max load for SD Vdd supply */ 144 #define SD_VMMC_MAX_LOAD_UA 800000 145 146 /* Max load for SD Vdd-io supply */ 147 #define SD_VQMMC_MAX_LOAD_UA 22000 148 149 #define msm_host_readl(msm_host, host, offset) \ 150 msm_host->var_ops->msm_readl_relaxed(host, offset) 151 152 #define msm_host_writel(msm_host, val, host, offset) \ 153 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 154 155 /* CQHCI vendor specific registers */ 156 #define CQHCI_VENDOR_CFG1 0xA00 157 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 158 159 struct sdhci_msm_offset { 160 u32 core_hc_mode; 161 u32 core_mci_data_cnt; 162 u32 core_mci_status; 163 u32 core_mci_fifo_cnt; 164 u32 core_mci_version; 165 u32 core_generics; 166 u32 core_testbus_config; 167 u32 core_testbus_sel2_bit; 168 u32 core_testbus_ena; 169 u32 core_testbus_sel2; 170 u32 core_pwrctl_status; 171 u32 core_pwrctl_mask; 172 u32 core_pwrctl_clear; 173 u32 core_pwrctl_ctl; 174 u32 core_sdcc_debug_reg; 175 u32 core_dll_config; 176 u32 core_dll_status; 177 u32 core_vendor_spec; 178 u32 core_vendor_spec_adma_err_addr0; 179 u32 core_vendor_spec_adma_err_addr1; 180 u32 core_vendor_spec_func2; 181 u32 core_vendor_spec_capabilities0; 182 u32 core_ddr_200_cfg; 183 u32 core_vendor_spec3; 184 u32 core_dll_config_2; 185 u32 core_dll_config_3; 186 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 187 u32 core_ddr_config; 188 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 189 }; 190 191 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 192 .core_mci_data_cnt = 0x35c, 193 .core_mci_status = 0x324, 194 .core_mci_fifo_cnt = 0x308, 195 .core_mci_version = 0x318, 196 .core_generics = 0x320, 197 .core_testbus_config = 0x32c, 198 .core_testbus_sel2_bit = 3, 199 .core_testbus_ena = (1 << 31), 200 .core_testbus_sel2 = (1 << 3), 201 .core_pwrctl_status = 0x240, 202 .core_pwrctl_mask = 0x244, 203 .core_pwrctl_clear = 0x248, 204 .core_pwrctl_ctl = 0x24c, 205 .core_sdcc_debug_reg = 0x358, 206 .core_dll_config = 0x200, 207 .core_dll_status = 0x208, 208 .core_vendor_spec = 0x20c, 209 .core_vendor_spec_adma_err_addr0 = 0x214, 210 .core_vendor_spec_adma_err_addr1 = 0x218, 211 .core_vendor_spec_func2 = 0x210, 212 .core_vendor_spec_capabilities0 = 0x21c, 213 .core_ddr_200_cfg = 0x224, 214 .core_vendor_spec3 = 0x250, 215 .core_dll_config_2 = 0x254, 216 .core_dll_config_3 = 0x258, 217 .core_ddr_config = 0x25c, 218 .core_dll_usr_ctl = 0x388, 219 }; 220 221 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 222 .core_hc_mode = 0x78, 223 .core_mci_data_cnt = 0x30, 224 .core_mci_status = 0x34, 225 .core_mci_fifo_cnt = 0x44, 226 .core_mci_version = 0x050, 227 .core_generics = 0x70, 228 .core_testbus_config = 0x0cc, 229 .core_testbus_sel2_bit = 4, 230 .core_testbus_ena = (1 << 3), 231 .core_testbus_sel2 = (1 << 4), 232 .core_pwrctl_status = 0xdc, 233 .core_pwrctl_mask = 0xe0, 234 .core_pwrctl_clear = 0xe4, 235 .core_pwrctl_ctl = 0xe8, 236 .core_sdcc_debug_reg = 0x124, 237 .core_dll_config = 0x100, 238 .core_dll_status = 0x108, 239 .core_vendor_spec = 0x10c, 240 .core_vendor_spec_adma_err_addr0 = 0x114, 241 .core_vendor_spec_adma_err_addr1 = 0x118, 242 .core_vendor_spec_func2 = 0x110, 243 .core_vendor_spec_capabilities0 = 0x11c, 244 .core_ddr_200_cfg = 0x184, 245 .core_vendor_spec3 = 0x1b0, 246 .core_dll_config_2 = 0x1b4, 247 .core_ddr_config_old = 0x1b8, 248 .core_ddr_config = 0x1bc, 249 }; 250 251 struct sdhci_msm_variant_ops { 252 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 253 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 254 u32 offset); 255 }; 256 257 /* 258 * From V5, register spaces have changed. Wrap this info in a structure 259 * and choose the data_structure based on version info mentioned in DT. 260 */ 261 struct sdhci_msm_variant_info { 262 bool mci_removed; 263 bool restore_dll_config; 264 const struct sdhci_msm_variant_ops *var_ops; 265 const struct sdhci_msm_offset *offset; 266 }; 267 268 struct sdhci_msm_host { 269 struct platform_device *pdev; 270 void __iomem *core_mem; /* MSM SDCC mapped address */ 271 int pwr_irq; /* power irq */ 272 struct clk *bus_clk; /* SDHC bus voter clock */ 273 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 274 /* core, iface, cal and sleep clocks */ 275 struct clk_bulk_data bulk_clks[4]; 276 #ifdef CONFIG_MMC_CRYPTO 277 struct qcom_ice *ice; 278 #endif 279 unsigned long clk_rate; 280 struct mmc_host *mmc; 281 bool use_14lpp_dll_reset; 282 bool tuning_done; 283 bool calibration_done; 284 u8 saved_tuning_phase; 285 bool use_cdclp533; 286 u32 curr_pwr_state; 287 u32 curr_io_level; 288 wait_queue_head_t pwr_irq_wait; 289 bool pwr_irq_flag; 290 u32 caps_0; 291 bool mci_removed; 292 bool restore_dll_config; 293 const struct sdhci_msm_variant_ops *var_ops; 294 const struct sdhci_msm_offset *offset; 295 bool use_cdr; 296 u32 transfer_mode; 297 bool updated_ddr_cfg; 298 bool uses_tassadar_dll; 299 u32 dll_config; 300 u32 ddr_config; 301 bool vqmmc_enabled; 302 }; 303 304 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 305 { 306 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 307 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 308 309 return msm_host->offset; 310 } 311 312 /* 313 * APIs to read/write to vendor specific registers which were there in the 314 * core_mem region before MCI was removed. 315 */ 316 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 317 u32 offset) 318 { 319 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 320 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 321 322 return readl_relaxed(msm_host->core_mem + offset); 323 } 324 325 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 326 u32 offset) 327 { 328 return readl_relaxed(host->ioaddr + offset); 329 } 330 331 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 332 struct sdhci_host *host, u32 offset) 333 { 334 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 335 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 336 337 writel_relaxed(val, msm_host->core_mem + offset); 338 } 339 340 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 341 struct sdhci_host *host, u32 offset) 342 { 343 writel_relaxed(val, host->ioaddr + offset); 344 } 345 346 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host) 347 { 348 struct mmc_ios ios = host->mmc->ios; 349 /* 350 * The SDHC requires internal clock frequency to be double the 351 * actual clock that will be set for DDR mode. The controller 352 * uses the faster clock(100/400MHz) for some of its parts and 353 * send the actual required clock (50/200MHz) to the card. 354 */ 355 if (ios.timing == MMC_TIMING_UHS_DDR50 || 356 ios.timing == MMC_TIMING_MMC_DDR52 || 357 ios.timing == MMC_TIMING_MMC_HS400 || 358 host->flags & SDHCI_HS400_TUNING) 359 return 2; 360 return 1; 361 } 362 363 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 364 unsigned int clock) 365 { 366 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 367 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 368 struct mmc_ios curr_ios = host->mmc->ios; 369 struct clk *core_clk = msm_host->bulk_clks[0].clk; 370 unsigned long achieved_rate; 371 unsigned int desired_rate; 372 unsigned int mult; 373 int rc; 374 375 mult = msm_get_clock_mult_for_bus_mode(host); 376 desired_rate = clock * mult; 377 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate); 378 if (rc) { 379 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 380 mmc_hostname(host->mmc), desired_rate, curr_ios.timing); 381 return; 382 } 383 384 /* 385 * Qualcomm clock drivers by default round clock _up_ if they can't 386 * make the requested rate. This is not good for SD. Yell if we 387 * encounter it. 388 */ 389 achieved_rate = clk_get_rate(core_clk); 390 if (achieved_rate > desired_rate) 391 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n", 392 mmc_hostname(host->mmc), desired_rate, achieved_rate); 393 host->mmc->actual_clock = achieved_rate / mult; 394 395 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */ 396 msm_host->clk_rate = desired_rate; 397 398 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 399 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing); 400 } 401 402 /* Platform specific tuning */ 403 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 404 { 405 u32 wait_cnt = 50; 406 u8 ck_out_en; 407 struct mmc_host *mmc = host->mmc; 408 const struct sdhci_msm_offset *msm_offset = 409 sdhci_priv_msm_offset(host); 410 411 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 412 ck_out_en = !!(readl_relaxed(host->ioaddr + 413 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 414 415 while (ck_out_en != poll) { 416 if (--wait_cnt == 0) { 417 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 418 mmc_hostname(mmc), poll); 419 return -ETIMEDOUT; 420 } 421 udelay(1); 422 423 ck_out_en = !!(readl_relaxed(host->ioaddr + 424 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 425 } 426 427 return 0; 428 } 429 430 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 431 { 432 int rc; 433 static const u8 grey_coded_phase_table[] = { 434 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 435 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 436 }; 437 unsigned long flags; 438 u32 config; 439 struct mmc_host *mmc = host->mmc; 440 const struct sdhci_msm_offset *msm_offset = 441 sdhci_priv_msm_offset(host); 442 443 if (phase > 0xf) 444 return -EINVAL; 445 446 spin_lock_irqsave(&host->lock, flags); 447 448 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 449 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 450 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 451 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 452 453 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 454 rc = msm_dll_poll_ck_out_en(host, 0); 455 if (rc) 456 goto err_out; 457 458 /* 459 * Write the selected DLL clock output phase (0 ... 15) 460 * to CDR_SELEXT bit field of DLL_CONFIG register. 461 */ 462 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 463 config &= ~CDR_SELEXT_MASK; 464 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 465 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 466 467 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 468 config |= CORE_CK_OUT_EN; 469 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 470 471 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 472 rc = msm_dll_poll_ck_out_en(host, 1); 473 if (rc) 474 goto err_out; 475 476 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 477 config |= CORE_CDR_EN; 478 config &= ~CORE_CDR_EXT_EN; 479 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 480 goto out; 481 482 err_out: 483 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 484 mmc_hostname(mmc), phase); 485 out: 486 spin_unlock_irqrestore(&host->lock, flags); 487 return rc; 488 } 489 490 /* 491 * Find out the greatest range of consecuitive selected 492 * DLL clock output phases that can be used as sampling 493 * setting for SD3.0 UHS-I card read operation (in SDR104 494 * timing mode) or for eMMC4.5 card read operation (in 495 * HS400/HS200 timing mode). 496 * Select the 3/4 of the range and configure the DLL with the 497 * selected DLL clock output phase. 498 */ 499 500 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 501 u8 *phase_table, u8 total_phases) 502 { 503 int ret; 504 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 505 u8 phases_per_row[MAX_PHASES] = { 0 }; 506 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 507 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 508 bool phase_0_found = false, phase_15_found = false; 509 struct mmc_host *mmc = host->mmc; 510 511 if (!total_phases || (total_phases > MAX_PHASES)) { 512 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 513 mmc_hostname(mmc), total_phases); 514 return -EINVAL; 515 } 516 517 for (cnt = 0; cnt < total_phases; cnt++) { 518 ranges[row_index][col_index] = phase_table[cnt]; 519 phases_per_row[row_index] += 1; 520 col_index++; 521 522 if ((cnt + 1) == total_phases) { 523 continue; 524 /* check if next phase in phase_table is consecutive or not */ 525 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 526 row_index++; 527 col_index = 0; 528 } 529 } 530 531 if (row_index >= MAX_PHASES) 532 return -EINVAL; 533 534 /* Check if phase-0 is present in first valid window? */ 535 if (!ranges[0][0]) { 536 phase_0_found = true; 537 phase_0_raw_index = 0; 538 /* Check if cycle exist between 2 valid windows */ 539 for (cnt = 1; cnt <= row_index; cnt++) { 540 if (phases_per_row[cnt]) { 541 for (i = 0; i < phases_per_row[cnt]; i++) { 542 if (ranges[cnt][i] == 15) { 543 phase_15_found = true; 544 phase_15_raw_index = cnt; 545 break; 546 } 547 } 548 } 549 } 550 } 551 552 /* If 2 valid windows form cycle then merge them as single window */ 553 if (phase_0_found && phase_15_found) { 554 /* number of phases in raw where phase 0 is present */ 555 u8 phases_0 = phases_per_row[phase_0_raw_index]; 556 /* number of phases in raw where phase 15 is present */ 557 u8 phases_15 = phases_per_row[phase_15_raw_index]; 558 559 if (phases_0 + phases_15 >= MAX_PHASES) 560 /* 561 * If there are more than 1 phase windows then total 562 * number of phases in both the windows should not be 563 * more than or equal to MAX_PHASES. 564 */ 565 return -EINVAL; 566 567 /* Merge 2 cyclic windows */ 568 i = phases_15; 569 for (cnt = 0; cnt < phases_0; cnt++) { 570 ranges[phase_15_raw_index][i] = 571 ranges[phase_0_raw_index][cnt]; 572 if (++i >= MAX_PHASES) 573 break; 574 } 575 576 phases_per_row[phase_0_raw_index] = 0; 577 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 578 } 579 580 for (cnt = 0; cnt <= row_index; cnt++) { 581 if (phases_per_row[cnt] > curr_max) { 582 curr_max = phases_per_row[cnt]; 583 selected_row_index = cnt; 584 } 585 } 586 587 i = (curr_max * 3) / 4; 588 if (i) 589 i--; 590 591 ret = ranges[selected_row_index][i]; 592 593 if (ret >= MAX_PHASES) { 594 ret = -EINVAL; 595 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 596 mmc_hostname(mmc), ret); 597 } 598 599 return ret; 600 } 601 602 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 603 { 604 u32 mclk_freq = 0, config; 605 const struct sdhci_msm_offset *msm_offset = 606 sdhci_priv_msm_offset(host); 607 608 /* Program the MCLK value to MCLK_FREQ bit field */ 609 if (host->clock <= 112000000) 610 mclk_freq = 0; 611 else if (host->clock <= 125000000) 612 mclk_freq = 1; 613 else if (host->clock <= 137000000) 614 mclk_freq = 2; 615 else if (host->clock <= 150000000) 616 mclk_freq = 3; 617 else if (host->clock <= 162000000) 618 mclk_freq = 4; 619 else if (host->clock <= 175000000) 620 mclk_freq = 5; 621 else if (host->clock <= 187000000) 622 mclk_freq = 6; 623 else if (host->clock <= 200000000) 624 mclk_freq = 7; 625 626 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 627 config &= ~CMUX_SHIFT_PHASE_MASK; 628 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 629 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 630 } 631 632 /* Initialize the DLL (Programmable Delay Line) */ 633 static int msm_init_cm_dll(struct sdhci_host *host) 634 { 635 struct mmc_host *mmc = host->mmc; 636 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 637 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 638 int wait_cnt = 50; 639 unsigned long flags, xo_clk = 0; 640 u32 config; 641 const struct sdhci_msm_offset *msm_offset = 642 msm_host->offset; 643 644 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 645 xo_clk = clk_get_rate(msm_host->xo_clk); 646 647 spin_lock_irqsave(&host->lock, flags); 648 649 /* 650 * Make sure that clock is always enabled when DLL 651 * tuning is in progress. Keeping PWRSAVE ON may 652 * turn off the clock. 653 */ 654 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 655 config &= ~CORE_CLK_PWRSAVE; 656 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 657 658 if (msm_host->dll_config) 659 writel_relaxed(msm_host->dll_config, 660 host->ioaddr + msm_offset->core_dll_config); 661 662 if (msm_host->use_14lpp_dll_reset) { 663 config = readl_relaxed(host->ioaddr + 664 msm_offset->core_dll_config); 665 config &= ~CORE_CK_OUT_EN; 666 writel_relaxed(config, host->ioaddr + 667 msm_offset->core_dll_config); 668 669 config = readl_relaxed(host->ioaddr + 670 msm_offset->core_dll_config_2); 671 config |= CORE_DLL_CLOCK_DISABLE; 672 writel_relaxed(config, host->ioaddr + 673 msm_offset->core_dll_config_2); 674 } 675 676 config = readl_relaxed(host->ioaddr + 677 msm_offset->core_dll_config); 678 config |= CORE_DLL_RST; 679 writel_relaxed(config, host->ioaddr + 680 msm_offset->core_dll_config); 681 682 config = readl_relaxed(host->ioaddr + 683 msm_offset->core_dll_config); 684 config |= CORE_DLL_PDN; 685 writel_relaxed(config, host->ioaddr + 686 msm_offset->core_dll_config); 687 688 if (!msm_host->dll_config) 689 msm_cm_dll_set_freq(host); 690 691 if (msm_host->use_14lpp_dll_reset && 692 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 693 u32 mclk_freq = 0; 694 695 config = readl_relaxed(host->ioaddr + 696 msm_offset->core_dll_config_2); 697 config &= CORE_FLL_CYCLE_CNT; 698 if (config) 699 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 700 xo_clk); 701 else 702 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 703 xo_clk); 704 705 config = readl_relaxed(host->ioaddr + 706 msm_offset->core_dll_config_2); 707 config &= ~(0xFF << 10); 708 config |= mclk_freq << 10; 709 710 writel_relaxed(config, host->ioaddr + 711 msm_offset->core_dll_config_2); 712 /* wait for 5us before enabling DLL clock */ 713 udelay(5); 714 } 715 716 config = readl_relaxed(host->ioaddr + 717 msm_offset->core_dll_config); 718 config &= ~CORE_DLL_RST; 719 writel_relaxed(config, host->ioaddr + 720 msm_offset->core_dll_config); 721 722 config = readl_relaxed(host->ioaddr + 723 msm_offset->core_dll_config); 724 config &= ~CORE_DLL_PDN; 725 writel_relaxed(config, host->ioaddr + 726 msm_offset->core_dll_config); 727 728 if (msm_host->use_14lpp_dll_reset) { 729 if (!msm_host->dll_config) 730 msm_cm_dll_set_freq(host); 731 config = readl_relaxed(host->ioaddr + 732 msm_offset->core_dll_config_2); 733 config &= ~CORE_DLL_CLOCK_DISABLE; 734 writel_relaxed(config, host->ioaddr + 735 msm_offset->core_dll_config_2); 736 } 737 738 /* 739 * Configure DLL user control register to enable DLL status. 740 * This setting is applicable to SDCC v5.1 onwards only. 741 */ 742 if (msm_host->uses_tassadar_dll) { 743 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 744 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 745 writel_relaxed(config, host->ioaddr + 746 msm_offset->core_dll_usr_ctl); 747 748 config = readl_relaxed(host->ioaddr + 749 msm_offset->core_dll_config_3); 750 config &= ~0xFF; 751 if (msm_host->clk_rate < 150000000) 752 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 753 else 754 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 755 writel_relaxed(config, host->ioaddr + 756 msm_offset->core_dll_config_3); 757 } 758 759 config = readl_relaxed(host->ioaddr + 760 msm_offset->core_dll_config); 761 config |= CORE_DLL_EN; 762 writel_relaxed(config, host->ioaddr + 763 msm_offset->core_dll_config); 764 765 config = readl_relaxed(host->ioaddr + 766 msm_offset->core_dll_config); 767 config |= CORE_CK_OUT_EN; 768 writel_relaxed(config, host->ioaddr + 769 msm_offset->core_dll_config); 770 771 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 772 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 773 CORE_DLL_LOCK)) { 774 /* max. wait for 50us sec for LOCK bit to be set */ 775 if (--wait_cnt == 0) { 776 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 777 mmc_hostname(mmc)); 778 spin_unlock_irqrestore(&host->lock, flags); 779 return -ETIMEDOUT; 780 } 781 udelay(1); 782 } 783 784 spin_unlock_irqrestore(&host->lock, flags); 785 return 0; 786 } 787 788 static void msm_hc_select_default(struct sdhci_host *host) 789 { 790 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 791 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 792 u32 config; 793 const struct sdhci_msm_offset *msm_offset = 794 msm_host->offset; 795 796 if (!msm_host->use_cdclp533) { 797 config = readl_relaxed(host->ioaddr + 798 msm_offset->core_vendor_spec3); 799 config &= ~CORE_PWRSAVE_DLL; 800 writel_relaxed(config, host->ioaddr + 801 msm_offset->core_vendor_spec3); 802 } 803 804 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 805 config &= ~CORE_HC_MCLK_SEL_MASK; 806 config |= CORE_HC_MCLK_SEL_DFLT; 807 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 808 809 /* 810 * Disable HC_SELECT_IN to be able to use the UHS mode select 811 * configuration from Host Control2 register for all other 812 * modes. 813 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 814 * in VENDOR_SPEC_FUNC 815 */ 816 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 817 config &= ~CORE_HC_SELECT_IN_EN; 818 config &= ~CORE_HC_SELECT_IN_MASK; 819 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 820 821 /* 822 * Make sure above writes impacting free running MCLK are completed 823 * before changing the clk_rate at GCC. 824 */ 825 wmb(); 826 } 827 828 static void msm_hc_select_hs400(struct sdhci_host *host) 829 { 830 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 831 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 832 struct mmc_ios ios = host->mmc->ios; 833 u32 config, dll_lock; 834 int rc; 835 const struct sdhci_msm_offset *msm_offset = 836 msm_host->offset; 837 838 /* Select the divided clock (free running MCLK/2) */ 839 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 840 config &= ~CORE_HC_MCLK_SEL_MASK; 841 config |= CORE_HC_MCLK_SEL_HS400; 842 843 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 844 /* 845 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 846 * register 847 */ 848 if ((msm_host->tuning_done || ios.enhanced_strobe) && 849 !msm_host->calibration_done) { 850 config = readl_relaxed(host->ioaddr + 851 msm_offset->core_vendor_spec); 852 config |= CORE_HC_SELECT_IN_HS400; 853 config |= CORE_HC_SELECT_IN_EN; 854 writel_relaxed(config, host->ioaddr + 855 msm_offset->core_vendor_spec); 856 } 857 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 858 /* 859 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 860 * core_dll_status to be set. This should get set 861 * within 15 us at 200 MHz. 862 */ 863 rc = readl_relaxed_poll_timeout(host->ioaddr + 864 msm_offset->core_dll_status, 865 dll_lock, 866 (dll_lock & 867 (CORE_DLL_LOCK | 868 CORE_DDR_DLL_LOCK)), 10, 869 1000); 870 if (rc == -ETIMEDOUT) 871 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 872 mmc_hostname(host->mmc), dll_lock); 873 } 874 /* 875 * Make sure above writes impacting free running MCLK are completed 876 * before changing the clk_rate at GCC. 877 */ 878 wmb(); 879 } 880 881 /* 882 * sdhci_msm_hc_select_mode :- In general all timing modes are 883 * controlled via UHS mode select in Host Control2 register. 884 * eMMC specific HS200/HS400 doesn't have their respective modes 885 * defined here, hence we use these values. 886 * 887 * HS200 - SDR104 (Since they both are equivalent in functionality) 888 * HS400 - This involves multiple configurations 889 * Initially SDR104 - when tuning is required as HS200 890 * Then when switching to DDR @ 400MHz (HS400) we use 891 * the vendor specific HC_SELECT_IN to control the mode. 892 * 893 * In addition to controlling the modes we also need to select the 894 * correct input clock for DLL depending on the mode. 895 * 896 * HS400 - divided clock (free running MCLK/2) 897 * All other modes - default (free running MCLK) 898 */ 899 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 900 { 901 struct mmc_ios ios = host->mmc->ios; 902 903 if (ios.timing == MMC_TIMING_MMC_HS400 || 904 host->flags & SDHCI_HS400_TUNING) 905 msm_hc_select_hs400(host); 906 else 907 msm_hc_select_default(host); 908 } 909 910 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 911 { 912 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 913 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 914 u32 config, calib_done; 915 int ret; 916 const struct sdhci_msm_offset *msm_offset = 917 msm_host->offset; 918 919 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 920 921 /* 922 * Retuning in HS400 (DDR mode) will fail, just reset the 923 * tuning block and restore the saved tuning phase. 924 */ 925 ret = msm_init_cm_dll(host); 926 if (ret) 927 goto out; 928 929 /* Set the selected phase in delay line hw block */ 930 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 931 if (ret) 932 goto out; 933 934 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 935 config |= CORE_CMD_DAT_TRACK_SEL; 936 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 937 938 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 939 config &= ~CORE_CDC_T4_DLY_SEL; 940 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 941 942 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 943 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 944 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 945 946 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 947 config |= CORE_CDC_SWITCH_RC_EN; 948 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 949 950 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 951 config &= ~CORE_START_CDC_TRAFFIC; 952 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 953 954 /* Perform CDC Register Initialization Sequence */ 955 956 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 957 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 958 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 959 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 960 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 961 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 962 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 963 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 964 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 965 966 /* CDC HW Calibration */ 967 968 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 969 config |= CORE_SW_TRIG_FULL_CALIB; 970 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 971 972 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 973 config &= ~CORE_SW_TRIG_FULL_CALIB; 974 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 975 976 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 977 config |= CORE_HW_AUTOCAL_ENA; 978 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 979 980 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 981 config |= CORE_TIMER_ENA; 982 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 983 984 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 985 calib_done, 986 (calib_done & CORE_CALIBRATION_DONE), 987 1, 50); 988 989 if (ret == -ETIMEDOUT) { 990 pr_err("%s: %s: CDC calibration was not completed\n", 991 mmc_hostname(host->mmc), __func__); 992 goto out; 993 } 994 995 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 996 & CORE_CDC_ERROR_CODE_MASK; 997 if (ret) { 998 pr_err("%s: %s: CDC error code %d\n", 999 mmc_hostname(host->mmc), __func__, ret); 1000 ret = -EINVAL; 1001 goto out; 1002 } 1003 1004 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 1005 config |= CORE_START_CDC_TRAFFIC; 1006 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 1007 out: 1008 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1009 __func__, ret); 1010 return ret; 1011 } 1012 1013 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 1014 { 1015 struct mmc_host *mmc = host->mmc; 1016 u32 dll_status, config, ddr_cfg_offset; 1017 int ret; 1018 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1019 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1020 const struct sdhci_msm_offset *msm_offset = 1021 sdhci_priv_msm_offset(host); 1022 1023 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1024 1025 /* 1026 * Currently the core_ddr_config register defaults to desired 1027 * configuration on reset. Currently reprogramming the power on 1028 * reset (POR) value in case it might have been modified by 1029 * bootloaders. In the future, if this changes, then the desired 1030 * values will need to be programmed appropriately. 1031 */ 1032 if (msm_host->updated_ddr_cfg) 1033 ddr_cfg_offset = msm_offset->core_ddr_config; 1034 else 1035 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1036 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1037 1038 if (mmc->ios.enhanced_strobe) { 1039 config = readl_relaxed(host->ioaddr + 1040 msm_offset->core_ddr_200_cfg); 1041 config |= CORE_CMDIN_RCLK_EN; 1042 writel_relaxed(config, host->ioaddr + 1043 msm_offset->core_ddr_200_cfg); 1044 } 1045 1046 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1047 config |= CORE_DDR_CAL_EN; 1048 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1049 1050 ret = readl_relaxed_poll_timeout(host->ioaddr + 1051 msm_offset->core_dll_status, 1052 dll_status, 1053 (dll_status & CORE_DDR_DLL_LOCK), 1054 10, 1000); 1055 1056 if (ret == -ETIMEDOUT) { 1057 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1058 mmc_hostname(host->mmc), __func__); 1059 goto out; 1060 } 1061 1062 /* 1063 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1064 * When MCLK is gated OFF, it is not gated for less than 0.5us 1065 * and MCLK must be switched on for at-least 1us before DATA 1066 * starts coming. Controllers with 14lpp and later tech DLL cannot 1067 * guarantee above requirement. So PWRSAVE_DLL should not be 1068 * turned on for host controllers using this DLL. 1069 */ 1070 if (!msm_host->use_14lpp_dll_reset) { 1071 config = readl_relaxed(host->ioaddr + 1072 msm_offset->core_vendor_spec3); 1073 config |= CORE_PWRSAVE_DLL; 1074 writel_relaxed(config, host->ioaddr + 1075 msm_offset->core_vendor_spec3); 1076 } 1077 1078 /* 1079 * Drain writebuffer to ensure above DLL calibration 1080 * and PWRSAVE DLL is enabled. 1081 */ 1082 wmb(); 1083 out: 1084 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1085 __func__, ret); 1086 return ret; 1087 } 1088 1089 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1090 { 1091 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1092 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1093 struct mmc_host *mmc = host->mmc; 1094 int ret; 1095 u32 config; 1096 const struct sdhci_msm_offset *msm_offset = 1097 msm_host->offset; 1098 1099 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1100 1101 /* 1102 * Retuning in HS400 (DDR mode) will fail, just reset the 1103 * tuning block and restore the saved tuning phase. 1104 */ 1105 ret = msm_init_cm_dll(host); 1106 if (ret) 1107 goto out; 1108 1109 if (!mmc->ios.enhanced_strobe) { 1110 /* Set the selected phase in delay line hw block */ 1111 ret = msm_config_cm_dll_phase(host, 1112 msm_host->saved_tuning_phase); 1113 if (ret) 1114 goto out; 1115 config = readl_relaxed(host->ioaddr + 1116 msm_offset->core_dll_config); 1117 config |= CORE_CMD_DAT_TRACK_SEL; 1118 writel_relaxed(config, host->ioaddr + 1119 msm_offset->core_dll_config); 1120 } 1121 1122 if (msm_host->use_cdclp533) 1123 ret = sdhci_msm_cdclp533_calibration(host); 1124 else 1125 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1126 out: 1127 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1128 __func__, ret); 1129 return ret; 1130 } 1131 1132 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1133 { 1134 struct mmc_ios *ios = &host->mmc->ios; 1135 1136 /* 1137 * Tuning is required for SDR104, HS200 and HS400 cards and 1138 * if clock frequency is greater than 100MHz in these modes. 1139 */ 1140 if (host->clock <= CORE_FREQ_100MHZ || 1141 !(ios->timing == MMC_TIMING_MMC_HS400 || 1142 ios->timing == MMC_TIMING_MMC_HS200 || 1143 ios->timing == MMC_TIMING_UHS_SDR104) || 1144 ios->enhanced_strobe) 1145 return false; 1146 1147 return true; 1148 } 1149 1150 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1151 { 1152 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1153 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1154 int ret; 1155 1156 /* 1157 * SDR DLL comes into picture only for timing modes which needs 1158 * tuning. 1159 */ 1160 if (!sdhci_msm_is_tuning_needed(host)) 1161 return 0; 1162 1163 /* Reset the tuning block */ 1164 ret = msm_init_cm_dll(host); 1165 if (ret) 1166 return ret; 1167 1168 /* Restore the tuning block */ 1169 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1170 1171 return ret; 1172 } 1173 1174 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1175 { 1176 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1177 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1178 msm_offset->core_dll_config); 1179 1180 config = oldconfig; 1181 if (enable) { 1182 config |= CORE_CDR_EN; 1183 config &= ~CORE_CDR_EXT_EN; 1184 } else { 1185 config &= ~CORE_CDR_EN; 1186 config |= CORE_CDR_EXT_EN; 1187 } 1188 1189 if (config != oldconfig) { 1190 writel_relaxed(config, host->ioaddr + 1191 msm_offset->core_dll_config); 1192 } 1193 } 1194 1195 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1196 { 1197 struct sdhci_host *host = mmc_priv(mmc); 1198 int tuning_seq_cnt = 10; 1199 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1200 int rc; 1201 struct mmc_ios ios = host->mmc->ios; 1202 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1203 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1204 1205 if (!sdhci_msm_is_tuning_needed(host)) { 1206 msm_host->use_cdr = false; 1207 sdhci_msm_set_cdr(host, false); 1208 return 0; 1209 } 1210 1211 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1212 msm_host->use_cdr = true; 1213 1214 /* 1215 * Clear tuning_done flag before tuning to ensure proper 1216 * HS400 settings. 1217 */ 1218 msm_host->tuning_done = 0; 1219 1220 /* 1221 * For HS400 tuning in HS200 timing requires: 1222 * - select MCLK/2 in VENDOR_SPEC 1223 * - program MCLK to 400MHz (or nearest supported) in GCC 1224 */ 1225 if (host->flags & SDHCI_HS400_TUNING) { 1226 sdhci_msm_hc_select_mode(host); 1227 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1228 host->flags &= ~SDHCI_HS400_TUNING; 1229 } 1230 1231 retry: 1232 /* First of all reset the tuning block */ 1233 rc = msm_init_cm_dll(host); 1234 if (rc) 1235 return rc; 1236 1237 phase = 0; 1238 do { 1239 /* Set the phase in delay line hw block */ 1240 rc = msm_config_cm_dll_phase(host, phase); 1241 if (rc) 1242 return rc; 1243 1244 rc = mmc_send_tuning(mmc, opcode, NULL); 1245 if (!rc) { 1246 /* Tuning is successful at this tuning point */ 1247 tuned_phases[tuned_phase_cnt++] = phase; 1248 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1249 mmc_hostname(mmc), phase); 1250 } 1251 } while (++phase < ARRAY_SIZE(tuned_phases)); 1252 1253 if (tuned_phase_cnt) { 1254 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) { 1255 /* 1256 * All phases valid is _almost_ as bad as no phases 1257 * valid. Probably all phases are not really reliable 1258 * but we didn't detect where the unreliable place is. 1259 * That means we'll essentially be guessing and hoping 1260 * we get a good phase. Better to try a few times. 1261 */ 1262 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n", 1263 mmc_hostname(mmc)); 1264 if (--tuning_seq_cnt) { 1265 tuned_phase_cnt = 0; 1266 goto retry; 1267 } 1268 } 1269 1270 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1271 tuned_phase_cnt); 1272 if (rc < 0) 1273 return rc; 1274 else 1275 phase = rc; 1276 1277 /* 1278 * Finally set the selected phase in delay 1279 * line hw block. 1280 */ 1281 rc = msm_config_cm_dll_phase(host, phase); 1282 if (rc) 1283 return rc; 1284 msm_host->saved_tuning_phase = phase; 1285 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1286 mmc_hostname(mmc), phase); 1287 } else { 1288 if (--tuning_seq_cnt) 1289 goto retry; 1290 /* Tuning failed */ 1291 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1292 mmc_hostname(mmc)); 1293 rc = -EIO; 1294 } 1295 1296 if (!rc) 1297 msm_host->tuning_done = true; 1298 return rc; 1299 } 1300 1301 /* 1302 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1303 * This needs to be done for both tuning and enhanced_strobe mode. 1304 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1305 * fixed feedback clock is used. 1306 */ 1307 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1308 { 1309 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1310 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1311 int ret; 1312 1313 if (host->clock > CORE_FREQ_100MHZ && 1314 (msm_host->tuning_done || ios->enhanced_strobe) && 1315 !msm_host->calibration_done) { 1316 ret = sdhci_msm_hs400_dll_calibration(host); 1317 if (!ret) 1318 msm_host->calibration_done = true; 1319 else 1320 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1321 mmc_hostname(host->mmc), ret); 1322 } 1323 } 1324 1325 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1326 unsigned int uhs) 1327 { 1328 struct mmc_host *mmc = host->mmc; 1329 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1330 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1331 u16 ctrl_2; 1332 u32 config; 1333 const struct sdhci_msm_offset *msm_offset = 1334 msm_host->offset; 1335 1336 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1337 /* Select Bus Speed Mode for host */ 1338 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1339 switch (uhs) { 1340 case MMC_TIMING_UHS_SDR12: 1341 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1342 break; 1343 case MMC_TIMING_UHS_SDR25: 1344 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1345 break; 1346 case MMC_TIMING_UHS_SDR50: 1347 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1348 break; 1349 case MMC_TIMING_MMC_HS400: 1350 case MMC_TIMING_MMC_HS200: 1351 case MMC_TIMING_UHS_SDR104: 1352 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1353 break; 1354 case MMC_TIMING_UHS_DDR50: 1355 case MMC_TIMING_MMC_DDR52: 1356 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1357 break; 1358 } 1359 1360 /* 1361 * When clock frequency is less than 100MHz, the feedback clock must be 1362 * provided and DLL must not be used so that tuning can be skipped. To 1363 * provide feedback clock, the mode selection can be any value less 1364 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1365 */ 1366 if (host->clock <= CORE_FREQ_100MHZ) { 1367 if (uhs == MMC_TIMING_MMC_HS400 || 1368 uhs == MMC_TIMING_MMC_HS200 || 1369 uhs == MMC_TIMING_UHS_SDR104) 1370 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1371 /* 1372 * DLL is not required for clock <= 100MHz 1373 * Thus, make sure DLL it is disabled when not required 1374 */ 1375 config = readl_relaxed(host->ioaddr + 1376 msm_offset->core_dll_config); 1377 config |= CORE_DLL_RST; 1378 writel_relaxed(config, host->ioaddr + 1379 msm_offset->core_dll_config); 1380 1381 config = readl_relaxed(host->ioaddr + 1382 msm_offset->core_dll_config); 1383 config |= CORE_DLL_PDN; 1384 writel_relaxed(config, host->ioaddr + 1385 msm_offset->core_dll_config); 1386 1387 /* 1388 * The DLL needs to be restored and CDCLP533 recalibrated 1389 * when the clock frequency is set back to 400MHz. 1390 */ 1391 msm_host->calibration_done = false; 1392 } 1393 1394 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1395 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1396 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1397 1398 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1399 sdhci_msm_hs400(host, &mmc->ios); 1400 } 1401 1402 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1403 { 1404 struct platform_device *pdev = msm_host->pdev; 1405 int ret; 1406 1407 if (level) 1408 ret = pinctrl_pm_select_default_state(&pdev->dev); 1409 else 1410 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1411 1412 return ret; 1413 } 1414 1415 static void msm_config_vmmc_regulator(struct mmc_host *mmc, bool hpm) 1416 { 1417 int load; 1418 1419 if (!hpm) 1420 load = 0; 1421 else if (!mmc->card) 1422 load = max(MMC_VMMC_MAX_LOAD_UA, SD_VMMC_MAX_LOAD_UA); 1423 else if (mmc_card_mmc(mmc->card)) 1424 load = MMC_VMMC_MAX_LOAD_UA; 1425 else if (mmc_card_sd(mmc->card)) 1426 load = SD_VMMC_MAX_LOAD_UA; 1427 else 1428 return; 1429 1430 regulator_set_load(mmc->supply.vmmc, load); 1431 } 1432 1433 static void msm_config_vqmmc_regulator(struct mmc_host *mmc, bool hpm) 1434 { 1435 int load; 1436 1437 if (!hpm) 1438 load = 0; 1439 else if (!mmc->card) 1440 load = max(MMC_VQMMC_MAX_LOAD_UA, SD_VQMMC_MAX_LOAD_UA); 1441 else if (mmc_card_sd(mmc->card)) 1442 load = SD_VQMMC_MAX_LOAD_UA; 1443 else 1444 return; 1445 1446 regulator_set_load(mmc->supply.vqmmc, load); 1447 } 1448 1449 static int sdhci_msm_set_vmmc(struct sdhci_msm_host *msm_host, 1450 struct mmc_host *mmc, bool hpm) 1451 { 1452 if (IS_ERR(mmc->supply.vmmc)) 1453 return 0; 1454 1455 msm_config_vmmc_regulator(mmc, hpm); 1456 1457 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1458 } 1459 1460 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1461 struct mmc_host *mmc, bool level) 1462 { 1463 int ret; 1464 struct mmc_ios ios; 1465 1466 if (msm_host->vqmmc_enabled == level) 1467 return 0; 1468 1469 msm_config_vqmmc_regulator(mmc, level); 1470 1471 if (level) { 1472 /* Set the IO voltage regulator to default voltage level */ 1473 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1474 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1475 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1476 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1477 1478 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1479 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1480 if (ret < 0) { 1481 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1482 mmc_hostname(mmc), ret); 1483 goto out; 1484 } 1485 } 1486 ret = regulator_enable(mmc->supply.vqmmc); 1487 } else { 1488 ret = regulator_disable(mmc->supply.vqmmc); 1489 } 1490 1491 if (ret) 1492 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1493 mmc_hostname(mmc), level ? "en":"dis", ret); 1494 else 1495 msm_host->vqmmc_enabled = level; 1496 out: 1497 return ret; 1498 } 1499 1500 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1501 struct mmc_host *mmc, bool hpm) 1502 { 1503 int load, ret; 1504 1505 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1506 ret = regulator_set_load(mmc->supply.vqmmc, load); 1507 if (ret) 1508 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1509 mmc_hostname(mmc), ret); 1510 return ret; 1511 } 1512 1513 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1514 struct mmc_host *mmc, bool level) 1515 { 1516 int ret; 1517 bool always_on; 1518 1519 if (IS_ERR(mmc->supply.vqmmc) || 1520 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1521 return 0; 1522 /* 1523 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1524 * and HPM modes by setting the corresponding load. 1525 * 1526 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1527 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1528 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1529 * Vqmmc should remain ON, So just set the load instead of turning it 1530 * off/on. 1531 */ 1532 always_on = !mmc_card_is_removable(mmc) && 1533 mmc->card && mmc_card_mmc(mmc->card); 1534 1535 if (always_on) 1536 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1537 else 1538 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1539 1540 return ret; 1541 } 1542 1543 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1544 { 1545 init_waitqueue_head(&msm_host->pwr_irq_wait); 1546 } 1547 1548 static inline void sdhci_msm_complete_pwr_irq_wait( 1549 struct sdhci_msm_host *msm_host) 1550 { 1551 wake_up(&msm_host->pwr_irq_wait); 1552 } 1553 1554 /* 1555 * sdhci_msm_check_power_status API should be called when registers writes 1556 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1557 * To what state the register writes will change the IO lines should be passed 1558 * as the argument req_type. This API will check whether the IO line's state 1559 * is already the expected state and will wait for power irq only if 1560 * power irq is expected to be triggered based on the current IO line state 1561 * and expected IO line state. 1562 */ 1563 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1564 { 1565 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1566 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1567 struct mmc_host *mmc = host->mmc; 1568 bool done = false; 1569 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1570 const struct sdhci_msm_offset *msm_offset = 1571 msm_host->offset; 1572 1573 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1574 mmc_hostname(host->mmc), __func__, req_type, 1575 msm_host->curr_pwr_state, msm_host->curr_io_level); 1576 1577 /* 1578 * The power interrupt will not be generated for signal voltage 1579 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1580 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1581 * it as always set. 1582 */ 1583 if (!msm_host->mci_removed) 1584 val = msm_host_readl(msm_host, host, 1585 msm_offset->core_generics); 1586 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1587 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1588 return; 1589 } 1590 1591 /* 1592 * The IRQ for request type IO High/LOW will be generated when - 1593 * there is a state change in 1.8V enable bit (bit 3) of 1594 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1595 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1596 * to set it to 3.3V before card detection happens, the 1597 * IRQ doesn't get triggered as there is no state change in this bit. 1598 * The driver already handles this case by changing the IO voltage 1599 * level to high as part of controller power up sequence. Hence, check 1600 * for host->pwr to handle a case where IO voltage high request is 1601 * issued even before controller power up. 1602 */ 1603 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1604 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1605 mmc_hostname(host->mmc), req_type); 1606 return; 1607 } 1608 if ((req_type & msm_host->curr_pwr_state) || 1609 (req_type & msm_host->curr_io_level)) 1610 done = true; 1611 /* 1612 * This is needed here to handle cases where register writes will 1613 * not change the current bus state or io level of the controller. 1614 * In this case, no power irq will be triggerred and we should 1615 * not wait. 1616 */ 1617 if (!done) { 1618 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1619 msm_host->pwr_irq_flag, 1620 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1621 dev_warn(&msm_host->pdev->dev, 1622 "%s: pwr_irq for req: (%d) timed out\n", 1623 mmc_hostname(host->mmc), req_type); 1624 } 1625 1626 if ((req_type & REQ_BUS_ON) && mmc->card && !mmc->ops->get_cd(mmc)) { 1627 sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); 1628 host->pwr = 0; 1629 } 1630 1631 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1632 __func__, req_type); 1633 } 1634 1635 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1636 { 1637 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1638 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1639 const struct sdhci_msm_offset *msm_offset = 1640 msm_host->offset; 1641 1642 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1643 mmc_hostname(host->mmc), 1644 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1645 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1646 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1647 } 1648 1649 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1650 { 1651 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1652 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1653 struct mmc_host *mmc = host->mmc; 1654 u32 irq_status, irq_ack = 0; 1655 int retry = 10, ret; 1656 u32 pwr_state = 0, io_level = 0; 1657 u32 config; 1658 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1659 1660 irq_status = msm_host_readl(msm_host, host, 1661 msm_offset->core_pwrctl_status); 1662 irq_status &= INT_MASK; 1663 1664 msm_host_writel(msm_host, irq_status, host, 1665 msm_offset->core_pwrctl_clear); 1666 1667 /* 1668 * There is a rare HW scenario where the first clear pulse could be 1669 * lost when actual reset and clear/read of status register is 1670 * happening at a time. Hence, retry for at least 10 times to make 1671 * sure status register is cleared. Otherwise, this will result in 1672 * a spurious power IRQ resulting in system instability. 1673 */ 1674 while (irq_status & msm_host_readl(msm_host, host, 1675 msm_offset->core_pwrctl_status)) { 1676 if (retry == 0) { 1677 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1678 mmc_hostname(host->mmc), irq_status); 1679 sdhci_msm_dump_pwr_ctrl_regs(host); 1680 WARN_ON(1); 1681 break; 1682 } 1683 msm_host_writel(msm_host, irq_status, host, 1684 msm_offset->core_pwrctl_clear); 1685 retry--; 1686 udelay(10); 1687 } 1688 1689 if ((irq_status & CORE_PWRCTL_BUS_ON) && mmc->card && 1690 !mmc->ops->get_cd(mmc)) { 1691 msm_host_writel(msm_host, CORE_PWRCTL_BUS_FAIL, host, 1692 msm_offset->core_pwrctl_ctl); 1693 return; 1694 } 1695 1696 /* Handle BUS ON/OFF*/ 1697 if (irq_status & CORE_PWRCTL_BUS_ON) { 1698 pwr_state = REQ_BUS_ON; 1699 io_level = REQ_IO_HIGH; 1700 } 1701 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1702 pwr_state = REQ_BUS_OFF; 1703 io_level = REQ_IO_LOW; 1704 } 1705 1706 if (pwr_state) { 1707 ret = sdhci_msm_set_vmmc(msm_host, mmc, 1708 pwr_state & REQ_BUS_ON); 1709 if (!ret) 1710 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1711 pwr_state & REQ_BUS_ON); 1712 if (!ret) 1713 ret = sdhci_msm_set_pincfg(msm_host, 1714 pwr_state & REQ_BUS_ON); 1715 if (!ret) 1716 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1717 else 1718 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1719 } 1720 1721 /* Handle IO LOW/HIGH */ 1722 if (irq_status & CORE_PWRCTL_IO_LOW) 1723 io_level = REQ_IO_LOW; 1724 1725 if (irq_status & CORE_PWRCTL_IO_HIGH) 1726 io_level = REQ_IO_HIGH; 1727 1728 if (io_level) 1729 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1730 1731 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1732 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1733 if (ret < 0) { 1734 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1735 mmc_hostname(mmc), ret, 1736 mmc->ios.signal_voltage, mmc->ios.vdd, 1737 irq_status); 1738 irq_ack |= CORE_PWRCTL_IO_FAIL; 1739 } 1740 } 1741 1742 /* 1743 * The driver has to acknowledge the interrupt, switch voltages and 1744 * report back if it succeded or not to this register. The voltage 1745 * switches are handled by the sdhci core, so just report success. 1746 */ 1747 msm_host_writel(msm_host, irq_ack, host, 1748 msm_offset->core_pwrctl_ctl); 1749 1750 /* 1751 * If we don't have info regarding the voltage levels supported by 1752 * regulators, don't change the IO PAD PWR SWITCH. 1753 */ 1754 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1755 u32 new_config; 1756 /* 1757 * We should unset IO PAD PWR switch only if the register write 1758 * can set IO lines high and the regulator also switches to 3 V. 1759 * Else, we should keep the IO PAD PWR switch set. 1760 * This is applicable to certain targets where eMMC vccq supply 1761 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1762 * IO PAD PWR switch must be kept set to reflect actual 1763 * regulator voltage. This way, during initialization of 1764 * controllers with only 1.8V, we will set the IO PAD bit 1765 * without waiting for a REQ_IO_LOW. 1766 */ 1767 config = readl_relaxed(host->ioaddr + 1768 msm_offset->core_vendor_spec); 1769 new_config = config; 1770 1771 if ((io_level & REQ_IO_HIGH) && 1772 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1773 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1774 else if ((io_level & REQ_IO_LOW) || 1775 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1776 new_config |= CORE_IO_PAD_PWR_SWITCH; 1777 1778 if (config ^ new_config) 1779 writel_relaxed(new_config, host->ioaddr + 1780 msm_offset->core_vendor_spec); 1781 } 1782 1783 if (pwr_state) 1784 msm_host->curr_pwr_state = pwr_state; 1785 if (io_level) 1786 msm_host->curr_io_level = io_level; 1787 1788 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1789 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1790 irq_ack); 1791 } 1792 1793 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1794 { 1795 struct sdhci_host *host = (struct sdhci_host *)data; 1796 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1797 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1798 1799 sdhci_msm_handle_pwr_irq(host, irq); 1800 msm_host->pwr_irq_flag = 1; 1801 sdhci_msm_complete_pwr_irq_wait(msm_host); 1802 1803 1804 return IRQ_HANDLED; 1805 } 1806 1807 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1808 { 1809 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1810 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1811 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1812 1813 return clk_round_rate(core_clk, ULONG_MAX); 1814 } 1815 1816 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1817 { 1818 return SDHCI_MSM_MIN_CLOCK; 1819 } 1820 1821 /* 1822 * __sdhci_msm_set_clock - sdhci_msm clock control. 1823 * 1824 * Description: 1825 * MSM controller does not use internal divider and 1826 * instead directly control the GCC clock as per 1827 * HW recommendation. 1828 **/ 1829 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1830 { 1831 u16 clk; 1832 1833 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1834 1835 if (clock == 0) 1836 return; 1837 1838 /* 1839 * MSM controller do not use clock divider. 1840 * Thus read SDHCI_CLOCK_CONTROL and only enable 1841 * clock with no divider value programmed. 1842 */ 1843 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1844 sdhci_enable_clk(host, clk); 1845 } 1846 1847 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1848 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1849 { 1850 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1851 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1852 1853 if (!clock) { 1854 host->mmc->actual_clock = msm_host->clk_rate = 0; 1855 goto out; 1856 } 1857 1858 sdhci_msm_hc_select_mode(host); 1859 1860 msm_set_clock_rate_for_bus_mode(host, clock); 1861 out: 1862 __sdhci_msm_set_clock(host, clock); 1863 } 1864 1865 /*****************************************************************************\ 1866 * * 1867 * Inline Crypto Engine (ICE) support * 1868 * * 1869 \*****************************************************************************/ 1870 1871 #ifdef CONFIG_MMC_CRYPTO 1872 1873 static const struct blk_crypto_ll_ops sdhci_msm_crypto_ops; /* forward decl */ 1874 1875 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 1876 struct cqhci_host *cq_host) 1877 { 1878 struct mmc_host *mmc = msm_host->mmc; 1879 struct blk_crypto_profile *profile = &mmc->crypto_profile; 1880 struct device *dev = mmc_dev(mmc); 1881 struct qcom_ice *ice; 1882 union cqhci_crypto_capabilities caps; 1883 union cqhci_crypto_cap_entry cap; 1884 int err; 1885 int i; 1886 1887 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) 1888 return 0; 1889 1890 ice = devm_of_qcom_ice_get(dev); 1891 if (ice == ERR_PTR(-EOPNOTSUPP)) { 1892 dev_warn(dev, "Disabling inline encryption support\n"); 1893 ice = NULL; 1894 } 1895 1896 if (IS_ERR_OR_NULL(ice)) 1897 return PTR_ERR_OR_ZERO(ice); 1898 1899 if (qcom_ice_get_supported_key_type(ice) != BLK_CRYPTO_KEY_TYPE_RAW) { 1900 dev_warn(dev, "Wrapped keys not supported. Disabling inline encryption support.\n"); 1901 return 0; 1902 } 1903 1904 msm_host->ice = ice; 1905 1906 /* Initialize the blk_crypto_profile */ 1907 1908 caps.reg_val = cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP)); 1909 1910 /* The number of keyslots supported is (CFGC+1) */ 1911 err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1); 1912 if (err) 1913 return err; 1914 1915 profile->ll_ops = sdhci_msm_crypto_ops; 1916 profile->max_dun_bytes_supported = 4; 1917 profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_RAW; 1918 profile->dev = dev; 1919 1920 /* 1921 * Currently this driver only supports AES-256-XTS. All known versions 1922 * of ICE support it, but to be safe make sure it is really declared in 1923 * the crypto capability registers. The crypto capability registers 1924 * also give the supported data unit size(s). 1925 */ 1926 for (i = 0; i < caps.num_crypto_cap; i++) { 1927 cap.reg_val = cpu_to_le32(cqhci_readl(cq_host, 1928 CQHCI_CRYPTOCAP + 1929 i * sizeof(__le32))); 1930 if (cap.algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS && 1931 cap.key_size == CQHCI_CRYPTO_KEY_SIZE_256) 1932 profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |= 1933 cap.sdus_mask * 512; 1934 } 1935 1936 mmc->caps2 |= MMC_CAP2_CRYPTO; 1937 return 0; 1938 } 1939 1940 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 1941 { 1942 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1943 qcom_ice_enable(msm_host->ice); 1944 } 1945 1946 static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 1947 { 1948 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1949 return qcom_ice_resume(msm_host->ice); 1950 1951 return 0; 1952 } 1953 1954 static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host) 1955 { 1956 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1957 return qcom_ice_suspend(msm_host->ice); 1958 1959 return 0; 1960 } 1961 1962 static inline struct sdhci_msm_host * 1963 sdhci_msm_host_from_crypto_profile(struct blk_crypto_profile *profile) 1964 { 1965 struct mmc_host *mmc = mmc_from_crypto_profile(profile); 1966 struct sdhci_host *host = mmc_priv(mmc); 1967 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1968 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1969 1970 return msm_host; 1971 } 1972 1973 /* 1974 * Program a key into a QC ICE keyslot. QC ICE requires a QC-specific SCM call 1975 * for this; it doesn't support the standard way. 1976 */ 1977 static int sdhci_msm_ice_keyslot_program(struct blk_crypto_profile *profile, 1978 const struct blk_crypto_key *key, 1979 unsigned int slot) 1980 { 1981 struct sdhci_msm_host *msm_host = 1982 sdhci_msm_host_from_crypto_profile(profile); 1983 1984 return qcom_ice_program_key(msm_host->ice, slot, key); 1985 } 1986 1987 static int sdhci_msm_ice_keyslot_evict(struct blk_crypto_profile *profile, 1988 const struct blk_crypto_key *key, 1989 unsigned int slot) 1990 { 1991 struct sdhci_msm_host *msm_host = 1992 sdhci_msm_host_from_crypto_profile(profile); 1993 1994 return qcom_ice_evict_key(msm_host->ice, slot); 1995 } 1996 1997 static const struct blk_crypto_ll_ops sdhci_msm_crypto_ops = { 1998 .keyslot_program = sdhci_msm_ice_keyslot_program, 1999 .keyslot_evict = sdhci_msm_ice_keyslot_evict, 2000 }; 2001 2002 #else /* CONFIG_MMC_CRYPTO */ 2003 2004 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 2005 struct cqhci_host *cq_host) 2006 { 2007 return 0; 2008 } 2009 2010 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 2011 { 2012 } 2013 2014 static inline __maybe_unused int 2015 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 2016 { 2017 return 0; 2018 } 2019 2020 static inline __maybe_unused int 2021 sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host) 2022 { 2023 return 0; 2024 } 2025 #endif /* !CONFIG_MMC_CRYPTO */ 2026 2027 /*****************************************************************************\ 2028 * * 2029 * MSM Command Queue Engine (CQE) * 2030 * * 2031 \*****************************************************************************/ 2032 2033 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 2034 { 2035 int cmd_error = 0; 2036 int data_error = 0; 2037 2038 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 2039 return intmask; 2040 2041 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 2042 return 0; 2043 } 2044 2045 static void sdhci_msm_cqe_enable(struct mmc_host *mmc) 2046 { 2047 struct sdhci_host *host = mmc_priv(mmc); 2048 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2049 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2050 2051 sdhci_cqe_enable(mmc); 2052 sdhci_msm_ice_enable(msm_host); 2053 } 2054 2055 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 2056 { 2057 struct sdhci_host *host = mmc_priv(mmc); 2058 unsigned long flags; 2059 u32 ctrl; 2060 2061 /* 2062 * When CQE is halted, the legacy SDHCI path operates only 2063 * on 16-byte descriptors in 64bit mode. 2064 */ 2065 if (host->flags & SDHCI_USE_64_BIT_DMA) 2066 host->desc_sz = 16; 2067 2068 spin_lock_irqsave(&host->lock, flags); 2069 2070 /* 2071 * During CQE command transfers, command complete bit gets latched. 2072 * So s/w should clear command complete interrupt status when CQE is 2073 * either halted or disabled. Otherwise unexpected SDCHI legacy 2074 * interrupt gets triggered when CQE is halted/disabled. 2075 */ 2076 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 2077 ctrl |= SDHCI_INT_RESPONSE; 2078 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 2079 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 2080 2081 spin_unlock_irqrestore(&host->lock, flags); 2082 2083 sdhci_cqe_disable(mmc, recovery); 2084 } 2085 2086 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd) 2087 { 2088 u32 count, start = 15; 2089 2090 __sdhci_set_timeout(host, cmd); 2091 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL); 2092 /* 2093 * Update software timeout value if its value is less than hardware data 2094 * timeout value. Qcom SoC hardware data timeout value was calculated 2095 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock. 2096 */ 2097 if (cmd && cmd->data && host->clock > 400000 && 2098 host->clock <= 50000000 && 2099 ((1 << (count + start)) > (10 * host->clock))) 2100 host->data_timeout = 22LL * NSEC_PER_SEC; 2101 } 2102 2103 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 2104 .enable = sdhci_msm_cqe_enable, 2105 .disable = sdhci_msm_cqe_disable, 2106 #ifdef CONFIG_MMC_CRYPTO 2107 .uses_custom_crypto_profile = true, 2108 #endif 2109 }; 2110 2111 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 2112 struct platform_device *pdev) 2113 { 2114 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2115 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2116 struct cqhci_host *cq_host; 2117 bool dma64; 2118 u32 cqcfg; 2119 int ret; 2120 2121 /* 2122 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 2123 * So ensure ADMA table is allocated for 16byte descriptors. 2124 */ 2125 if (host->caps & SDHCI_CAN_64BIT) 2126 host->alloc_desc_sz = 16; 2127 2128 ret = sdhci_setup_host(host); 2129 if (ret) 2130 return ret; 2131 2132 cq_host = cqhci_pltfm_init(pdev); 2133 if (IS_ERR(cq_host)) { 2134 ret = PTR_ERR(cq_host); 2135 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 2136 goto cleanup; 2137 } 2138 2139 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 2140 cq_host->ops = &sdhci_msm_cqhci_ops; 2141 2142 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 2143 2144 ret = sdhci_msm_ice_init(msm_host, cq_host); 2145 if (ret) 2146 goto cleanup; 2147 2148 ret = cqhci_init(cq_host, host->mmc, dma64); 2149 if (ret) { 2150 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 2151 mmc_hostname(host->mmc), ret); 2152 goto cleanup; 2153 } 2154 2155 /* Disable cqe reset due to cqe enable signal */ 2156 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 2157 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 2158 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 2159 2160 /* 2161 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 2162 * So limit desc_sz to 12 so that the data commands that are sent 2163 * during card initialization (before CQE gets enabled) would 2164 * get executed without any issues. 2165 */ 2166 if (host->flags & SDHCI_USE_64_BIT_DMA) 2167 host->desc_sz = 12; 2168 2169 ret = __sdhci_add_host(host); 2170 if (ret) 2171 goto cleanup; 2172 2173 dev_info(&pdev->dev, "%s: CQE init: success\n", 2174 mmc_hostname(host->mmc)); 2175 return ret; 2176 2177 cleanup: 2178 sdhci_cleanup_host(host); 2179 return ret; 2180 } 2181 2182 /* 2183 * Platform specific register write functions. This is so that, if any 2184 * register write needs to be followed up by platform specific actions, 2185 * they can be added here. These functions can go to sleep when writes 2186 * to certain registers are done. 2187 * These functions are relying on sdhci_set_ios not using spinlock. 2188 */ 2189 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 2190 { 2191 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2192 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2193 u32 req_type = 0; 2194 2195 switch (reg) { 2196 case SDHCI_HOST_CONTROL2: 2197 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 2198 REQ_IO_HIGH; 2199 break; 2200 case SDHCI_SOFTWARE_RESET: 2201 if (host->pwr && (val & SDHCI_RESET_ALL)) 2202 req_type = REQ_BUS_OFF; 2203 break; 2204 case SDHCI_POWER_CONTROL: 2205 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 2206 break; 2207 case SDHCI_TRANSFER_MODE: 2208 msm_host->transfer_mode = val; 2209 break; 2210 case SDHCI_COMMAND: 2211 if (!msm_host->use_cdr) 2212 break; 2213 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 2214 !mmc_op_tuning(SDHCI_GET_CMD(val))) 2215 sdhci_msm_set_cdr(host, true); 2216 else 2217 sdhci_msm_set_cdr(host, false); 2218 break; 2219 } 2220 2221 if (req_type) { 2222 msm_host->pwr_irq_flag = 0; 2223 /* 2224 * Since this register write may trigger a power irq, ensure 2225 * all previous register writes are complete by this point. 2226 */ 2227 mb(); 2228 } 2229 return req_type; 2230 } 2231 2232 /* This function may sleep*/ 2233 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 2234 { 2235 u32 req_type = 0; 2236 2237 req_type = __sdhci_msm_check_write(host, val, reg); 2238 writew_relaxed(val, host->ioaddr + reg); 2239 2240 if (req_type) 2241 sdhci_msm_check_power_status(host, req_type); 2242 } 2243 2244 /* This function may sleep*/ 2245 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 2246 { 2247 u32 req_type = 0; 2248 2249 req_type = __sdhci_msm_check_write(host, val, reg); 2250 2251 writeb_relaxed(val, host->ioaddr + reg); 2252 2253 if (req_type) 2254 sdhci_msm_check_power_status(host, req_type); 2255 } 2256 2257 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 2258 { 2259 struct mmc_host *mmc = msm_host->mmc; 2260 struct regulator *supply = mmc->supply.vqmmc; 2261 u32 caps = 0, config; 2262 struct sdhci_host *host = mmc_priv(mmc); 2263 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2264 2265 if (!IS_ERR(mmc->supply.vqmmc)) { 2266 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 2267 caps |= CORE_1_8V_SUPPORT; 2268 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 2269 caps |= CORE_3_0V_SUPPORT; 2270 2271 if (!caps) 2272 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 2273 mmc_hostname(mmc)); 2274 } 2275 2276 if (caps) { 2277 /* 2278 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 2279 * bit can be used as required later on. 2280 */ 2281 u32 io_level = msm_host->curr_io_level; 2282 2283 config = readl_relaxed(host->ioaddr + 2284 msm_offset->core_vendor_spec); 2285 config |= CORE_IO_PAD_PWR_SWITCH_EN; 2286 2287 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2288 config &= ~CORE_IO_PAD_PWR_SWITCH; 2289 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2290 config |= CORE_IO_PAD_PWR_SWITCH; 2291 2292 writel_relaxed(config, 2293 host->ioaddr + msm_offset->core_vendor_spec); 2294 } 2295 msm_host->caps_0 |= caps; 2296 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2297 } 2298 2299 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2300 { 2301 int ret; 2302 2303 ret = mmc_regulator_get_supply(msm_host->mmc); 2304 if (ret) 2305 return ret; 2306 2307 sdhci_msm_set_regulator_caps(msm_host); 2308 2309 return 0; 2310 } 2311 2312 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2313 struct mmc_ios *ios) 2314 { 2315 struct sdhci_host *host = mmc_priv(mmc); 2316 u16 ctrl, status; 2317 2318 /* 2319 * Signal Voltage Switching is only applicable for Host Controllers 2320 * v3.00 and above. 2321 */ 2322 if (host->version < SDHCI_SPEC_300) 2323 return 0; 2324 2325 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2326 2327 switch (ios->signal_voltage) { 2328 case MMC_SIGNAL_VOLTAGE_330: 2329 if (!(host->flags & SDHCI_SIGNALING_330)) 2330 return -EINVAL; 2331 2332 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2333 ctrl &= ~SDHCI_CTRL_VDD_180; 2334 break; 2335 case MMC_SIGNAL_VOLTAGE_180: 2336 if (!(host->flags & SDHCI_SIGNALING_180)) 2337 return -EINVAL; 2338 2339 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2340 ctrl |= SDHCI_CTRL_VDD_180; 2341 break; 2342 2343 default: 2344 return -EINVAL; 2345 } 2346 2347 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2348 2349 /* Wait for 5ms */ 2350 usleep_range(5000, 5500); 2351 2352 /* regulator output should be stable within 5 ms */ 2353 status = ctrl & SDHCI_CTRL_VDD_180; 2354 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2355 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2356 return 0; 2357 2358 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2359 mmc_hostname(mmc)); 2360 2361 return -EAGAIN; 2362 } 2363 2364 #define DRIVER_NAME "sdhci_msm" 2365 #define SDHCI_MSM_DUMP(f, x...) \ 2366 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2367 2368 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2369 { 2370 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2371 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2372 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2373 2374 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2375 2376 SDHCI_MSM_DUMP( 2377 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2378 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2379 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2380 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2381 SDHCI_MSM_DUMP( 2382 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2383 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2384 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2385 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2386 SDHCI_MSM_DUMP( 2387 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2388 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2389 readl_relaxed(host->ioaddr + 2390 msm_offset->core_vendor_spec_func2), 2391 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2392 } 2393 2394 static const struct sdhci_msm_variant_ops mci_var_ops = { 2395 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2396 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2397 }; 2398 2399 static const struct sdhci_msm_variant_ops v5_var_ops = { 2400 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2401 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2402 }; 2403 2404 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2405 .var_ops = &mci_var_ops, 2406 .offset = &sdhci_msm_mci_offset, 2407 }; 2408 2409 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2410 .mci_removed = true, 2411 .var_ops = &v5_var_ops, 2412 .offset = &sdhci_msm_v5_offset, 2413 }; 2414 2415 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2416 .mci_removed = true, 2417 .restore_dll_config = true, 2418 .var_ops = &v5_var_ops, 2419 .offset = &sdhci_msm_v5_offset, 2420 }; 2421 2422 static const struct of_device_id sdhci_msm_dt_match[] = { 2423 /* 2424 * Do not add new variants to the driver which are compatible with 2425 * generic ones, unless they need customization. 2426 */ 2427 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2428 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2429 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var}, 2430 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2431 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var}, 2432 {}, 2433 }; 2434 2435 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2436 2437 static const struct sdhci_ops sdhci_msm_ops = { 2438 .reset = sdhci_and_cqhci_reset, 2439 .set_clock = sdhci_msm_set_clock, 2440 .get_min_clock = sdhci_msm_get_min_clock, 2441 .get_max_clock = sdhci_msm_get_max_clock, 2442 .set_bus_width = sdhci_set_bus_width, 2443 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2444 .write_w = sdhci_msm_writew, 2445 .write_b = sdhci_msm_writeb, 2446 .irq = sdhci_msm_cqe_irq, 2447 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2448 .set_power = sdhci_set_power_noreg, 2449 .set_timeout = sdhci_msm_set_timeout, 2450 }; 2451 2452 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2453 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2454 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2455 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2456 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2457 2458 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2459 .ops = &sdhci_msm_ops, 2460 }; 2461 2462 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2463 struct sdhci_host *host) 2464 { 2465 struct device_node *node = pdev->dev.of_node; 2466 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2467 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2468 2469 if (of_property_read_u32(node, "qcom,ddr-config", 2470 &msm_host->ddr_config)) 2471 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2472 2473 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2474 2475 if (of_device_is_compatible(node, "qcom,msm8916-sdhci")) 2476 host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA; 2477 } 2478 2479 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host) 2480 { 2481 struct reset_control *reset; 2482 int ret = 0; 2483 2484 reset = reset_control_get_optional_exclusive(dev, NULL); 2485 if (IS_ERR(reset)) 2486 return dev_err_probe(dev, PTR_ERR(reset), 2487 "unable to acquire core_reset\n"); 2488 2489 if (!reset) 2490 return ret; 2491 2492 ret = reset_control_assert(reset); 2493 if (ret) { 2494 reset_control_put(reset); 2495 return dev_err_probe(dev, ret, "core_reset assert failed\n"); 2496 } 2497 2498 /* 2499 * The hardware requirement for delay between assert/deassert 2500 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to 2501 * ~125us (4/32768). To be on the safe side add 200us delay. 2502 */ 2503 usleep_range(200, 210); 2504 2505 ret = reset_control_deassert(reset); 2506 if (ret) { 2507 reset_control_put(reset); 2508 return dev_err_probe(dev, ret, "core_reset deassert failed\n"); 2509 } 2510 2511 usleep_range(200, 210); 2512 reset_control_put(reset); 2513 2514 return ret; 2515 } 2516 2517 static int sdhci_msm_probe(struct platform_device *pdev) 2518 { 2519 struct sdhci_host *host; 2520 struct sdhci_pltfm_host *pltfm_host; 2521 struct sdhci_msm_host *msm_host; 2522 struct clk *clk; 2523 int ret; 2524 u16 host_version, core_minor; 2525 u32 core_version, config; 2526 u8 core_major; 2527 const struct sdhci_msm_offset *msm_offset; 2528 const struct sdhci_msm_variant_info *var_info; 2529 struct device_node *node = pdev->dev.of_node; 2530 2531 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2532 if (IS_ERR(host)) 2533 return PTR_ERR(host); 2534 2535 host->sdma_boundary = 0; 2536 pltfm_host = sdhci_priv(host); 2537 msm_host = sdhci_pltfm_priv(pltfm_host); 2538 msm_host->mmc = host->mmc; 2539 msm_host->pdev = pdev; 2540 2541 ret = mmc_of_parse(host->mmc); 2542 if (ret) 2543 return ret; 2544 2545 /* 2546 * Based on the compatible string, load the required msm host info from 2547 * the data associated with the version info. 2548 */ 2549 var_info = of_device_get_match_data(&pdev->dev); 2550 2551 msm_host->mci_removed = var_info->mci_removed; 2552 msm_host->restore_dll_config = var_info->restore_dll_config; 2553 msm_host->var_ops = var_info->var_ops; 2554 msm_host->offset = var_info->offset; 2555 2556 msm_offset = msm_host->offset; 2557 2558 sdhci_get_of_property(pdev); 2559 sdhci_msm_get_of_property(pdev, host); 2560 2561 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2562 2563 ret = sdhci_msm_gcc_reset(&pdev->dev, host); 2564 if (ret) 2565 return ret; 2566 2567 /* Setup SDCC bus voter clock. */ 2568 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2569 if (!IS_ERR(msm_host->bus_clk)) { 2570 /* Vote for max. clk rate for max. performance */ 2571 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2572 if (ret) 2573 return ret; 2574 ret = clk_prepare_enable(msm_host->bus_clk); 2575 if (ret) 2576 return ret; 2577 } 2578 2579 /* Setup main peripheral bus clock */ 2580 clk = devm_clk_get(&pdev->dev, "iface"); 2581 if (IS_ERR(clk)) { 2582 ret = PTR_ERR(clk); 2583 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2584 goto bus_clk_disable; 2585 } 2586 msm_host->bulk_clks[1].clk = clk; 2587 2588 /* Setup SDC MMC clock */ 2589 clk = devm_clk_get(&pdev->dev, "core"); 2590 if (IS_ERR(clk)) { 2591 ret = PTR_ERR(clk); 2592 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2593 goto bus_clk_disable; 2594 } 2595 msm_host->bulk_clks[0].clk = clk; 2596 2597 /* Check for optional interconnect paths */ 2598 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2599 if (ret) 2600 goto bus_clk_disable; 2601 2602 ret = devm_pm_opp_set_clkname(&pdev->dev, "core"); 2603 if (ret) 2604 goto bus_clk_disable; 2605 2606 /* OPP table is optional */ 2607 ret = devm_pm_opp_of_add_table(&pdev->dev); 2608 if (ret && ret != -ENODEV) { 2609 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2610 goto bus_clk_disable; 2611 } 2612 2613 /* Vote for maximum clock rate for maximum performance */ 2614 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2615 if (ret) 2616 dev_warn(&pdev->dev, "core clock boost failed\n"); 2617 2618 clk = devm_clk_get(&pdev->dev, "cal"); 2619 if (IS_ERR(clk)) 2620 clk = NULL; 2621 msm_host->bulk_clks[2].clk = clk; 2622 2623 clk = devm_clk_get(&pdev->dev, "sleep"); 2624 if (IS_ERR(clk)) 2625 clk = NULL; 2626 msm_host->bulk_clks[3].clk = clk; 2627 2628 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2629 msm_host->bulk_clks); 2630 if (ret) 2631 goto bus_clk_disable; 2632 2633 /* 2634 * xo clock is needed for FLL feature of cm_dll. 2635 * In case if xo clock is not mentioned in DT, warn and proceed. 2636 */ 2637 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2638 if (IS_ERR(msm_host->xo_clk)) { 2639 ret = PTR_ERR(msm_host->xo_clk); 2640 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2641 } 2642 2643 if (!msm_host->mci_removed) { 2644 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2645 if (IS_ERR(msm_host->core_mem)) { 2646 ret = PTR_ERR(msm_host->core_mem); 2647 goto clk_disable; 2648 } 2649 } 2650 2651 /* Reset the vendor spec register to power on reset state */ 2652 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2653 host->ioaddr + msm_offset->core_vendor_spec); 2654 2655 if (!msm_host->mci_removed) { 2656 /* Set HC_MODE_EN bit in HC_MODE register */ 2657 msm_host_writel(msm_host, HC_MODE_EN, host, 2658 msm_offset->core_hc_mode); 2659 config = msm_host_readl(msm_host, host, 2660 msm_offset->core_hc_mode); 2661 config |= FF_CLK_SW_RST_DIS; 2662 msm_host_writel(msm_host, config, host, 2663 msm_offset->core_hc_mode); 2664 } 2665 2666 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2667 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2668 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2669 SDHCI_VENDOR_VER_SHIFT)); 2670 2671 core_version = msm_host_readl(msm_host, host, 2672 msm_offset->core_mci_version); 2673 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2674 CORE_VERSION_MAJOR_SHIFT; 2675 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2676 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2677 core_version, core_major, core_minor); 2678 2679 if (core_major == 1 && core_minor >= 0x42) 2680 msm_host->use_14lpp_dll_reset = true; 2681 2682 /* 2683 * SDCC 5 controller with major version 1, minor version 0x34 and later 2684 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2685 */ 2686 if (core_major == 1 && core_minor < 0x34) 2687 msm_host->use_cdclp533 = true; 2688 2689 /* 2690 * Support for some capabilities is not advertised by newer 2691 * controller versions and must be explicitly enabled. 2692 */ 2693 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2694 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2695 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2696 writel_relaxed(config, host->ioaddr + 2697 msm_offset->core_vendor_spec_capabilities0); 2698 } 2699 2700 if (core_major == 1 && core_minor >= 0x49) 2701 msm_host->updated_ddr_cfg = true; 2702 2703 if (core_major == 1 && core_minor >= 0x71) 2704 msm_host->uses_tassadar_dll = true; 2705 2706 ret = sdhci_msm_register_vreg(msm_host); 2707 if (ret) 2708 goto clk_disable; 2709 2710 /* 2711 * Power on reset state may trigger power irq if previous status of 2712 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2713 * interrupt in GIC, any pending power irq interrupt should be 2714 * acknowledged. Otherwise power irq interrupt handler would be 2715 * fired prematurely. 2716 */ 2717 sdhci_msm_handle_pwr_irq(host, 0); 2718 2719 /* 2720 * Ensure that above writes are propagated before interrupt enablement 2721 * in GIC. 2722 */ 2723 mb(); 2724 2725 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2726 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2727 if (msm_host->pwr_irq < 0) { 2728 ret = msm_host->pwr_irq; 2729 goto clk_disable; 2730 } 2731 2732 sdhci_msm_init_pwr_irq_wait(msm_host); 2733 /* Enable pwr irq interrupts */ 2734 msm_host_writel(msm_host, INT_MASK, host, 2735 msm_offset->core_pwrctl_mask); 2736 2737 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2738 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2739 dev_name(&pdev->dev), host); 2740 if (ret) { 2741 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2742 goto clk_disable; 2743 } 2744 2745 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2746 2747 /* Set the timeout value to max possible */ 2748 host->max_timeout_count = 0xF; 2749 2750 pm_runtime_get_noresume(&pdev->dev); 2751 pm_runtime_set_active(&pdev->dev); 2752 pm_runtime_enable(&pdev->dev); 2753 pm_runtime_set_autosuspend_delay(&pdev->dev, 2754 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2755 pm_runtime_use_autosuspend(&pdev->dev); 2756 2757 host->mmc_host_ops.start_signal_voltage_switch = 2758 sdhci_msm_start_signal_voltage_switch; 2759 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2760 if (of_property_read_bool(node, "supports-cqe")) 2761 ret = sdhci_msm_cqe_add_host(host, pdev); 2762 else 2763 ret = sdhci_add_host(host); 2764 if (ret) 2765 goto pm_runtime_disable; 2766 2767 pm_runtime_put_autosuspend(&pdev->dev); 2768 2769 return 0; 2770 2771 pm_runtime_disable: 2772 pm_runtime_disable(&pdev->dev); 2773 pm_runtime_set_suspended(&pdev->dev); 2774 pm_runtime_put_noidle(&pdev->dev); 2775 clk_disable: 2776 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2777 msm_host->bulk_clks); 2778 bus_clk_disable: 2779 if (!IS_ERR(msm_host->bus_clk)) 2780 clk_disable_unprepare(msm_host->bus_clk); 2781 return ret; 2782 } 2783 2784 static void sdhci_msm_remove(struct platform_device *pdev) 2785 { 2786 struct sdhci_host *host = platform_get_drvdata(pdev); 2787 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2788 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2789 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2790 0xffffffff); 2791 2792 sdhci_remove_host(host, dead); 2793 2794 pm_runtime_get_sync(&pdev->dev); 2795 pm_runtime_disable(&pdev->dev); 2796 pm_runtime_put_noidle(&pdev->dev); 2797 2798 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2799 msm_host->bulk_clks); 2800 if (!IS_ERR(msm_host->bus_clk)) 2801 clk_disable_unprepare(msm_host->bus_clk); 2802 } 2803 2804 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2805 { 2806 struct sdhci_host *host = dev_get_drvdata(dev); 2807 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2808 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2809 unsigned long flags; 2810 2811 spin_lock_irqsave(&host->lock, flags); 2812 host->runtime_suspended = true; 2813 spin_unlock_irqrestore(&host->lock, flags); 2814 2815 /* Drop the performance vote */ 2816 dev_pm_opp_set_rate(dev, 0); 2817 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2818 msm_host->bulk_clks); 2819 2820 return sdhci_msm_ice_suspend(msm_host); 2821 } 2822 2823 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2824 { 2825 struct sdhci_host *host = dev_get_drvdata(dev); 2826 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2827 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2828 unsigned long flags; 2829 int ret; 2830 2831 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2832 msm_host->bulk_clks); 2833 if (ret) 2834 return ret; 2835 /* 2836 * Whenever core-clock is gated dynamically, it's needed to 2837 * restore the SDR DLL settings when the clock is ungated. 2838 */ 2839 if (msm_host->restore_dll_config && msm_host->clk_rate) { 2840 ret = sdhci_msm_restore_sdr_dll_config(host); 2841 if (ret) 2842 return ret; 2843 } 2844 2845 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2846 2847 ret = sdhci_msm_ice_resume(msm_host); 2848 if (ret) 2849 return ret; 2850 2851 spin_lock_irqsave(&host->lock, flags); 2852 host->runtime_suspended = false; 2853 spin_unlock_irqrestore(&host->lock, flags); 2854 2855 return ret; 2856 } 2857 2858 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2859 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2860 pm_runtime_force_resume) 2861 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2862 sdhci_msm_runtime_resume, 2863 NULL) 2864 }; 2865 2866 static struct platform_driver sdhci_msm_driver = { 2867 .probe = sdhci_msm_probe, 2868 .remove = sdhci_msm_remove, 2869 .driver = { 2870 .name = "sdhci_msm", 2871 .of_match_table = sdhci_msm_dt_match, 2872 .pm = &sdhci_msm_pm_ops, 2873 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2874 }, 2875 }; 2876 2877 module_platform_driver(sdhci_msm_driver); 2878 2879 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2880 MODULE_LICENSE("GPL v2"); 2881