xref: /linux/drivers/mmc/host/sdhci-msm.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/delay.h>
10 #include <linux/mmc/mmc.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/pm_opp.h>
13 #include <linux/slab.h>
14 #include <linux/iopoll.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/interconnect.h>
17 #include <linux/of.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/reset.h>
20 
21 #include <soc/qcom/ice.h>
22 
23 #include "sdhci-cqhci.h"
24 #include "sdhci-pltfm.h"
25 #include "cqhci.h"
26 
27 #define CORE_MCI_VERSION		0x50
28 #define CORE_VERSION_MAJOR_SHIFT	28
29 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
30 #define CORE_VERSION_MINOR_MASK		0xff
31 
32 #define CORE_MCI_GENERICS		0x70
33 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
34 
35 #define HC_MODE_EN		0x1
36 #define CORE_POWER		0x0
37 #define CORE_SW_RST		BIT(7)
38 #define FF_CLK_SW_RST_DIS	BIT(13)
39 
40 #define CORE_PWRCTL_BUS_OFF	BIT(0)
41 #define CORE_PWRCTL_BUS_ON	BIT(1)
42 #define CORE_PWRCTL_IO_LOW	BIT(2)
43 #define CORE_PWRCTL_IO_HIGH	BIT(3)
44 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
45 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
46 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
47 #define CORE_PWRCTL_IO_FAIL     BIT(3)
48 #define REQ_BUS_OFF		BIT(0)
49 #define REQ_BUS_ON		BIT(1)
50 #define REQ_IO_LOW		BIT(2)
51 #define REQ_IO_HIGH		BIT(3)
52 #define INT_MASK		0xf
53 #define MAX_PHASES		16
54 #define CORE_DLL_LOCK		BIT(7)
55 #define CORE_DDR_DLL_LOCK	BIT(11)
56 #define CORE_DLL_EN		BIT(16)
57 #define CORE_CDR_EN		BIT(17)
58 #define CORE_CK_OUT_EN		BIT(18)
59 #define CORE_CDR_EXT_EN		BIT(19)
60 #define CORE_DLL_PDN		BIT(29)
61 #define CORE_DLL_RST		BIT(30)
62 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
63 
64 #define CORE_DDR_CAL_EN		BIT(0)
65 #define CORE_FLL_CYCLE_CNT	BIT(18)
66 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
67 
68 #define DLL_USR_CTL_POR_VAL	0x10800
69 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
70 #define FINE_TUNE_MODE_EN	BIT(27)
71 #define BIAS_OK_SIGNAL		BIT(29)
72 
73 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
74 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
75 
76 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
77 #define CORE_CLK_PWRSAVE	BIT(1)
78 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
79 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
80 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
81 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
82 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
83 #define CORE_HC_SELECT_IN_EN	BIT(18)
84 #define CORE_HC_SELECT_IN_SDR50	(4 << 19)
85 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
86 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
87 
88 #define CORE_3_0V_SUPPORT	BIT(25)
89 #define CORE_1_8V_SUPPORT	BIT(26)
90 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
91 
92 #define CORE_CSR_CDC_CTLR_CFG0		0x130
93 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
94 #define CORE_HW_AUTOCAL_ENA		BIT(17)
95 
96 #define CORE_CSR_CDC_CTLR_CFG1		0x134
97 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
98 #define CORE_TIMER_ENA			BIT(16)
99 
100 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
101 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
102 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
103 #define CORE_CDC_OFFSET_CFG		0x14C
104 #define CORE_CSR_CDC_DELAY_CFG		0x150
105 #define CORE_CDC_SLAVE_DDA_CFG		0x160
106 #define CORE_CSR_CDC_STATUS0		0x164
107 #define CORE_CALIBRATION_DONE		BIT(0)
108 
109 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
110 
111 #define CORE_CSR_CDC_GEN_CFG		0x178
112 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
113 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
114 
115 #define CORE_CDC_T4_DLY_SEL		BIT(0)
116 #define CORE_CMDIN_RCLK_EN		BIT(1)
117 #define CORE_START_CDC_TRAFFIC		BIT(6)
118 
119 #define CORE_PWRSAVE_DLL	BIT(3)
120 
121 #define DDR_CONFIG_POR_VAL	0x80040873
122 
123 
124 #define INVALID_TUNING_PHASE	-1
125 #define SDHCI_MSM_MIN_CLOCK	400000
126 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
127 
128 #define CDR_SELEXT_SHIFT	20
129 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
130 #define CMUX_SHIFT_PHASE_SHIFT	24
131 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
132 
133 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
134 
135 /* Timeout value to avoid infinite waiting for pwr_irq */
136 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
137 
138 /* Max load for eMMC Vdd supply */
139 #define MMC_VMMC_MAX_LOAD_UA	570000
140 
141 /* Max load for eMMC Vdd-io supply */
142 #define MMC_VQMMC_MAX_LOAD_UA	325000
143 
144 /* Max load for SD Vdd supply */
145 #define SD_VMMC_MAX_LOAD_UA	800000
146 
147 /* Max load for SD Vdd-io supply */
148 #define SD_VQMMC_MAX_LOAD_UA	22000
149 
150 #define msm_host_readl(msm_host, host, offset) \
151 	msm_host->var_ops->msm_readl_relaxed(host, offset)
152 
153 #define msm_host_writel(msm_host, val, host, offset) \
154 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
155 
156 /* CQHCI vendor specific registers */
157 #define CQHCI_VENDOR_CFG1	0xA00
158 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
159 
160 struct sdhci_msm_offset {
161 	u32 core_hc_mode;
162 	u32 core_mci_data_cnt;
163 	u32 core_mci_status;
164 	u32 core_mci_fifo_cnt;
165 	u32 core_mci_version;
166 	u32 core_generics;
167 	u32 core_testbus_config;
168 	u32 core_testbus_sel2_bit;
169 	u32 core_testbus_ena;
170 	u32 core_testbus_sel2;
171 	u32 core_pwrctl_status;
172 	u32 core_pwrctl_mask;
173 	u32 core_pwrctl_clear;
174 	u32 core_pwrctl_ctl;
175 	u32 core_sdcc_debug_reg;
176 	u32 core_dll_config;
177 	u32 core_dll_status;
178 	u32 core_vendor_spec;
179 	u32 core_vendor_spec_adma_err_addr0;
180 	u32 core_vendor_spec_adma_err_addr1;
181 	u32 core_vendor_spec_func2;
182 	u32 core_vendor_spec_capabilities0;
183 	u32 core_ddr_200_cfg;
184 	u32 core_vendor_spec3;
185 	u32 core_dll_config_2;
186 	u32 core_dll_config_3;
187 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
188 	u32 core_ddr_config;
189 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
190 };
191 
192 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
193 	.core_mci_data_cnt = 0x35c,
194 	.core_mci_status = 0x324,
195 	.core_mci_fifo_cnt = 0x308,
196 	.core_mci_version = 0x318,
197 	.core_generics = 0x320,
198 	.core_testbus_config = 0x32c,
199 	.core_testbus_sel2_bit = 3,
200 	.core_testbus_ena = (1 << 31),
201 	.core_testbus_sel2 = (1 << 3),
202 	.core_pwrctl_status = 0x240,
203 	.core_pwrctl_mask = 0x244,
204 	.core_pwrctl_clear = 0x248,
205 	.core_pwrctl_ctl = 0x24c,
206 	.core_sdcc_debug_reg = 0x358,
207 	.core_dll_config = 0x200,
208 	.core_dll_status = 0x208,
209 	.core_vendor_spec = 0x20c,
210 	.core_vendor_spec_adma_err_addr0 = 0x214,
211 	.core_vendor_spec_adma_err_addr1 = 0x218,
212 	.core_vendor_spec_func2 = 0x210,
213 	.core_vendor_spec_capabilities0 = 0x21c,
214 	.core_ddr_200_cfg = 0x224,
215 	.core_vendor_spec3 = 0x250,
216 	.core_dll_config_2 = 0x254,
217 	.core_dll_config_3 = 0x258,
218 	.core_ddr_config = 0x25c,
219 	.core_dll_usr_ctl = 0x388,
220 };
221 
222 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
223 	.core_hc_mode = 0x78,
224 	.core_mci_data_cnt = 0x30,
225 	.core_mci_status = 0x34,
226 	.core_mci_fifo_cnt = 0x44,
227 	.core_mci_version = 0x050,
228 	.core_generics = 0x70,
229 	.core_testbus_config = 0x0cc,
230 	.core_testbus_sel2_bit = 4,
231 	.core_testbus_ena = (1 << 3),
232 	.core_testbus_sel2 = (1 << 4),
233 	.core_pwrctl_status = 0xdc,
234 	.core_pwrctl_mask = 0xe0,
235 	.core_pwrctl_clear = 0xe4,
236 	.core_pwrctl_ctl = 0xe8,
237 	.core_sdcc_debug_reg = 0x124,
238 	.core_dll_config = 0x100,
239 	.core_dll_status = 0x108,
240 	.core_vendor_spec = 0x10c,
241 	.core_vendor_spec_adma_err_addr0 = 0x114,
242 	.core_vendor_spec_adma_err_addr1 = 0x118,
243 	.core_vendor_spec_func2 = 0x110,
244 	.core_vendor_spec_capabilities0 = 0x11c,
245 	.core_ddr_200_cfg = 0x184,
246 	.core_vendor_spec3 = 0x1b0,
247 	.core_dll_config_2 = 0x1b4,
248 	.core_ddr_config_old = 0x1b8,
249 	.core_ddr_config = 0x1bc,
250 };
251 
252 struct sdhci_msm_variant_ops {
253 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
254 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
255 			u32 offset);
256 };
257 
258 /*
259  * From V5, register spaces have changed. Wrap this info in a structure
260  * and choose the data_structure based on version info mentioned in DT.
261  */
262 struct sdhci_msm_variant_info {
263 	bool mci_removed;
264 	bool restore_dll_config;
265 	const struct sdhci_msm_variant_ops *var_ops;
266 	const struct sdhci_msm_offset *offset;
267 };
268 
269 struct sdhci_msm_host {
270 	struct platform_device *pdev;
271 	void __iomem *core_mem;	/* MSM SDCC mapped address */
272 	int pwr_irq;		/* power irq */
273 	struct clk *bus_clk;	/* SDHC bus voter clock */
274 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
275 	/* core, iface, cal and sleep clocks */
276 	struct clk_bulk_data bulk_clks[4];
277 #ifdef CONFIG_MMC_CRYPTO
278 	struct qcom_ice *ice;
279 #endif
280 	unsigned long clk_rate;
281 	struct mmc_host *mmc;
282 	bool use_14lpp_dll_reset;
283 	bool tuning_done;
284 	bool calibration_done;
285 	u8 saved_tuning_phase;
286 	bool use_cdclp533;
287 	u32 curr_pwr_state;
288 	u32 curr_io_level;
289 	wait_queue_head_t pwr_irq_wait;
290 	bool pwr_irq_flag;
291 	u32 caps_0;
292 	bool mci_removed;
293 	bool restore_dll_config;
294 	const struct sdhci_msm_variant_ops *var_ops;
295 	const struct sdhci_msm_offset *offset;
296 	bool use_cdr;
297 	u32 transfer_mode;
298 	bool updated_ddr_cfg;
299 	bool uses_tassadar_dll;
300 	u32 dll_config;
301 	u32 ddr_config;
302 	bool vqmmc_enabled;
303 };
304 
305 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
306 {
307 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
308 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
309 
310 	return msm_host->offset;
311 }
312 
313 /*
314  * APIs to read/write to vendor specific registers which were there in the
315  * core_mem region before MCI was removed.
316  */
317 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
318 		u32 offset)
319 {
320 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
321 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
322 
323 	return readl_relaxed(msm_host->core_mem + offset);
324 }
325 
326 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
327 		u32 offset)
328 {
329 	return readl_relaxed(host->ioaddr + offset);
330 }
331 
332 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
333 		struct sdhci_host *host, u32 offset)
334 {
335 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
336 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
337 
338 	writel_relaxed(val, msm_host->core_mem + offset);
339 }
340 
341 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
342 		struct sdhci_host *host, u32 offset)
343 {
344 	writel_relaxed(val, host->ioaddr + offset);
345 }
346 
347 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
348 {
349 	struct mmc_ios ios = host->mmc->ios;
350 	/*
351 	 * The SDHC requires internal clock frequency to be double the
352 	 * actual clock that will be set for DDR mode. The controller
353 	 * uses the faster clock(100/400MHz) for some of its parts and
354 	 * send the actual required clock (50/200MHz) to the card.
355 	 */
356 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
357 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
358 	    ios.timing == MMC_TIMING_MMC_HS400 ||
359 	    host->flags & SDHCI_HS400_TUNING)
360 		return 2;
361 	return 1;
362 }
363 
364 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
365 					    unsigned int clock)
366 {
367 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
368 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
369 	struct mmc_ios curr_ios = host->mmc->ios;
370 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
371 	unsigned long achieved_rate;
372 	unsigned int desired_rate;
373 	unsigned int mult;
374 	int rc;
375 
376 	mult = msm_get_clock_mult_for_bus_mode(host);
377 	desired_rate = clock * mult;
378 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
379 	if (rc) {
380 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
381 		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
382 		return;
383 	}
384 
385 	/*
386 	 * Qualcomm clock drivers by default round clock _up_ if they can't
387 	 * make the requested rate.  This is not good for SD.  Yell if we
388 	 * encounter it.
389 	 */
390 	achieved_rate = clk_get_rate(core_clk);
391 	if (achieved_rate > desired_rate)
392 		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
393 			mmc_hostname(host->mmc), desired_rate, achieved_rate);
394 	host->mmc->actual_clock = achieved_rate / mult;
395 
396 	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
397 	msm_host->clk_rate = desired_rate;
398 
399 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
400 		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
401 }
402 
403 /* Platform specific tuning */
404 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
405 {
406 	u32 wait_cnt = 50;
407 	u8 ck_out_en;
408 	struct mmc_host *mmc = host->mmc;
409 	const struct sdhci_msm_offset *msm_offset =
410 					sdhci_priv_msm_offset(host);
411 
412 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
413 	ck_out_en = !!(readl_relaxed(host->ioaddr +
414 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
415 
416 	while (ck_out_en != poll) {
417 		if (--wait_cnt == 0) {
418 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
419 			       mmc_hostname(mmc), poll);
420 			return -ETIMEDOUT;
421 		}
422 		udelay(1);
423 
424 		ck_out_en = !!(readl_relaxed(host->ioaddr +
425 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
426 	}
427 
428 	return 0;
429 }
430 
431 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
432 {
433 	int rc;
434 	static const u8 grey_coded_phase_table[] = {
435 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
436 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
437 	};
438 	unsigned long flags;
439 	u32 config;
440 	struct mmc_host *mmc = host->mmc;
441 	const struct sdhci_msm_offset *msm_offset =
442 					sdhci_priv_msm_offset(host);
443 
444 	if (phase > 0xf)
445 		return -EINVAL;
446 
447 	spin_lock_irqsave(&host->lock, flags);
448 
449 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
450 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
451 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
452 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
453 
454 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
455 	rc = msm_dll_poll_ck_out_en(host, 0);
456 	if (rc)
457 		goto err_out;
458 
459 	/*
460 	 * Write the selected DLL clock output phase (0 ... 15)
461 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
462 	 */
463 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
464 	config &= ~CDR_SELEXT_MASK;
465 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
466 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
467 
468 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
469 	config |= CORE_CK_OUT_EN;
470 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
471 
472 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
473 	rc = msm_dll_poll_ck_out_en(host, 1);
474 	if (rc)
475 		goto err_out;
476 
477 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
478 	config |= CORE_CDR_EN;
479 	config &= ~CORE_CDR_EXT_EN;
480 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
481 	goto out;
482 
483 err_out:
484 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
485 	       mmc_hostname(mmc), phase);
486 out:
487 	spin_unlock_irqrestore(&host->lock, flags);
488 	return rc;
489 }
490 
491 /*
492  * Find out the greatest range of consecuitive selected
493  * DLL clock output phases that can be used as sampling
494  * setting for SD3.0 UHS-I card read operation (in SDR104
495  * timing mode) or for eMMC4.5 card read operation (in
496  * HS400/HS200 timing mode).
497  * Select the 3/4 of the range and configure the DLL with the
498  * selected DLL clock output phase.
499  */
500 
501 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
502 					   u8 *phase_table, u8 total_phases)
503 {
504 	int ret;
505 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
506 	u8 phases_per_row[MAX_PHASES] = { 0 };
507 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
508 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
509 	bool phase_0_found = false, phase_15_found = false;
510 	struct mmc_host *mmc = host->mmc;
511 
512 	if (!total_phases || (total_phases > MAX_PHASES)) {
513 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
514 		       mmc_hostname(mmc), total_phases);
515 		return -EINVAL;
516 	}
517 
518 	for (cnt = 0; cnt < total_phases; cnt++) {
519 		ranges[row_index][col_index] = phase_table[cnt];
520 		phases_per_row[row_index] += 1;
521 		col_index++;
522 
523 		if ((cnt + 1) == total_phases) {
524 			continue;
525 		/* check if next phase in phase_table is consecutive or not */
526 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
527 			row_index++;
528 			col_index = 0;
529 		}
530 	}
531 
532 	if (row_index >= MAX_PHASES)
533 		return -EINVAL;
534 
535 	/* Check if phase-0 is present in first valid window? */
536 	if (!ranges[0][0]) {
537 		phase_0_found = true;
538 		phase_0_raw_index = 0;
539 		/* Check if cycle exist between 2 valid windows */
540 		for (cnt = 1; cnt <= row_index; cnt++) {
541 			if (phases_per_row[cnt]) {
542 				for (i = 0; i < phases_per_row[cnt]; i++) {
543 					if (ranges[cnt][i] == 15) {
544 						phase_15_found = true;
545 						phase_15_raw_index = cnt;
546 						break;
547 					}
548 				}
549 			}
550 		}
551 	}
552 
553 	/* If 2 valid windows form cycle then merge them as single window */
554 	if (phase_0_found && phase_15_found) {
555 		/* number of phases in raw where phase 0 is present */
556 		u8 phases_0 = phases_per_row[phase_0_raw_index];
557 		/* number of phases in raw where phase 15 is present */
558 		u8 phases_15 = phases_per_row[phase_15_raw_index];
559 
560 		if (phases_0 + phases_15 >= MAX_PHASES)
561 			/*
562 			 * If there are more than 1 phase windows then total
563 			 * number of phases in both the windows should not be
564 			 * more than or equal to MAX_PHASES.
565 			 */
566 			return -EINVAL;
567 
568 		/* Merge 2 cyclic windows */
569 		i = phases_15;
570 		for (cnt = 0; cnt < phases_0; cnt++) {
571 			ranges[phase_15_raw_index][i] =
572 			    ranges[phase_0_raw_index][cnt];
573 			if (++i >= MAX_PHASES)
574 				break;
575 		}
576 
577 		phases_per_row[phase_0_raw_index] = 0;
578 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
579 	}
580 
581 	for (cnt = 0; cnt <= row_index; cnt++) {
582 		if (phases_per_row[cnt] > curr_max) {
583 			curr_max = phases_per_row[cnt];
584 			selected_row_index = cnt;
585 		}
586 	}
587 
588 	i = (curr_max * 3) / 4;
589 	if (i)
590 		i--;
591 
592 	ret = ranges[selected_row_index][i];
593 
594 	if (ret >= MAX_PHASES) {
595 		ret = -EINVAL;
596 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
597 		       mmc_hostname(mmc), ret);
598 	}
599 
600 	return ret;
601 }
602 
603 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
604 {
605 	u32 mclk_freq = 0, config;
606 	const struct sdhci_msm_offset *msm_offset =
607 					sdhci_priv_msm_offset(host);
608 
609 	/* Program the MCLK value to MCLK_FREQ bit field */
610 	if (host->clock <= 112000000)
611 		mclk_freq = 0;
612 	else if (host->clock <= 125000000)
613 		mclk_freq = 1;
614 	else if (host->clock <= 137000000)
615 		mclk_freq = 2;
616 	else if (host->clock <= 150000000)
617 		mclk_freq = 3;
618 	else if (host->clock <= 162000000)
619 		mclk_freq = 4;
620 	else if (host->clock <= 175000000)
621 		mclk_freq = 5;
622 	else if (host->clock <= 187000000)
623 		mclk_freq = 6;
624 	else if (host->clock <= 200000000)
625 		mclk_freq = 7;
626 
627 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
628 	config &= ~CMUX_SHIFT_PHASE_MASK;
629 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
630 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
631 }
632 
633 /* Initialize the DLL (Programmable Delay Line) */
634 static int msm_init_cm_dll(struct sdhci_host *host)
635 {
636 	struct mmc_host *mmc = host->mmc;
637 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
638 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
639 	int wait_cnt = 50;
640 	unsigned long flags, xo_clk = 0;
641 	u32 config;
642 	const struct sdhci_msm_offset *msm_offset =
643 					msm_host->offset;
644 
645 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
646 		xo_clk = clk_get_rate(msm_host->xo_clk);
647 
648 	spin_lock_irqsave(&host->lock, flags);
649 
650 	/*
651 	 * Make sure that clock is always enabled when DLL
652 	 * tuning is in progress. Keeping PWRSAVE ON may
653 	 * turn off the clock.
654 	 */
655 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
656 	config &= ~CORE_CLK_PWRSAVE;
657 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
658 
659 	if (msm_host->dll_config)
660 		writel_relaxed(msm_host->dll_config,
661 				host->ioaddr + msm_offset->core_dll_config);
662 
663 	if (msm_host->use_14lpp_dll_reset) {
664 		config = readl_relaxed(host->ioaddr +
665 				msm_offset->core_dll_config);
666 		config &= ~CORE_CK_OUT_EN;
667 		writel_relaxed(config, host->ioaddr +
668 				msm_offset->core_dll_config);
669 
670 		config = readl_relaxed(host->ioaddr +
671 				msm_offset->core_dll_config_2);
672 		config |= CORE_DLL_CLOCK_DISABLE;
673 		writel_relaxed(config, host->ioaddr +
674 				msm_offset->core_dll_config_2);
675 	}
676 
677 	config = readl_relaxed(host->ioaddr +
678 			msm_offset->core_dll_config);
679 	config |= CORE_DLL_RST;
680 	writel_relaxed(config, host->ioaddr +
681 			msm_offset->core_dll_config);
682 
683 	config = readl_relaxed(host->ioaddr +
684 			msm_offset->core_dll_config);
685 	config |= CORE_DLL_PDN;
686 	writel_relaxed(config, host->ioaddr +
687 			msm_offset->core_dll_config);
688 
689 	if (!msm_host->dll_config)
690 		msm_cm_dll_set_freq(host);
691 
692 	if (msm_host->use_14lpp_dll_reset &&
693 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
694 		u32 mclk_freq = 0;
695 
696 		config = readl_relaxed(host->ioaddr +
697 				msm_offset->core_dll_config_2);
698 		config &= CORE_FLL_CYCLE_CNT;
699 		if (config)
700 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
701 					xo_clk);
702 		else
703 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
704 					xo_clk);
705 
706 		config = readl_relaxed(host->ioaddr +
707 				msm_offset->core_dll_config_2);
708 		config &= ~(0xFF << 10);
709 		config |= mclk_freq << 10;
710 
711 		writel_relaxed(config, host->ioaddr +
712 				msm_offset->core_dll_config_2);
713 		/* wait for 5us before enabling DLL clock */
714 		udelay(5);
715 	}
716 
717 	config = readl_relaxed(host->ioaddr +
718 			msm_offset->core_dll_config);
719 	config &= ~CORE_DLL_RST;
720 	writel_relaxed(config, host->ioaddr +
721 			msm_offset->core_dll_config);
722 
723 	config = readl_relaxed(host->ioaddr +
724 			msm_offset->core_dll_config);
725 	config &= ~CORE_DLL_PDN;
726 	writel_relaxed(config, host->ioaddr +
727 			msm_offset->core_dll_config);
728 
729 	if (msm_host->use_14lpp_dll_reset) {
730 		if (!msm_host->dll_config)
731 			msm_cm_dll_set_freq(host);
732 		config = readl_relaxed(host->ioaddr +
733 				msm_offset->core_dll_config_2);
734 		config &= ~CORE_DLL_CLOCK_DISABLE;
735 		writel_relaxed(config, host->ioaddr +
736 				msm_offset->core_dll_config_2);
737 	}
738 
739 	/*
740 	 * Configure DLL user control register to enable DLL status.
741 	 * This setting is applicable to SDCC v5.1 onwards only.
742 	 */
743 	if (msm_host->uses_tassadar_dll) {
744 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
745 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
746 		writel_relaxed(config, host->ioaddr +
747 				msm_offset->core_dll_usr_ctl);
748 
749 		config = readl_relaxed(host->ioaddr +
750 				msm_offset->core_dll_config_3);
751 		config &= ~0xFF;
752 		if (msm_host->clk_rate < 150000000)
753 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
754 		else
755 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
756 		writel_relaxed(config, host->ioaddr +
757 			msm_offset->core_dll_config_3);
758 	}
759 
760 	config = readl_relaxed(host->ioaddr +
761 			msm_offset->core_dll_config);
762 	config |= CORE_DLL_EN;
763 	writel_relaxed(config, host->ioaddr +
764 			msm_offset->core_dll_config);
765 
766 	config = readl_relaxed(host->ioaddr +
767 			msm_offset->core_dll_config);
768 	config |= CORE_CK_OUT_EN;
769 	writel_relaxed(config, host->ioaddr +
770 			msm_offset->core_dll_config);
771 
772 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
773 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
774 		 CORE_DLL_LOCK)) {
775 		/* max. wait for 50us sec for LOCK bit to be set */
776 		if (--wait_cnt == 0) {
777 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
778 			       mmc_hostname(mmc));
779 			spin_unlock_irqrestore(&host->lock, flags);
780 			return -ETIMEDOUT;
781 		}
782 		udelay(1);
783 	}
784 
785 	spin_unlock_irqrestore(&host->lock, flags);
786 	return 0;
787 }
788 
789 static void msm_hc_select_default(struct sdhci_host *host)
790 {
791 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
792 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
793 	u32 config;
794 	const struct sdhci_msm_offset *msm_offset =
795 					msm_host->offset;
796 
797 	if (!msm_host->use_cdclp533) {
798 		config = readl_relaxed(host->ioaddr +
799 				msm_offset->core_vendor_spec3);
800 		config &= ~CORE_PWRSAVE_DLL;
801 		writel_relaxed(config, host->ioaddr +
802 				msm_offset->core_vendor_spec3);
803 	}
804 
805 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
806 	config &= ~CORE_HC_MCLK_SEL_MASK;
807 	config |= CORE_HC_MCLK_SEL_DFLT;
808 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
809 
810 	/*
811 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
812 	 * configuration from Host Control2 register for all other
813 	 * modes.
814 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
815 	 * in VENDOR_SPEC_FUNC
816 	 */
817 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
818 	config &= ~CORE_HC_SELECT_IN_EN;
819 	config &= ~CORE_HC_SELECT_IN_MASK;
820 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
821 
822 	/*
823 	 * Make sure above writes impacting free running MCLK are completed
824 	 * before changing the clk_rate at GCC.
825 	 */
826 	wmb();
827 }
828 
829 static void msm_hc_select_hs400(struct sdhci_host *host)
830 {
831 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
832 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
833 	struct mmc_ios ios = host->mmc->ios;
834 	u32 config, dll_lock;
835 	int rc;
836 	const struct sdhci_msm_offset *msm_offset =
837 					msm_host->offset;
838 
839 	/* Select the divided clock (free running MCLK/2) */
840 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
841 	config &= ~CORE_HC_MCLK_SEL_MASK;
842 	config |= CORE_HC_MCLK_SEL_HS400;
843 
844 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
845 	/*
846 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
847 	 * register
848 	 */
849 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
850 	    !msm_host->calibration_done) {
851 		config = readl_relaxed(host->ioaddr +
852 				msm_offset->core_vendor_spec);
853 		config |= CORE_HC_SELECT_IN_HS400;
854 		config |= CORE_HC_SELECT_IN_EN;
855 		writel_relaxed(config, host->ioaddr +
856 				msm_offset->core_vendor_spec);
857 	}
858 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
859 		/*
860 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
861 		 * core_dll_status to be set. This should get set
862 		 * within 15 us at 200 MHz.
863 		 */
864 		rc = readl_relaxed_poll_timeout(host->ioaddr +
865 						msm_offset->core_dll_status,
866 						dll_lock,
867 						(dll_lock &
868 						(CORE_DLL_LOCK |
869 						CORE_DDR_DLL_LOCK)), 10,
870 						1000);
871 		if (rc == -ETIMEDOUT)
872 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
873 			       mmc_hostname(host->mmc), dll_lock);
874 	}
875 	/*
876 	 * Make sure above writes impacting free running MCLK are completed
877 	 * before changing the clk_rate at GCC.
878 	 */
879 	wmb();
880 }
881 
882 /*
883  * sdhci_msm_hc_select_mode :- In general all timing modes are
884  * controlled via UHS mode select in Host Control2 register.
885  * eMMC specific HS200/HS400 doesn't have their respective modes
886  * defined here, hence we use these values.
887  *
888  * HS200 - SDR104 (Since they both are equivalent in functionality)
889  * HS400 - This involves multiple configurations
890  *		Initially SDR104 - when tuning is required as HS200
891  *		Then when switching to DDR @ 400MHz (HS400) we use
892  *		the vendor specific HC_SELECT_IN to control the mode.
893  *
894  * In addition to controlling the modes we also need to select the
895  * correct input clock for DLL depending on the mode.
896  *
897  * HS400 - divided clock (free running MCLK/2)
898  * All other modes - default (free running MCLK)
899  */
900 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
901 {
902 	struct mmc_ios ios = host->mmc->ios;
903 
904 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
905 	    host->flags & SDHCI_HS400_TUNING)
906 		msm_hc_select_hs400(host);
907 	else
908 		msm_hc_select_default(host);
909 }
910 
911 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
912 {
913 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
914 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
915 	u32 config, calib_done;
916 	int ret;
917 	const struct sdhci_msm_offset *msm_offset =
918 					msm_host->offset;
919 
920 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
921 
922 	/*
923 	 * Retuning in HS400 (DDR mode) will fail, just reset the
924 	 * tuning block and restore the saved tuning phase.
925 	 */
926 	ret = msm_init_cm_dll(host);
927 	if (ret)
928 		goto out;
929 
930 	/* Set the selected phase in delay line hw block */
931 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
932 	if (ret)
933 		goto out;
934 
935 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
936 	config |= CORE_CMD_DAT_TRACK_SEL;
937 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
938 
939 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
940 	config &= ~CORE_CDC_T4_DLY_SEL;
941 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
942 
943 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
944 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
945 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
946 
947 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
948 	config |= CORE_CDC_SWITCH_RC_EN;
949 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
950 
951 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
952 	config &= ~CORE_START_CDC_TRAFFIC;
953 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
954 
955 	/* Perform CDC Register Initialization Sequence */
956 
957 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
958 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
959 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
960 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
961 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
962 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
963 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
964 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
965 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
966 
967 	/* CDC HW Calibration */
968 
969 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
970 	config |= CORE_SW_TRIG_FULL_CALIB;
971 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
972 
973 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
974 	config &= ~CORE_SW_TRIG_FULL_CALIB;
975 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
976 
977 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
978 	config |= CORE_HW_AUTOCAL_ENA;
979 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
980 
981 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
982 	config |= CORE_TIMER_ENA;
983 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
984 
985 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
986 					 calib_done,
987 					 (calib_done & CORE_CALIBRATION_DONE),
988 					 1, 50);
989 
990 	if (ret == -ETIMEDOUT) {
991 		pr_err("%s: %s: CDC calibration was not completed\n",
992 		       mmc_hostname(host->mmc), __func__);
993 		goto out;
994 	}
995 
996 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
997 			& CORE_CDC_ERROR_CODE_MASK;
998 	if (ret) {
999 		pr_err("%s: %s: CDC error code %d\n",
1000 		       mmc_hostname(host->mmc), __func__, ret);
1001 		ret = -EINVAL;
1002 		goto out;
1003 	}
1004 
1005 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
1006 	config |= CORE_START_CDC_TRAFFIC;
1007 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
1008 out:
1009 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1010 		 __func__, ret);
1011 	return ret;
1012 }
1013 
1014 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1015 {
1016 	struct mmc_host *mmc = host->mmc;
1017 	u32 dll_status, config, ddr_cfg_offset;
1018 	int ret;
1019 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1020 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1021 	const struct sdhci_msm_offset *msm_offset =
1022 					sdhci_priv_msm_offset(host);
1023 
1024 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1025 
1026 	/*
1027 	 * Currently the core_ddr_config register defaults to desired
1028 	 * configuration on reset. Currently reprogramming the power on
1029 	 * reset (POR) value in case it might have been modified by
1030 	 * bootloaders. In the future, if this changes, then the desired
1031 	 * values will need to be programmed appropriately.
1032 	 */
1033 	if (msm_host->updated_ddr_cfg)
1034 		ddr_cfg_offset = msm_offset->core_ddr_config;
1035 	else
1036 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1037 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1038 
1039 	if (mmc->ios.enhanced_strobe) {
1040 		config = readl_relaxed(host->ioaddr +
1041 				msm_offset->core_ddr_200_cfg);
1042 		config |= CORE_CMDIN_RCLK_EN;
1043 		writel_relaxed(config, host->ioaddr +
1044 				msm_offset->core_ddr_200_cfg);
1045 	}
1046 
1047 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1048 	config |= CORE_DDR_CAL_EN;
1049 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1050 
1051 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1052 					msm_offset->core_dll_status,
1053 					dll_status,
1054 					(dll_status & CORE_DDR_DLL_LOCK),
1055 					10, 1000);
1056 
1057 	if (ret == -ETIMEDOUT) {
1058 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1059 		       mmc_hostname(host->mmc), __func__);
1060 		goto out;
1061 	}
1062 
1063 	/*
1064 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1065 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1066 	 * and MCLK must be switched on for at-least 1us before DATA
1067 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1068 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1069 	 * turned on for host controllers using this DLL.
1070 	 */
1071 	if (!msm_host->use_14lpp_dll_reset) {
1072 		config = readl_relaxed(host->ioaddr +
1073 				msm_offset->core_vendor_spec3);
1074 		config |= CORE_PWRSAVE_DLL;
1075 		writel_relaxed(config, host->ioaddr +
1076 				msm_offset->core_vendor_spec3);
1077 	}
1078 
1079 	/*
1080 	 * Drain writebuffer to ensure above DLL calibration
1081 	 * and PWRSAVE DLL is enabled.
1082 	 */
1083 	wmb();
1084 out:
1085 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1086 		 __func__, ret);
1087 	return ret;
1088 }
1089 
1090 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1091 {
1092 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1093 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1094 	struct mmc_host *mmc = host->mmc;
1095 	int ret;
1096 	u32 config;
1097 	const struct sdhci_msm_offset *msm_offset =
1098 					msm_host->offset;
1099 
1100 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1101 
1102 	/*
1103 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1104 	 * tuning block and restore the saved tuning phase.
1105 	 */
1106 	ret = msm_init_cm_dll(host);
1107 	if (ret)
1108 		goto out;
1109 
1110 	if (!mmc->ios.enhanced_strobe) {
1111 		/* Set the selected phase in delay line hw block */
1112 		ret = msm_config_cm_dll_phase(host,
1113 					      msm_host->saved_tuning_phase);
1114 		if (ret)
1115 			goto out;
1116 		config = readl_relaxed(host->ioaddr +
1117 				msm_offset->core_dll_config);
1118 		config |= CORE_CMD_DAT_TRACK_SEL;
1119 		writel_relaxed(config, host->ioaddr +
1120 				msm_offset->core_dll_config);
1121 	}
1122 
1123 	if (msm_host->use_cdclp533)
1124 		ret = sdhci_msm_cdclp533_calibration(host);
1125 	else
1126 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1127 out:
1128 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1129 		 __func__, ret);
1130 	return ret;
1131 }
1132 
1133 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1134 {
1135 	struct mmc_ios *ios = &host->mmc->ios;
1136 
1137 	if (ios->timing == MMC_TIMING_UHS_SDR50 &&
1138 	    host->flags & SDHCI_SDR50_NEEDS_TUNING)
1139 		return true;
1140 
1141 	/*
1142 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1143 	 * if clock frequency is greater than 100MHz in these modes.
1144 	 */
1145 	if (host->clock <= CORE_FREQ_100MHZ ||
1146 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1147 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1148 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1149 	    ios->enhanced_strobe)
1150 		return false;
1151 
1152 	return true;
1153 }
1154 
1155 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1156 {
1157 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1158 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1159 	int ret;
1160 
1161 	/*
1162 	 * SDR DLL comes into picture only for timing modes which needs
1163 	 * tuning.
1164 	 */
1165 	if (!sdhci_msm_is_tuning_needed(host))
1166 		return 0;
1167 
1168 	/* Reset the tuning block */
1169 	ret = msm_init_cm_dll(host);
1170 	if (ret)
1171 		return ret;
1172 
1173 	/* Restore the tuning block */
1174 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1175 
1176 	return ret;
1177 }
1178 
1179 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1180 {
1181 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1182 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1183 					      msm_offset->core_dll_config);
1184 
1185 	config = oldconfig;
1186 	if (enable) {
1187 		config |= CORE_CDR_EN;
1188 		config &= ~CORE_CDR_EXT_EN;
1189 	} else {
1190 		config &= ~CORE_CDR_EN;
1191 		config |= CORE_CDR_EXT_EN;
1192 	}
1193 
1194 	if (config != oldconfig) {
1195 		writel_relaxed(config, host->ioaddr +
1196 			       msm_offset->core_dll_config);
1197 	}
1198 }
1199 
1200 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1201 {
1202 	struct sdhci_host *host = mmc_priv(mmc);
1203 	int tuning_seq_cnt = 10;
1204 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1205 	int rc;
1206 	struct mmc_ios ios = host->mmc->ios;
1207 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1208 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1209 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1210 	u32 config;
1211 
1212 	if (!sdhci_msm_is_tuning_needed(host)) {
1213 		msm_host->use_cdr = false;
1214 		sdhci_msm_set_cdr(host, false);
1215 		return 0;
1216 	}
1217 
1218 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1219 	msm_host->use_cdr = true;
1220 
1221 	/*
1222 	 * Clear tuning_done flag before tuning to ensure proper
1223 	 * HS400 settings.
1224 	 */
1225 	msm_host->tuning_done = 0;
1226 
1227 	if (ios.timing == MMC_TIMING_UHS_SDR50 &&
1228 	    host->flags & SDHCI_SDR50_NEEDS_TUNING) {
1229 		config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
1230 		config &= ~CORE_HC_SELECT_IN_MASK;
1231 		config |= CORE_HC_SELECT_IN_EN | CORE_HC_SELECT_IN_SDR50;
1232 		writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
1233 	}
1234 
1235 	/*
1236 	 * For HS400 tuning in HS200 timing requires:
1237 	 * - select MCLK/2 in VENDOR_SPEC
1238 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1239 	 */
1240 	if (host->flags & SDHCI_HS400_TUNING) {
1241 		sdhci_msm_hc_select_mode(host);
1242 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1243 		host->flags &= ~SDHCI_HS400_TUNING;
1244 	}
1245 
1246 retry:
1247 	/* First of all reset the tuning block */
1248 	rc = msm_init_cm_dll(host);
1249 	if (rc)
1250 		return rc;
1251 
1252 	phase = 0;
1253 	do {
1254 		/* Set the phase in delay line hw block */
1255 		rc = msm_config_cm_dll_phase(host, phase);
1256 		if (rc)
1257 			return rc;
1258 
1259 		rc = mmc_send_tuning(mmc, opcode, NULL);
1260 		if (!rc) {
1261 			/* Tuning is successful at this tuning point */
1262 			tuned_phases[tuned_phase_cnt++] = phase;
1263 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1264 				 mmc_hostname(mmc), phase);
1265 		}
1266 	} while (++phase < ARRAY_SIZE(tuned_phases));
1267 
1268 	if (tuned_phase_cnt) {
1269 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1270 			/*
1271 			 * All phases valid is _almost_ as bad as no phases
1272 			 * valid.  Probably all phases are not really reliable
1273 			 * but we didn't detect where the unreliable place is.
1274 			 * That means we'll essentially be guessing and hoping
1275 			 * we get a good phase.  Better to try a few times.
1276 			 */
1277 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1278 				mmc_hostname(mmc));
1279 			if (--tuning_seq_cnt) {
1280 				tuned_phase_cnt = 0;
1281 				goto retry;
1282 			}
1283 		}
1284 
1285 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1286 						     tuned_phase_cnt);
1287 		if (rc < 0)
1288 			return rc;
1289 		else
1290 			phase = rc;
1291 
1292 		/*
1293 		 * Finally set the selected phase in delay
1294 		 * line hw block.
1295 		 */
1296 		rc = msm_config_cm_dll_phase(host, phase);
1297 		if (rc)
1298 			return rc;
1299 		msm_host->saved_tuning_phase = phase;
1300 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1301 			 mmc_hostname(mmc), phase);
1302 	} else {
1303 		if (--tuning_seq_cnt)
1304 			goto retry;
1305 		/* Tuning failed */
1306 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1307 		       mmc_hostname(mmc));
1308 		rc = -EIO;
1309 	}
1310 
1311 	if (!rc)
1312 		msm_host->tuning_done = true;
1313 	return rc;
1314 }
1315 
1316 /*
1317  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1318  * This needs to be done for both tuning and enhanced_strobe mode.
1319  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1320  * fixed feedback clock is used.
1321  */
1322 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1323 {
1324 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1325 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1326 	int ret;
1327 
1328 	if (host->clock > CORE_FREQ_100MHZ &&
1329 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1330 	    !msm_host->calibration_done) {
1331 		ret = sdhci_msm_hs400_dll_calibration(host);
1332 		if (!ret)
1333 			msm_host->calibration_done = true;
1334 		else
1335 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1336 			       mmc_hostname(host->mmc), ret);
1337 	}
1338 }
1339 
1340 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1341 					unsigned int uhs)
1342 {
1343 	struct mmc_host *mmc = host->mmc;
1344 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1345 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1346 	u16 ctrl_2;
1347 	u32 config;
1348 	const struct sdhci_msm_offset *msm_offset =
1349 					msm_host->offset;
1350 
1351 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1352 	/* Select Bus Speed Mode for host */
1353 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1354 	switch (uhs) {
1355 	case MMC_TIMING_UHS_SDR12:
1356 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1357 		break;
1358 	case MMC_TIMING_UHS_SDR25:
1359 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1360 		break;
1361 	case MMC_TIMING_UHS_SDR50:
1362 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1363 		break;
1364 	case MMC_TIMING_MMC_HS400:
1365 	case MMC_TIMING_MMC_HS200:
1366 	case MMC_TIMING_UHS_SDR104:
1367 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1368 		break;
1369 	case MMC_TIMING_UHS_DDR50:
1370 	case MMC_TIMING_MMC_DDR52:
1371 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1372 		break;
1373 	}
1374 
1375 	/*
1376 	 * When clock frequency is less than 100MHz, the feedback clock must be
1377 	 * provided and DLL must not be used so that tuning can be skipped. To
1378 	 * provide feedback clock, the mode selection can be any value less
1379 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1380 	 */
1381 	if (host->clock <= CORE_FREQ_100MHZ) {
1382 		if (uhs == MMC_TIMING_MMC_HS400 ||
1383 		    uhs == MMC_TIMING_MMC_HS200 ||
1384 		    uhs == MMC_TIMING_UHS_SDR104)
1385 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1386 		/*
1387 		 * DLL is not required for clock <= 100MHz
1388 		 * Thus, make sure DLL it is disabled when not required
1389 		 */
1390 		config = readl_relaxed(host->ioaddr +
1391 				msm_offset->core_dll_config);
1392 		config |= CORE_DLL_RST;
1393 		writel_relaxed(config, host->ioaddr +
1394 				msm_offset->core_dll_config);
1395 
1396 		config = readl_relaxed(host->ioaddr +
1397 				msm_offset->core_dll_config);
1398 		config |= CORE_DLL_PDN;
1399 		writel_relaxed(config, host->ioaddr +
1400 				msm_offset->core_dll_config);
1401 
1402 		/*
1403 		 * The DLL needs to be restored and CDCLP533 recalibrated
1404 		 * when the clock frequency is set back to 400MHz.
1405 		 */
1406 		msm_host->calibration_done = false;
1407 	}
1408 
1409 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1410 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1411 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1412 
1413 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1414 		sdhci_msm_hs400(host, &mmc->ios);
1415 }
1416 
1417 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1418 {
1419 	struct platform_device *pdev = msm_host->pdev;
1420 	int ret;
1421 
1422 	if (level)
1423 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1424 	else
1425 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1426 
1427 	return ret;
1428 }
1429 
1430 static void msm_config_vmmc_regulator(struct mmc_host *mmc, bool hpm)
1431 {
1432 	int load;
1433 
1434 	if (!hpm)
1435 		load = 0;
1436 	else if (!mmc->card)
1437 		load = max(MMC_VMMC_MAX_LOAD_UA, SD_VMMC_MAX_LOAD_UA);
1438 	else if (mmc_card_mmc(mmc->card))
1439 		load = MMC_VMMC_MAX_LOAD_UA;
1440 	else if (mmc_card_sd(mmc->card))
1441 		load = SD_VMMC_MAX_LOAD_UA;
1442 	else
1443 		return;
1444 
1445 	regulator_set_load(mmc->supply.vmmc, load);
1446 }
1447 
1448 static void msm_config_vqmmc_regulator(struct mmc_host *mmc, bool hpm)
1449 {
1450 	int load;
1451 
1452 	if (!hpm)
1453 		load = 0;
1454 	else if (!mmc->card)
1455 		load = max(MMC_VQMMC_MAX_LOAD_UA, SD_VQMMC_MAX_LOAD_UA);
1456 	else if (mmc_card_sd(mmc->card))
1457 		load = SD_VQMMC_MAX_LOAD_UA;
1458 	else
1459 		return;
1460 
1461 	regulator_set_load(mmc->supply.vqmmc, load);
1462 }
1463 
1464 static int sdhci_msm_set_vmmc(struct sdhci_msm_host *msm_host,
1465 			      struct mmc_host *mmc, bool hpm)
1466 {
1467 	if (IS_ERR(mmc->supply.vmmc))
1468 		return 0;
1469 
1470 	msm_config_vmmc_regulator(mmc, hpm);
1471 
1472 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1473 }
1474 
1475 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1476 			      struct mmc_host *mmc, bool level)
1477 {
1478 	int ret;
1479 	struct mmc_ios ios;
1480 
1481 	if (msm_host->vqmmc_enabled == level)
1482 		return 0;
1483 
1484 	msm_config_vqmmc_regulator(mmc, level);
1485 
1486 	if (level) {
1487 		/* Set the IO voltage regulator to default voltage level */
1488 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1489 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1490 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1491 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1492 
1493 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1494 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1495 			if (ret < 0) {
1496 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1497 					mmc_hostname(mmc), ret);
1498 				goto out;
1499 			}
1500 		}
1501 		ret = regulator_enable(mmc->supply.vqmmc);
1502 	} else {
1503 		ret = regulator_disable(mmc->supply.vqmmc);
1504 	}
1505 
1506 	if (ret)
1507 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1508 			mmc_hostname(mmc), level ? "en":"dis", ret);
1509 	else
1510 		msm_host->vqmmc_enabled = level;
1511 out:
1512 	return ret;
1513 }
1514 
1515 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1516 			      struct mmc_host *mmc, bool hpm)
1517 {
1518 	int load, ret;
1519 
1520 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1521 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1522 	if (ret)
1523 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1524 			mmc_hostname(mmc), ret);
1525 	return ret;
1526 }
1527 
1528 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1529 			      struct mmc_host *mmc, bool level)
1530 {
1531 	int ret;
1532 	bool always_on;
1533 
1534 	if (IS_ERR(mmc->supply.vqmmc) ||
1535 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1536 		return 0;
1537 	/*
1538 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1539 	 * and HPM modes by setting the corresponding load.
1540 	 *
1541 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1542 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1543 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1544 	 * Vqmmc should remain ON, So just set the load instead of turning it
1545 	 * off/on.
1546 	 */
1547 	always_on = !mmc_card_is_removable(mmc) &&
1548 			mmc->card && mmc_card_mmc(mmc->card);
1549 
1550 	if (always_on)
1551 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1552 	else
1553 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1554 
1555 	return ret;
1556 }
1557 
1558 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1559 {
1560 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1561 }
1562 
1563 static inline void sdhci_msm_complete_pwr_irq_wait(
1564 		struct sdhci_msm_host *msm_host)
1565 {
1566 	wake_up(&msm_host->pwr_irq_wait);
1567 }
1568 
1569 /*
1570  * sdhci_msm_check_power_status API should be called when registers writes
1571  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1572  * To what state the register writes will change the IO lines should be passed
1573  * as the argument req_type. This API will check whether the IO line's state
1574  * is already the expected state and will wait for power irq only if
1575  * power irq is expected to be triggered based on the current IO line state
1576  * and expected IO line state.
1577  */
1578 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1579 {
1580 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1581 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1582 	struct mmc_host *mmc = host->mmc;
1583 	bool done = false;
1584 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1585 	const struct sdhci_msm_offset *msm_offset =
1586 					msm_host->offset;
1587 
1588 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1589 			mmc_hostname(host->mmc), __func__, req_type,
1590 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1591 
1592 	/*
1593 	 * The power interrupt will not be generated for signal voltage
1594 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1595 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1596 	 * it as always set.
1597 	 */
1598 	if (!msm_host->mci_removed)
1599 		val = msm_host_readl(msm_host, host,
1600 				msm_offset->core_generics);
1601 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1602 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1603 		return;
1604 	}
1605 
1606 	/*
1607 	 * The IRQ for request type IO High/LOW will be generated when -
1608 	 * there is a state change in 1.8V enable bit (bit 3) of
1609 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1610 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1611 	 * to set it to 3.3V before card detection happens, the
1612 	 * IRQ doesn't get triggered as there is no state change in this bit.
1613 	 * The driver already handles this case by changing the IO voltage
1614 	 * level to high as part of controller power up sequence. Hence, check
1615 	 * for host->pwr to handle a case where IO voltage high request is
1616 	 * issued even before controller power up.
1617 	 */
1618 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1619 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1620 				mmc_hostname(host->mmc), req_type);
1621 		return;
1622 	}
1623 	if ((req_type & msm_host->curr_pwr_state) ||
1624 			(req_type & msm_host->curr_io_level))
1625 		done = true;
1626 	/*
1627 	 * This is needed here to handle cases where register writes will
1628 	 * not change the current bus state or io level of the controller.
1629 	 * In this case, no power irq will be triggerred and we should
1630 	 * not wait.
1631 	 */
1632 	if (!done) {
1633 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1634 				msm_host->pwr_irq_flag,
1635 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1636 			dev_warn(&msm_host->pdev->dev,
1637 				 "%s: pwr_irq for req: (%d) timed out\n",
1638 				 mmc_hostname(host->mmc), req_type);
1639 	}
1640 
1641 	if ((req_type & REQ_BUS_ON) && mmc->card && !mmc->ops->get_cd(mmc)) {
1642 		sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
1643 		host->pwr = 0;
1644 	}
1645 
1646 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1647 			__func__, req_type);
1648 }
1649 
1650 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1651 {
1652 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1653 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1654 	const struct sdhci_msm_offset *msm_offset =
1655 					msm_host->offset;
1656 
1657 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1658 		mmc_hostname(host->mmc),
1659 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1660 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1661 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1662 }
1663 
1664 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1665 {
1666 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1667 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1668 	struct mmc_host *mmc = host->mmc;
1669 	u32 irq_status, irq_ack = 0;
1670 	int retry = 10, ret;
1671 	u32 pwr_state = 0, io_level = 0;
1672 	u32 config;
1673 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1674 
1675 	irq_status = msm_host_readl(msm_host, host,
1676 			msm_offset->core_pwrctl_status);
1677 	irq_status &= INT_MASK;
1678 
1679 	msm_host_writel(msm_host, irq_status, host,
1680 			msm_offset->core_pwrctl_clear);
1681 
1682 	/*
1683 	 * There is a rare HW scenario where the first clear pulse could be
1684 	 * lost when actual reset and clear/read of status register is
1685 	 * happening at a time. Hence, retry for at least 10 times to make
1686 	 * sure status register is cleared. Otherwise, this will result in
1687 	 * a spurious power IRQ resulting in system instability.
1688 	 */
1689 	while (irq_status & msm_host_readl(msm_host, host,
1690 				msm_offset->core_pwrctl_status)) {
1691 		if (retry == 0) {
1692 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1693 					mmc_hostname(host->mmc), irq_status);
1694 			sdhci_msm_dump_pwr_ctrl_regs(host);
1695 			WARN_ON(1);
1696 			break;
1697 		}
1698 		msm_host_writel(msm_host, irq_status, host,
1699 			msm_offset->core_pwrctl_clear);
1700 		retry--;
1701 		udelay(10);
1702 	}
1703 
1704 	if ((irq_status & CORE_PWRCTL_BUS_ON) && mmc->card &&
1705 	    !mmc->ops->get_cd(mmc)) {
1706 		msm_host_writel(msm_host, CORE_PWRCTL_BUS_FAIL, host,
1707 				msm_offset->core_pwrctl_ctl);
1708 		return;
1709 	}
1710 
1711 	/* Handle BUS ON/OFF*/
1712 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1713 		pwr_state = REQ_BUS_ON;
1714 		io_level = REQ_IO_HIGH;
1715 	}
1716 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1717 		pwr_state = REQ_BUS_OFF;
1718 		io_level = REQ_IO_LOW;
1719 	}
1720 
1721 	if (pwr_state) {
1722 		ret = sdhci_msm_set_vmmc(msm_host, mmc,
1723 					 pwr_state & REQ_BUS_ON);
1724 		if (!ret)
1725 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1726 					pwr_state & REQ_BUS_ON);
1727 		if (!ret)
1728 			ret = sdhci_msm_set_pincfg(msm_host,
1729 					pwr_state & REQ_BUS_ON);
1730 		if (!ret)
1731 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1732 		else
1733 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1734 	}
1735 
1736 	/* Handle IO LOW/HIGH */
1737 	if (irq_status & CORE_PWRCTL_IO_LOW)
1738 		io_level = REQ_IO_LOW;
1739 
1740 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1741 		io_level = REQ_IO_HIGH;
1742 
1743 	if (io_level)
1744 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1745 
1746 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1747 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1748 		if (ret < 0) {
1749 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1750 					mmc_hostname(mmc), ret,
1751 					mmc->ios.signal_voltage, mmc->ios.vdd,
1752 					irq_status);
1753 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1754 		}
1755 	}
1756 
1757 	/*
1758 	 * The driver has to acknowledge the interrupt, switch voltages and
1759 	 * report back if it succeded or not to this register. The voltage
1760 	 * switches are handled by the sdhci core, so just report success.
1761 	 */
1762 	msm_host_writel(msm_host, irq_ack, host,
1763 			msm_offset->core_pwrctl_ctl);
1764 
1765 	/*
1766 	 * If we don't have info regarding the voltage levels supported by
1767 	 * regulators, don't change the IO PAD PWR SWITCH.
1768 	 */
1769 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1770 		u32 new_config;
1771 		/*
1772 		 * We should unset IO PAD PWR switch only if the register write
1773 		 * can set IO lines high and the regulator also switches to 3 V.
1774 		 * Else, we should keep the IO PAD PWR switch set.
1775 		 * This is applicable to certain targets where eMMC vccq supply
1776 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1777 		 * IO PAD PWR switch must be kept set to reflect actual
1778 		 * regulator voltage. This way, during initialization of
1779 		 * controllers with only 1.8V, we will set the IO PAD bit
1780 		 * without waiting for a REQ_IO_LOW.
1781 		 */
1782 		config = readl_relaxed(host->ioaddr +
1783 				msm_offset->core_vendor_spec);
1784 		new_config = config;
1785 
1786 		if ((io_level & REQ_IO_HIGH) &&
1787 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1788 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1789 		else if ((io_level & REQ_IO_LOW) ||
1790 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1791 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1792 
1793 		if (config ^ new_config)
1794 			writel_relaxed(new_config, host->ioaddr +
1795 					msm_offset->core_vendor_spec);
1796 	}
1797 
1798 	if (pwr_state)
1799 		msm_host->curr_pwr_state = pwr_state;
1800 	if (io_level)
1801 		msm_host->curr_io_level = io_level;
1802 
1803 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1804 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1805 		irq_ack);
1806 }
1807 
1808 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1809 {
1810 	struct sdhci_host *host = (struct sdhci_host *)data;
1811 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1812 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1813 
1814 	sdhci_msm_handle_pwr_irq(host, irq);
1815 	msm_host->pwr_irq_flag = 1;
1816 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1817 
1818 
1819 	return IRQ_HANDLED;
1820 }
1821 
1822 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1823 {
1824 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1825 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1826 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1827 
1828 	return clk_round_rate(core_clk, ULONG_MAX);
1829 }
1830 
1831 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1832 {
1833 	return SDHCI_MSM_MIN_CLOCK;
1834 }
1835 
1836 /*
1837  * __sdhci_msm_set_clock - sdhci_msm clock control.
1838  *
1839  * Description:
1840  * MSM controller does not use internal divider and
1841  * instead directly control the GCC clock as per
1842  * HW recommendation.
1843  **/
1844 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1845 {
1846 	u16 clk;
1847 
1848 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1849 
1850 	if (clock == 0)
1851 		return;
1852 
1853 	/*
1854 	 * MSM controller do not use clock divider.
1855 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1856 	 * clock with no divider value programmed.
1857 	 */
1858 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1859 	sdhci_enable_clk(host, clk);
1860 }
1861 
1862 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1863 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1864 {
1865 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1866 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1867 
1868 	if (!clock) {
1869 		host->mmc->actual_clock = msm_host->clk_rate = 0;
1870 		goto out;
1871 	}
1872 
1873 	sdhci_msm_hc_select_mode(host);
1874 
1875 	msm_set_clock_rate_for_bus_mode(host, clock);
1876 out:
1877 	__sdhci_msm_set_clock(host, clock);
1878 }
1879 
1880 /*****************************************************************************\
1881  *                                                                           *
1882  * Inline Crypto Engine (ICE) support                                        *
1883  *                                                                           *
1884 \*****************************************************************************/
1885 
1886 #ifdef CONFIG_MMC_CRYPTO
1887 
1888 static const struct blk_crypto_ll_ops sdhci_msm_crypto_ops; /* forward decl */
1889 
1890 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1891 			      struct cqhci_host *cq_host)
1892 {
1893 	struct mmc_host *mmc = msm_host->mmc;
1894 	struct blk_crypto_profile *profile = &mmc->crypto_profile;
1895 	struct device *dev = mmc_dev(mmc);
1896 	struct qcom_ice *ice;
1897 	union cqhci_crypto_capabilities caps;
1898 	union cqhci_crypto_cap_entry cap;
1899 	int err;
1900 	int i;
1901 
1902 	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1903 		return 0;
1904 
1905 	ice = devm_of_qcom_ice_get(dev);
1906 	if (ice == ERR_PTR(-EOPNOTSUPP)) {
1907 		dev_warn(dev, "Disabling inline encryption support\n");
1908 		ice = NULL;
1909 	}
1910 
1911 	if (IS_ERR_OR_NULL(ice))
1912 		return PTR_ERR_OR_ZERO(ice);
1913 
1914 	if (qcom_ice_get_supported_key_type(ice) != BLK_CRYPTO_KEY_TYPE_RAW) {
1915 		dev_warn(dev, "Wrapped keys not supported. Disabling inline encryption support.\n");
1916 		return 0;
1917 	}
1918 
1919 	msm_host->ice = ice;
1920 
1921 	/* Initialize the blk_crypto_profile */
1922 
1923 	caps.reg_val = cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP));
1924 
1925 	/* The number of keyslots supported is (CFGC+1) */
1926 	err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1);
1927 	if (err)
1928 		return err;
1929 
1930 	profile->ll_ops = sdhci_msm_crypto_ops;
1931 	profile->max_dun_bytes_supported = 4;
1932 	profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_RAW;
1933 	profile->dev = dev;
1934 
1935 	/*
1936 	 * Currently this driver only supports AES-256-XTS.  All known versions
1937 	 * of ICE support it, but to be safe make sure it is really declared in
1938 	 * the crypto capability registers.  The crypto capability registers
1939 	 * also give the supported data unit size(s).
1940 	 */
1941 	for (i = 0; i < caps.num_crypto_cap; i++) {
1942 		cap.reg_val = cpu_to_le32(cqhci_readl(cq_host,
1943 						      CQHCI_CRYPTOCAP +
1944 						      i * sizeof(__le32)));
1945 		if (cap.algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS &&
1946 		    cap.key_size == CQHCI_CRYPTO_KEY_SIZE_256)
1947 			profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |=
1948 				cap.sdus_mask * 512;
1949 	}
1950 
1951 	mmc->caps2 |= MMC_CAP2_CRYPTO;
1952 	return 0;
1953 }
1954 
1955 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1956 {
1957 	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1958 		qcom_ice_enable(msm_host->ice);
1959 }
1960 
1961 static int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1962 {
1963 	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1964 		return qcom_ice_resume(msm_host->ice);
1965 
1966 	return 0;
1967 }
1968 
1969 static int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1970 {
1971 	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1972 		return qcom_ice_suspend(msm_host->ice);
1973 
1974 	return 0;
1975 }
1976 
1977 static inline struct sdhci_msm_host *
1978 sdhci_msm_host_from_crypto_profile(struct blk_crypto_profile *profile)
1979 {
1980 	struct mmc_host *mmc = mmc_from_crypto_profile(profile);
1981 	struct sdhci_host *host = mmc_priv(mmc);
1982 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1983 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1984 
1985 	return msm_host;
1986 }
1987 
1988 /*
1989  * Program a key into a QC ICE keyslot.  QC ICE requires a QC-specific SCM call
1990  * for this; it doesn't support the standard way.
1991  */
1992 static int sdhci_msm_ice_keyslot_program(struct blk_crypto_profile *profile,
1993 					 const struct blk_crypto_key *key,
1994 					 unsigned int slot)
1995 {
1996 	struct sdhci_msm_host *msm_host =
1997 		sdhci_msm_host_from_crypto_profile(profile);
1998 
1999 	return qcom_ice_program_key(msm_host->ice, slot, key);
2000 }
2001 
2002 static int sdhci_msm_ice_keyslot_evict(struct blk_crypto_profile *profile,
2003 				       const struct blk_crypto_key *key,
2004 				       unsigned int slot)
2005 {
2006 	struct sdhci_msm_host *msm_host =
2007 		sdhci_msm_host_from_crypto_profile(profile);
2008 
2009 	return qcom_ice_evict_key(msm_host->ice, slot);
2010 }
2011 
2012 static const struct blk_crypto_ll_ops sdhci_msm_crypto_ops = {
2013 	.keyslot_program	= sdhci_msm_ice_keyslot_program,
2014 	.keyslot_evict		= sdhci_msm_ice_keyslot_evict,
2015 };
2016 
2017 #else /* CONFIG_MMC_CRYPTO */
2018 
2019 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2020 				     struct cqhci_host *cq_host)
2021 {
2022 	return 0;
2023 }
2024 
2025 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2026 {
2027 }
2028 
2029 static inline int
2030 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2031 {
2032 	return 0;
2033 }
2034 
2035 static inline int
2036 sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
2037 {
2038 	return 0;
2039 }
2040 #endif /* !CONFIG_MMC_CRYPTO */
2041 
2042 /*****************************************************************************\
2043  *                                                                           *
2044  * MSM Command Queue Engine (CQE)                                            *
2045  *                                                                           *
2046 \*****************************************************************************/
2047 
2048 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2049 {
2050 	int cmd_error = 0;
2051 	int data_error = 0;
2052 
2053 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2054 		return intmask;
2055 
2056 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2057 	return 0;
2058 }
2059 
2060 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2061 {
2062 	struct sdhci_host *host = mmc_priv(mmc);
2063 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2064 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2065 
2066 	sdhci_cqe_enable(mmc);
2067 	sdhci_msm_ice_enable(msm_host);
2068 }
2069 
2070 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2071 {
2072 	struct sdhci_host *host = mmc_priv(mmc);
2073 	unsigned long flags;
2074 	u32 ctrl;
2075 
2076 	/*
2077 	 * When CQE is halted, the legacy SDHCI path operates only
2078 	 * on 16-byte descriptors in 64bit mode.
2079 	 */
2080 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2081 		host->desc_sz = 16;
2082 
2083 	spin_lock_irqsave(&host->lock, flags);
2084 
2085 	/*
2086 	 * During CQE command transfers, command complete bit gets latched.
2087 	 * So s/w should clear command complete interrupt status when CQE is
2088 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2089 	 * interrupt gets triggered when CQE is halted/disabled.
2090 	 */
2091 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2092 	ctrl |= SDHCI_INT_RESPONSE;
2093 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2094 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2095 
2096 	spin_unlock_irqrestore(&host->lock, flags);
2097 
2098 	sdhci_cqe_disable(mmc, recovery);
2099 }
2100 
2101 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2102 {
2103 	u32 count, start = 15;
2104 
2105 	__sdhci_set_timeout(host, cmd);
2106 	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2107 	/*
2108 	 * Update software timeout value if its value is less than hardware data
2109 	 * timeout value. Qcom SoC hardware data timeout value was calculated
2110 	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2111 	 */
2112 	if (cmd && cmd->data && host->clock > 400000 &&
2113 	    host->clock <= 50000000 &&
2114 	    ((1 << (count + start)) > (10 * host->clock)))
2115 		host->data_timeout = 22LL * NSEC_PER_SEC;
2116 }
2117 
2118 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2119 	.enable		= sdhci_msm_cqe_enable,
2120 	.disable	= sdhci_msm_cqe_disable,
2121 #ifdef CONFIG_MMC_CRYPTO
2122 	.uses_custom_crypto_profile = true,
2123 #endif
2124 };
2125 
2126 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2127 				struct platform_device *pdev)
2128 {
2129 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2130 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2131 	struct cqhci_host *cq_host;
2132 	bool dma64;
2133 	u32 cqcfg;
2134 	int ret;
2135 
2136 	/*
2137 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2138 	 * So ensure ADMA table is allocated for 16byte descriptors.
2139 	 */
2140 	if (host->caps & SDHCI_CAN_64BIT)
2141 		host->alloc_desc_sz = 16;
2142 
2143 	ret = sdhci_setup_host(host);
2144 	if (ret)
2145 		return ret;
2146 
2147 	cq_host = cqhci_pltfm_init(pdev);
2148 	if (IS_ERR(cq_host)) {
2149 		ret = PTR_ERR(cq_host);
2150 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2151 		goto cleanup;
2152 	}
2153 
2154 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2155 	cq_host->ops = &sdhci_msm_cqhci_ops;
2156 
2157 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2158 
2159 	ret = sdhci_msm_ice_init(msm_host, cq_host);
2160 	if (ret)
2161 		goto cleanup;
2162 
2163 	ret = cqhci_init(cq_host, host->mmc, dma64);
2164 	if (ret) {
2165 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2166 				mmc_hostname(host->mmc), ret);
2167 		goto cleanup;
2168 	}
2169 
2170 	/* Disable cqe reset due to cqe enable signal */
2171 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2172 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2173 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2174 
2175 	/*
2176 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2177 	 * So limit desc_sz to 12 so that the data commands that are sent
2178 	 * during card initialization (before CQE gets enabled) would
2179 	 * get executed without any issues.
2180 	 */
2181 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2182 		host->desc_sz = 12;
2183 
2184 	ret = __sdhci_add_host(host);
2185 	if (ret)
2186 		goto cleanup;
2187 
2188 	dev_info(&pdev->dev, "%s: CQE init: success\n",
2189 			mmc_hostname(host->mmc));
2190 	return ret;
2191 
2192 cleanup:
2193 	sdhci_cleanup_host(host);
2194 	return ret;
2195 }
2196 
2197 /*
2198  * Platform specific register write functions. This is so that, if any
2199  * register write needs to be followed up by platform specific actions,
2200  * they can be added here. These functions can go to sleep when writes
2201  * to certain registers are done.
2202  * These functions are relying on sdhci_set_ios not using spinlock.
2203  */
2204 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2205 {
2206 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2207 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2208 	u32 req_type = 0;
2209 
2210 	switch (reg) {
2211 	case SDHCI_HOST_CONTROL2:
2212 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2213 			REQ_IO_HIGH;
2214 		break;
2215 	case SDHCI_SOFTWARE_RESET:
2216 		if (host->pwr && (val & SDHCI_RESET_ALL))
2217 			req_type = REQ_BUS_OFF;
2218 		break;
2219 	case SDHCI_POWER_CONTROL:
2220 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2221 		break;
2222 	case SDHCI_TRANSFER_MODE:
2223 		msm_host->transfer_mode = val;
2224 		break;
2225 	case SDHCI_COMMAND:
2226 		if (!msm_host->use_cdr)
2227 			break;
2228 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2229 		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
2230 			sdhci_msm_set_cdr(host, true);
2231 		else
2232 			sdhci_msm_set_cdr(host, false);
2233 		break;
2234 	}
2235 
2236 	if (req_type) {
2237 		msm_host->pwr_irq_flag = 0;
2238 		/*
2239 		 * Since this register write may trigger a power irq, ensure
2240 		 * all previous register writes are complete by this point.
2241 		 */
2242 		mb();
2243 	}
2244 	return req_type;
2245 }
2246 
2247 /* This function may sleep*/
2248 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2249 {
2250 	u32 req_type = 0;
2251 
2252 	req_type = __sdhci_msm_check_write(host, val, reg);
2253 	writew_relaxed(val, host->ioaddr + reg);
2254 
2255 	if (req_type)
2256 		sdhci_msm_check_power_status(host, req_type);
2257 }
2258 
2259 /* This function may sleep*/
2260 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2261 {
2262 	u32 req_type = 0;
2263 
2264 	req_type = __sdhci_msm_check_write(host, val, reg);
2265 
2266 	writeb_relaxed(val, host->ioaddr + reg);
2267 
2268 	if (req_type)
2269 		sdhci_msm_check_power_status(host, req_type);
2270 }
2271 
2272 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2273 {
2274 	struct mmc_host *mmc = msm_host->mmc;
2275 	struct regulator *supply = mmc->supply.vqmmc;
2276 	u32 caps = 0, config;
2277 	struct sdhci_host *host = mmc_priv(mmc);
2278 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2279 
2280 	if (!IS_ERR(mmc->supply.vqmmc)) {
2281 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2282 			caps |= CORE_1_8V_SUPPORT;
2283 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2284 			caps |= CORE_3_0V_SUPPORT;
2285 
2286 		if (!caps)
2287 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2288 					mmc_hostname(mmc));
2289 	}
2290 
2291 	if (caps) {
2292 		/*
2293 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2294 		 * bit can be used as required later on.
2295 		 */
2296 		u32 io_level = msm_host->curr_io_level;
2297 
2298 		config = readl_relaxed(host->ioaddr +
2299 				msm_offset->core_vendor_spec);
2300 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2301 
2302 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2303 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2304 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2305 			config |= CORE_IO_PAD_PWR_SWITCH;
2306 
2307 		writel_relaxed(config,
2308 				host->ioaddr + msm_offset->core_vendor_spec);
2309 	}
2310 	msm_host->caps_0 |= caps;
2311 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2312 }
2313 
2314 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2315 {
2316 	int ret;
2317 
2318 	ret = mmc_regulator_get_supply(msm_host->mmc);
2319 	if (ret)
2320 		return ret;
2321 
2322 	sdhci_msm_set_regulator_caps(msm_host);
2323 
2324 	return 0;
2325 }
2326 
2327 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2328 				      struct mmc_ios *ios)
2329 {
2330 	struct sdhci_host *host = mmc_priv(mmc);
2331 	u16 ctrl, status;
2332 
2333 	/*
2334 	 * Signal Voltage Switching is only applicable for Host Controllers
2335 	 * v3.00 and above.
2336 	 */
2337 	if (host->version < SDHCI_SPEC_300)
2338 		return 0;
2339 
2340 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2341 
2342 	switch (ios->signal_voltage) {
2343 	case MMC_SIGNAL_VOLTAGE_330:
2344 		if (!(host->flags & SDHCI_SIGNALING_330))
2345 			return -EINVAL;
2346 
2347 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2348 		ctrl &= ~SDHCI_CTRL_VDD_180;
2349 		break;
2350 	case MMC_SIGNAL_VOLTAGE_180:
2351 		if (!(host->flags & SDHCI_SIGNALING_180))
2352 			return -EINVAL;
2353 
2354 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2355 		ctrl |= SDHCI_CTRL_VDD_180;
2356 		break;
2357 
2358 	default:
2359 		return -EINVAL;
2360 	}
2361 
2362 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2363 
2364 	/* Wait for 5ms */
2365 	usleep_range(5000, 5500);
2366 
2367 	/* regulator output should be stable within 5 ms */
2368 	status = ctrl & SDHCI_CTRL_VDD_180;
2369 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2370 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2371 		return 0;
2372 
2373 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2374 		mmc_hostname(mmc));
2375 
2376 	return -EAGAIN;
2377 }
2378 
2379 #define DRIVER_NAME "sdhci_msm"
2380 #define SDHCI_MSM_DUMP(f, x...) \
2381 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2382 
2383 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2384 {
2385 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2386 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2387 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2388 
2389 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2390 
2391 	SDHCI_MSM_DUMP(
2392 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2393 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2394 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2395 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2396 	SDHCI_MSM_DUMP(
2397 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2398 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2399 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2400 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2401 	SDHCI_MSM_DUMP(
2402 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2403 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2404 		readl_relaxed(host->ioaddr +
2405 			msm_offset->core_vendor_spec_func2),
2406 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2407 }
2408 
2409 static const struct sdhci_msm_variant_ops mci_var_ops = {
2410 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2411 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2412 };
2413 
2414 static const struct sdhci_msm_variant_ops v5_var_ops = {
2415 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2416 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2417 };
2418 
2419 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2420 	.var_ops = &mci_var_ops,
2421 	.offset = &sdhci_msm_mci_offset,
2422 };
2423 
2424 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2425 	.mci_removed = true,
2426 	.var_ops = &v5_var_ops,
2427 	.offset = &sdhci_msm_v5_offset,
2428 };
2429 
2430 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2431 	.mci_removed = true,
2432 	.restore_dll_config = true,
2433 	.var_ops = &v5_var_ops,
2434 	.offset = &sdhci_msm_v5_offset,
2435 };
2436 
2437 static const struct of_device_id sdhci_msm_dt_match[] = {
2438 	/*
2439 	 * Do not add new variants to the driver which are compatible with
2440 	 * generic ones, unless they need customization.
2441 	 */
2442 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2443 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2444 	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2445 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2446 	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2447 	{},
2448 };
2449 
2450 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2451 
2452 static const struct sdhci_ops sdhci_msm_ops = {
2453 	.reset = sdhci_and_cqhci_reset,
2454 	.set_clock = sdhci_msm_set_clock,
2455 	.get_min_clock = sdhci_msm_get_min_clock,
2456 	.get_max_clock = sdhci_msm_get_max_clock,
2457 	.set_bus_width = sdhci_set_bus_width,
2458 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2459 	.write_w = sdhci_msm_writew,
2460 	.write_b = sdhci_msm_writeb,
2461 	.irq	= sdhci_msm_cqe_irq,
2462 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2463 	.set_power = sdhci_set_power_noreg,
2464 	.set_timeout = sdhci_msm_set_timeout,
2465 };
2466 
2467 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2468 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2469 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2470 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2471 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2472 
2473 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2474 	.ops = &sdhci_msm_ops,
2475 };
2476 
2477 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2478 		struct sdhci_host *host)
2479 {
2480 	struct device_node *node = pdev->dev.of_node;
2481 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2482 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2483 
2484 	if (of_property_read_u32(node, "qcom,ddr-config",
2485 				&msm_host->ddr_config))
2486 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2487 
2488 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2489 
2490 	if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2491 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2492 }
2493 
2494 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2495 {
2496 	struct reset_control *reset;
2497 	int ret = 0;
2498 
2499 	reset = reset_control_get_optional_exclusive(dev, NULL);
2500 	if (IS_ERR(reset))
2501 		return dev_err_probe(dev, PTR_ERR(reset),
2502 				"unable to acquire core_reset\n");
2503 
2504 	if (!reset)
2505 		return ret;
2506 
2507 	ret = reset_control_assert(reset);
2508 	if (ret) {
2509 		reset_control_put(reset);
2510 		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2511 	}
2512 
2513 	/*
2514 	 * The hardware requirement for delay between assert/deassert
2515 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2516 	 * ~125us (4/32768). To be on the safe side add 200us delay.
2517 	 */
2518 	usleep_range(200, 210);
2519 
2520 	ret = reset_control_deassert(reset);
2521 	if (ret) {
2522 		reset_control_put(reset);
2523 		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2524 	}
2525 
2526 	usleep_range(200, 210);
2527 	reset_control_put(reset);
2528 
2529 	return ret;
2530 }
2531 
2532 static int sdhci_msm_probe(struct platform_device *pdev)
2533 {
2534 	struct sdhci_host *host;
2535 	struct sdhci_pltfm_host *pltfm_host;
2536 	struct sdhci_msm_host *msm_host;
2537 	struct clk *clk;
2538 	int ret;
2539 	u16 host_version, core_minor;
2540 	u32 core_version, config;
2541 	u8 core_major;
2542 	const struct sdhci_msm_offset *msm_offset;
2543 	const struct sdhci_msm_variant_info *var_info;
2544 	struct device_node *node = pdev->dev.of_node;
2545 
2546 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2547 	if (IS_ERR(host))
2548 		return PTR_ERR(host);
2549 
2550 	host->sdma_boundary = 0;
2551 	pltfm_host = sdhci_priv(host);
2552 	msm_host = sdhci_pltfm_priv(pltfm_host);
2553 	msm_host->mmc = host->mmc;
2554 	msm_host->pdev = pdev;
2555 
2556 	ret = mmc_of_parse(host->mmc);
2557 	if (ret)
2558 		return ret;
2559 
2560 	/*
2561 	 * Based on the compatible string, load the required msm host info from
2562 	 * the data associated with the version info.
2563 	 */
2564 	var_info = of_device_get_match_data(&pdev->dev);
2565 
2566 	msm_host->mci_removed = var_info->mci_removed;
2567 	msm_host->restore_dll_config = var_info->restore_dll_config;
2568 	msm_host->var_ops = var_info->var_ops;
2569 	msm_host->offset = var_info->offset;
2570 
2571 	msm_offset = msm_host->offset;
2572 
2573 	sdhci_get_of_property(pdev);
2574 	sdhci_msm_get_of_property(pdev, host);
2575 
2576 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2577 
2578 	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2579 	if (ret)
2580 		return ret;
2581 
2582 	/* Setup SDCC bus voter clock. */
2583 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2584 	if (!IS_ERR(msm_host->bus_clk)) {
2585 		/* Vote for max. clk rate for max. performance */
2586 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2587 		if (ret)
2588 			return ret;
2589 		ret = clk_prepare_enable(msm_host->bus_clk);
2590 		if (ret)
2591 			return ret;
2592 	}
2593 
2594 	/* Setup main peripheral bus clock */
2595 	clk = devm_clk_get(&pdev->dev, "iface");
2596 	if (IS_ERR(clk)) {
2597 		ret = PTR_ERR(clk);
2598 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2599 		goto bus_clk_disable;
2600 	}
2601 	msm_host->bulk_clks[1].clk = clk;
2602 
2603 	/* Setup SDC MMC clock */
2604 	clk = devm_clk_get(&pdev->dev, "core");
2605 	if (IS_ERR(clk)) {
2606 		ret = PTR_ERR(clk);
2607 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2608 		goto bus_clk_disable;
2609 	}
2610 	msm_host->bulk_clks[0].clk = clk;
2611 
2612 	 /* Check for optional interconnect paths */
2613 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2614 	if (ret)
2615 		goto bus_clk_disable;
2616 
2617 	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2618 	if (ret)
2619 		goto bus_clk_disable;
2620 
2621 	/* OPP table is optional */
2622 	ret = devm_pm_opp_of_add_table(&pdev->dev);
2623 	if (ret && ret != -ENODEV) {
2624 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2625 		goto bus_clk_disable;
2626 	}
2627 
2628 	/* Vote for maximum clock rate for maximum performance */
2629 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2630 	if (ret)
2631 		dev_warn(&pdev->dev, "core clock boost failed\n");
2632 
2633 	clk = devm_clk_get(&pdev->dev, "cal");
2634 	if (IS_ERR(clk))
2635 		clk = NULL;
2636 	msm_host->bulk_clks[2].clk = clk;
2637 
2638 	clk = devm_clk_get(&pdev->dev, "sleep");
2639 	if (IS_ERR(clk))
2640 		clk = NULL;
2641 	msm_host->bulk_clks[3].clk = clk;
2642 
2643 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2644 				      msm_host->bulk_clks);
2645 	if (ret)
2646 		goto bus_clk_disable;
2647 
2648 	/*
2649 	 * xo clock is needed for FLL feature of cm_dll.
2650 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2651 	 */
2652 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2653 	if (IS_ERR(msm_host->xo_clk)) {
2654 		ret = PTR_ERR(msm_host->xo_clk);
2655 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2656 	}
2657 
2658 	if (!msm_host->mci_removed) {
2659 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2660 		if (IS_ERR(msm_host->core_mem)) {
2661 			ret = PTR_ERR(msm_host->core_mem);
2662 			goto clk_disable;
2663 		}
2664 	}
2665 
2666 	/* Reset the vendor spec register to power on reset state */
2667 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2668 			host->ioaddr + msm_offset->core_vendor_spec);
2669 
2670 	if (!msm_host->mci_removed) {
2671 		/* Set HC_MODE_EN bit in HC_MODE register */
2672 		msm_host_writel(msm_host, HC_MODE_EN, host,
2673 				msm_offset->core_hc_mode);
2674 		config = msm_host_readl(msm_host, host,
2675 				msm_offset->core_hc_mode);
2676 		config |= FF_CLK_SW_RST_DIS;
2677 		msm_host_writel(msm_host, config, host,
2678 				msm_offset->core_hc_mode);
2679 	}
2680 
2681 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2682 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2683 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2684 			       SDHCI_VENDOR_VER_SHIFT));
2685 
2686 	core_version = msm_host_readl(msm_host, host,
2687 			msm_offset->core_mci_version);
2688 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2689 		      CORE_VERSION_MAJOR_SHIFT;
2690 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2691 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2692 		core_version, core_major, core_minor);
2693 
2694 	if (core_major == 1 && core_minor >= 0x42)
2695 		msm_host->use_14lpp_dll_reset = true;
2696 
2697 	/*
2698 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2699 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2700 	 */
2701 	if (core_major == 1 && core_minor < 0x34)
2702 		msm_host->use_cdclp533 = true;
2703 
2704 	/*
2705 	 * Support for some capabilities is not advertised by newer
2706 	 * controller versions and must be explicitly enabled.
2707 	 */
2708 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2709 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2710 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2711 		writel_relaxed(config, host->ioaddr +
2712 				msm_offset->core_vendor_spec_capabilities0);
2713 	}
2714 
2715 	if (core_major == 1 && core_minor >= 0x49)
2716 		msm_host->updated_ddr_cfg = true;
2717 
2718 	if (core_major == 1 && core_minor >= 0x71)
2719 		msm_host->uses_tassadar_dll = true;
2720 
2721 	ret = sdhci_msm_register_vreg(msm_host);
2722 	if (ret)
2723 		goto clk_disable;
2724 
2725 	/*
2726 	 * Power on reset state may trigger power irq if previous status of
2727 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2728 	 * interrupt in GIC, any pending power irq interrupt should be
2729 	 * acknowledged. Otherwise power irq interrupt handler would be
2730 	 * fired prematurely.
2731 	 */
2732 	sdhci_msm_handle_pwr_irq(host, 0);
2733 
2734 	/*
2735 	 * Ensure that above writes are propagated before interrupt enablement
2736 	 * in GIC.
2737 	 */
2738 	mb();
2739 
2740 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2741 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2742 	if (msm_host->pwr_irq < 0) {
2743 		ret = msm_host->pwr_irq;
2744 		goto clk_disable;
2745 	}
2746 
2747 	sdhci_msm_init_pwr_irq_wait(msm_host);
2748 	/* Enable pwr irq interrupts */
2749 	msm_host_writel(msm_host, INT_MASK, host,
2750 		msm_offset->core_pwrctl_mask);
2751 
2752 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2753 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2754 					dev_name(&pdev->dev), host);
2755 	if (ret) {
2756 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2757 		goto clk_disable;
2758 	}
2759 
2760 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2761 
2762 	/* Set the timeout value to max possible */
2763 	host->max_timeout_count = 0xF;
2764 
2765 	pm_runtime_get_noresume(&pdev->dev);
2766 	pm_runtime_set_active(&pdev->dev);
2767 	pm_runtime_enable(&pdev->dev);
2768 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2769 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2770 	pm_runtime_use_autosuspend(&pdev->dev);
2771 
2772 	host->mmc_host_ops.start_signal_voltage_switch =
2773 		sdhci_msm_start_signal_voltage_switch;
2774 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2775 	if (of_property_read_bool(node, "supports-cqe"))
2776 		ret = sdhci_msm_cqe_add_host(host, pdev);
2777 	else
2778 		ret = sdhci_add_host(host);
2779 	if (ret)
2780 		goto pm_runtime_disable;
2781 
2782 	pm_runtime_put_autosuspend(&pdev->dev);
2783 
2784 	return 0;
2785 
2786 pm_runtime_disable:
2787 	pm_runtime_disable(&pdev->dev);
2788 	pm_runtime_set_suspended(&pdev->dev);
2789 	pm_runtime_put_noidle(&pdev->dev);
2790 clk_disable:
2791 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2792 				   msm_host->bulk_clks);
2793 bus_clk_disable:
2794 	if (!IS_ERR(msm_host->bus_clk))
2795 		clk_disable_unprepare(msm_host->bus_clk);
2796 	return ret;
2797 }
2798 
2799 static void sdhci_msm_remove(struct platform_device *pdev)
2800 {
2801 	struct sdhci_host *host = platform_get_drvdata(pdev);
2802 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2803 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2804 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2805 		    0xffffffff);
2806 
2807 	sdhci_remove_host(host, dead);
2808 
2809 	pm_runtime_get_sync(&pdev->dev);
2810 	pm_runtime_disable(&pdev->dev);
2811 	pm_runtime_put_noidle(&pdev->dev);
2812 
2813 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2814 				   msm_host->bulk_clks);
2815 	if (!IS_ERR(msm_host->bus_clk))
2816 		clk_disable_unprepare(msm_host->bus_clk);
2817 }
2818 
2819 static int sdhci_msm_runtime_suspend(struct device *dev)
2820 {
2821 	struct sdhci_host *host = dev_get_drvdata(dev);
2822 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2823 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2824 	unsigned long flags;
2825 
2826 	spin_lock_irqsave(&host->lock, flags);
2827 	host->runtime_suspended = true;
2828 	spin_unlock_irqrestore(&host->lock, flags);
2829 
2830 	/* Drop the performance vote */
2831 	dev_pm_opp_set_rate(dev, 0);
2832 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2833 				   msm_host->bulk_clks);
2834 
2835 	return sdhci_msm_ice_suspend(msm_host);
2836 }
2837 
2838 static int sdhci_msm_runtime_resume(struct device *dev)
2839 {
2840 	struct sdhci_host *host = dev_get_drvdata(dev);
2841 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2842 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2843 	unsigned long flags;
2844 	int ret;
2845 
2846 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2847 				       msm_host->bulk_clks);
2848 	if (ret)
2849 		return ret;
2850 	/*
2851 	 * Whenever core-clock is gated dynamically, it's needed to
2852 	 * restore the SDR DLL settings when the clock is ungated.
2853 	 */
2854 	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2855 		ret = sdhci_msm_restore_sdr_dll_config(host);
2856 		if (ret)
2857 			return ret;
2858 	}
2859 
2860 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2861 
2862 	ret = sdhci_msm_ice_resume(msm_host);
2863 	if (ret)
2864 		return ret;
2865 
2866 	spin_lock_irqsave(&host->lock, flags);
2867 	host->runtime_suspended = false;
2868 	spin_unlock_irqrestore(&host->lock, flags);
2869 
2870 	return ret;
2871 }
2872 
2873 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2874 	SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
2875 	RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, sdhci_msm_runtime_resume, NULL)
2876 };
2877 
2878 static struct platform_driver sdhci_msm_driver = {
2879 	.probe = sdhci_msm_probe,
2880 	.remove = sdhci_msm_remove,
2881 	.driver = {
2882 		   .name = "sdhci_msm",
2883 		   .of_match_table = sdhci_msm_dt_match,
2884 		   .pm = pm_ptr(&sdhci_msm_pm_ops),
2885 		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2886 	},
2887 };
2888 
2889 module_platform_driver(sdhci_msm_driver);
2890 
2891 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2892 MODULE_LICENSE("GPL v2");
2893