xref: /linux/drivers/mmc/host/sdhci-msm.c (revision 20a2742e5784295b9197250b50c40f6d38a55880)
1 /*
2  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
3  *
4  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/delay.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24 
25 #include "sdhci-pltfm.h"
26 
27 #define CORE_MCI_VERSION		0x50
28 #define CORE_VERSION_MAJOR_SHIFT	28
29 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
30 #define CORE_VERSION_MINOR_MASK		0xff
31 
32 #define CORE_HC_MODE		0x78
33 #define HC_MODE_EN		0x1
34 #define CORE_POWER		0x0
35 #define CORE_SW_RST		BIT(7)
36 #define FF_CLK_SW_RST_DIS	BIT(13)
37 
38 #define CORE_PWRCTL_STATUS	0xdc
39 #define CORE_PWRCTL_MASK	0xe0
40 #define CORE_PWRCTL_CLEAR	0xe4
41 #define CORE_PWRCTL_CTL		0xe8
42 #define CORE_PWRCTL_BUS_OFF	BIT(0)
43 #define CORE_PWRCTL_BUS_ON	BIT(1)
44 #define CORE_PWRCTL_IO_LOW	BIT(2)
45 #define CORE_PWRCTL_IO_HIGH	BIT(3)
46 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
47 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
48 #define REQ_BUS_OFF		BIT(0)
49 #define REQ_BUS_ON		BIT(1)
50 #define REQ_IO_LOW		BIT(2)
51 #define REQ_IO_HIGH		BIT(3)
52 #define INT_MASK		0xf
53 #define MAX_PHASES		16
54 #define CORE_DLL_LOCK		BIT(7)
55 #define CORE_DDR_DLL_LOCK	BIT(11)
56 #define CORE_DLL_EN		BIT(16)
57 #define CORE_CDR_EN		BIT(17)
58 #define CORE_CK_OUT_EN		BIT(18)
59 #define CORE_CDR_EXT_EN		BIT(19)
60 #define CORE_DLL_PDN		BIT(29)
61 #define CORE_DLL_RST		BIT(30)
62 #define CORE_DLL_CONFIG		0x100
63 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
64 #define CORE_DLL_STATUS		0x108
65 
66 #define CORE_DLL_CONFIG_2	0x1b4
67 #define CORE_DDR_CAL_EN		BIT(0)
68 #define CORE_FLL_CYCLE_CNT	BIT(18)
69 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
70 
71 #define CORE_VENDOR_SPEC	0x10c
72 #define CORE_VENDOR_SPEC_POR_VAL	0xa1c
73 #define CORE_CLK_PWRSAVE	BIT(1)
74 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
75 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
76 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
77 #define CORE_HC_SELECT_IN_EN	BIT(18)
78 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
79 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
80 
81 #define CORE_CSR_CDC_CTLR_CFG0		0x130
82 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
83 #define CORE_HW_AUTOCAL_ENA		BIT(17)
84 
85 #define CORE_CSR_CDC_CTLR_CFG1		0x134
86 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
87 #define CORE_TIMER_ENA			BIT(16)
88 
89 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
90 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
91 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
92 #define CORE_CDC_OFFSET_CFG		0x14C
93 #define CORE_CSR_CDC_DELAY_CFG		0x150
94 #define CORE_CDC_SLAVE_DDA_CFG		0x160
95 #define CORE_CSR_CDC_STATUS0		0x164
96 #define CORE_CALIBRATION_DONE		BIT(0)
97 
98 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
99 
100 #define CORE_CSR_CDC_GEN_CFG		0x178
101 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
102 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
103 
104 #define CORE_DDR_200_CFG		0x184
105 #define CORE_CDC_T4_DLY_SEL		BIT(0)
106 #define CORE_CMDIN_RCLK_EN		BIT(1)
107 #define CORE_START_CDC_TRAFFIC		BIT(6)
108 #define CORE_VENDOR_SPEC3	0x1b0
109 #define CORE_PWRSAVE_DLL	BIT(3)
110 
111 #define CORE_DDR_CONFIG		0x1b8
112 #define DDR_CONFIG_POR_VAL	0x80040853
113 
114 #define CORE_VENDOR_SPEC_CAPABILITIES0	0x11c
115 
116 #define INVALID_TUNING_PHASE	-1
117 #define SDHCI_MSM_MIN_CLOCK	400000
118 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
119 
120 #define CDR_SELEXT_SHIFT	20
121 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
122 #define CMUX_SHIFT_PHASE_SHIFT	24
123 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
124 
125 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
126 
127 /* Timeout value to avoid infinite waiting for pwr_irq */
128 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
129 
130 struct sdhci_msm_host {
131 	struct platform_device *pdev;
132 	void __iomem *core_mem;	/* MSM SDCC mapped address */
133 	int pwr_irq;		/* power irq */
134 	struct clk *bus_clk;	/* SDHC bus voter clock */
135 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
136 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
137 	unsigned long clk_rate;
138 	struct mmc_host *mmc;
139 	bool use_14lpp_dll_reset;
140 	bool tuning_done;
141 	bool calibration_done;
142 	u8 saved_tuning_phase;
143 	bool use_cdclp533;
144 	u32 curr_pwr_state;
145 	u32 curr_io_level;
146 	wait_queue_head_t pwr_irq_wait;
147 	bool pwr_irq_flag;
148 };
149 
150 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
151 						    unsigned int clock)
152 {
153 	struct mmc_ios ios = host->mmc->ios;
154 	/*
155 	 * The SDHC requires internal clock frequency to be double the
156 	 * actual clock that will be set for DDR mode. The controller
157 	 * uses the faster clock(100/400MHz) for some of its parts and
158 	 * send the actual required clock (50/200MHz) to the card.
159 	 */
160 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
161 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
162 	    ios.timing == MMC_TIMING_MMC_HS400 ||
163 	    host->flags & SDHCI_HS400_TUNING)
164 		clock *= 2;
165 	return clock;
166 }
167 
168 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
169 					    unsigned int clock)
170 {
171 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
172 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
173 	struct mmc_ios curr_ios = host->mmc->ios;
174 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
175 	int rc;
176 
177 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
178 	rc = clk_set_rate(core_clk, clock);
179 	if (rc) {
180 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
181 		       mmc_hostname(host->mmc), clock,
182 		       curr_ios.timing);
183 		return;
184 	}
185 	msm_host->clk_rate = clock;
186 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
187 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
188 		 curr_ios.timing);
189 }
190 
191 /* Platform specific tuning */
192 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
193 {
194 	u32 wait_cnt = 50;
195 	u8 ck_out_en;
196 	struct mmc_host *mmc = host->mmc;
197 
198 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
199 	ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
200 			CORE_CK_OUT_EN);
201 
202 	while (ck_out_en != poll) {
203 		if (--wait_cnt == 0) {
204 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
205 			       mmc_hostname(mmc), poll);
206 			return -ETIMEDOUT;
207 		}
208 		udelay(1);
209 
210 		ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
211 				CORE_CK_OUT_EN);
212 	}
213 
214 	return 0;
215 }
216 
217 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
218 {
219 	int rc;
220 	static const u8 grey_coded_phase_table[] = {
221 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
222 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
223 	};
224 	unsigned long flags;
225 	u32 config;
226 	struct mmc_host *mmc = host->mmc;
227 
228 	if (phase > 0xf)
229 		return -EINVAL;
230 
231 	spin_lock_irqsave(&host->lock, flags);
232 
233 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
234 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
235 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
236 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
237 
238 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
239 	rc = msm_dll_poll_ck_out_en(host, 0);
240 	if (rc)
241 		goto err_out;
242 
243 	/*
244 	 * Write the selected DLL clock output phase (0 ... 15)
245 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
246 	 */
247 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
248 	config &= ~CDR_SELEXT_MASK;
249 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
250 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
251 
252 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
253 	config |= CORE_CK_OUT_EN;
254 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
255 
256 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
257 	rc = msm_dll_poll_ck_out_en(host, 1);
258 	if (rc)
259 		goto err_out;
260 
261 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
262 	config |= CORE_CDR_EN;
263 	config &= ~CORE_CDR_EXT_EN;
264 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
265 	goto out;
266 
267 err_out:
268 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
269 	       mmc_hostname(mmc), phase);
270 out:
271 	spin_unlock_irqrestore(&host->lock, flags);
272 	return rc;
273 }
274 
275 /*
276  * Find out the greatest range of consecuitive selected
277  * DLL clock output phases that can be used as sampling
278  * setting for SD3.0 UHS-I card read operation (in SDR104
279  * timing mode) or for eMMC4.5 card read operation (in
280  * HS400/HS200 timing mode).
281  * Select the 3/4 of the range and configure the DLL with the
282  * selected DLL clock output phase.
283  */
284 
285 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
286 					   u8 *phase_table, u8 total_phases)
287 {
288 	int ret;
289 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
290 	u8 phases_per_row[MAX_PHASES] = { 0 };
291 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
292 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
293 	bool phase_0_found = false, phase_15_found = false;
294 	struct mmc_host *mmc = host->mmc;
295 
296 	if (!total_phases || (total_phases > MAX_PHASES)) {
297 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
298 		       mmc_hostname(mmc), total_phases);
299 		return -EINVAL;
300 	}
301 
302 	for (cnt = 0; cnt < total_phases; cnt++) {
303 		ranges[row_index][col_index] = phase_table[cnt];
304 		phases_per_row[row_index] += 1;
305 		col_index++;
306 
307 		if ((cnt + 1) == total_phases) {
308 			continue;
309 		/* check if next phase in phase_table is consecutive or not */
310 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
311 			row_index++;
312 			col_index = 0;
313 		}
314 	}
315 
316 	if (row_index >= MAX_PHASES)
317 		return -EINVAL;
318 
319 	/* Check if phase-0 is present in first valid window? */
320 	if (!ranges[0][0]) {
321 		phase_0_found = true;
322 		phase_0_raw_index = 0;
323 		/* Check if cycle exist between 2 valid windows */
324 		for (cnt = 1; cnt <= row_index; cnt++) {
325 			if (phases_per_row[cnt]) {
326 				for (i = 0; i < phases_per_row[cnt]; i++) {
327 					if (ranges[cnt][i] == 15) {
328 						phase_15_found = true;
329 						phase_15_raw_index = cnt;
330 						break;
331 					}
332 				}
333 			}
334 		}
335 	}
336 
337 	/* If 2 valid windows form cycle then merge them as single window */
338 	if (phase_0_found && phase_15_found) {
339 		/* number of phases in raw where phase 0 is present */
340 		u8 phases_0 = phases_per_row[phase_0_raw_index];
341 		/* number of phases in raw where phase 15 is present */
342 		u8 phases_15 = phases_per_row[phase_15_raw_index];
343 
344 		if (phases_0 + phases_15 >= MAX_PHASES)
345 			/*
346 			 * If there are more than 1 phase windows then total
347 			 * number of phases in both the windows should not be
348 			 * more than or equal to MAX_PHASES.
349 			 */
350 			return -EINVAL;
351 
352 		/* Merge 2 cyclic windows */
353 		i = phases_15;
354 		for (cnt = 0; cnt < phases_0; cnt++) {
355 			ranges[phase_15_raw_index][i] =
356 			    ranges[phase_0_raw_index][cnt];
357 			if (++i >= MAX_PHASES)
358 				break;
359 		}
360 
361 		phases_per_row[phase_0_raw_index] = 0;
362 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
363 	}
364 
365 	for (cnt = 0; cnt <= row_index; cnt++) {
366 		if (phases_per_row[cnt] > curr_max) {
367 			curr_max = phases_per_row[cnt];
368 			selected_row_index = cnt;
369 		}
370 	}
371 
372 	i = (curr_max * 3) / 4;
373 	if (i)
374 		i--;
375 
376 	ret = ranges[selected_row_index][i];
377 
378 	if (ret >= MAX_PHASES) {
379 		ret = -EINVAL;
380 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
381 		       mmc_hostname(mmc), ret);
382 	}
383 
384 	return ret;
385 }
386 
387 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
388 {
389 	u32 mclk_freq = 0, config;
390 
391 	/* Program the MCLK value to MCLK_FREQ bit field */
392 	if (host->clock <= 112000000)
393 		mclk_freq = 0;
394 	else if (host->clock <= 125000000)
395 		mclk_freq = 1;
396 	else if (host->clock <= 137000000)
397 		mclk_freq = 2;
398 	else if (host->clock <= 150000000)
399 		mclk_freq = 3;
400 	else if (host->clock <= 162000000)
401 		mclk_freq = 4;
402 	else if (host->clock <= 175000000)
403 		mclk_freq = 5;
404 	else if (host->clock <= 187000000)
405 		mclk_freq = 6;
406 	else if (host->clock <= 200000000)
407 		mclk_freq = 7;
408 
409 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
410 	config &= ~CMUX_SHIFT_PHASE_MASK;
411 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
412 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
413 }
414 
415 /* Initialize the DLL (Programmable Delay Line) */
416 static int msm_init_cm_dll(struct sdhci_host *host)
417 {
418 	struct mmc_host *mmc = host->mmc;
419 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
420 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
421 	int wait_cnt = 50;
422 	unsigned long flags;
423 	u32 config;
424 
425 	spin_lock_irqsave(&host->lock, flags);
426 
427 	/*
428 	 * Make sure that clock is always enabled when DLL
429 	 * tuning is in progress. Keeping PWRSAVE ON may
430 	 * turn off the clock.
431 	 */
432 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
433 	config &= ~CORE_CLK_PWRSAVE;
434 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
435 
436 	if (msm_host->use_14lpp_dll_reset) {
437 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
438 		config &= ~CORE_CK_OUT_EN;
439 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
440 
441 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
442 		config |= CORE_DLL_CLOCK_DISABLE;
443 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
444 	}
445 
446 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
447 	config |= CORE_DLL_RST;
448 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
449 
450 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
451 	config |= CORE_DLL_PDN;
452 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
453 	msm_cm_dll_set_freq(host);
454 
455 	if (msm_host->use_14lpp_dll_reset &&
456 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
457 		u32 mclk_freq = 0;
458 
459 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
460 		config &= CORE_FLL_CYCLE_CNT;
461 		if (config)
462 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
463 					clk_get_rate(msm_host->xo_clk));
464 		else
465 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
466 					clk_get_rate(msm_host->xo_clk));
467 
468 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
469 		config &= ~(0xFF << 10);
470 		config |= mclk_freq << 10;
471 
472 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
473 		/* wait for 5us before enabling DLL clock */
474 		udelay(5);
475 	}
476 
477 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
478 	config &= ~CORE_DLL_RST;
479 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
480 
481 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
482 	config &= ~CORE_DLL_PDN;
483 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
484 
485 	if (msm_host->use_14lpp_dll_reset) {
486 		msm_cm_dll_set_freq(host);
487 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
488 		config &= ~CORE_DLL_CLOCK_DISABLE;
489 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
490 	}
491 
492 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
493 	config |= CORE_DLL_EN;
494 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
495 
496 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
497 	config |= CORE_CK_OUT_EN;
498 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
499 
500 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
501 	while (!(readl_relaxed(host->ioaddr + CORE_DLL_STATUS) &
502 		 CORE_DLL_LOCK)) {
503 		/* max. wait for 50us sec for LOCK bit to be set */
504 		if (--wait_cnt == 0) {
505 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
506 			       mmc_hostname(mmc));
507 			spin_unlock_irqrestore(&host->lock, flags);
508 			return -ETIMEDOUT;
509 		}
510 		udelay(1);
511 	}
512 
513 	spin_unlock_irqrestore(&host->lock, flags);
514 	return 0;
515 }
516 
517 static void msm_hc_select_default(struct sdhci_host *host)
518 {
519 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
520 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
521 	u32 config;
522 
523 	if (!msm_host->use_cdclp533) {
524 		config = readl_relaxed(host->ioaddr +
525 				CORE_VENDOR_SPEC3);
526 		config &= ~CORE_PWRSAVE_DLL;
527 		writel_relaxed(config, host->ioaddr +
528 				CORE_VENDOR_SPEC3);
529 	}
530 
531 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
532 	config &= ~CORE_HC_MCLK_SEL_MASK;
533 	config |= CORE_HC_MCLK_SEL_DFLT;
534 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
535 
536 	/*
537 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
538 	 * configuration from Host Control2 register for all other
539 	 * modes.
540 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
541 	 * in VENDOR_SPEC_FUNC
542 	 */
543 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
544 	config &= ~CORE_HC_SELECT_IN_EN;
545 	config &= ~CORE_HC_SELECT_IN_MASK;
546 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
547 
548 	/*
549 	 * Make sure above writes impacting free running MCLK are completed
550 	 * before changing the clk_rate at GCC.
551 	 */
552 	wmb();
553 }
554 
555 static void msm_hc_select_hs400(struct sdhci_host *host)
556 {
557 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
558 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
559 	struct mmc_ios ios = host->mmc->ios;
560 	u32 config, dll_lock;
561 	int rc;
562 
563 	/* Select the divided clock (free running MCLK/2) */
564 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
565 	config &= ~CORE_HC_MCLK_SEL_MASK;
566 	config |= CORE_HC_MCLK_SEL_HS400;
567 
568 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
569 	/*
570 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
571 	 * register
572 	 */
573 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
574 	    !msm_host->calibration_done) {
575 		config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
576 		config |= CORE_HC_SELECT_IN_HS400;
577 		config |= CORE_HC_SELECT_IN_EN;
578 		writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
579 	}
580 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
581 		/*
582 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
583 		 * CORE_DLL_STATUS to be set.  This should get set
584 		 * within 15 us at 200 MHz.
585 		 */
586 		rc = readl_relaxed_poll_timeout(host->ioaddr +
587 						CORE_DLL_STATUS,
588 						dll_lock,
589 						(dll_lock &
590 						(CORE_DLL_LOCK |
591 						CORE_DDR_DLL_LOCK)), 10,
592 						1000);
593 		if (rc == -ETIMEDOUT)
594 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
595 			       mmc_hostname(host->mmc), dll_lock);
596 	}
597 	/*
598 	 * Make sure above writes impacting free running MCLK are completed
599 	 * before changing the clk_rate at GCC.
600 	 */
601 	wmb();
602 }
603 
604 /*
605  * sdhci_msm_hc_select_mode :- In general all timing modes are
606  * controlled via UHS mode select in Host Control2 register.
607  * eMMC specific HS200/HS400 doesn't have their respective modes
608  * defined here, hence we use these values.
609  *
610  * HS200 - SDR104 (Since they both are equivalent in functionality)
611  * HS400 - This involves multiple configurations
612  *		Initially SDR104 - when tuning is required as HS200
613  *		Then when switching to DDR @ 400MHz (HS400) we use
614  *		the vendor specific HC_SELECT_IN to control the mode.
615  *
616  * In addition to controlling the modes we also need to select the
617  * correct input clock for DLL depending on the mode.
618  *
619  * HS400 - divided clock (free running MCLK/2)
620  * All other modes - default (free running MCLK)
621  */
622 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
623 {
624 	struct mmc_ios ios = host->mmc->ios;
625 
626 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
627 	    host->flags & SDHCI_HS400_TUNING)
628 		msm_hc_select_hs400(host);
629 	else
630 		msm_hc_select_default(host);
631 }
632 
633 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
634 {
635 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
636 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
637 	u32 config, calib_done;
638 	int ret;
639 
640 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
641 
642 	/*
643 	 * Retuning in HS400 (DDR mode) will fail, just reset the
644 	 * tuning block and restore the saved tuning phase.
645 	 */
646 	ret = msm_init_cm_dll(host);
647 	if (ret)
648 		goto out;
649 
650 	/* Set the selected phase in delay line hw block */
651 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
652 	if (ret)
653 		goto out;
654 
655 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
656 	config |= CORE_CMD_DAT_TRACK_SEL;
657 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
658 
659 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
660 	config &= ~CORE_CDC_T4_DLY_SEL;
661 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
662 
663 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
664 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
665 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
666 
667 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
668 	config |= CORE_CDC_SWITCH_RC_EN;
669 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
670 
671 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
672 	config &= ~CORE_START_CDC_TRAFFIC;
673 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
674 
675 	/* Perform CDC Register Initialization Sequence */
676 
677 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
678 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
679 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
680 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
681 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
682 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
683 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
684 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
685 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
686 
687 	/* CDC HW Calibration */
688 
689 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
690 	config |= CORE_SW_TRIG_FULL_CALIB;
691 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
692 
693 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
694 	config &= ~CORE_SW_TRIG_FULL_CALIB;
695 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
696 
697 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
698 	config |= CORE_HW_AUTOCAL_ENA;
699 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
700 
701 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
702 	config |= CORE_TIMER_ENA;
703 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
704 
705 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
706 					 calib_done,
707 					 (calib_done & CORE_CALIBRATION_DONE),
708 					 1, 50);
709 
710 	if (ret == -ETIMEDOUT) {
711 		pr_err("%s: %s: CDC calibration was not completed\n",
712 		       mmc_hostname(host->mmc), __func__);
713 		goto out;
714 	}
715 
716 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
717 			& CORE_CDC_ERROR_CODE_MASK;
718 	if (ret) {
719 		pr_err("%s: %s: CDC error code %d\n",
720 		       mmc_hostname(host->mmc), __func__, ret);
721 		ret = -EINVAL;
722 		goto out;
723 	}
724 
725 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
726 	config |= CORE_START_CDC_TRAFFIC;
727 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
728 out:
729 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
730 		 __func__, ret);
731 	return ret;
732 }
733 
734 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
735 {
736 	struct mmc_host *mmc = host->mmc;
737 	u32 dll_status, config;
738 	int ret;
739 
740 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
741 
742 	/*
743 	 * Currently the CORE_DDR_CONFIG register defaults to desired
744 	 * configuration on reset. Currently reprogramming the power on
745 	 * reset (POR) value in case it might have been modified by
746 	 * bootloaders. In the future, if this changes, then the desired
747 	 * values will need to be programmed appropriately.
748 	 */
749 	writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + CORE_DDR_CONFIG);
750 
751 	if (mmc->ios.enhanced_strobe) {
752 		config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
753 		config |= CORE_CMDIN_RCLK_EN;
754 		writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
755 	}
756 
757 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
758 	config |= CORE_DDR_CAL_EN;
759 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
760 
761 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_DLL_STATUS,
762 					 dll_status,
763 					 (dll_status & CORE_DDR_DLL_LOCK),
764 					 10, 1000);
765 
766 	if (ret == -ETIMEDOUT) {
767 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
768 		       mmc_hostname(host->mmc), __func__);
769 		goto out;
770 	}
771 
772 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC3);
773 	config |= CORE_PWRSAVE_DLL;
774 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC3);
775 
776 	/*
777 	 * Drain writebuffer to ensure above DLL calibration
778 	 * and PWRSAVE DLL is enabled.
779 	 */
780 	wmb();
781 out:
782 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
783 		 __func__, ret);
784 	return ret;
785 }
786 
787 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
788 {
789 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
790 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
791 	struct mmc_host *mmc = host->mmc;
792 	int ret;
793 	u32 config;
794 
795 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
796 
797 	/*
798 	 * Retuning in HS400 (DDR mode) will fail, just reset the
799 	 * tuning block and restore the saved tuning phase.
800 	 */
801 	ret = msm_init_cm_dll(host);
802 	if (ret)
803 		goto out;
804 
805 	if (!mmc->ios.enhanced_strobe) {
806 		/* Set the selected phase in delay line hw block */
807 		ret = msm_config_cm_dll_phase(host,
808 					      msm_host->saved_tuning_phase);
809 		if (ret)
810 			goto out;
811 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
812 		config |= CORE_CMD_DAT_TRACK_SEL;
813 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
814 	}
815 
816 	if (msm_host->use_cdclp533)
817 		ret = sdhci_msm_cdclp533_calibration(host);
818 	else
819 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
820 out:
821 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
822 		 __func__, ret);
823 	return ret;
824 }
825 
826 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
827 {
828 	struct sdhci_host *host = mmc_priv(mmc);
829 	int tuning_seq_cnt = 3;
830 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
831 	int rc;
832 	struct mmc_ios ios = host->mmc->ios;
833 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
834 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
835 
836 	/*
837 	 * Tuning is required for SDR104, HS200 and HS400 cards and
838 	 * if clock frequency is greater than 100MHz in these modes.
839 	 */
840 	if (host->clock <= CORE_FREQ_100MHZ ||
841 	    !(ios.timing == MMC_TIMING_MMC_HS400 ||
842 	    ios.timing == MMC_TIMING_MMC_HS200 ||
843 	    ios.timing == MMC_TIMING_UHS_SDR104))
844 		return 0;
845 
846 	/*
847 	 * For HS400 tuning in HS200 timing requires:
848 	 * - select MCLK/2 in VENDOR_SPEC
849 	 * - program MCLK to 400MHz (or nearest supported) in GCC
850 	 */
851 	if (host->flags & SDHCI_HS400_TUNING) {
852 		sdhci_msm_hc_select_mode(host);
853 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
854 		host->flags &= ~SDHCI_HS400_TUNING;
855 	}
856 
857 retry:
858 	/* First of all reset the tuning block */
859 	rc = msm_init_cm_dll(host);
860 	if (rc)
861 		return rc;
862 
863 	phase = 0;
864 	do {
865 		/* Set the phase in delay line hw block */
866 		rc = msm_config_cm_dll_phase(host, phase);
867 		if (rc)
868 			return rc;
869 
870 		msm_host->saved_tuning_phase = phase;
871 		rc = mmc_send_tuning(mmc, opcode, NULL);
872 		if (!rc) {
873 			/* Tuning is successful at this tuning point */
874 			tuned_phases[tuned_phase_cnt++] = phase;
875 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
876 				 mmc_hostname(mmc), phase);
877 		}
878 	} while (++phase < ARRAY_SIZE(tuned_phases));
879 
880 	if (tuned_phase_cnt) {
881 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
882 						     tuned_phase_cnt);
883 		if (rc < 0)
884 			return rc;
885 		else
886 			phase = rc;
887 
888 		/*
889 		 * Finally set the selected phase in delay
890 		 * line hw block.
891 		 */
892 		rc = msm_config_cm_dll_phase(host, phase);
893 		if (rc)
894 			return rc;
895 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
896 			 mmc_hostname(mmc), phase);
897 	} else {
898 		if (--tuning_seq_cnt)
899 			goto retry;
900 		/* Tuning failed */
901 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
902 		       mmc_hostname(mmc));
903 		rc = -EIO;
904 	}
905 
906 	if (!rc)
907 		msm_host->tuning_done = true;
908 	return rc;
909 }
910 
911 /*
912  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
913  * This needs to be done for both tuning and enhanced_strobe mode.
914  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
915  * fixed feedback clock is used.
916  */
917 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
918 {
919 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
920 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
921 	int ret;
922 
923 	if (host->clock > CORE_FREQ_100MHZ &&
924 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
925 	    !msm_host->calibration_done) {
926 		ret = sdhci_msm_hs400_dll_calibration(host);
927 		if (!ret)
928 			msm_host->calibration_done = true;
929 		else
930 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
931 			       mmc_hostname(host->mmc), ret);
932 	}
933 }
934 
935 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
936 					unsigned int uhs)
937 {
938 	struct mmc_host *mmc = host->mmc;
939 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
940 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
941 	u16 ctrl_2;
942 	u32 config;
943 
944 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
945 	/* Select Bus Speed Mode for host */
946 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
947 	switch (uhs) {
948 	case MMC_TIMING_UHS_SDR12:
949 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
950 		break;
951 	case MMC_TIMING_UHS_SDR25:
952 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
953 		break;
954 	case MMC_TIMING_UHS_SDR50:
955 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
956 		break;
957 	case MMC_TIMING_MMC_HS400:
958 	case MMC_TIMING_MMC_HS200:
959 	case MMC_TIMING_UHS_SDR104:
960 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
961 		break;
962 	case MMC_TIMING_UHS_DDR50:
963 	case MMC_TIMING_MMC_DDR52:
964 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
965 		break;
966 	}
967 
968 	/*
969 	 * When clock frequency is less than 100MHz, the feedback clock must be
970 	 * provided and DLL must not be used so that tuning can be skipped. To
971 	 * provide feedback clock, the mode selection can be any value less
972 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
973 	 */
974 	if (host->clock <= CORE_FREQ_100MHZ) {
975 		if (uhs == MMC_TIMING_MMC_HS400 ||
976 		    uhs == MMC_TIMING_MMC_HS200 ||
977 		    uhs == MMC_TIMING_UHS_SDR104)
978 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
979 		/*
980 		 * DLL is not required for clock <= 100MHz
981 		 * Thus, make sure DLL it is disabled when not required
982 		 */
983 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
984 		config |= CORE_DLL_RST;
985 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
986 
987 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
988 		config |= CORE_DLL_PDN;
989 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
990 
991 		/*
992 		 * The DLL needs to be restored and CDCLP533 recalibrated
993 		 * when the clock frequency is set back to 400MHz.
994 		 */
995 		msm_host->calibration_done = false;
996 	}
997 
998 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
999 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1000 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1001 
1002 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1003 		sdhci_msm_hs400(host, &mmc->ios);
1004 }
1005 
1006 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1007 {
1008 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1009 }
1010 
1011 static inline void sdhci_msm_complete_pwr_irq_wait(
1012 		struct sdhci_msm_host *msm_host)
1013 {
1014 	wake_up(&msm_host->pwr_irq_wait);
1015 }
1016 
1017 /*
1018  * sdhci_msm_check_power_status API should be called when registers writes
1019  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1020  * To what state the register writes will change the IO lines should be passed
1021  * as the argument req_type. This API will check whether the IO line's state
1022  * is already the expected state and will wait for power irq only if
1023  * power irq is expected to be trigerred based on the current IO line state
1024  * and expected IO line state.
1025  */
1026 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1027 {
1028 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1029 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1030 	bool done = false;
1031 
1032 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1033 			mmc_hostname(host->mmc), __func__, req_type,
1034 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1035 
1036 	/*
1037 	 * The IRQ for request type IO High/LOW will be generated when -
1038 	 * there is a state change in 1.8V enable bit (bit 3) of
1039 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1040 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1041 	 * to set it to 3.3V before card detection happens, the
1042 	 * IRQ doesn't get triggered as there is no state change in this bit.
1043 	 * The driver already handles this case by changing the IO voltage
1044 	 * level to high as part of controller power up sequence. Hence, check
1045 	 * for host->pwr to handle a case where IO voltage high request is
1046 	 * issued even before controller power up.
1047 	 */
1048 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1049 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1050 				mmc_hostname(host->mmc), req_type);
1051 		return;
1052 	}
1053 	if ((req_type & msm_host->curr_pwr_state) ||
1054 			(req_type & msm_host->curr_io_level))
1055 		done = true;
1056 	/*
1057 	 * This is needed here to handle cases where register writes will
1058 	 * not change the current bus state or io level of the controller.
1059 	 * In this case, no power irq will be triggerred and we should
1060 	 * not wait.
1061 	 */
1062 	if (!done) {
1063 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1064 				msm_host->pwr_irq_flag,
1065 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1066 			dev_warn(&msm_host->pdev->dev,
1067 				 "%s: pwr_irq for req: (%d) timed out\n",
1068 				 mmc_hostname(host->mmc), req_type);
1069 	}
1070 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1071 			__func__, req_type);
1072 }
1073 
1074 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1075 {
1076 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1077 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1078 
1079 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1080 			mmc_hostname(host->mmc),
1081 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS),
1082 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_MASK),
1083 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_CTL));
1084 }
1085 
1086 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1087 {
1088 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1089 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1090 	u32 irq_status, irq_ack = 0;
1091 	int retry = 10;
1092 	int pwr_state = 0, io_level = 0;
1093 
1094 
1095 	irq_status = readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS);
1096 	irq_status &= INT_MASK;
1097 
1098 	writel_relaxed(irq_status, msm_host->core_mem + CORE_PWRCTL_CLEAR);
1099 
1100 	/*
1101 	 * There is a rare HW scenario where the first clear pulse could be
1102 	 * lost when actual reset and clear/read of status register is
1103 	 * happening at a time. Hence, retry for at least 10 times to make
1104 	 * sure status register is cleared. Otherwise, this will result in
1105 	 * a spurious power IRQ resulting in system instability.
1106 	 */
1107 	while (irq_status & readl_relaxed(msm_host->core_mem +
1108 				CORE_PWRCTL_STATUS)) {
1109 		if (retry == 0) {
1110 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1111 					mmc_hostname(host->mmc), irq_status);
1112 			sdhci_msm_dump_pwr_ctrl_regs(host);
1113 			WARN_ON(1);
1114 			break;
1115 		}
1116 		writel_relaxed(irq_status,
1117 				msm_host->core_mem + CORE_PWRCTL_CLEAR);
1118 		retry--;
1119 		udelay(10);
1120 	}
1121 
1122 	/* Handle BUS ON/OFF*/
1123 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1124 		pwr_state = REQ_BUS_ON;
1125 		io_level = REQ_IO_HIGH;
1126 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1127 	}
1128 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1129 		pwr_state = REQ_BUS_OFF;
1130 		io_level = REQ_IO_LOW;
1131 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1132 	}
1133 	/* Handle IO LOW/HIGH */
1134 	if (irq_status & CORE_PWRCTL_IO_LOW) {
1135 		io_level = REQ_IO_LOW;
1136 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1137 	}
1138 	if (irq_status & CORE_PWRCTL_IO_HIGH) {
1139 		io_level = REQ_IO_HIGH;
1140 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1141 	}
1142 
1143 	/*
1144 	 * The driver has to acknowledge the interrupt, switch voltages and
1145 	 * report back if it succeded or not to this register. The voltage
1146 	 * switches are handled by the sdhci core, so just report success.
1147 	 */
1148 	writel_relaxed(irq_ack, msm_host->core_mem + CORE_PWRCTL_CTL);
1149 
1150 	if (pwr_state)
1151 		msm_host->curr_pwr_state = pwr_state;
1152 	if (io_level)
1153 		msm_host->curr_io_level = io_level;
1154 
1155 	pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1156 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1157 		irq_ack);
1158 }
1159 
1160 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1161 {
1162 	struct sdhci_host *host = (struct sdhci_host *)data;
1163 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1164 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1165 
1166 	sdhci_msm_handle_pwr_irq(host, irq);
1167 	msm_host->pwr_irq_flag = 1;
1168 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1169 
1170 
1171 	return IRQ_HANDLED;
1172 }
1173 
1174 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1175 {
1176 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1177 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1178 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1179 
1180 	return clk_round_rate(core_clk, ULONG_MAX);
1181 }
1182 
1183 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1184 {
1185 	return SDHCI_MSM_MIN_CLOCK;
1186 }
1187 
1188 /**
1189  * __sdhci_msm_set_clock - sdhci_msm clock control.
1190  *
1191  * Description:
1192  * MSM controller does not use internal divider and
1193  * instead directly control the GCC clock as per
1194  * HW recommendation.
1195  **/
1196 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1197 {
1198 	u16 clk;
1199 	/*
1200 	 * Keep actual_clock as zero -
1201 	 * - since there is no divider used so no need of having actual_clock.
1202 	 * - MSM controller uses SDCLK for data timeout calculation. If
1203 	 *   actual_clock is zero, host->clock is taken for calculation.
1204 	 */
1205 	host->mmc->actual_clock = 0;
1206 
1207 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1208 
1209 	if (clock == 0)
1210 		return;
1211 
1212 	/*
1213 	 * MSM controller do not use clock divider.
1214 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1215 	 * clock with no divider value programmed.
1216 	 */
1217 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1218 	sdhci_enable_clk(host, clk);
1219 }
1220 
1221 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1222 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1223 {
1224 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1225 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1226 
1227 	if (!clock) {
1228 		msm_host->clk_rate = clock;
1229 		goto out;
1230 	}
1231 
1232 	sdhci_msm_hc_select_mode(host);
1233 
1234 	msm_set_clock_rate_for_bus_mode(host, clock);
1235 out:
1236 	__sdhci_msm_set_clock(host, clock);
1237 }
1238 
1239 /*
1240  * Platform specific register write functions. This is so that, if any
1241  * register write needs to be followed up by platform specific actions,
1242  * they can be added here. These functions can go to sleep when writes
1243  * to certain registers are done.
1244  * These functions are relying on sdhci_set_ios not using spinlock.
1245  */
1246 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1247 {
1248 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1249 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1250 	u32 req_type = 0;
1251 
1252 	switch (reg) {
1253 	case SDHCI_HOST_CONTROL2:
1254 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1255 			REQ_IO_HIGH;
1256 		break;
1257 	case SDHCI_SOFTWARE_RESET:
1258 		if (host->pwr && (val & SDHCI_RESET_ALL))
1259 			req_type = REQ_BUS_OFF;
1260 		break;
1261 	case SDHCI_POWER_CONTROL:
1262 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1263 		break;
1264 	}
1265 
1266 	if (req_type) {
1267 		msm_host->pwr_irq_flag = 0;
1268 		/*
1269 		 * Since this register write may trigger a power irq, ensure
1270 		 * all previous register writes are complete by this point.
1271 		 */
1272 		mb();
1273 	}
1274 	return req_type;
1275 }
1276 
1277 /* This function may sleep*/
1278 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1279 {
1280 	u32 req_type = 0;
1281 
1282 	req_type = __sdhci_msm_check_write(host, val, reg);
1283 	writew_relaxed(val, host->ioaddr + reg);
1284 
1285 	if (req_type)
1286 		sdhci_msm_check_power_status(host, req_type);
1287 }
1288 
1289 /* This function may sleep*/
1290 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1291 {
1292 	u32 req_type = 0;
1293 
1294 	req_type = __sdhci_msm_check_write(host, val, reg);
1295 
1296 	writeb_relaxed(val, host->ioaddr + reg);
1297 
1298 	if (req_type)
1299 		sdhci_msm_check_power_status(host, req_type);
1300 }
1301 
1302 static const struct of_device_id sdhci_msm_dt_match[] = {
1303 	{ .compatible = "qcom,sdhci-msm-v4" },
1304 	{},
1305 };
1306 
1307 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1308 
1309 static const struct sdhci_ops sdhci_msm_ops = {
1310 	.reset = sdhci_reset,
1311 	.set_clock = sdhci_msm_set_clock,
1312 	.get_min_clock = sdhci_msm_get_min_clock,
1313 	.get_max_clock = sdhci_msm_get_max_clock,
1314 	.set_bus_width = sdhci_set_bus_width,
1315 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1316 	.write_w = sdhci_msm_writew,
1317 	.write_b = sdhci_msm_writeb,
1318 };
1319 
1320 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1321 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1322 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1323 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
1324 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
1325 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1326 	.ops = &sdhci_msm_ops,
1327 };
1328 
1329 static int sdhci_msm_probe(struct platform_device *pdev)
1330 {
1331 	struct sdhci_host *host;
1332 	struct sdhci_pltfm_host *pltfm_host;
1333 	struct sdhci_msm_host *msm_host;
1334 	struct resource *core_memres;
1335 	struct clk *clk;
1336 	int ret;
1337 	u16 host_version, core_minor;
1338 	u32 core_version, config;
1339 	u8 core_major;
1340 
1341 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1342 	if (IS_ERR(host))
1343 		return PTR_ERR(host);
1344 
1345 	host->sdma_boundary = 0;
1346 	pltfm_host = sdhci_priv(host);
1347 	msm_host = sdhci_pltfm_priv(pltfm_host);
1348 	msm_host->mmc = host->mmc;
1349 	msm_host->pdev = pdev;
1350 
1351 	ret = mmc_of_parse(host->mmc);
1352 	if (ret)
1353 		goto pltfm_free;
1354 
1355 	sdhci_get_of_property(pdev);
1356 
1357 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1358 
1359 	/* Setup SDCC bus voter clock. */
1360 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1361 	if (!IS_ERR(msm_host->bus_clk)) {
1362 		/* Vote for max. clk rate for max. performance */
1363 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1364 		if (ret)
1365 			goto pltfm_free;
1366 		ret = clk_prepare_enable(msm_host->bus_clk);
1367 		if (ret)
1368 			goto pltfm_free;
1369 	}
1370 
1371 	/* Setup main peripheral bus clock */
1372 	clk = devm_clk_get(&pdev->dev, "iface");
1373 	if (IS_ERR(clk)) {
1374 		ret = PTR_ERR(clk);
1375 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1376 		goto bus_clk_disable;
1377 	}
1378 	msm_host->bulk_clks[1].clk = clk;
1379 
1380 	/* Setup SDC MMC clock */
1381 	clk = devm_clk_get(&pdev->dev, "core");
1382 	if (IS_ERR(clk)) {
1383 		ret = PTR_ERR(clk);
1384 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1385 		goto bus_clk_disable;
1386 	}
1387 	msm_host->bulk_clks[0].clk = clk;
1388 
1389 	/* Vote for maximum clock rate for maximum performance */
1390 	ret = clk_set_rate(clk, INT_MAX);
1391 	if (ret)
1392 		dev_warn(&pdev->dev, "core clock boost failed\n");
1393 
1394 	clk = devm_clk_get(&pdev->dev, "cal");
1395 	if (IS_ERR(clk))
1396 		clk = NULL;
1397 	msm_host->bulk_clks[2].clk = clk;
1398 
1399 	clk = devm_clk_get(&pdev->dev, "sleep");
1400 	if (IS_ERR(clk))
1401 		clk = NULL;
1402 	msm_host->bulk_clks[3].clk = clk;
1403 
1404 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1405 				      msm_host->bulk_clks);
1406 	if (ret)
1407 		goto bus_clk_disable;
1408 
1409 	/*
1410 	 * xo clock is needed for FLL feature of cm_dll.
1411 	 * In case if xo clock is not mentioned in DT, warn and proceed.
1412 	 */
1413 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1414 	if (IS_ERR(msm_host->xo_clk)) {
1415 		ret = PTR_ERR(msm_host->xo_clk);
1416 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1417 	}
1418 
1419 	core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1420 	msm_host->core_mem = devm_ioremap_resource(&pdev->dev, core_memres);
1421 
1422 	if (IS_ERR(msm_host->core_mem)) {
1423 		dev_err(&pdev->dev, "Failed to remap registers\n");
1424 		ret = PTR_ERR(msm_host->core_mem);
1425 		goto clk_disable;
1426 	}
1427 
1428 	/* Reset the vendor spec register to power on reset state */
1429 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1430 		       host->ioaddr + CORE_VENDOR_SPEC);
1431 
1432 	/* Set HC_MODE_EN bit in HC_MODE register */
1433 	writel_relaxed(HC_MODE_EN, (msm_host->core_mem + CORE_HC_MODE));
1434 
1435 	config = readl_relaxed(msm_host->core_mem + CORE_HC_MODE);
1436 	config |= FF_CLK_SW_RST_DIS;
1437 	writel_relaxed(config, msm_host->core_mem + CORE_HC_MODE);
1438 
1439 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
1440 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
1441 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
1442 			       SDHCI_VENDOR_VER_SHIFT));
1443 
1444 	core_version = readl_relaxed(msm_host->core_mem + CORE_MCI_VERSION);
1445 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
1446 		      CORE_VERSION_MAJOR_SHIFT;
1447 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
1448 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
1449 		core_version, core_major, core_minor);
1450 
1451 	if (core_major == 1 && core_minor >= 0x42)
1452 		msm_host->use_14lpp_dll_reset = true;
1453 
1454 	/*
1455 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
1456 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
1457 	 */
1458 	if (core_major == 1 && core_minor < 0x34)
1459 		msm_host->use_cdclp533 = true;
1460 
1461 	/*
1462 	 * Support for some capabilities is not advertised by newer
1463 	 * controller versions and must be explicitly enabled.
1464 	 */
1465 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
1466 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
1467 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
1468 		writel_relaxed(config, host->ioaddr +
1469 			       CORE_VENDOR_SPEC_CAPABILITIES0);
1470 	}
1471 
1472 	/*
1473 	 * Power on reset state may trigger power irq if previous status of
1474 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
1475 	 * interrupt in GIC, any pending power irq interrupt should be
1476 	 * acknowledged. Otherwise power irq interrupt handler would be
1477 	 * fired prematurely.
1478 	 */
1479 	sdhci_msm_handle_pwr_irq(host, 0);
1480 
1481 	/*
1482 	 * Ensure that above writes are propogated before interrupt enablement
1483 	 * in GIC.
1484 	 */
1485 	mb();
1486 
1487 	/* Setup IRQ for handling power/voltage tasks with PMIC */
1488 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
1489 	if (msm_host->pwr_irq < 0) {
1490 		dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n",
1491 			msm_host->pwr_irq);
1492 		ret = msm_host->pwr_irq;
1493 		goto clk_disable;
1494 	}
1495 
1496 	sdhci_msm_init_pwr_irq_wait(msm_host);
1497 	/* Enable pwr irq interrupts */
1498 	writel_relaxed(INT_MASK, msm_host->core_mem + CORE_PWRCTL_MASK);
1499 
1500 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
1501 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
1502 					dev_name(&pdev->dev), host);
1503 	if (ret) {
1504 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
1505 		goto clk_disable;
1506 	}
1507 
1508 	pm_runtime_get_noresume(&pdev->dev);
1509 	pm_runtime_set_active(&pdev->dev);
1510 	pm_runtime_enable(&pdev->dev);
1511 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1512 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
1513 	pm_runtime_use_autosuspend(&pdev->dev);
1514 
1515 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
1516 	ret = sdhci_add_host(host);
1517 	if (ret)
1518 		goto pm_runtime_disable;
1519 
1520 	pm_runtime_mark_last_busy(&pdev->dev);
1521 	pm_runtime_put_autosuspend(&pdev->dev);
1522 
1523 	return 0;
1524 
1525 pm_runtime_disable:
1526 	pm_runtime_disable(&pdev->dev);
1527 	pm_runtime_set_suspended(&pdev->dev);
1528 	pm_runtime_put_noidle(&pdev->dev);
1529 clk_disable:
1530 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1531 				   msm_host->bulk_clks);
1532 bus_clk_disable:
1533 	if (!IS_ERR(msm_host->bus_clk))
1534 		clk_disable_unprepare(msm_host->bus_clk);
1535 pltfm_free:
1536 	sdhci_pltfm_free(pdev);
1537 	return ret;
1538 }
1539 
1540 static int sdhci_msm_remove(struct platform_device *pdev)
1541 {
1542 	struct sdhci_host *host = platform_get_drvdata(pdev);
1543 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1544 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1545 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
1546 		    0xffffffff);
1547 
1548 	sdhci_remove_host(host, dead);
1549 
1550 	pm_runtime_get_sync(&pdev->dev);
1551 	pm_runtime_disable(&pdev->dev);
1552 	pm_runtime_put_noidle(&pdev->dev);
1553 
1554 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1555 				   msm_host->bulk_clks);
1556 	if (!IS_ERR(msm_host->bus_clk))
1557 		clk_disable_unprepare(msm_host->bus_clk);
1558 	sdhci_pltfm_free(pdev);
1559 	return 0;
1560 }
1561 
1562 #ifdef CONFIG_PM
1563 static int sdhci_msm_runtime_suspend(struct device *dev)
1564 {
1565 	struct sdhci_host *host = dev_get_drvdata(dev);
1566 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1567 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1568 
1569 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1570 				   msm_host->bulk_clks);
1571 
1572 	return 0;
1573 }
1574 
1575 static int sdhci_msm_runtime_resume(struct device *dev)
1576 {
1577 	struct sdhci_host *host = dev_get_drvdata(dev);
1578 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1579 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1580 
1581 	return clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1582 				       msm_host->bulk_clks);
1583 }
1584 #endif
1585 
1586 static const struct dev_pm_ops sdhci_msm_pm_ops = {
1587 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1588 				pm_runtime_force_resume)
1589 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
1590 			   sdhci_msm_runtime_resume,
1591 			   NULL)
1592 };
1593 
1594 static struct platform_driver sdhci_msm_driver = {
1595 	.probe = sdhci_msm_probe,
1596 	.remove = sdhci_msm_remove,
1597 	.driver = {
1598 		   .name = "sdhci_msm",
1599 		   .of_match_table = sdhci_msm_dt_match,
1600 		   .pm = &sdhci_msm_pm_ops,
1601 	},
1602 };
1603 
1604 module_platform_driver(sdhci_msm_driver);
1605 
1606 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
1607 MODULE_LICENSE("GPL v2");
1608