1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/of_device.h> 10 #include <linux/delay.h> 11 #include <linux/mmc/mmc.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/pm_opp.h> 14 #include <linux/slab.h> 15 #include <linux/iopoll.h> 16 #include <linux/regulator/consumer.h> 17 #include <linux/interconnect.h> 18 #include <linux/pinctrl/consumer.h> 19 20 #include "sdhci-pltfm.h" 21 #include "cqhci.h" 22 23 #define CORE_MCI_VERSION 0x50 24 #define CORE_VERSION_MAJOR_SHIFT 28 25 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 26 #define CORE_VERSION_MINOR_MASK 0xff 27 28 #define CORE_MCI_GENERICS 0x70 29 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 30 31 #define HC_MODE_EN 0x1 32 #define CORE_POWER 0x0 33 #define CORE_SW_RST BIT(7) 34 #define FF_CLK_SW_RST_DIS BIT(13) 35 36 #define CORE_PWRCTL_BUS_OFF BIT(0) 37 #define CORE_PWRCTL_BUS_ON BIT(1) 38 #define CORE_PWRCTL_IO_LOW BIT(2) 39 #define CORE_PWRCTL_IO_HIGH BIT(3) 40 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 41 #define CORE_PWRCTL_BUS_FAIL BIT(1) 42 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 43 #define CORE_PWRCTL_IO_FAIL BIT(3) 44 #define REQ_BUS_OFF BIT(0) 45 #define REQ_BUS_ON BIT(1) 46 #define REQ_IO_LOW BIT(2) 47 #define REQ_IO_HIGH BIT(3) 48 #define INT_MASK 0xf 49 #define MAX_PHASES 16 50 #define CORE_DLL_LOCK BIT(7) 51 #define CORE_DDR_DLL_LOCK BIT(11) 52 #define CORE_DLL_EN BIT(16) 53 #define CORE_CDR_EN BIT(17) 54 #define CORE_CK_OUT_EN BIT(18) 55 #define CORE_CDR_EXT_EN BIT(19) 56 #define CORE_DLL_PDN BIT(29) 57 #define CORE_DLL_RST BIT(30) 58 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 59 60 #define CORE_DDR_CAL_EN BIT(0) 61 #define CORE_FLL_CYCLE_CNT BIT(18) 62 #define CORE_DLL_CLOCK_DISABLE BIT(21) 63 64 #define DLL_USR_CTL_POR_VAL 0x10800 65 #define ENABLE_DLL_LOCK_STATUS BIT(26) 66 #define FINE_TUNE_MODE_EN BIT(27) 67 #define BIAS_OK_SIGNAL BIT(29) 68 69 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 70 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 71 72 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 73 #define CORE_CLK_PWRSAVE BIT(1) 74 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 75 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 76 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 77 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 78 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 79 #define CORE_HC_SELECT_IN_EN BIT(18) 80 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 81 #define CORE_HC_SELECT_IN_MASK (7 << 19) 82 83 #define CORE_3_0V_SUPPORT BIT(25) 84 #define CORE_1_8V_SUPPORT BIT(26) 85 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 86 87 #define CORE_CSR_CDC_CTLR_CFG0 0x130 88 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 89 #define CORE_HW_AUTOCAL_ENA BIT(17) 90 91 #define CORE_CSR_CDC_CTLR_CFG1 0x134 92 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 93 #define CORE_TIMER_ENA BIT(16) 94 95 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 96 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 97 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 98 #define CORE_CDC_OFFSET_CFG 0x14C 99 #define CORE_CSR_CDC_DELAY_CFG 0x150 100 #define CORE_CDC_SLAVE_DDA_CFG 0x160 101 #define CORE_CSR_CDC_STATUS0 0x164 102 #define CORE_CALIBRATION_DONE BIT(0) 103 104 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 105 106 #define CORE_CSR_CDC_GEN_CFG 0x178 107 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 108 #define CORE_CDC_SWITCH_RC_EN BIT(1) 109 110 #define CORE_CDC_T4_DLY_SEL BIT(0) 111 #define CORE_CMDIN_RCLK_EN BIT(1) 112 #define CORE_START_CDC_TRAFFIC BIT(6) 113 114 #define CORE_PWRSAVE_DLL BIT(3) 115 116 #define DDR_CONFIG_POR_VAL 0x80040873 117 118 119 #define INVALID_TUNING_PHASE -1 120 #define SDHCI_MSM_MIN_CLOCK 400000 121 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 122 123 #define CDR_SELEXT_SHIFT 20 124 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 125 #define CMUX_SHIFT_PHASE_SHIFT 24 126 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 127 128 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 129 130 /* Timeout value to avoid infinite waiting for pwr_irq */ 131 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 132 133 /* Max load for eMMC Vdd-io supply */ 134 #define MMC_VQMMC_MAX_LOAD_UA 325000 135 136 #define msm_host_readl(msm_host, host, offset) \ 137 msm_host->var_ops->msm_readl_relaxed(host, offset) 138 139 #define msm_host_writel(msm_host, val, host, offset) \ 140 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 141 142 /* CQHCI vendor specific registers */ 143 #define CQHCI_VENDOR_CFG1 0xA00 144 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 145 146 struct sdhci_msm_offset { 147 u32 core_hc_mode; 148 u32 core_mci_data_cnt; 149 u32 core_mci_status; 150 u32 core_mci_fifo_cnt; 151 u32 core_mci_version; 152 u32 core_generics; 153 u32 core_testbus_config; 154 u32 core_testbus_sel2_bit; 155 u32 core_testbus_ena; 156 u32 core_testbus_sel2; 157 u32 core_pwrctl_status; 158 u32 core_pwrctl_mask; 159 u32 core_pwrctl_clear; 160 u32 core_pwrctl_ctl; 161 u32 core_sdcc_debug_reg; 162 u32 core_dll_config; 163 u32 core_dll_status; 164 u32 core_vendor_spec; 165 u32 core_vendor_spec_adma_err_addr0; 166 u32 core_vendor_spec_adma_err_addr1; 167 u32 core_vendor_spec_func2; 168 u32 core_vendor_spec_capabilities0; 169 u32 core_ddr_200_cfg; 170 u32 core_vendor_spec3; 171 u32 core_dll_config_2; 172 u32 core_dll_config_3; 173 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 174 u32 core_ddr_config; 175 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 176 }; 177 178 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 179 .core_mci_data_cnt = 0x35c, 180 .core_mci_status = 0x324, 181 .core_mci_fifo_cnt = 0x308, 182 .core_mci_version = 0x318, 183 .core_generics = 0x320, 184 .core_testbus_config = 0x32c, 185 .core_testbus_sel2_bit = 3, 186 .core_testbus_ena = (1 << 31), 187 .core_testbus_sel2 = (1 << 3), 188 .core_pwrctl_status = 0x240, 189 .core_pwrctl_mask = 0x244, 190 .core_pwrctl_clear = 0x248, 191 .core_pwrctl_ctl = 0x24c, 192 .core_sdcc_debug_reg = 0x358, 193 .core_dll_config = 0x200, 194 .core_dll_status = 0x208, 195 .core_vendor_spec = 0x20c, 196 .core_vendor_spec_adma_err_addr0 = 0x214, 197 .core_vendor_spec_adma_err_addr1 = 0x218, 198 .core_vendor_spec_func2 = 0x210, 199 .core_vendor_spec_capabilities0 = 0x21c, 200 .core_ddr_200_cfg = 0x224, 201 .core_vendor_spec3 = 0x250, 202 .core_dll_config_2 = 0x254, 203 .core_dll_config_3 = 0x258, 204 .core_ddr_config = 0x25c, 205 .core_dll_usr_ctl = 0x388, 206 }; 207 208 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 209 .core_hc_mode = 0x78, 210 .core_mci_data_cnt = 0x30, 211 .core_mci_status = 0x34, 212 .core_mci_fifo_cnt = 0x44, 213 .core_mci_version = 0x050, 214 .core_generics = 0x70, 215 .core_testbus_config = 0x0cc, 216 .core_testbus_sel2_bit = 4, 217 .core_testbus_ena = (1 << 3), 218 .core_testbus_sel2 = (1 << 4), 219 .core_pwrctl_status = 0xdc, 220 .core_pwrctl_mask = 0xe0, 221 .core_pwrctl_clear = 0xe4, 222 .core_pwrctl_ctl = 0xe8, 223 .core_sdcc_debug_reg = 0x124, 224 .core_dll_config = 0x100, 225 .core_dll_status = 0x108, 226 .core_vendor_spec = 0x10c, 227 .core_vendor_spec_adma_err_addr0 = 0x114, 228 .core_vendor_spec_adma_err_addr1 = 0x118, 229 .core_vendor_spec_func2 = 0x110, 230 .core_vendor_spec_capabilities0 = 0x11c, 231 .core_ddr_200_cfg = 0x184, 232 .core_vendor_spec3 = 0x1b0, 233 .core_dll_config_2 = 0x1b4, 234 .core_ddr_config_old = 0x1b8, 235 .core_ddr_config = 0x1bc, 236 }; 237 238 struct sdhci_msm_variant_ops { 239 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 240 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 241 u32 offset); 242 }; 243 244 /* 245 * From V5, register spaces have changed. Wrap this info in a structure 246 * and choose the data_structure based on version info mentioned in DT. 247 */ 248 struct sdhci_msm_variant_info { 249 bool mci_removed; 250 bool restore_dll_config; 251 const struct sdhci_msm_variant_ops *var_ops; 252 const struct sdhci_msm_offset *offset; 253 }; 254 255 struct sdhci_msm_host { 256 struct platform_device *pdev; 257 void __iomem *core_mem; /* MSM SDCC mapped address */ 258 int pwr_irq; /* power irq */ 259 struct clk *bus_clk; /* SDHC bus voter clock */ 260 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 261 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */ 262 unsigned long clk_rate; 263 struct mmc_host *mmc; 264 struct opp_table *opp_table; 265 bool use_14lpp_dll_reset; 266 bool tuning_done; 267 bool calibration_done; 268 u8 saved_tuning_phase; 269 bool use_cdclp533; 270 u32 curr_pwr_state; 271 u32 curr_io_level; 272 wait_queue_head_t pwr_irq_wait; 273 bool pwr_irq_flag; 274 u32 caps_0; 275 bool mci_removed; 276 bool restore_dll_config; 277 const struct sdhci_msm_variant_ops *var_ops; 278 const struct sdhci_msm_offset *offset; 279 bool use_cdr; 280 u32 transfer_mode; 281 bool updated_ddr_cfg; 282 bool uses_tassadar_dll; 283 u32 dll_config; 284 u32 ddr_config; 285 bool vqmmc_enabled; 286 }; 287 288 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 289 { 290 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 291 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 292 293 return msm_host->offset; 294 } 295 296 /* 297 * APIs to read/write to vendor specific registers which were there in the 298 * core_mem region before MCI was removed. 299 */ 300 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 301 u32 offset) 302 { 303 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 304 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 305 306 return readl_relaxed(msm_host->core_mem + offset); 307 } 308 309 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 310 u32 offset) 311 { 312 return readl_relaxed(host->ioaddr + offset); 313 } 314 315 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 316 struct sdhci_host *host, u32 offset) 317 { 318 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 319 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 320 321 writel_relaxed(val, msm_host->core_mem + offset); 322 } 323 324 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 325 struct sdhci_host *host, u32 offset) 326 { 327 writel_relaxed(val, host->ioaddr + offset); 328 } 329 330 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host, 331 unsigned int clock) 332 { 333 struct mmc_ios ios = host->mmc->ios; 334 /* 335 * The SDHC requires internal clock frequency to be double the 336 * actual clock that will be set for DDR mode. The controller 337 * uses the faster clock(100/400MHz) for some of its parts and 338 * send the actual required clock (50/200MHz) to the card. 339 */ 340 if (ios.timing == MMC_TIMING_UHS_DDR50 || 341 ios.timing == MMC_TIMING_MMC_DDR52 || 342 ios.timing == MMC_TIMING_MMC_HS400 || 343 host->flags & SDHCI_HS400_TUNING) 344 clock *= 2; 345 return clock; 346 } 347 348 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 349 unsigned int clock) 350 { 351 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 352 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 353 struct mmc_ios curr_ios = host->mmc->ios; 354 struct clk *core_clk = msm_host->bulk_clks[0].clk; 355 int rc; 356 357 clock = msm_get_clock_rate_for_bus_mode(host, clock); 358 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock); 359 if (rc) { 360 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 361 mmc_hostname(host->mmc), clock, 362 curr_ios.timing); 363 return; 364 } 365 msm_host->clk_rate = clock; 366 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 367 mmc_hostname(host->mmc), clk_get_rate(core_clk), 368 curr_ios.timing); 369 } 370 371 /* Platform specific tuning */ 372 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 373 { 374 u32 wait_cnt = 50; 375 u8 ck_out_en; 376 struct mmc_host *mmc = host->mmc; 377 const struct sdhci_msm_offset *msm_offset = 378 sdhci_priv_msm_offset(host); 379 380 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 381 ck_out_en = !!(readl_relaxed(host->ioaddr + 382 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 383 384 while (ck_out_en != poll) { 385 if (--wait_cnt == 0) { 386 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 387 mmc_hostname(mmc), poll); 388 return -ETIMEDOUT; 389 } 390 udelay(1); 391 392 ck_out_en = !!(readl_relaxed(host->ioaddr + 393 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 394 } 395 396 return 0; 397 } 398 399 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 400 { 401 int rc; 402 static const u8 grey_coded_phase_table[] = { 403 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 404 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 405 }; 406 unsigned long flags; 407 u32 config; 408 struct mmc_host *mmc = host->mmc; 409 const struct sdhci_msm_offset *msm_offset = 410 sdhci_priv_msm_offset(host); 411 412 if (phase > 0xf) 413 return -EINVAL; 414 415 spin_lock_irqsave(&host->lock, flags); 416 417 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 418 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 419 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 420 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 421 422 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 423 rc = msm_dll_poll_ck_out_en(host, 0); 424 if (rc) 425 goto err_out; 426 427 /* 428 * Write the selected DLL clock output phase (0 ... 15) 429 * to CDR_SELEXT bit field of DLL_CONFIG register. 430 */ 431 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 432 config &= ~CDR_SELEXT_MASK; 433 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 434 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 435 436 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 437 config |= CORE_CK_OUT_EN; 438 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 439 440 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 441 rc = msm_dll_poll_ck_out_en(host, 1); 442 if (rc) 443 goto err_out; 444 445 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 446 config |= CORE_CDR_EN; 447 config &= ~CORE_CDR_EXT_EN; 448 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 449 goto out; 450 451 err_out: 452 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 453 mmc_hostname(mmc), phase); 454 out: 455 spin_unlock_irqrestore(&host->lock, flags); 456 return rc; 457 } 458 459 /* 460 * Find out the greatest range of consecuitive selected 461 * DLL clock output phases that can be used as sampling 462 * setting for SD3.0 UHS-I card read operation (in SDR104 463 * timing mode) or for eMMC4.5 card read operation (in 464 * HS400/HS200 timing mode). 465 * Select the 3/4 of the range and configure the DLL with the 466 * selected DLL clock output phase. 467 */ 468 469 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 470 u8 *phase_table, u8 total_phases) 471 { 472 int ret; 473 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 474 u8 phases_per_row[MAX_PHASES] = { 0 }; 475 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 476 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 477 bool phase_0_found = false, phase_15_found = false; 478 struct mmc_host *mmc = host->mmc; 479 480 if (!total_phases || (total_phases > MAX_PHASES)) { 481 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 482 mmc_hostname(mmc), total_phases); 483 return -EINVAL; 484 } 485 486 for (cnt = 0; cnt < total_phases; cnt++) { 487 ranges[row_index][col_index] = phase_table[cnt]; 488 phases_per_row[row_index] += 1; 489 col_index++; 490 491 if ((cnt + 1) == total_phases) { 492 continue; 493 /* check if next phase in phase_table is consecutive or not */ 494 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 495 row_index++; 496 col_index = 0; 497 } 498 } 499 500 if (row_index >= MAX_PHASES) 501 return -EINVAL; 502 503 /* Check if phase-0 is present in first valid window? */ 504 if (!ranges[0][0]) { 505 phase_0_found = true; 506 phase_0_raw_index = 0; 507 /* Check if cycle exist between 2 valid windows */ 508 for (cnt = 1; cnt <= row_index; cnt++) { 509 if (phases_per_row[cnt]) { 510 for (i = 0; i < phases_per_row[cnt]; i++) { 511 if (ranges[cnt][i] == 15) { 512 phase_15_found = true; 513 phase_15_raw_index = cnt; 514 break; 515 } 516 } 517 } 518 } 519 } 520 521 /* If 2 valid windows form cycle then merge them as single window */ 522 if (phase_0_found && phase_15_found) { 523 /* number of phases in raw where phase 0 is present */ 524 u8 phases_0 = phases_per_row[phase_0_raw_index]; 525 /* number of phases in raw where phase 15 is present */ 526 u8 phases_15 = phases_per_row[phase_15_raw_index]; 527 528 if (phases_0 + phases_15 >= MAX_PHASES) 529 /* 530 * If there are more than 1 phase windows then total 531 * number of phases in both the windows should not be 532 * more than or equal to MAX_PHASES. 533 */ 534 return -EINVAL; 535 536 /* Merge 2 cyclic windows */ 537 i = phases_15; 538 for (cnt = 0; cnt < phases_0; cnt++) { 539 ranges[phase_15_raw_index][i] = 540 ranges[phase_0_raw_index][cnt]; 541 if (++i >= MAX_PHASES) 542 break; 543 } 544 545 phases_per_row[phase_0_raw_index] = 0; 546 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 547 } 548 549 for (cnt = 0; cnt <= row_index; cnt++) { 550 if (phases_per_row[cnt] > curr_max) { 551 curr_max = phases_per_row[cnt]; 552 selected_row_index = cnt; 553 } 554 } 555 556 i = (curr_max * 3) / 4; 557 if (i) 558 i--; 559 560 ret = ranges[selected_row_index][i]; 561 562 if (ret >= MAX_PHASES) { 563 ret = -EINVAL; 564 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 565 mmc_hostname(mmc), ret); 566 } 567 568 return ret; 569 } 570 571 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 572 { 573 u32 mclk_freq = 0, config; 574 const struct sdhci_msm_offset *msm_offset = 575 sdhci_priv_msm_offset(host); 576 577 /* Program the MCLK value to MCLK_FREQ bit field */ 578 if (host->clock <= 112000000) 579 mclk_freq = 0; 580 else if (host->clock <= 125000000) 581 mclk_freq = 1; 582 else if (host->clock <= 137000000) 583 mclk_freq = 2; 584 else if (host->clock <= 150000000) 585 mclk_freq = 3; 586 else if (host->clock <= 162000000) 587 mclk_freq = 4; 588 else if (host->clock <= 175000000) 589 mclk_freq = 5; 590 else if (host->clock <= 187000000) 591 mclk_freq = 6; 592 else if (host->clock <= 200000000) 593 mclk_freq = 7; 594 595 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 596 config &= ~CMUX_SHIFT_PHASE_MASK; 597 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 598 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 599 } 600 601 /* Initialize the DLL (Programmable Delay Line) */ 602 static int msm_init_cm_dll(struct sdhci_host *host) 603 { 604 struct mmc_host *mmc = host->mmc; 605 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 606 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 607 int wait_cnt = 50; 608 unsigned long flags, xo_clk = 0; 609 u32 config; 610 const struct sdhci_msm_offset *msm_offset = 611 msm_host->offset; 612 613 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 614 xo_clk = clk_get_rate(msm_host->xo_clk); 615 616 spin_lock_irqsave(&host->lock, flags); 617 618 /* 619 * Make sure that clock is always enabled when DLL 620 * tuning is in progress. Keeping PWRSAVE ON may 621 * turn off the clock. 622 */ 623 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 624 config &= ~CORE_CLK_PWRSAVE; 625 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 626 627 if (msm_host->dll_config) 628 writel_relaxed(msm_host->dll_config, 629 host->ioaddr + msm_offset->core_dll_config); 630 631 if (msm_host->use_14lpp_dll_reset) { 632 config = readl_relaxed(host->ioaddr + 633 msm_offset->core_dll_config); 634 config &= ~CORE_CK_OUT_EN; 635 writel_relaxed(config, host->ioaddr + 636 msm_offset->core_dll_config); 637 638 config = readl_relaxed(host->ioaddr + 639 msm_offset->core_dll_config_2); 640 config |= CORE_DLL_CLOCK_DISABLE; 641 writel_relaxed(config, host->ioaddr + 642 msm_offset->core_dll_config_2); 643 } 644 645 config = readl_relaxed(host->ioaddr + 646 msm_offset->core_dll_config); 647 config |= CORE_DLL_RST; 648 writel_relaxed(config, host->ioaddr + 649 msm_offset->core_dll_config); 650 651 config = readl_relaxed(host->ioaddr + 652 msm_offset->core_dll_config); 653 config |= CORE_DLL_PDN; 654 writel_relaxed(config, host->ioaddr + 655 msm_offset->core_dll_config); 656 657 if (!msm_host->dll_config) 658 msm_cm_dll_set_freq(host); 659 660 if (msm_host->use_14lpp_dll_reset && 661 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 662 u32 mclk_freq = 0; 663 664 config = readl_relaxed(host->ioaddr + 665 msm_offset->core_dll_config_2); 666 config &= CORE_FLL_CYCLE_CNT; 667 if (config) 668 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 669 xo_clk); 670 else 671 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 672 xo_clk); 673 674 config = readl_relaxed(host->ioaddr + 675 msm_offset->core_dll_config_2); 676 config &= ~(0xFF << 10); 677 config |= mclk_freq << 10; 678 679 writel_relaxed(config, host->ioaddr + 680 msm_offset->core_dll_config_2); 681 /* wait for 5us before enabling DLL clock */ 682 udelay(5); 683 } 684 685 config = readl_relaxed(host->ioaddr + 686 msm_offset->core_dll_config); 687 config &= ~CORE_DLL_RST; 688 writel_relaxed(config, host->ioaddr + 689 msm_offset->core_dll_config); 690 691 config = readl_relaxed(host->ioaddr + 692 msm_offset->core_dll_config); 693 config &= ~CORE_DLL_PDN; 694 writel_relaxed(config, host->ioaddr + 695 msm_offset->core_dll_config); 696 697 if (msm_host->use_14lpp_dll_reset) { 698 if (!msm_host->dll_config) 699 msm_cm_dll_set_freq(host); 700 config = readl_relaxed(host->ioaddr + 701 msm_offset->core_dll_config_2); 702 config &= ~CORE_DLL_CLOCK_DISABLE; 703 writel_relaxed(config, host->ioaddr + 704 msm_offset->core_dll_config_2); 705 } 706 707 /* 708 * Configure DLL user control register to enable DLL status. 709 * This setting is applicable to SDCC v5.1 onwards only. 710 */ 711 if (msm_host->uses_tassadar_dll) { 712 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 713 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 714 writel_relaxed(config, host->ioaddr + 715 msm_offset->core_dll_usr_ctl); 716 717 config = readl_relaxed(host->ioaddr + 718 msm_offset->core_dll_config_3); 719 config &= ~0xFF; 720 if (msm_host->clk_rate < 150000000) 721 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 722 else 723 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 724 writel_relaxed(config, host->ioaddr + 725 msm_offset->core_dll_config_3); 726 } 727 728 config = readl_relaxed(host->ioaddr + 729 msm_offset->core_dll_config); 730 config |= CORE_DLL_EN; 731 writel_relaxed(config, host->ioaddr + 732 msm_offset->core_dll_config); 733 734 config = readl_relaxed(host->ioaddr + 735 msm_offset->core_dll_config); 736 config |= CORE_CK_OUT_EN; 737 writel_relaxed(config, host->ioaddr + 738 msm_offset->core_dll_config); 739 740 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 741 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 742 CORE_DLL_LOCK)) { 743 /* max. wait for 50us sec for LOCK bit to be set */ 744 if (--wait_cnt == 0) { 745 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 746 mmc_hostname(mmc)); 747 spin_unlock_irqrestore(&host->lock, flags); 748 return -ETIMEDOUT; 749 } 750 udelay(1); 751 } 752 753 spin_unlock_irqrestore(&host->lock, flags); 754 return 0; 755 } 756 757 static void msm_hc_select_default(struct sdhci_host *host) 758 { 759 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 760 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 761 u32 config; 762 const struct sdhci_msm_offset *msm_offset = 763 msm_host->offset; 764 765 if (!msm_host->use_cdclp533) { 766 config = readl_relaxed(host->ioaddr + 767 msm_offset->core_vendor_spec3); 768 config &= ~CORE_PWRSAVE_DLL; 769 writel_relaxed(config, host->ioaddr + 770 msm_offset->core_vendor_spec3); 771 } 772 773 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 774 config &= ~CORE_HC_MCLK_SEL_MASK; 775 config |= CORE_HC_MCLK_SEL_DFLT; 776 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 777 778 /* 779 * Disable HC_SELECT_IN to be able to use the UHS mode select 780 * configuration from Host Control2 register for all other 781 * modes. 782 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 783 * in VENDOR_SPEC_FUNC 784 */ 785 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 786 config &= ~CORE_HC_SELECT_IN_EN; 787 config &= ~CORE_HC_SELECT_IN_MASK; 788 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 789 790 /* 791 * Make sure above writes impacting free running MCLK are completed 792 * before changing the clk_rate at GCC. 793 */ 794 wmb(); 795 } 796 797 static void msm_hc_select_hs400(struct sdhci_host *host) 798 { 799 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 800 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 801 struct mmc_ios ios = host->mmc->ios; 802 u32 config, dll_lock; 803 int rc; 804 const struct sdhci_msm_offset *msm_offset = 805 msm_host->offset; 806 807 /* Select the divided clock (free running MCLK/2) */ 808 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 809 config &= ~CORE_HC_MCLK_SEL_MASK; 810 config |= CORE_HC_MCLK_SEL_HS400; 811 812 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 813 /* 814 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 815 * register 816 */ 817 if ((msm_host->tuning_done || ios.enhanced_strobe) && 818 !msm_host->calibration_done) { 819 config = readl_relaxed(host->ioaddr + 820 msm_offset->core_vendor_spec); 821 config |= CORE_HC_SELECT_IN_HS400; 822 config |= CORE_HC_SELECT_IN_EN; 823 writel_relaxed(config, host->ioaddr + 824 msm_offset->core_vendor_spec); 825 } 826 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 827 /* 828 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 829 * core_dll_status to be set. This should get set 830 * within 15 us at 200 MHz. 831 */ 832 rc = readl_relaxed_poll_timeout(host->ioaddr + 833 msm_offset->core_dll_status, 834 dll_lock, 835 (dll_lock & 836 (CORE_DLL_LOCK | 837 CORE_DDR_DLL_LOCK)), 10, 838 1000); 839 if (rc == -ETIMEDOUT) 840 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 841 mmc_hostname(host->mmc), dll_lock); 842 } 843 /* 844 * Make sure above writes impacting free running MCLK are completed 845 * before changing the clk_rate at GCC. 846 */ 847 wmb(); 848 } 849 850 /* 851 * sdhci_msm_hc_select_mode :- In general all timing modes are 852 * controlled via UHS mode select in Host Control2 register. 853 * eMMC specific HS200/HS400 doesn't have their respective modes 854 * defined here, hence we use these values. 855 * 856 * HS200 - SDR104 (Since they both are equivalent in functionality) 857 * HS400 - This involves multiple configurations 858 * Initially SDR104 - when tuning is required as HS200 859 * Then when switching to DDR @ 400MHz (HS400) we use 860 * the vendor specific HC_SELECT_IN to control the mode. 861 * 862 * In addition to controlling the modes we also need to select the 863 * correct input clock for DLL depending on the mode. 864 * 865 * HS400 - divided clock (free running MCLK/2) 866 * All other modes - default (free running MCLK) 867 */ 868 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 869 { 870 struct mmc_ios ios = host->mmc->ios; 871 872 if (ios.timing == MMC_TIMING_MMC_HS400 || 873 host->flags & SDHCI_HS400_TUNING) 874 msm_hc_select_hs400(host); 875 else 876 msm_hc_select_default(host); 877 } 878 879 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 880 { 881 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 882 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 883 u32 config, calib_done; 884 int ret; 885 const struct sdhci_msm_offset *msm_offset = 886 msm_host->offset; 887 888 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 889 890 /* 891 * Retuning in HS400 (DDR mode) will fail, just reset the 892 * tuning block and restore the saved tuning phase. 893 */ 894 ret = msm_init_cm_dll(host); 895 if (ret) 896 goto out; 897 898 /* Set the selected phase in delay line hw block */ 899 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 900 if (ret) 901 goto out; 902 903 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 904 config |= CORE_CMD_DAT_TRACK_SEL; 905 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 906 907 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 908 config &= ~CORE_CDC_T4_DLY_SEL; 909 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 910 911 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 912 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 913 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 914 915 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 916 config |= CORE_CDC_SWITCH_RC_EN; 917 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 918 919 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 920 config &= ~CORE_START_CDC_TRAFFIC; 921 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 922 923 /* Perform CDC Register Initialization Sequence */ 924 925 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 926 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 927 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 928 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 929 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 930 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 931 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 932 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 933 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 934 935 /* CDC HW Calibration */ 936 937 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 938 config |= CORE_SW_TRIG_FULL_CALIB; 939 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 940 941 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 942 config &= ~CORE_SW_TRIG_FULL_CALIB; 943 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 944 945 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 946 config |= CORE_HW_AUTOCAL_ENA; 947 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 948 949 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 950 config |= CORE_TIMER_ENA; 951 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 952 953 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 954 calib_done, 955 (calib_done & CORE_CALIBRATION_DONE), 956 1, 50); 957 958 if (ret == -ETIMEDOUT) { 959 pr_err("%s: %s: CDC calibration was not completed\n", 960 mmc_hostname(host->mmc), __func__); 961 goto out; 962 } 963 964 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 965 & CORE_CDC_ERROR_CODE_MASK; 966 if (ret) { 967 pr_err("%s: %s: CDC error code %d\n", 968 mmc_hostname(host->mmc), __func__, ret); 969 ret = -EINVAL; 970 goto out; 971 } 972 973 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 974 config |= CORE_START_CDC_TRAFFIC; 975 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 976 out: 977 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 978 __func__, ret); 979 return ret; 980 } 981 982 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 983 { 984 struct mmc_host *mmc = host->mmc; 985 u32 dll_status, config, ddr_cfg_offset; 986 int ret; 987 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 988 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 989 const struct sdhci_msm_offset *msm_offset = 990 sdhci_priv_msm_offset(host); 991 992 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 993 994 /* 995 * Currently the core_ddr_config register defaults to desired 996 * configuration on reset. Currently reprogramming the power on 997 * reset (POR) value in case it might have been modified by 998 * bootloaders. In the future, if this changes, then the desired 999 * values will need to be programmed appropriately. 1000 */ 1001 if (msm_host->updated_ddr_cfg) 1002 ddr_cfg_offset = msm_offset->core_ddr_config; 1003 else 1004 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1005 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1006 1007 if (mmc->ios.enhanced_strobe) { 1008 config = readl_relaxed(host->ioaddr + 1009 msm_offset->core_ddr_200_cfg); 1010 config |= CORE_CMDIN_RCLK_EN; 1011 writel_relaxed(config, host->ioaddr + 1012 msm_offset->core_ddr_200_cfg); 1013 } 1014 1015 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1016 config |= CORE_DDR_CAL_EN; 1017 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1018 1019 ret = readl_relaxed_poll_timeout(host->ioaddr + 1020 msm_offset->core_dll_status, 1021 dll_status, 1022 (dll_status & CORE_DDR_DLL_LOCK), 1023 10, 1000); 1024 1025 if (ret == -ETIMEDOUT) { 1026 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1027 mmc_hostname(host->mmc), __func__); 1028 goto out; 1029 } 1030 1031 /* 1032 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1033 * When MCLK is gated OFF, it is not gated for less than 0.5us 1034 * and MCLK must be switched on for at-least 1us before DATA 1035 * starts coming. Controllers with 14lpp and later tech DLL cannot 1036 * guarantee above requirement. So PWRSAVE_DLL should not be 1037 * turned on for host controllers using this DLL. 1038 */ 1039 if (!msm_host->use_14lpp_dll_reset) { 1040 config = readl_relaxed(host->ioaddr + 1041 msm_offset->core_vendor_spec3); 1042 config |= CORE_PWRSAVE_DLL; 1043 writel_relaxed(config, host->ioaddr + 1044 msm_offset->core_vendor_spec3); 1045 } 1046 1047 /* 1048 * Drain writebuffer to ensure above DLL calibration 1049 * and PWRSAVE DLL is enabled. 1050 */ 1051 wmb(); 1052 out: 1053 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1054 __func__, ret); 1055 return ret; 1056 } 1057 1058 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1059 { 1060 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1061 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1062 struct mmc_host *mmc = host->mmc; 1063 int ret; 1064 u32 config; 1065 const struct sdhci_msm_offset *msm_offset = 1066 msm_host->offset; 1067 1068 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1069 1070 /* 1071 * Retuning in HS400 (DDR mode) will fail, just reset the 1072 * tuning block and restore the saved tuning phase. 1073 */ 1074 ret = msm_init_cm_dll(host); 1075 if (ret) 1076 goto out; 1077 1078 if (!mmc->ios.enhanced_strobe) { 1079 /* Set the selected phase in delay line hw block */ 1080 ret = msm_config_cm_dll_phase(host, 1081 msm_host->saved_tuning_phase); 1082 if (ret) 1083 goto out; 1084 config = readl_relaxed(host->ioaddr + 1085 msm_offset->core_dll_config); 1086 config |= CORE_CMD_DAT_TRACK_SEL; 1087 writel_relaxed(config, host->ioaddr + 1088 msm_offset->core_dll_config); 1089 } 1090 1091 if (msm_host->use_cdclp533) 1092 ret = sdhci_msm_cdclp533_calibration(host); 1093 else 1094 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1095 out: 1096 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1097 __func__, ret); 1098 return ret; 1099 } 1100 1101 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1102 { 1103 struct mmc_ios *ios = &host->mmc->ios; 1104 1105 /* 1106 * Tuning is required for SDR104, HS200 and HS400 cards and 1107 * if clock frequency is greater than 100MHz in these modes. 1108 */ 1109 if (host->clock <= CORE_FREQ_100MHZ || 1110 !(ios->timing == MMC_TIMING_MMC_HS400 || 1111 ios->timing == MMC_TIMING_MMC_HS200 || 1112 ios->timing == MMC_TIMING_UHS_SDR104) || 1113 ios->enhanced_strobe) 1114 return false; 1115 1116 return true; 1117 } 1118 1119 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1120 { 1121 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1122 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1123 int ret; 1124 1125 /* 1126 * SDR DLL comes into picture only for timing modes which needs 1127 * tuning. 1128 */ 1129 if (!sdhci_msm_is_tuning_needed(host)) 1130 return 0; 1131 1132 /* Reset the tuning block */ 1133 ret = msm_init_cm_dll(host); 1134 if (ret) 1135 return ret; 1136 1137 /* Restore the tuning block */ 1138 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1139 1140 return ret; 1141 } 1142 1143 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1144 { 1145 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1146 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1147 msm_offset->core_dll_config); 1148 1149 config = oldconfig; 1150 if (enable) { 1151 config |= CORE_CDR_EN; 1152 config &= ~CORE_CDR_EXT_EN; 1153 } else { 1154 config &= ~CORE_CDR_EN; 1155 config |= CORE_CDR_EXT_EN; 1156 } 1157 1158 if (config != oldconfig) { 1159 writel_relaxed(config, host->ioaddr + 1160 msm_offset->core_dll_config); 1161 } 1162 } 1163 1164 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1165 { 1166 struct sdhci_host *host = mmc_priv(mmc); 1167 int tuning_seq_cnt = 10; 1168 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1169 int rc; 1170 struct mmc_ios ios = host->mmc->ios; 1171 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1172 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1173 1174 if (!sdhci_msm_is_tuning_needed(host)) { 1175 msm_host->use_cdr = false; 1176 sdhci_msm_set_cdr(host, false); 1177 return 0; 1178 } 1179 1180 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1181 msm_host->use_cdr = true; 1182 1183 /* 1184 * Clear tuning_done flag before tuning to ensure proper 1185 * HS400 settings. 1186 */ 1187 msm_host->tuning_done = 0; 1188 1189 /* 1190 * For HS400 tuning in HS200 timing requires: 1191 * - select MCLK/2 in VENDOR_SPEC 1192 * - program MCLK to 400MHz (or nearest supported) in GCC 1193 */ 1194 if (host->flags & SDHCI_HS400_TUNING) { 1195 sdhci_msm_hc_select_mode(host); 1196 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1197 host->flags &= ~SDHCI_HS400_TUNING; 1198 } 1199 1200 retry: 1201 /* First of all reset the tuning block */ 1202 rc = msm_init_cm_dll(host); 1203 if (rc) 1204 return rc; 1205 1206 phase = 0; 1207 do { 1208 /* Set the phase in delay line hw block */ 1209 rc = msm_config_cm_dll_phase(host, phase); 1210 if (rc) 1211 return rc; 1212 1213 rc = mmc_send_tuning(mmc, opcode, NULL); 1214 if (!rc) { 1215 /* Tuning is successful at this tuning point */ 1216 tuned_phases[tuned_phase_cnt++] = phase; 1217 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1218 mmc_hostname(mmc), phase); 1219 } 1220 } while (++phase < ARRAY_SIZE(tuned_phases)); 1221 1222 if (tuned_phase_cnt) { 1223 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) { 1224 /* 1225 * All phases valid is _almost_ as bad as no phases 1226 * valid. Probably all phases are not really reliable 1227 * but we didn't detect where the unreliable place is. 1228 * That means we'll essentially be guessing and hoping 1229 * we get a good phase. Better to try a few times. 1230 */ 1231 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n", 1232 mmc_hostname(mmc)); 1233 if (--tuning_seq_cnt) { 1234 tuned_phase_cnt = 0; 1235 goto retry; 1236 } 1237 } 1238 1239 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1240 tuned_phase_cnt); 1241 if (rc < 0) 1242 return rc; 1243 else 1244 phase = rc; 1245 1246 /* 1247 * Finally set the selected phase in delay 1248 * line hw block. 1249 */ 1250 rc = msm_config_cm_dll_phase(host, phase); 1251 if (rc) 1252 return rc; 1253 msm_host->saved_tuning_phase = phase; 1254 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1255 mmc_hostname(mmc), phase); 1256 } else { 1257 if (--tuning_seq_cnt) 1258 goto retry; 1259 /* Tuning failed */ 1260 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1261 mmc_hostname(mmc)); 1262 rc = -EIO; 1263 } 1264 1265 if (!rc) 1266 msm_host->tuning_done = true; 1267 return rc; 1268 } 1269 1270 /* 1271 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1272 * This needs to be done for both tuning and enhanced_strobe mode. 1273 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1274 * fixed feedback clock is used. 1275 */ 1276 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1277 { 1278 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1279 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1280 int ret; 1281 1282 if (host->clock > CORE_FREQ_100MHZ && 1283 (msm_host->tuning_done || ios->enhanced_strobe) && 1284 !msm_host->calibration_done) { 1285 ret = sdhci_msm_hs400_dll_calibration(host); 1286 if (!ret) 1287 msm_host->calibration_done = true; 1288 else 1289 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1290 mmc_hostname(host->mmc), ret); 1291 } 1292 } 1293 1294 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1295 unsigned int uhs) 1296 { 1297 struct mmc_host *mmc = host->mmc; 1298 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1299 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1300 u16 ctrl_2; 1301 u32 config; 1302 const struct sdhci_msm_offset *msm_offset = 1303 msm_host->offset; 1304 1305 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1306 /* Select Bus Speed Mode for host */ 1307 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1308 switch (uhs) { 1309 case MMC_TIMING_UHS_SDR12: 1310 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1311 break; 1312 case MMC_TIMING_UHS_SDR25: 1313 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1314 break; 1315 case MMC_TIMING_UHS_SDR50: 1316 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1317 break; 1318 case MMC_TIMING_MMC_HS400: 1319 case MMC_TIMING_MMC_HS200: 1320 case MMC_TIMING_UHS_SDR104: 1321 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1322 break; 1323 case MMC_TIMING_UHS_DDR50: 1324 case MMC_TIMING_MMC_DDR52: 1325 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1326 break; 1327 } 1328 1329 /* 1330 * When clock frequency is less than 100MHz, the feedback clock must be 1331 * provided and DLL must not be used so that tuning can be skipped. To 1332 * provide feedback clock, the mode selection can be any value less 1333 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1334 */ 1335 if (host->clock <= CORE_FREQ_100MHZ) { 1336 if (uhs == MMC_TIMING_MMC_HS400 || 1337 uhs == MMC_TIMING_MMC_HS200 || 1338 uhs == MMC_TIMING_UHS_SDR104) 1339 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1340 /* 1341 * DLL is not required for clock <= 100MHz 1342 * Thus, make sure DLL it is disabled when not required 1343 */ 1344 config = readl_relaxed(host->ioaddr + 1345 msm_offset->core_dll_config); 1346 config |= CORE_DLL_RST; 1347 writel_relaxed(config, host->ioaddr + 1348 msm_offset->core_dll_config); 1349 1350 config = readl_relaxed(host->ioaddr + 1351 msm_offset->core_dll_config); 1352 config |= CORE_DLL_PDN; 1353 writel_relaxed(config, host->ioaddr + 1354 msm_offset->core_dll_config); 1355 1356 /* 1357 * The DLL needs to be restored and CDCLP533 recalibrated 1358 * when the clock frequency is set back to 400MHz. 1359 */ 1360 msm_host->calibration_done = false; 1361 } 1362 1363 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1364 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1365 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1366 1367 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1368 sdhci_msm_hs400(host, &mmc->ios); 1369 } 1370 1371 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1372 { 1373 struct platform_device *pdev = msm_host->pdev; 1374 int ret; 1375 1376 if (level) 1377 ret = pinctrl_pm_select_default_state(&pdev->dev); 1378 else 1379 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1380 1381 return ret; 1382 } 1383 1384 static int sdhci_msm_set_vmmc(struct mmc_host *mmc) 1385 { 1386 if (IS_ERR(mmc->supply.vmmc)) 1387 return 0; 1388 1389 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1390 } 1391 1392 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1393 struct mmc_host *mmc, bool level) 1394 { 1395 int ret; 1396 struct mmc_ios ios; 1397 1398 if (msm_host->vqmmc_enabled == level) 1399 return 0; 1400 1401 if (level) { 1402 /* Set the IO voltage regulator to default voltage level */ 1403 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1404 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1405 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1406 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1407 1408 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1409 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1410 if (ret < 0) { 1411 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1412 mmc_hostname(mmc), ret); 1413 goto out; 1414 } 1415 } 1416 ret = regulator_enable(mmc->supply.vqmmc); 1417 } else { 1418 ret = regulator_disable(mmc->supply.vqmmc); 1419 } 1420 1421 if (ret) 1422 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1423 mmc_hostname(mmc), level ? "en":"dis", ret); 1424 else 1425 msm_host->vqmmc_enabled = level; 1426 out: 1427 return ret; 1428 } 1429 1430 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1431 struct mmc_host *mmc, bool hpm) 1432 { 1433 int load, ret; 1434 1435 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1436 ret = regulator_set_load(mmc->supply.vqmmc, load); 1437 if (ret) 1438 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1439 mmc_hostname(mmc), ret); 1440 return ret; 1441 } 1442 1443 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1444 struct mmc_host *mmc, bool level) 1445 { 1446 int ret; 1447 bool always_on; 1448 1449 if (IS_ERR(mmc->supply.vqmmc) || 1450 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1451 return 0; 1452 /* 1453 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1454 * and HPM modes by setting the corresponding load. 1455 * 1456 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1457 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1458 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1459 * Vqmmc should remain ON, So just set the load instead of turning it 1460 * off/on. 1461 */ 1462 always_on = !mmc_card_is_removable(mmc) && 1463 mmc->card && mmc_card_mmc(mmc->card); 1464 1465 if (always_on) 1466 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1467 else 1468 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1469 1470 return ret; 1471 } 1472 1473 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1474 { 1475 init_waitqueue_head(&msm_host->pwr_irq_wait); 1476 } 1477 1478 static inline void sdhci_msm_complete_pwr_irq_wait( 1479 struct sdhci_msm_host *msm_host) 1480 { 1481 wake_up(&msm_host->pwr_irq_wait); 1482 } 1483 1484 /* 1485 * sdhci_msm_check_power_status API should be called when registers writes 1486 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1487 * To what state the register writes will change the IO lines should be passed 1488 * as the argument req_type. This API will check whether the IO line's state 1489 * is already the expected state and will wait for power irq only if 1490 * power irq is expected to be triggered based on the current IO line state 1491 * and expected IO line state. 1492 */ 1493 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1494 { 1495 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1496 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1497 bool done = false; 1498 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1499 const struct sdhci_msm_offset *msm_offset = 1500 msm_host->offset; 1501 1502 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1503 mmc_hostname(host->mmc), __func__, req_type, 1504 msm_host->curr_pwr_state, msm_host->curr_io_level); 1505 1506 /* 1507 * The power interrupt will not be generated for signal voltage 1508 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1509 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1510 * it as always set. 1511 */ 1512 if (!msm_host->mci_removed) 1513 val = msm_host_readl(msm_host, host, 1514 msm_offset->core_generics); 1515 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1516 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1517 return; 1518 } 1519 1520 /* 1521 * The IRQ for request type IO High/LOW will be generated when - 1522 * there is a state change in 1.8V enable bit (bit 3) of 1523 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1524 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1525 * to set it to 3.3V before card detection happens, the 1526 * IRQ doesn't get triggered as there is no state change in this bit. 1527 * The driver already handles this case by changing the IO voltage 1528 * level to high as part of controller power up sequence. Hence, check 1529 * for host->pwr to handle a case where IO voltage high request is 1530 * issued even before controller power up. 1531 */ 1532 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1533 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1534 mmc_hostname(host->mmc), req_type); 1535 return; 1536 } 1537 if ((req_type & msm_host->curr_pwr_state) || 1538 (req_type & msm_host->curr_io_level)) 1539 done = true; 1540 /* 1541 * This is needed here to handle cases where register writes will 1542 * not change the current bus state or io level of the controller. 1543 * In this case, no power irq will be triggerred and we should 1544 * not wait. 1545 */ 1546 if (!done) { 1547 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1548 msm_host->pwr_irq_flag, 1549 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1550 dev_warn(&msm_host->pdev->dev, 1551 "%s: pwr_irq for req: (%d) timed out\n", 1552 mmc_hostname(host->mmc), req_type); 1553 } 1554 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1555 __func__, req_type); 1556 } 1557 1558 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1559 { 1560 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1561 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1562 const struct sdhci_msm_offset *msm_offset = 1563 msm_host->offset; 1564 1565 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1566 mmc_hostname(host->mmc), 1567 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1568 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1569 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1570 } 1571 1572 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1573 { 1574 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1575 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1576 struct mmc_host *mmc = host->mmc; 1577 u32 irq_status, irq_ack = 0; 1578 int retry = 10, ret; 1579 u32 pwr_state = 0, io_level = 0; 1580 u32 config; 1581 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1582 1583 irq_status = msm_host_readl(msm_host, host, 1584 msm_offset->core_pwrctl_status); 1585 irq_status &= INT_MASK; 1586 1587 msm_host_writel(msm_host, irq_status, host, 1588 msm_offset->core_pwrctl_clear); 1589 1590 /* 1591 * There is a rare HW scenario where the first clear pulse could be 1592 * lost when actual reset and clear/read of status register is 1593 * happening at a time. Hence, retry for at least 10 times to make 1594 * sure status register is cleared. Otherwise, this will result in 1595 * a spurious power IRQ resulting in system instability. 1596 */ 1597 while (irq_status & msm_host_readl(msm_host, host, 1598 msm_offset->core_pwrctl_status)) { 1599 if (retry == 0) { 1600 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1601 mmc_hostname(host->mmc), irq_status); 1602 sdhci_msm_dump_pwr_ctrl_regs(host); 1603 WARN_ON(1); 1604 break; 1605 } 1606 msm_host_writel(msm_host, irq_status, host, 1607 msm_offset->core_pwrctl_clear); 1608 retry--; 1609 udelay(10); 1610 } 1611 1612 /* Handle BUS ON/OFF*/ 1613 if (irq_status & CORE_PWRCTL_BUS_ON) { 1614 pwr_state = REQ_BUS_ON; 1615 io_level = REQ_IO_HIGH; 1616 } 1617 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1618 pwr_state = REQ_BUS_OFF; 1619 io_level = REQ_IO_LOW; 1620 } 1621 1622 if (pwr_state) { 1623 ret = sdhci_msm_set_vmmc(mmc); 1624 if (!ret) 1625 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1626 pwr_state & REQ_BUS_ON); 1627 if (!ret) 1628 ret = sdhci_msm_set_pincfg(msm_host, 1629 pwr_state & REQ_BUS_ON); 1630 if (!ret) 1631 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1632 else 1633 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1634 } 1635 1636 /* Handle IO LOW/HIGH */ 1637 if (irq_status & CORE_PWRCTL_IO_LOW) 1638 io_level = REQ_IO_LOW; 1639 1640 if (irq_status & CORE_PWRCTL_IO_HIGH) 1641 io_level = REQ_IO_HIGH; 1642 1643 if (io_level) 1644 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1645 1646 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1647 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1648 if (ret < 0) { 1649 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1650 mmc_hostname(mmc), ret, 1651 mmc->ios.signal_voltage, mmc->ios.vdd, 1652 irq_status); 1653 irq_ack |= CORE_PWRCTL_IO_FAIL; 1654 } 1655 } 1656 1657 /* 1658 * The driver has to acknowledge the interrupt, switch voltages and 1659 * report back if it succeded or not to this register. The voltage 1660 * switches are handled by the sdhci core, so just report success. 1661 */ 1662 msm_host_writel(msm_host, irq_ack, host, 1663 msm_offset->core_pwrctl_ctl); 1664 1665 /* 1666 * If we don't have info regarding the voltage levels supported by 1667 * regulators, don't change the IO PAD PWR SWITCH. 1668 */ 1669 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1670 u32 new_config; 1671 /* 1672 * We should unset IO PAD PWR switch only if the register write 1673 * can set IO lines high and the regulator also switches to 3 V. 1674 * Else, we should keep the IO PAD PWR switch set. 1675 * This is applicable to certain targets where eMMC vccq supply 1676 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1677 * IO PAD PWR switch must be kept set to reflect actual 1678 * regulator voltage. This way, during initialization of 1679 * controllers with only 1.8V, we will set the IO PAD bit 1680 * without waiting for a REQ_IO_LOW. 1681 */ 1682 config = readl_relaxed(host->ioaddr + 1683 msm_offset->core_vendor_spec); 1684 new_config = config; 1685 1686 if ((io_level & REQ_IO_HIGH) && 1687 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1688 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1689 else if ((io_level & REQ_IO_LOW) || 1690 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1691 new_config |= CORE_IO_PAD_PWR_SWITCH; 1692 1693 if (config ^ new_config) 1694 writel_relaxed(new_config, host->ioaddr + 1695 msm_offset->core_vendor_spec); 1696 } 1697 1698 if (pwr_state) 1699 msm_host->curr_pwr_state = pwr_state; 1700 if (io_level) 1701 msm_host->curr_io_level = io_level; 1702 1703 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1704 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1705 irq_ack); 1706 } 1707 1708 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1709 { 1710 struct sdhci_host *host = (struct sdhci_host *)data; 1711 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1712 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1713 1714 sdhci_msm_handle_pwr_irq(host, irq); 1715 msm_host->pwr_irq_flag = 1; 1716 sdhci_msm_complete_pwr_irq_wait(msm_host); 1717 1718 1719 return IRQ_HANDLED; 1720 } 1721 1722 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1723 { 1724 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1725 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1726 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1727 1728 return clk_round_rate(core_clk, ULONG_MAX); 1729 } 1730 1731 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1732 { 1733 return SDHCI_MSM_MIN_CLOCK; 1734 } 1735 1736 /* 1737 * __sdhci_msm_set_clock - sdhci_msm clock control. 1738 * 1739 * Description: 1740 * MSM controller does not use internal divider and 1741 * instead directly control the GCC clock as per 1742 * HW recommendation. 1743 **/ 1744 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1745 { 1746 u16 clk; 1747 /* 1748 * Keep actual_clock as zero - 1749 * - since there is no divider used so no need of having actual_clock. 1750 * - MSM controller uses SDCLK for data timeout calculation. If 1751 * actual_clock is zero, host->clock is taken for calculation. 1752 */ 1753 host->mmc->actual_clock = 0; 1754 1755 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1756 1757 if (clock == 0) 1758 return; 1759 1760 /* 1761 * MSM controller do not use clock divider. 1762 * Thus read SDHCI_CLOCK_CONTROL and only enable 1763 * clock with no divider value programmed. 1764 */ 1765 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1766 sdhci_enable_clk(host, clk); 1767 } 1768 1769 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1770 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1771 { 1772 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1773 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1774 1775 if (!clock) { 1776 msm_host->clk_rate = clock; 1777 goto out; 1778 } 1779 1780 sdhci_msm_hc_select_mode(host); 1781 1782 msm_set_clock_rate_for_bus_mode(host, clock); 1783 out: 1784 __sdhci_msm_set_clock(host, clock); 1785 } 1786 1787 /*****************************************************************************\ 1788 * * 1789 * MSM Command Queue Engine (CQE) * 1790 * * 1791 \*****************************************************************************/ 1792 1793 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 1794 { 1795 int cmd_error = 0; 1796 int data_error = 0; 1797 1798 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 1799 return intmask; 1800 1801 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 1802 return 0; 1803 } 1804 1805 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 1806 { 1807 struct sdhci_host *host = mmc_priv(mmc); 1808 unsigned long flags; 1809 u32 ctrl; 1810 1811 /* 1812 * When CQE is halted, the legacy SDHCI path operates only 1813 * on 16-byte descriptors in 64bit mode. 1814 */ 1815 if (host->flags & SDHCI_USE_64_BIT_DMA) 1816 host->desc_sz = 16; 1817 1818 spin_lock_irqsave(&host->lock, flags); 1819 1820 /* 1821 * During CQE command transfers, command complete bit gets latched. 1822 * So s/w should clear command complete interrupt status when CQE is 1823 * either halted or disabled. Otherwise unexpected SDCHI legacy 1824 * interrupt gets triggered when CQE is halted/disabled. 1825 */ 1826 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 1827 ctrl |= SDHCI_INT_RESPONSE; 1828 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 1829 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 1830 1831 spin_unlock_irqrestore(&host->lock, flags); 1832 1833 sdhci_cqe_disable(mmc, recovery); 1834 } 1835 1836 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 1837 .enable = sdhci_cqe_enable, 1838 .disable = sdhci_msm_cqe_disable, 1839 }; 1840 1841 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 1842 struct platform_device *pdev) 1843 { 1844 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1845 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1846 struct cqhci_host *cq_host; 1847 bool dma64; 1848 u32 cqcfg; 1849 int ret; 1850 1851 /* 1852 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 1853 * So ensure ADMA table is allocated for 16byte descriptors. 1854 */ 1855 if (host->caps & SDHCI_CAN_64BIT) 1856 host->alloc_desc_sz = 16; 1857 1858 ret = sdhci_setup_host(host); 1859 if (ret) 1860 return ret; 1861 1862 cq_host = cqhci_pltfm_init(pdev); 1863 if (IS_ERR(cq_host)) { 1864 ret = PTR_ERR(cq_host); 1865 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 1866 goto cleanup; 1867 } 1868 1869 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 1870 cq_host->ops = &sdhci_msm_cqhci_ops; 1871 1872 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 1873 1874 ret = cqhci_init(cq_host, host->mmc, dma64); 1875 if (ret) { 1876 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 1877 mmc_hostname(host->mmc), ret); 1878 goto cleanup; 1879 } 1880 1881 /* Disable cqe reset due to cqe enable signal */ 1882 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 1883 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 1884 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 1885 1886 /* 1887 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 1888 * So limit desc_sz to 12 so that the data commands that are sent 1889 * during card initialization (before CQE gets enabled) would 1890 * get executed without any issues. 1891 */ 1892 if (host->flags & SDHCI_USE_64_BIT_DMA) 1893 host->desc_sz = 12; 1894 1895 ret = __sdhci_add_host(host); 1896 if (ret) 1897 goto cleanup; 1898 1899 dev_info(&pdev->dev, "%s: CQE init: success\n", 1900 mmc_hostname(host->mmc)); 1901 return ret; 1902 1903 cleanup: 1904 sdhci_cleanup_host(host); 1905 return ret; 1906 } 1907 1908 /* 1909 * Platform specific register write functions. This is so that, if any 1910 * register write needs to be followed up by platform specific actions, 1911 * they can be added here. These functions can go to sleep when writes 1912 * to certain registers are done. 1913 * These functions are relying on sdhci_set_ios not using spinlock. 1914 */ 1915 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 1916 { 1917 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1918 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1919 u32 req_type = 0; 1920 1921 switch (reg) { 1922 case SDHCI_HOST_CONTROL2: 1923 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 1924 REQ_IO_HIGH; 1925 break; 1926 case SDHCI_SOFTWARE_RESET: 1927 if (host->pwr && (val & SDHCI_RESET_ALL)) 1928 req_type = REQ_BUS_OFF; 1929 break; 1930 case SDHCI_POWER_CONTROL: 1931 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 1932 break; 1933 case SDHCI_TRANSFER_MODE: 1934 msm_host->transfer_mode = val; 1935 break; 1936 case SDHCI_COMMAND: 1937 if (!msm_host->use_cdr) 1938 break; 1939 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 1940 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 && 1941 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK) 1942 sdhci_msm_set_cdr(host, true); 1943 else 1944 sdhci_msm_set_cdr(host, false); 1945 break; 1946 } 1947 1948 if (req_type) { 1949 msm_host->pwr_irq_flag = 0; 1950 /* 1951 * Since this register write may trigger a power irq, ensure 1952 * all previous register writes are complete by this point. 1953 */ 1954 mb(); 1955 } 1956 return req_type; 1957 } 1958 1959 /* This function may sleep*/ 1960 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 1961 { 1962 u32 req_type = 0; 1963 1964 req_type = __sdhci_msm_check_write(host, val, reg); 1965 writew_relaxed(val, host->ioaddr + reg); 1966 1967 if (req_type) 1968 sdhci_msm_check_power_status(host, req_type); 1969 } 1970 1971 /* This function may sleep*/ 1972 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 1973 { 1974 u32 req_type = 0; 1975 1976 req_type = __sdhci_msm_check_write(host, val, reg); 1977 1978 writeb_relaxed(val, host->ioaddr + reg); 1979 1980 if (req_type) 1981 sdhci_msm_check_power_status(host, req_type); 1982 } 1983 1984 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 1985 { 1986 struct mmc_host *mmc = msm_host->mmc; 1987 struct regulator *supply = mmc->supply.vqmmc; 1988 u32 caps = 0, config; 1989 struct sdhci_host *host = mmc_priv(mmc); 1990 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1991 1992 if (!IS_ERR(mmc->supply.vqmmc)) { 1993 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 1994 caps |= CORE_1_8V_SUPPORT; 1995 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 1996 caps |= CORE_3_0V_SUPPORT; 1997 1998 if (!caps) 1999 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 2000 mmc_hostname(mmc)); 2001 } 2002 2003 if (caps) { 2004 /* 2005 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 2006 * bit can be used as required later on. 2007 */ 2008 u32 io_level = msm_host->curr_io_level; 2009 2010 config = readl_relaxed(host->ioaddr + 2011 msm_offset->core_vendor_spec); 2012 config |= CORE_IO_PAD_PWR_SWITCH_EN; 2013 2014 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2015 config &= ~CORE_IO_PAD_PWR_SWITCH; 2016 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2017 config |= CORE_IO_PAD_PWR_SWITCH; 2018 2019 writel_relaxed(config, 2020 host->ioaddr + msm_offset->core_vendor_spec); 2021 } 2022 msm_host->caps_0 |= caps; 2023 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2024 } 2025 2026 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask) 2027 { 2028 if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL)) 2029 cqhci_deactivate(host->mmc); 2030 sdhci_reset(host, mask); 2031 } 2032 2033 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2034 { 2035 int ret; 2036 2037 ret = mmc_regulator_get_supply(msm_host->mmc); 2038 if (ret) 2039 return ret; 2040 2041 sdhci_msm_set_regulator_caps(msm_host); 2042 2043 return 0; 2044 } 2045 2046 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2047 struct mmc_ios *ios) 2048 { 2049 struct sdhci_host *host = mmc_priv(mmc); 2050 u16 ctrl, status; 2051 2052 /* 2053 * Signal Voltage Switching is only applicable for Host Controllers 2054 * v3.00 and above. 2055 */ 2056 if (host->version < SDHCI_SPEC_300) 2057 return 0; 2058 2059 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2060 2061 switch (ios->signal_voltage) { 2062 case MMC_SIGNAL_VOLTAGE_330: 2063 if (!(host->flags & SDHCI_SIGNALING_330)) 2064 return -EINVAL; 2065 2066 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2067 ctrl &= ~SDHCI_CTRL_VDD_180; 2068 break; 2069 case MMC_SIGNAL_VOLTAGE_180: 2070 if (!(host->flags & SDHCI_SIGNALING_180)) 2071 return -EINVAL; 2072 2073 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2074 ctrl |= SDHCI_CTRL_VDD_180; 2075 break; 2076 2077 default: 2078 return -EINVAL; 2079 } 2080 2081 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2082 2083 /* Wait for 5ms */ 2084 usleep_range(5000, 5500); 2085 2086 /* regulator output should be stable within 5 ms */ 2087 status = ctrl & SDHCI_CTRL_VDD_180; 2088 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2089 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2090 return 0; 2091 2092 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2093 mmc_hostname(mmc)); 2094 2095 return -EAGAIN; 2096 } 2097 2098 #define DRIVER_NAME "sdhci_msm" 2099 #define SDHCI_MSM_DUMP(f, x...) \ 2100 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2101 2102 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2103 { 2104 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2105 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2106 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2107 2108 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2109 2110 SDHCI_MSM_DUMP( 2111 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2112 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2113 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2114 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2115 SDHCI_MSM_DUMP( 2116 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2117 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2118 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2119 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2120 SDHCI_MSM_DUMP( 2121 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2122 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2123 readl_relaxed(host->ioaddr + 2124 msm_offset->core_vendor_spec_func2), 2125 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2126 } 2127 2128 static const struct sdhci_msm_variant_ops mci_var_ops = { 2129 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2130 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2131 }; 2132 2133 static const struct sdhci_msm_variant_ops v5_var_ops = { 2134 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2135 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2136 }; 2137 2138 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2139 .var_ops = &mci_var_ops, 2140 .offset = &sdhci_msm_mci_offset, 2141 }; 2142 2143 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2144 .mci_removed = true, 2145 .var_ops = &v5_var_ops, 2146 .offset = &sdhci_msm_v5_offset, 2147 }; 2148 2149 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2150 .mci_removed = true, 2151 .restore_dll_config = true, 2152 .var_ops = &v5_var_ops, 2153 .offset = &sdhci_msm_v5_offset, 2154 }; 2155 2156 static const struct of_device_id sdhci_msm_dt_match[] = { 2157 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2158 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2159 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2160 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var}, 2161 {}, 2162 }; 2163 2164 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2165 2166 static const struct sdhci_ops sdhci_msm_ops = { 2167 .reset = sdhci_msm_reset, 2168 .set_clock = sdhci_msm_set_clock, 2169 .get_min_clock = sdhci_msm_get_min_clock, 2170 .get_max_clock = sdhci_msm_get_max_clock, 2171 .set_bus_width = sdhci_set_bus_width, 2172 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2173 .write_w = sdhci_msm_writew, 2174 .write_b = sdhci_msm_writeb, 2175 .irq = sdhci_msm_cqe_irq, 2176 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2177 .set_power = sdhci_set_power_noreg, 2178 }; 2179 2180 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2181 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2182 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2183 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2184 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2185 2186 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2187 .ops = &sdhci_msm_ops, 2188 }; 2189 2190 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2191 struct sdhci_host *host) 2192 { 2193 struct device_node *node = pdev->dev.of_node; 2194 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2195 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2196 2197 if (of_property_read_u32(node, "qcom,ddr-config", 2198 &msm_host->ddr_config)) 2199 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2200 2201 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2202 } 2203 2204 2205 static int sdhci_msm_probe(struct platform_device *pdev) 2206 { 2207 struct sdhci_host *host; 2208 struct sdhci_pltfm_host *pltfm_host; 2209 struct sdhci_msm_host *msm_host; 2210 struct clk *clk; 2211 int ret; 2212 u16 host_version, core_minor; 2213 u32 core_version, config; 2214 u8 core_major; 2215 const struct sdhci_msm_offset *msm_offset; 2216 const struct sdhci_msm_variant_info *var_info; 2217 struct device_node *node = pdev->dev.of_node; 2218 2219 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2220 if (IS_ERR(host)) 2221 return PTR_ERR(host); 2222 2223 host->sdma_boundary = 0; 2224 pltfm_host = sdhci_priv(host); 2225 msm_host = sdhci_pltfm_priv(pltfm_host); 2226 msm_host->mmc = host->mmc; 2227 msm_host->pdev = pdev; 2228 2229 ret = mmc_of_parse(host->mmc); 2230 if (ret) 2231 goto pltfm_free; 2232 2233 /* 2234 * Based on the compatible string, load the required msm host info from 2235 * the data associated with the version info. 2236 */ 2237 var_info = of_device_get_match_data(&pdev->dev); 2238 2239 msm_host->mci_removed = var_info->mci_removed; 2240 msm_host->restore_dll_config = var_info->restore_dll_config; 2241 msm_host->var_ops = var_info->var_ops; 2242 msm_host->offset = var_info->offset; 2243 2244 msm_offset = msm_host->offset; 2245 2246 sdhci_get_of_property(pdev); 2247 sdhci_msm_get_of_property(pdev, host); 2248 2249 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2250 2251 /* Setup SDCC bus voter clock. */ 2252 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2253 if (!IS_ERR(msm_host->bus_clk)) { 2254 /* Vote for max. clk rate for max. performance */ 2255 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2256 if (ret) 2257 goto pltfm_free; 2258 ret = clk_prepare_enable(msm_host->bus_clk); 2259 if (ret) 2260 goto pltfm_free; 2261 } 2262 2263 /* Setup main peripheral bus clock */ 2264 clk = devm_clk_get(&pdev->dev, "iface"); 2265 if (IS_ERR(clk)) { 2266 ret = PTR_ERR(clk); 2267 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2268 goto bus_clk_disable; 2269 } 2270 msm_host->bulk_clks[1].clk = clk; 2271 2272 /* Setup SDC MMC clock */ 2273 clk = devm_clk_get(&pdev->dev, "core"); 2274 if (IS_ERR(clk)) { 2275 ret = PTR_ERR(clk); 2276 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2277 goto bus_clk_disable; 2278 } 2279 msm_host->bulk_clks[0].clk = clk; 2280 2281 /* Check for optional interconnect paths */ 2282 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2283 if (ret) 2284 goto bus_clk_disable; 2285 2286 msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core"); 2287 if (IS_ERR(msm_host->opp_table)) { 2288 ret = PTR_ERR(msm_host->opp_table); 2289 goto bus_clk_disable; 2290 } 2291 2292 /* OPP table is optional */ 2293 ret = dev_pm_opp_of_add_table(&pdev->dev); 2294 if (ret && ret != -ENODEV) { 2295 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2296 goto opp_put_clkname; 2297 } 2298 2299 /* Vote for maximum clock rate for maximum performance */ 2300 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2301 if (ret) 2302 dev_warn(&pdev->dev, "core clock boost failed\n"); 2303 2304 clk = devm_clk_get(&pdev->dev, "cal"); 2305 if (IS_ERR(clk)) 2306 clk = NULL; 2307 msm_host->bulk_clks[2].clk = clk; 2308 2309 clk = devm_clk_get(&pdev->dev, "sleep"); 2310 if (IS_ERR(clk)) 2311 clk = NULL; 2312 msm_host->bulk_clks[3].clk = clk; 2313 2314 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2315 msm_host->bulk_clks); 2316 if (ret) 2317 goto opp_cleanup; 2318 2319 /* 2320 * xo clock is needed for FLL feature of cm_dll. 2321 * In case if xo clock is not mentioned in DT, warn and proceed. 2322 */ 2323 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2324 if (IS_ERR(msm_host->xo_clk)) { 2325 ret = PTR_ERR(msm_host->xo_clk); 2326 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2327 } 2328 2329 if (!msm_host->mci_removed) { 2330 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2331 if (IS_ERR(msm_host->core_mem)) { 2332 ret = PTR_ERR(msm_host->core_mem); 2333 goto clk_disable; 2334 } 2335 } 2336 2337 /* Reset the vendor spec register to power on reset state */ 2338 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2339 host->ioaddr + msm_offset->core_vendor_spec); 2340 2341 if (!msm_host->mci_removed) { 2342 /* Set HC_MODE_EN bit in HC_MODE register */ 2343 msm_host_writel(msm_host, HC_MODE_EN, host, 2344 msm_offset->core_hc_mode); 2345 config = msm_host_readl(msm_host, host, 2346 msm_offset->core_hc_mode); 2347 config |= FF_CLK_SW_RST_DIS; 2348 msm_host_writel(msm_host, config, host, 2349 msm_offset->core_hc_mode); 2350 } 2351 2352 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2353 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2354 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2355 SDHCI_VENDOR_VER_SHIFT)); 2356 2357 core_version = msm_host_readl(msm_host, host, 2358 msm_offset->core_mci_version); 2359 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2360 CORE_VERSION_MAJOR_SHIFT; 2361 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2362 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2363 core_version, core_major, core_minor); 2364 2365 if (core_major == 1 && core_minor >= 0x42) 2366 msm_host->use_14lpp_dll_reset = true; 2367 2368 /* 2369 * SDCC 5 controller with major version 1, minor version 0x34 and later 2370 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2371 */ 2372 if (core_major == 1 && core_minor < 0x34) 2373 msm_host->use_cdclp533 = true; 2374 2375 /* 2376 * Support for some capabilities is not advertised by newer 2377 * controller versions and must be explicitly enabled. 2378 */ 2379 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2380 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2381 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2382 writel_relaxed(config, host->ioaddr + 2383 msm_offset->core_vendor_spec_capabilities0); 2384 } 2385 2386 if (core_major == 1 && core_minor >= 0x49) 2387 msm_host->updated_ddr_cfg = true; 2388 2389 if (core_major == 1 && core_minor >= 0x71) 2390 msm_host->uses_tassadar_dll = true; 2391 2392 ret = sdhci_msm_register_vreg(msm_host); 2393 if (ret) 2394 goto clk_disable; 2395 2396 /* 2397 * Power on reset state may trigger power irq if previous status of 2398 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2399 * interrupt in GIC, any pending power irq interrupt should be 2400 * acknowledged. Otherwise power irq interrupt handler would be 2401 * fired prematurely. 2402 */ 2403 sdhci_msm_handle_pwr_irq(host, 0); 2404 2405 /* 2406 * Ensure that above writes are propogated before interrupt enablement 2407 * in GIC. 2408 */ 2409 mb(); 2410 2411 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2412 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2413 if (msm_host->pwr_irq < 0) { 2414 ret = msm_host->pwr_irq; 2415 goto clk_disable; 2416 } 2417 2418 sdhci_msm_init_pwr_irq_wait(msm_host); 2419 /* Enable pwr irq interrupts */ 2420 msm_host_writel(msm_host, INT_MASK, host, 2421 msm_offset->core_pwrctl_mask); 2422 2423 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2424 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2425 dev_name(&pdev->dev), host); 2426 if (ret) { 2427 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2428 goto clk_disable; 2429 } 2430 2431 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2432 2433 pm_runtime_get_noresume(&pdev->dev); 2434 pm_runtime_set_active(&pdev->dev); 2435 pm_runtime_enable(&pdev->dev); 2436 pm_runtime_set_autosuspend_delay(&pdev->dev, 2437 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2438 pm_runtime_use_autosuspend(&pdev->dev); 2439 2440 host->mmc_host_ops.start_signal_voltage_switch = 2441 sdhci_msm_start_signal_voltage_switch; 2442 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2443 if (of_property_read_bool(node, "supports-cqe")) 2444 ret = sdhci_msm_cqe_add_host(host, pdev); 2445 else 2446 ret = sdhci_add_host(host); 2447 if (ret) 2448 goto pm_runtime_disable; 2449 2450 pm_runtime_mark_last_busy(&pdev->dev); 2451 pm_runtime_put_autosuspend(&pdev->dev); 2452 2453 return 0; 2454 2455 pm_runtime_disable: 2456 pm_runtime_disable(&pdev->dev); 2457 pm_runtime_set_suspended(&pdev->dev); 2458 pm_runtime_put_noidle(&pdev->dev); 2459 clk_disable: 2460 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2461 msm_host->bulk_clks); 2462 opp_cleanup: 2463 dev_pm_opp_of_remove_table(&pdev->dev); 2464 opp_put_clkname: 2465 dev_pm_opp_put_clkname(msm_host->opp_table); 2466 bus_clk_disable: 2467 if (!IS_ERR(msm_host->bus_clk)) 2468 clk_disable_unprepare(msm_host->bus_clk); 2469 pltfm_free: 2470 sdhci_pltfm_free(pdev); 2471 return ret; 2472 } 2473 2474 static int sdhci_msm_remove(struct platform_device *pdev) 2475 { 2476 struct sdhci_host *host = platform_get_drvdata(pdev); 2477 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2478 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2479 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2480 0xffffffff); 2481 2482 sdhci_remove_host(host, dead); 2483 2484 dev_pm_opp_of_remove_table(&pdev->dev); 2485 dev_pm_opp_put_clkname(msm_host->opp_table); 2486 pm_runtime_get_sync(&pdev->dev); 2487 pm_runtime_disable(&pdev->dev); 2488 pm_runtime_put_noidle(&pdev->dev); 2489 2490 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2491 msm_host->bulk_clks); 2492 if (!IS_ERR(msm_host->bus_clk)) 2493 clk_disable_unprepare(msm_host->bus_clk); 2494 sdhci_pltfm_free(pdev); 2495 return 0; 2496 } 2497 2498 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2499 { 2500 struct sdhci_host *host = dev_get_drvdata(dev); 2501 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2502 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2503 2504 /* Drop the performance vote */ 2505 dev_pm_opp_set_rate(dev, 0); 2506 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2507 msm_host->bulk_clks); 2508 2509 return 0; 2510 } 2511 2512 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2513 { 2514 struct sdhci_host *host = dev_get_drvdata(dev); 2515 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2516 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2517 int ret; 2518 2519 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2520 msm_host->bulk_clks); 2521 if (ret) 2522 return ret; 2523 /* 2524 * Whenever core-clock is gated dynamically, it's needed to 2525 * restore the SDR DLL settings when the clock is ungated. 2526 */ 2527 if (msm_host->restore_dll_config && msm_host->clk_rate) 2528 ret = sdhci_msm_restore_sdr_dll_config(host); 2529 2530 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2531 2532 return ret; 2533 } 2534 2535 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2536 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2537 pm_runtime_force_resume) 2538 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2539 sdhci_msm_runtime_resume, 2540 NULL) 2541 }; 2542 2543 static struct platform_driver sdhci_msm_driver = { 2544 .probe = sdhci_msm_probe, 2545 .remove = sdhci_msm_remove, 2546 .driver = { 2547 .name = "sdhci_msm", 2548 .of_match_table = sdhci_msm_dt_match, 2549 .pm = &sdhci_msm_pm_ops, 2550 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2551 }, 2552 }; 2553 2554 module_platform_driver(sdhci_msm_driver); 2555 2556 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2557 MODULE_LICENSE("GPL v2"); 2558