xref: /linux/drivers/mmc/host/omap_hsmmc.c (revision 249ebf3f65f8530beb2cbfb91bff1d83ba88d23c)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_device.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/core.h>
36 #include <linux/mmc/mmc.h>
37 #include <linux/mmc/slot-gpio.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/pm_wakeirq.h>
44 #include <linux/platform_data/hsmmc-omap.h>
45 
46 /* OMAP HSMMC Host Controller Registers */
47 #define OMAP_HSMMC_SYSSTATUS	0x0014
48 #define OMAP_HSMMC_CON		0x002C
49 #define OMAP_HSMMC_SDMASA	0x0100
50 #define OMAP_HSMMC_BLK		0x0104
51 #define OMAP_HSMMC_ARG		0x0108
52 #define OMAP_HSMMC_CMD		0x010C
53 #define OMAP_HSMMC_RSP10	0x0110
54 #define OMAP_HSMMC_RSP32	0x0114
55 #define OMAP_HSMMC_RSP54	0x0118
56 #define OMAP_HSMMC_RSP76	0x011C
57 #define OMAP_HSMMC_DATA		0x0120
58 #define OMAP_HSMMC_PSTATE	0x0124
59 #define OMAP_HSMMC_HCTL		0x0128
60 #define OMAP_HSMMC_SYSCTL	0x012C
61 #define OMAP_HSMMC_STAT		0x0130
62 #define OMAP_HSMMC_IE		0x0134
63 #define OMAP_HSMMC_ISE		0x0138
64 #define OMAP_HSMMC_AC12		0x013C
65 #define OMAP_HSMMC_CAPA		0x0140
66 
67 #define VS18			(1 << 26)
68 #define VS30			(1 << 25)
69 #define HSS			(1 << 21)
70 #define SDVS18			(0x5 << 9)
71 #define SDVS30			(0x6 << 9)
72 #define SDVS33			(0x7 << 9)
73 #define SDVS_MASK		0x00000E00
74 #define SDVSCLR			0xFFFFF1FF
75 #define SDVSDET			0x00000400
76 #define AUTOIDLE		0x1
77 #define SDBP			(1 << 8)
78 #define DTO			0xe
79 #define ICE			0x1
80 #define ICS			0x2
81 #define CEN			(1 << 2)
82 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
83 #define CLKD_MASK		0x0000FFC0
84 #define CLKD_SHIFT		6
85 #define DTO_MASK		0x000F0000
86 #define DTO_SHIFT		16
87 #define INIT_STREAM		(1 << 1)
88 #define ACEN_ACMD23		(2 << 2)
89 #define DP_SELECT		(1 << 21)
90 #define DDIR			(1 << 4)
91 #define DMAE			0x1
92 #define MSBS			(1 << 5)
93 #define BCE			(1 << 1)
94 #define FOUR_BIT		(1 << 1)
95 #define HSPE			(1 << 2)
96 #define IWE			(1 << 24)
97 #define DDR			(1 << 19)
98 #define CLKEXTFREE		(1 << 16)
99 #define CTPL			(1 << 11)
100 #define DW8			(1 << 5)
101 #define OD			0x1
102 #define STAT_CLEAR		0xFFFFFFFF
103 #define INIT_STREAM_CMD		0x00000000
104 #define DUAL_VOLT_OCR_BIT	7
105 #define SRC			(1 << 25)
106 #define SRD			(1 << 26)
107 #define SOFTRESET		(1 << 1)
108 
109 /* PSTATE */
110 #define DLEV_DAT(x)		(1 << (20 + (x)))
111 
112 /* Interrupt masks for IE and ISE register */
113 #define CC_EN			(1 << 0)
114 #define TC_EN			(1 << 1)
115 #define BWR_EN			(1 << 4)
116 #define BRR_EN			(1 << 5)
117 #define CIRQ_EN			(1 << 8)
118 #define ERR_EN			(1 << 15)
119 #define CTO_EN			(1 << 16)
120 #define CCRC_EN			(1 << 17)
121 #define CEB_EN			(1 << 18)
122 #define CIE_EN			(1 << 19)
123 #define DTO_EN			(1 << 20)
124 #define DCRC_EN			(1 << 21)
125 #define DEB_EN			(1 << 22)
126 #define ACE_EN			(1 << 24)
127 #define CERR_EN			(1 << 28)
128 #define BADA_EN			(1 << 29)
129 
130 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132 		BRR_EN | BWR_EN | TC_EN | CC_EN)
133 
134 #define CNI	(1 << 7)
135 #define ACIE	(1 << 4)
136 #define ACEB	(1 << 3)
137 #define ACCE	(1 << 2)
138 #define ACTO	(1 << 1)
139 #define ACNE	(1 << 0)
140 
141 #define MMC_AUTOSUSPEND_DELAY	100
142 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
143 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
144 #define OMAP_MMC_MIN_CLOCK	400000
145 #define OMAP_MMC_MAX_CLOCK	52000000
146 #define DRIVER_NAME		"omap_hsmmc"
147 
148 /*
149  * One controller can have multiple slots, like on some omap boards using
150  * omap.c controller driver. Luckily this is not currently done on any known
151  * omap_hsmmc.c device.
152  */
153 #define mmc_pdata(host)		host->pdata
154 
155 /*
156  * MMC Host controller read/write API's
157  */
158 #define OMAP_HSMMC_READ(base, reg)	\
159 	__raw_readl((base) + OMAP_HSMMC_##reg)
160 
161 #define OMAP_HSMMC_WRITE(base, reg, val) \
162 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
163 
164 struct omap_hsmmc_next {
165 	unsigned int	dma_len;
166 	s32		cookie;
167 };
168 
169 struct omap_hsmmc_host {
170 	struct	device		*dev;
171 	struct	mmc_host	*mmc;
172 	struct	mmc_request	*mrq;
173 	struct	mmc_command	*cmd;
174 	struct	mmc_data	*data;
175 	struct	clk		*fclk;
176 	struct	clk		*dbclk;
177 	struct	regulator	*pbias;
178 	bool			pbias_enabled;
179 	void	__iomem		*base;
180 	bool			vqmmc_enabled;
181 	resource_size_t		mapbase;
182 	spinlock_t		irq_lock; /* Prevent races with irq handler */
183 	unsigned int		dma_len;
184 	unsigned int		dma_sg_idx;
185 	unsigned char		bus_mode;
186 	unsigned char		power_mode;
187 	int			suspended;
188 	u32			con;
189 	u32			hctl;
190 	u32			sysctl;
191 	u32			capa;
192 	int			irq;
193 	int			wake_irq;
194 	int			use_dma, dma_ch;
195 	struct dma_chan		*tx_chan;
196 	struct dma_chan		*rx_chan;
197 	int			response_busy;
198 	int			context_loss;
199 	int			reqs_blocked;
200 	int			req_in_progress;
201 	unsigned long		clk_rate;
202 	unsigned int		flags;
203 #define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
204 #define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
205 	struct omap_hsmmc_next	next_data;
206 	struct	omap_hsmmc_platform_data	*pdata;
207 };
208 
209 struct omap_mmc_of_data {
210 	u32 reg_offset;
211 	u8 controller_flags;
212 };
213 
214 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215 
216 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217 {
218 	int ret;
219 	struct omap_hsmmc_host *host = mmc_priv(mmc);
220 	struct mmc_ios *ios = &mmc->ios;
221 
222 	if (!IS_ERR(mmc->supply.vmmc)) {
223 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224 		if (ret)
225 			return ret;
226 	}
227 
228 	/* Enable interface voltage rail, if needed */
229 	if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230 		ret = regulator_enable(mmc->supply.vqmmc);
231 		if (ret) {
232 			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233 			goto err_vqmmc;
234 		}
235 		host->vqmmc_enabled = true;
236 	}
237 
238 	return 0;
239 
240 err_vqmmc:
241 	if (!IS_ERR(mmc->supply.vmmc))
242 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243 
244 	return ret;
245 }
246 
247 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248 {
249 	int ret;
250 	int status;
251 	struct omap_hsmmc_host *host = mmc_priv(mmc);
252 
253 	if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254 		ret = regulator_disable(mmc->supply.vqmmc);
255 		if (ret) {
256 			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257 			return ret;
258 		}
259 		host->vqmmc_enabled = false;
260 	}
261 
262 	if (!IS_ERR(mmc->supply.vmmc)) {
263 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264 		if (ret)
265 			goto err_set_ocr;
266 	}
267 
268 	return 0;
269 
270 err_set_ocr:
271 	if (!IS_ERR(mmc->supply.vqmmc)) {
272 		status = regulator_enable(mmc->supply.vqmmc);
273 		if (status)
274 			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275 	}
276 
277 	return ret;
278 }
279 
280 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281 {
282 	int ret;
283 
284 	if (IS_ERR(host->pbias))
285 		return 0;
286 
287 	if (power_on) {
288 		if (!host->pbias_enabled) {
289 			ret = regulator_enable(host->pbias);
290 			if (ret) {
291 				dev_err(host->dev, "pbias reg enable fail\n");
292 				return ret;
293 			}
294 			host->pbias_enabled = true;
295 		}
296 	} else {
297 		if (host->pbias_enabled) {
298 			ret = regulator_disable(host->pbias);
299 			if (ret) {
300 				dev_err(host->dev, "pbias reg disable fail\n");
301 				return ret;
302 			}
303 			host->pbias_enabled = false;
304 		}
305 	}
306 
307 	return 0;
308 }
309 
310 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311 {
312 	struct mmc_host *mmc = host->mmc;
313 	int ret = 0;
314 
315 	/*
316 	 * If we don't see a Vcc regulator, assume it's a fixed
317 	 * voltage always-on regulator.
318 	 */
319 	if (IS_ERR(mmc->supply.vmmc))
320 		return 0;
321 
322 	ret = omap_hsmmc_set_pbias(host, false);
323 	if (ret)
324 		return ret;
325 
326 	/*
327 	 * Assume Vcc regulator is used only to power the card ... OMAP
328 	 * VDDS is used to power the pins, optionally with a transceiver to
329 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
330 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331 	 *
332 	 * In some cases this regulator won't support enable/disable;
333 	 * e.g. it's a fixed rail for a WLAN chip.
334 	 *
335 	 * In other cases vcc_aux switches interface power.  Example, for
336 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
337 	 * chips/cards need an interface voltage rail too.
338 	 */
339 	if (power_on) {
340 		ret = omap_hsmmc_enable_supply(mmc);
341 		if (ret)
342 			return ret;
343 
344 		ret = omap_hsmmc_set_pbias(host, true);
345 		if (ret)
346 			goto err_set_voltage;
347 	} else {
348 		ret = omap_hsmmc_disable_supply(mmc);
349 		if (ret)
350 			return ret;
351 	}
352 
353 	return 0;
354 
355 err_set_voltage:
356 	omap_hsmmc_disable_supply(mmc);
357 
358 	return ret;
359 }
360 
361 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362 {
363 	int ret;
364 
365 	if (IS_ERR(reg))
366 		return 0;
367 
368 	if (regulator_is_enabled(reg)) {
369 		ret = regulator_enable(reg);
370 		if (ret)
371 			return ret;
372 
373 		ret = regulator_disable(reg);
374 		if (ret)
375 			return ret;
376 	}
377 
378 	return 0;
379 }
380 
381 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382 {
383 	struct mmc_host *mmc = host->mmc;
384 	int ret;
385 
386 	/*
387 	 * disable regulators enabled during boot and get the usecount
388 	 * right so that regulators can be enabled/disabled by checking
389 	 * the return value of regulator_is_enabled
390 	 */
391 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392 	if (ret) {
393 		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394 		return ret;
395 	}
396 
397 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398 	if (ret) {
399 		dev_err(host->dev,
400 			"fail to disable boot enabled vmmc_aux reg\n");
401 		return ret;
402 	}
403 
404 	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405 	if (ret) {
406 		dev_err(host->dev,
407 			"failed to disable boot enabled pbias reg\n");
408 		return ret;
409 	}
410 
411 	return 0;
412 }
413 
414 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415 {
416 	int ret;
417 	struct mmc_host *mmc = host->mmc;
418 
419 
420 	ret = mmc_regulator_get_supply(mmc);
421 	if (ret)
422 		return ret;
423 
424 	/* Allow an aux regulator */
425 	if (IS_ERR(mmc->supply.vqmmc)) {
426 		mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427 								"vmmc_aux");
428 		if (IS_ERR(mmc->supply.vqmmc)) {
429 			ret = PTR_ERR(mmc->supply.vqmmc);
430 			if ((ret != -ENODEV) && host->dev->of_node)
431 				return ret;
432 			dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433 				PTR_ERR(mmc->supply.vqmmc));
434 		}
435 	}
436 
437 	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438 	if (IS_ERR(host->pbias)) {
439 		ret = PTR_ERR(host->pbias);
440 		if ((ret != -ENODEV) && host->dev->of_node) {
441 			dev_err(host->dev,
442 			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443 			return ret;
444 		}
445 		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446 			PTR_ERR(host->pbias));
447 	}
448 
449 	/* For eMMC do not power off when not in sleep state */
450 	if (mmc_pdata(host)->no_regulator_off_init)
451 		return 0;
452 
453 	ret = omap_hsmmc_disable_boot_regulators(host);
454 	if (ret)
455 		return ret;
456 
457 	return 0;
458 }
459 
460 /*
461  * Start clock to the card
462  */
463 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464 {
465 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
466 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467 }
468 
469 /*
470  * Stop clock to the card
471  */
472 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473 {
474 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
475 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478 }
479 
480 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481 				  struct mmc_command *cmd)
482 {
483 	u32 irq_mask = INT_EN_MASK;
484 	unsigned long flags;
485 
486 	if (host->use_dma)
487 		irq_mask &= ~(BRR_EN | BWR_EN);
488 
489 	/* Disable timeout for erases */
490 	if (cmd->opcode == MMC_ERASE)
491 		irq_mask &= ~DTO_EN;
492 
493 	spin_lock_irqsave(&host->irq_lock, flags);
494 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496 
497 	/* latch pending CIRQ, but don't signal MMC core */
498 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499 		irq_mask |= CIRQ_EN;
500 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501 	spin_unlock_irqrestore(&host->irq_lock, flags);
502 }
503 
504 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505 {
506 	u32 irq_mask = 0;
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&host->irq_lock, flags);
510 	/* no transfer running but need to keep cirq if enabled */
511 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512 		irq_mask |= CIRQ_EN;
513 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516 	spin_unlock_irqrestore(&host->irq_lock, flags);
517 }
518 
519 /* Calculate divisor for the given clock frequency */
520 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521 {
522 	u16 dsor = 0;
523 
524 	if (ios->clock) {
525 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526 		if (dsor > CLKD_MAX)
527 			dsor = CLKD_MAX;
528 	}
529 
530 	return dsor;
531 }
532 
533 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534 {
535 	struct mmc_ios *ios = &host->mmc->ios;
536 	unsigned long regval;
537 	unsigned long timeout;
538 	unsigned long clkdiv;
539 
540 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541 
542 	omap_hsmmc_stop_clock(host);
543 
544 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545 	regval = regval & ~(CLKD_MASK | DTO_MASK);
546 	clkdiv = calc_divisor(host, ios);
547 	regval = regval | (clkdiv << 6) | (DTO << 16);
548 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
550 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551 
552 	/* Wait till the ICS bit is set */
553 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555 		&& time_before(jiffies, timeout))
556 		cpu_relax();
557 
558 	/*
559 	 * Enable High-Speed Support
560 	 * Pre-Requisites
561 	 *	- Controller should support High-Speed-Enable Bit
562 	 *	- Controller should not be using DDR Mode
563 	 *	- Controller should advertise that it supports High Speed
564 	 *	  in capabilities register
565 	 *	- MMC/SD clock coming out of controller > 25MHz
566 	 */
567 	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
569 	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
570 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571 		regval = OMAP_HSMMC_READ(host->base, HCTL);
572 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573 			regval |= HSPE;
574 		else
575 			regval &= ~HSPE;
576 
577 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578 	}
579 
580 	omap_hsmmc_start_clock(host);
581 }
582 
583 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584 {
585 	struct mmc_ios *ios = &host->mmc->ios;
586 	u32 con;
587 
588 	con = OMAP_HSMMC_READ(host->base, CON);
589 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590 	    ios->timing == MMC_TIMING_UHS_DDR50)
591 		con |= DDR;	/* configure in DDR mode */
592 	else
593 		con &= ~DDR;
594 	switch (ios->bus_width) {
595 	case MMC_BUS_WIDTH_8:
596 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597 		break;
598 	case MMC_BUS_WIDTH_4:
599 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600 		OMAP_HSMMC_WRITE(host->base, HCTL,
601 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602 		break;
603 	case MMC_BUS_WIDTH_1:
604 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605 		OMAP_HSMMC_WRITE(host->base, HCTL,
606 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607 		break;
608 	}
609 }
610 
611 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612 {
613 	struct mmc_ios *ios = &host->mmc->ios;
614 	u32 con;
615 
616 	con = OMAP_HSMMC_READ(host->base, CON);
617 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619 	else
620 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621 }
622 
623 #ifdef CONFIG_PM
624 
625 /*
626  * Restore the MMC host context, if it was lost as result of a
627  * power state change.
628  */
629 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
630 {
631 	struct mmc_ios *ios = &host->mmc->ios;
632 	u32 hctl, capa;
633 	unsigned long timeout;
634 
635 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
636 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
637 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
638 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
639 		return 0;
640 
641 	host->context_loss++;
642 
643 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
644 		if (host->power_mode != MMC_POWER_OFF &&
645 		    (1 << ios->vdd) <= MMC_VDD_23_24)
646 			hctl = SDVS18;
647 		else
648 			hctl = SDVS30;
649 		capa = VS30 | VS18;
650 	} else {
651 		hctl = SDVS18;
652 		capa = VS18;
653 	}
654 
655 	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
656 		hctl |= IWE;
657 
658 	OMAP_HSMMC_WRITE(host->base, HCTL,
659 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
660 
661 	OMAP_HSMMC_WRITE(host->base, CAPA,
662 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
663 
664 	OMAP_HSMMC_WRITE(host->base, HCTL,
665 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
666 
667 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
668 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
669 		&& time_before(jiffies, timeout))
670 		;
671 
672 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
673 	OMAP_HSMMC_WRITE(host->base, IE, 0);
674 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
675 
676 	/* Do not initialize card-specific things if the power is off */
677 	if (host->power_mode == MMC_POWER_OFF)
678 		goto out;
679 
680 	omap_hsmmc_set_bus_width(host);
681 
682 	omap_hsmmc_set_clock(host);
683 
684 	omap_hsmmc_set_bus_mode(host);
685 
686 out:
687 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
688 		host->context_loss);
689 	return 0;
690 }
691 
692 /*
693  * Save the MMC host context (store the number of power state changes so far).
694  */
695 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
696 {
697 	host->con =  OMAP_HSMMC_READ(host->base, CON);
698 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
699 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
700 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
701 }
702 
703 #else
704 
705 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
706 {
707 }
708 
709 #endif
710 
711 /*
712  * Send init stream sequence to card
713  * before sending IDLE command
714  */
715 static void send_init_stream(struct omap_hsmmc_host *host)
716 {
717 	int reg = 0;
718 	unsigned long timeout;
719 
720 	disable_irq(host->irq);
721 
722 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
723 	OMAP_HSMMC_WRITE(host->base, CON,
724 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
725 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
726 
727 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
728 	while ((reg != CC_EN) && time_before(jiffies, timeout))
729 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
730 
731 	OMAP_HSMMC_WRITE(host->base, CON,
732 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
733 
734 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
735 	OMAP_HSMMC_READ(host->base, STAT);
736 
737 	enable_irq(host->irq);
738 }
739 
740 static ssize_t
741 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
742 			char *buf)
743 {
744 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
745 	struct omap_hsmmc_host *host = mmc_priv(mmc);
746 
747 	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
748 }
749 
750 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
751 
752 /*
753  * Configure the response type and send the cmd.
754  */
755 static void
756 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
757 	struct mmc_data *data)
758 {
759 	int cmdreg = 0, resptype = 0, cmdtype = 0;
760 
761 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
762 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
763 	host->cmd = cmd;
764 
765 	omap_hsmmc_enable_irq(host, cmd);
766 
767 	host->response_busy = 0;
768 	if (cmd->flags & MMC_RSP_PRESENT) {
769 		if (cmd->flags & MMC_RSP_136)
770 			resptype = 1;
771 		else if (cmd->flags & MMC_RSP_BUSY) {
772 			resptype = 3;
773 			host->response_busy = 1;
774 		} else
775 			resptype = 2;
776 	}
777 
778 	/*
779 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
780 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
781 	 * a val of 0x3, rest 0x0.
782 	 */
783 	if (cmd == host->mrq->stop)
784 		cmdtype = 0x3;
785 
786 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
787 
788 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
789 	    host->mrq->sbc) {
790 		cmdreg |= ACEN_ACMD23;
791 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
792 	}
793 	if (data) {
794 		cmdreg |= DP_SELECT | MSBS | BCE;
795 		if (data->flags & MMC_DATA_READ)
796 			cmdreg |= DDIR;
797 		else
798 			cmdreg &= ~(DDIR);
799 	}
800 
801 	if (host->use_dma)
802 		cmdreg |= DMAE;
803 
804 	host->req_in_progress = 1;
805 
806 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
807 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
808 }
809 
810 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
811 	struct mmc_data *data)
812 {
813 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
814 }
815 
816 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
817 {
818 	int dma_ch;
819 	unsigned long flags;
820 
821 	spin_lock_irqsave(&host->irq_lock, flags);
822 	host->req_in_progress = 0;
823 	dma_ch = host->dma_ch;
824 	spin_unlock_irqrestore(&host->irq_lock, flags);
825 
826 	omap_hsmmc_disable_irq(host);
827 	/* Do not complete the request if DMA is still in progress */
828 	if (mrq->data && host->use_dma && dma_ch != -1)
829 		return;
830 	host->mrq = NULL;
831 	mmc_request_done(host->mmc, mrq);
832 }
833 
834 /*
835  * Notify the transfer complete to MMC core
836  */
837 static void
838 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
839 {
840 	if (!data) {
841 		struct mmc_request *mrq = host->mrq;
842 
843 		/* TC before CC from CMD6 - don't know why, but it happens */
844 		if (host->cmd && host->cmd->opcode == 6 &&
845 		    host->response_busy) {
846 			host->response_busy = 0;
847 			return;
848 		}
849 
850 		omap_hsmmc_request_done(host, mrq);
851 		return;
852 	}
853 
854 	host->data = NULL;
855 
856 	if (!data->error)
857 		data->bytes_xfered += data->blocks * (data->blksz);
858 	else
859 		data->bytes_xfered = 0;
860 
861 	if (data->stop && (data->error || !host->mrq->sbc))
862 		omap_hsmmc_start_command(host, data->stop, NULL);
863 	else
864 		omap_hsmmc_request_done(host, data->mrq);
865 }
866 
867 /*
868  * Notify the core about command completion
869  */
870 static void
871 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
872 {
873 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
874 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
875 		host->cmd = NULL;
876 		omap_hsmmc_start_dma_transfer(host);
877 		omap_hsmmc_start_command(host, host->mrq->cmd,
878 						host->mrq->data);
879 		return;
880 	}
881 
882 	host->cmd = NULL;
883 
884 	if (cmd->flags & MMC_RSP_PRESENT) {
885 		if (cmd->flags & MMC_RSP_136) {
886 			/* response type 2 */
887 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
888 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
889 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
890 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
891 		} else {
892 			/* response types 1, 1b, 3, 4, 5, 6 */
893 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
894 		}
895 	}
896 	if ((host->data == NULL && !host->response_busy) || cmd->error)
897 		omap_hsmmc_request_done(host, host->mrq);
898 }
899 
900 /*
901  * DMA clean up for command errors
902  */
903 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
904 {
905 	int dma_ch;
906 	unsigned long flags;
907 
908 	host->data->error = errno;
909 
910 	spin_lock_irqsave(&host->irq_lock, flags);
911 	dma_ch = host->dma_ch;
912 	host->dma_ch = -1;
913 	spin_unlock_irqrestore(&host->irq_lock, flags);
914 
915 	if (host->use_dma && dma_ch != -1) {
916 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
917 
918 		dmaengine_terminate_all(chan);
919 		dma_unmap_sg(chan->device->dev,
920 			host->data->sg, host->data->sg_len,
921 			mmc_get_dma_dir(host->data));
922 
923 		host->data->host_cookie = 0;
924 	}
925 	host->data = NULL;
926 }
927 
928 /*
929  * Readable error output
930  */
931 #ifdef CONFIG_MMC_DEBUG
932 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
933 {
934 	/* --- means reserved bit without definition at documentation */
935 	static const char *omap_hsmmc_status_bits[] = {
936 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
937 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
938 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
939 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
940 	};
941 	char res[256];
942 	char *buf = res;
943 	int len, i;
944 
945 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
946 	buf += len;
947 
948 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
949 		if (status & (1 << i)) {
950 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
951 			buf += len;
952 		}
953 
954 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
955 }
956 #else
957 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
958 					     u32 status)
959 {
960 }
961 #endif  /* CONFIG_MMC_DEBUG */
962 
963 /*
964  * MMC controller internal state machines reset
965  *
966  * Used to reset command or data internal state machines, using respectively
967  *  SRC or SRD bit of SYSCTL register
968  * Can be called from interrupt context
969  */
970 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
971 						   unsigned long bit)
972 {
973 	unsigned long i = 0;
974 	unsigned long limit = MMC_TIMEOUT_US;
975 
976 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
977 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
978 
979 	/*
980 	 * OMAP4 ES2 and greater has an updated reset logic.
981 	 * Monitor a 0->1 transition first
982 	 */
983 	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
984 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
985 					&& (i++ < limit))
986 			udelay(1);
987 	}
988 	i = 0;
989 
990 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
991 		(i++ < limit))
992 		udelay(1);
993 
994 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
995 		dev_err(mmc_dev(host->mmc),
996 			"Timeout waiting on controller reset in %s\n",
997 			__func__);
998 }
999 
1000 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1001 					int err, int end_cmd)
1002 {
1003 	if (end_cmd) {
1004 		omap_hsmmc_reset_controller_fsm(host, SRC);
1005 		if (host->cmd)
1006 			host->cmd->error = err;
1007 	}
1008 
1009 	if (host->data) {
1010 		omap_hsmmc_reset_controller_fsm(host, SRD);
1011 		omap_hsmmc_dma_cleanup(host, err);
1012 	} else if (host->mrq && host->mrq->cmd)
1013 		host->mrq->cmd->error = err;
1014 }
1015 
1016 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1017 {
1018 	struct mmc_data *data;
1019 	int end_cmd = 0, end_trans = 0;
1020 	int error = 0;
1021 
1022 	data = host->data;
1023 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1024 
1025 	if (status & ERR_EN) {
1026 		omap_hsmmc_dbg_report_irq(host, status);
1027 
1028 		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1029 			end_cmd = 1;
1030 		if (host->data || host->response_busy) {
1031 			end_trans = !end_cmd;
1032 			host->response_busy = 0;
1033 		}
1034 		if (status & (CTO_EN | DTO_EN))
1035 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1036 		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1037 				   BADA_EN))
1038 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1039 
1040 		if (status & ACE_EN) {
1041 			u32 ac12;
1042 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1043 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1044 				end_cmd = 1;
1045 				if (ac12 & ACTO)
1046 					error =  -ETIMEDOUT;
1047 				else if (ac12 & (ACCE | ACEB | ACIE))
1048 					error = -EILSEQ;
1049 				host->mrq->sbc->error = error;
1050 				hsmmc_command_incomplete(host, error, end_cmd);
1051 			}
1052 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1053 		}
1054 	}
1055 
1056 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1057 	if (end_cmd || ((status & CC_EN) && host->cmd))
1058 		omap_hsmmc_cmd_done(host, host->cmd);
1059 	if ((end_trans || (status & TC_EN)) && host->mrq)
1060 		omap_hsmmc_xfer_done(host, data);
1061 }
1062 
1063 /*
1064  * MMC controller IRQ handler
1065  */
1066 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1067 {
1068 	struct omap_hsmmc_host *host = dev_id;
1069 	int status;
1070 
1071 	status = OMAP_HSMMC_READ(host->base, STAT);
1072 	while (status & (INT_EN_MASK | CIRQ_EN)) {
1073 		if (host->req_in_progress)
1074 			omap_hsmmc_do_irq(host, status);
1075 
1076 		if (status & CIRQ_EN)
1077 			mmc_signal_sdio_irq(host->mmc);
1078 
1079 		/* Flush posted write */
1080 		status = OMAP_HSMMC_READ(host->base, STAT);
1081 	}
1082 
1083 	return IRQ_HANDLED;
1084 }
1085 
1086 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1087 {
1088 	unsigned long i;
1089 
1090 	OMAP_HSMMC_WRITE(host->base, HCTL,
1091 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1092 	for (i = 0; i < loops_per_jiffy; i++) {
1093 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1094 			break;
1095 		cpu_relax();
1096 	}
1097 }
1098 
1099 /*
1100  * Switch MMC interface voltage ... only relevant for MMC1.
1101  *
1102  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1103  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1104  * Some chips, like eMMC ones, use internal transceivers.
1105  */
1106 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1107 {
1108 	u32 reg_val = 0;
1109 	int ret;
1110 
1111 	/* Disable the clocks */
1112 	clk_disable_unprepare(host->dbclk);
1113 
1114 	/* Turn the power off */
1115 	ret = omap_hsmmc_set_power(host, 0);
1116 
1117 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1118 	if (!ret)
1119 		ret = omap_hsmmc_set_power(host, 1);
1120 	clk_prepare_enable(host->dbclk);
1121 
1122 	if (ret != 0)
1123 		goto err;
1124 
1125 	OMAP_HSMMC_WRITE(host->base, HCTL,
1126 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1127 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1128 
1129 	/*
1130 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1131 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1132 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1133 	 *
1134 	 * Cope with a bit of slop in the range ... per data sheets:
1135 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1136 	 *    but recommended values are 1.71V to 1.89V
1137 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1138 	 *    but recommended values are 2.7V to 3.3V
1139 	 *
1140 	 * Board setup code shouldn't permit anything very out-of-range.
1141 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1142 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1143 	 */
1144 	if ((1 << vdd) <= MMC_VDD_23_24)
1145 		reg_val |= SDVS18;
1146 	else
1147 		reg_val |= SDVS30;
1148 
1149 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1150 	set_sd_bus_power(host);
1151 
1152 	return 0;
1153 err:
1154 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1155 	return ret;
1156 }
1157 
1158 static void omap_hsmmc_dma_callback(void *param)
1159 {
1160 	struct omap_hsmmc_host *host = param;
1161 	struct dma_chan *chan;
1162 	struct mmc_data *data;
1163 	int req_in_progress;
1164 
1165 	spin_lock_irq(&host->irq_lock);
1166 	if (host->dma_ch < 0) {
1167 		spin_unlock_irq(&host->irq_lock);
1168 		return;
1169 	}
1170 
1171 	data = host->mrq->data;
1172 	chan = omap_hsmmc_get_dma_chan(host, data);
1173 	if (!data->host_cookie)
1174 		dma_unmap_sg(chan->device->dev,
1175 			     data->sg, data->sg_len,
1176 			     mmc_get_dma_dir(data));
1177 
1178 	req_in_progress = host->req_in_progress;
1179 	host->dma_ch = -1;
1180 	spin_unlock_irq(&host->irq_lock);
1181 
1182 	/* If DMA has finished after TC, complete the request */
1183 	if (!req_in_progress) {
1184 		struct mmc_request *mrq = host->mrq;
1185 
1186 		host->mrq = NULL;
1187 		mmc_request_done(host->mmc, mrq);
1188 	}
1189 }
1190 
1191 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1192 				       struct mmc_data *data,
1193 				       struct omap_hsmmc_next *next,
1194 				       struct dma_chan *chan)
1195 {
1196 	int dma_len;
1197 
1198 	if (!next && data->host_cookie &&
1199 	    data->host_cookie != host->next_data.cookie) {
1200 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1201 		       " host->next_data.cookie %d\n",
1202 		       __func__, data->host_cookie, host->next_data.cookie);
1203 		data->host_cookie = 0;
1204 	}
1205 
1206 	/* Check if next job is already prepared */
1207 	if (next || data->host_cookie != host->next_data.cookie) {
1208 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1209 				     mmc_get_dma_dir(data));
1210 
1211 	} else {
1212 		dma_len = host->next_data.dma_len;
1213 		host->next_data.dma_len = 0;
1214 	}
1215 
1216 
1217 	if (dma_len == 0)
1218 		return -EINVAL;
1219 
1220 	if (next) {
1221 		next->dma_len = dma_len;
1222 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1223 	} else
1224 		host->dma_len = dma_len;
1225 
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Routine to configure and start DMA for the MMC card
1231  */
1232 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1233 					struct mmc_request *req)
1234 {
1235 	struct dma_async_tx_descriptor *tx;
1236 	int ret = 0, i;
1237 	struct mmc_data *data = req->data;
1238 	struct dma_chan *chan;
1239 	struct dma_slave_config cfg = {
1240 		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1241 		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1242 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1243 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1244 		.src_maxburst = data->blksz / 4,
1245 		.dst_maxburst = data->blksz / 4,
1246 	};
1247 
1248 	/* Sanity check: all the SG entries must be aligned by block size. */
1249 	for (i = 0; i < data->sg_len; i++) {
1250 		struct scatterlist *sgl;
1251 
1252 		sgl = data->sg + i;
1253 		if (sgl->length % data->blksz)
1254 			return -EINVAL;
1255 	}
1256 	if ((data->blksz % 4) != 0)
1257 		/* REVISIT: The MMC buffer increments only when MSB is written.
1258 		 * Return error for blksz which is non multiple of four.
1259 		 */
1260 		return -EINVAL;
1261 
1262 	BUG_ON(host->dma_ch != -1);
1263 
1264 	chan = omap_hsmmc_get_dma_chan(host, data);
1265 
1266 	ret = dmaengine_slave_config(chan, &cfg);
1267 	if (ret)
1268 		return ret;
1269 
1270 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1271 	if (ret)
1272 		return ret;
1273 
1274 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1275 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1276 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1277 	if (!tx) {
1278 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1279 		/* FIXME: cleanup */
1280 		return -1;
1281 	}
1282 
1283 	tx->callback = omap_hsmmc_dma_callback;
1284 	tx->callback_param = host;
1285 
1286 	/* Does not fail */
1287 	dmaengine_submit(tx);
1288 
1289 	host->dma_ch = 1;
1290 
1291 	return 0;
1292 }
1293 
1294 static void set_data_timeout(struct omap_hsmmc_host *host,
1295 			     unsigned long long timeout_ns,
1296 			     unsigned int timeout_clks)
1297 {
1298 	unsigned long long timeout = timeout_ns;
1299 	unsigned int cycle_ns;
1300 	uint32_t reg, clkd, dto = 0;
1301 
1302 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1303 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1304 	if (clkd == 0)
1305 		clkd = 1;
1306 
1307 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1308 	do_div(timeout, cycle_ns);
1309 	timeout += timeout_clks;
1310 	if (timeout) {
1311 		while ((timeout & 0x80000000) == 0) {
1312 			dto += 1;
1313 			timeout <<= 1;
1314 		}
1315 		dto = 31 - dto;
1316 		timeout <<= 1;
1317 		if (timeout && dto)
1318 			dto += 1;
1319 		if (dto >= 13)
1320 			dto -= 13;
1321 		else
1322 			dto = 0;
1323 		if (dto > 14)
1324 			dto = 14;
1325 	}
1326 
1327 	reg &= ~DTO_MASK;
1328 	reg |= dto << DTO_SHIFT;
1329 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1330 }
1331 
1332 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1333 {
1334 	struct mmc_request *req = host->mrq;
1335 	struct dma_chan *chan;
1336 
1337 	if (!req->data)
1338 		return;
1339 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1340 				| (req->data->blocks << 16));
1341 	set_data_timeout(host, req->data->timeout_ns,
1342 				req->data->timeout_clks);
1343 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1344 	dma_async_issue_pending(chan);
1345 }
1346 
1347 /*
1348  * Configure block length for MMC/SD cards and initiate the transfer.
1349  */
1350 static int
1351 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1352 {
1353 	int ret;
1354 	unsigned long long timeout;
1355 
1356 	host->data = req->data;
1357 
1358 	if (req->data == NULL) {
1359 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1360 		if (req->cmd->flags & MMC_RSP_BUSY) {
1361 			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1362 
1363 			/*
1364 			 * Set an arbitrary 100ms data timeout for commands with
1365 			 * busy signal and no indication of busy_timeout.
1366 			 */
1367 			if (!timeout)
1368 				timeout = 100000000U;
1369 
1370 			set_data_timeout(host, timeout, 0);
1371 		}
1372 		return 0;
1373 	}
1374 
1375 	if (host->use_dma) {
1376 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1377 		if (ret != 0) {
1378 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1379 			return ret;
1380 		}
1381 	}
1382 	return 0;
1383 }
1384 
1385 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1386 				int err)
1387 {
1388 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1389 	struct mmc_data *data = mrq->data;
1390 
1391 	if (host->use_dma && data->host_cookie) {
1392 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1393 
1394 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1395 			     mmc_get_dma_dir(data));
1396 		data->host_cookie = 0;
1397 	}
1398 }
1399 
1400 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1401 {
1402 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1403 
1404 	if (mrq->data->host_cookie) {
1405 		mrq->data->host_cookie = 0;
1406 		return ;
1407 	}
1408 
1409 	if (host->use_dma) {
1410 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1411 
1412 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1413 						&host->next_data, c))
1414 			mrq->data->host_cookie = 0;
1415 	}
1416 }
1417 
1418 /*
1419  * Request function. for read/write operation
1420  */
1421 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1422 {
1423 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1424 	int err;
1425 
1426 	BUG_ON(host->req_in_progress);
1427 	BUG_ON(host->dma_ch != -1);
1428 	if (host->reqs_blocked)
1429 		host->reqs_blocked = 0;
1430 	WARN_ON(host->mrq != NULL);
1431 	host->mrq = req;
1432 	host->clk_rate = clk_get_rate(host->fclk);
1433 	err = omap_hsmmc_prepare_data(host, req);
1434 	if (err) {
1435 		req->cmd->error = err;
1436 		if (req->data)
1437 			req->data->error = err;
1438 		host->mrq = NULL;
1439 		mmc_request_done(mmc, req);
1440 		return;
1441 	}
1442 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1443 		omap_hsmmc_start_command(host, req->sbc, NULL);
1444 		return;
1445 	}
1446 
1447 	omap_hsmmc_start_dma_transfer(host);
1448 	omap_hsmmc_start_command(host, req->cmd, req->data);
1449 }
1450 
1451 /* Routine to configure clock values. Exposed API to core */
1452 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1453 {
1454 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1455 	int do_send_init_stream = 0;
1456 
1457 	if (ios->power_mode != host->power_mode) {
1458 		switch (ios->power_mode) {
1459 		case MMC_POWER_OFF:
1460 			omap_hsmmc_set_power(host, 0);
1461 			break;
1462 		case MMC_POWER_UP:
1463 			omap_hsmmc_set_power(host, 1);
1464 			break;
1465 		case MMC_POWER_ON:
1466 			do_send_init_stream = 1;
1467 			break;
1468 		}
1469 		host->power_mode = ios->power_mode;
1470 	}
1471 
1472 	/* FIXME: set registers based only on changes to ios */
1473 
1474 	omap_hsmmc_set_bus_width(host);
1475 
1476 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1477 		/* Only MMC1 can interface at 3V without some flavor
1478 		 * of external transceiver; but they all handle 1.8V.
1479 		 */
1480 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1481 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1482 				/*
1483 				 * The mmc_select_voltage fn of the core does
1484 				 * not seem to set the power_mode to
1485 				 * MMC_POWER_UP upon recalculating the voltage.
1486 				 * vdd 1.8v.
1487 				 */
1488 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1489 				dev_dbg(mmc_dev(host->mmc),
1490 						"Switch operation failed\n");
1491 		}
1492 	}
1493 
1494 	omap_hsmmc_set_clock(host);
1495 
1496 	if (do_send_init_stream)
1497 		send_init_stream(host);
1498 
1499 	omap_hsmmc_set_bus_mode(host);
1500 }
1501 
1502 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1503 {
1504 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1505 	u32 irq_mask, con;
1506 	unsigned long flags;
1507 
1508 	spin_lock_irqsave(&host->irq_lock, flags);
1509 
1510 	con = OMAP_HSMMC_READ(host->base, CON);
1511 	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1512 	if (enable) {
1513 		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1514 		irq_mask |= CIRQ_EN;
1515 		con |= CTPL | CLKEXTFREE;
1516 	} else {
1517 		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1518 		irq_mask &= ~CIRQ_EN;
1519 		con &= ~(CTPL | CLKEXTFREE);
1520 	}
1521 	OMAP_HSMMC_WRITE(host->base, CON, con);
1522 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1523 
1524 	/*
1525 	 * if enable, piggy back detection on current request
1526 	 * but always disable immediately
1527 	 */
1528 	if (!host->req_in_progress || !enable)
1529 		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1530 
1531 	/* flush posted write */
1532 	OMAP_HSMMC_READ(host->base, IE);
1533 
1534 	spin_unlock_irqrestore(&host->irq_lock, flags);
1535 }
1536 
1537 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1538 {
1539 	int ret;
1540 
1541 	/*
1542 	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1543 	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1544 	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1545 	 * with functional clock disabled.
1546 	 */
1547 	if (!host->dev->of_node || !host->wake_irq)
1548 		return -ENODEV;
1549 
1550 	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1551 	if (ret) {
1552 		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1553 		goto err;
1554 	}
1555 
1556 	/*
1557 	 * Some omaps don't have wake-up path from deeper idle states
1558 	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1559 	 */
1560 	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1561 		struct pinctrl *p = devm_pinctrl_get(host->dev);
1562 		if (IS_ERR(p)) {
1563 			ret = PTR_ERR(p);
1564 			goto err_free_irq;
1565 		}
1566 
1567 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1568 			dev_info(host->dev, "missing idle pinctrl state\n");
1569 			devm_pinctrl_put(p);
1570 			ret = -EINVAL;
1571 			goto err_free_irq;
1572 		}
1573 		devm_pinctrl_put(p);
1574 	}
1575 
1576 	OMAP_HSMMC_WRITE(host->base, HCTL,
1577 			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1578 	return 0;
1579 
1580 err_free_irq:
1581 	dev_pm_clear_wake_irq(host->dev);
1582 err:
1583 	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1584 	host->wake_irq = 0;
1585 	return ret;
1586 }
1587 
1588 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1589 {
1590 	u32 hctl, capa, value;
1591 
1592 	/* Only MMC1 supports 3.0V */
1593 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1594 		hctl = SDVS30;
1595 		capa = VS30 | VS18;
1596 	} else {
1597 		hctl = SDVS18;
1598 		capa = VS18;
1599 	}
1600 
1601 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1602 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1603 
1604 	value = OMAP_HSMMC_READ(host->base, CAPA);
1605 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1606 
1607 	/* Set SD bus power bit */
1608 	set_sd_bus_power(host);
1609 }
1610 
1611 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1612 				     unsigned int direction, int blk_size)
1613 {
1614 	/* This controller can't do multiblock reads due to hw bugs */
1615 	if (direction == MMC_DATA_READ)
1616 		return 1;
1617 
1618 	return blk_size;
1619 }
1620 
1621 static struct mmc_host_ops omap_hsmmc_ops = {
1622 	.post_req = omap_hsmmc_post_req,
1623 	.pre_req = omap_hsmmc_pre_req,
1624 	.request = omap_hsmmc_request,
1625 	.set_ios = omap_hsmmc_set_ios,
1626 	.get_cd = mmc_gpio_get_cd,
1627 	.get_ro = mmc_gpio_get_ro,
1628 	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1629 };
1630 
1631 #ifdef CONFIG_DEBUG_FS
1632 
1633 static int mmc_regs_show(struct seq_file *s, void *data)
1634 {
1635 	struct mmc_host *mmc = s->private;
1636 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1637 
1638 	seq_printf(s, "mmc%d:\n", mmc->index);
1639 	seq_printf(s, "sdio irq mode\t%s\n",
1640 		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1641 
1642 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1643 		seq_printf(s, "sdio irq \t%s\n",
1644 			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1645 			   : "disabled");
1646 	}
1647 	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1648 
1649 	pm_runtime_get_sync(host->dev);
1650 	seq_puts(s, "\nregs:\n");
1651 	seq_printf(s, "CON:\t\t0x%08x\n",
1652 			OMAP_HSMMC_READ(host->base, CON));
1653 	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1654 		   OMAP_HSMMC_READ(host->base, PSTATE));
1655 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1656 			OMAP_HSMMC_READ(host->base, HCTL));
1657 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1658 			OMAP_HSMMC_READ(host->base, SYSCTL));
1659 	seq_printf(s, "IE:\t\t0x%08x\n",
1660 			OMAP_HSMMC_READ(host->base, IE));
1661 	seq_printf(s, "ISE:\t\t0x%08x\n",
1662 			OMAP_HSMMC_READ(host->base, ISE));
1663 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1664 			OMAP_HSMMC_READ(host->base, CAPA));
1665 
1666 	pm_runtime_mark_last_busy(host->dev);
1667 	pm_runtime_put_autosuspend(host->dev);
1668 
1669 	return 0;
1670 }
1671 
1672 DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1673 
1674 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1675 {
1676 	if (mmc->debugfs_root)
1677 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1678 			mmc, &mmc_regs_fops);
1679 }
1680 
1681 #else
1682 
1683 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1684 {
1685 }
1686 
1687 #endif
1688 
1689 #ifdef CONFIG_OF
1690 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1691 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1692 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1693 };
1694 
1695 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1696 	.reg_offset = 0x100,
1697 };
1698 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1699 	.reg_offset = 0x100,
1700 	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1701 };
1702 
1703 static const struct of_device_id omap_mmc_of_match[] = {
1704 	{
1705 		.compatible = "ti,omap2-hsmmc",
1706 	},
1707 	{
1708 		.compatible = "ti,omap3-pre-es3-hsmmc",
1709 		.data = &omap3_pre_es3_mmc_of_data,
1710 	},
1711 	{
1712 		.compatible = "ti,omap3-hsmmc",
1713 	},
1714 	{
1715 		.compatible = "ti,omap4-hsmmc",
1716 		.data = &omap4_mmc_of_data,
1717 	},
1718 	{
1719 		.compatible = "ti,am33xx-hsmmc",
1720 		.data = &am33xx_mmc_of_data,
1721 	},
1722 	{},
1723 };
1724 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1725 
1726 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1727 {
1728 	struct omap_hsmmc_platform_data *pdata, *legacy;
1729 	struct device_node *np = dev->of_node;
1730 
1731 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1732 	if (!pdata)
1733 		return ERR_PTR(-ENOMEM); /* out of memory */
1734 
1735 	legacy = dev_get_platdata(dev);
1736 	if (legacy && legacy->name)
1737 		pdata->name = legacy->name;
1738 
1739 	if (of_property_read_bool(np, "ti,dual-volt"))
1740 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1741 
1742 	if (of_property_read_bool(np, "ti,non-removable")) {
1743 		pdata->nonremovable = true;
1744 		pdata->no_regulator_off_init = true;
1745 	}
1746 
1747 	if (of_property_read_bool(np, "ti,needs-special-reset"))
1748 		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1749 
1750 	if (of_property_read_bool(np, "ti,needs-special-hs-handling"))
1751 		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1752 
1753 	return pdata;
1754 }
1755 #else
1756 static inline struct omap_hsmmc_platform_data
1757 			*of_get_hsmmc_pdata(struct device *dev)
1758 {
1759 	return ERR_PTR(-EINVAL);
1760 }
1761 #endif
1762 
1763 static int omap_hsmmc_probe(struct platform_device *pdev)
1764 {
1765 	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1766 	struct mmc_host *mmc;
1767 	struct omap_hsmmc_host *host = NULL;
1768 	struct resource *res;
1769 	int ret, irq;
1770 	const struct of_device_id *match;
1771 	const struct omap_mmc_of_data *data;
1772 	void __iomem *base;
1773 
1774 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1775 	if (match) {
1776 		pdata = of_get_hsmmc_pdata(&pdev->dev);
1777 
1778 		if (IS_ERR(pdata))
1779 			return PTR_ERR(pdata);
1780 
1781 		if (match->data) {
1782 			data = match->data;
1783 			pdata->reg_offset = data->reg_offset;
1784 			pdata->controller_flags |= data->controller_flags;
1785 		}
1786 	}
1787 
1788 	if (pdata == NULL) {
1789 		dev_err(&pdev->dev, "Platform Data is missing\n");
1790 		return -ENXIO;
1791 	}
1792 
1793 	irq = platform_get_irq(pdev, 0);
1794 	if (irq < 0)
1795 		return irq;
1796 
1797 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1798 	if (IS_ERR(base))
1799 		return PTR_ERR(base);
1800 
1801 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1802 	if (!mmc) {
1803 		ret = -ENOMEM;
1804 		goto err;
1805 	}
1806 
1807 	ret = mmc_of_parse(mmc);
1808 	if (ret)
1809 		goto err1;
1810 
1811 	host		= mmc_priv(mmc);
1812 	host->mmc	= mmc;
1813 	host->pdata	= pdata;
1814 	host->dev	= &pdev->dev;
1815 	host->use_dma	= 1;
1816 	host->dma_ch	= -1;
1817 	host->irq	= irq;
1818 	host->mapbase	= res->start + pdata->reg_offset;
1819 	host->base	= base + pdata->reg_offset;
1820 	host->power_mode = MMC_POWER_OFF;
1821 	host->next_data.cookie = 1;
1822 	host->pbias_enabled = false;
1823 	host->vqmmc_enabled = false;
1824 
1825 	platform_set_drvdata(pdev, host);
1826 
1827 	if (pdev->dev.of_node)
1828 		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1829 
1830 	mmc->ops	= &omap_hsmmc_ops;
1831 
1832 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1833 
1834 	if (pdata->max_freq > 0)
1835 		mmc->f_max = pdata->max_freq;
1836 	else if (mmc->f_max == 0)
1837 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1838 
1839 	spin_lock_init(&host->irq_lock);
1840 
1841 	host->fclk = devm_clk_get(&pdev->dev, "fck");
1842 	if (IS_ERR(host->fclk)) {
1843 		ret = PTR_ERR(host->fclk);
1844 		host->fclk = NULL;
1845 		goto err1;
1846 	}
1847 
1848 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1849 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1850 		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1851 	}
1852 
1853 	device_init_wakeup(&pdev->dev, true);
1854 	pm_runtime_enable(host->dev);
1855 	pm_runtime_get_sync(host->dev);
1856 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1857 	pm_runtime_use_autosuspend(host->dev);
1858 
1859 	omap_hsmmc_context_save(host);
1860 
1861 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1862 	/*
1863 	 * MMC can still work without debounce clock.
1864 	 */
1865 	if (IS_ERR(host->dbclk)) {
1866 		host->dbclk = NULL;
1867 	} else if (clk_prepare_enable(host->dbclk) != 0) {
1868 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1869 		host->dbclk = NULL;
1870 	}
1871 
1872 	/* Set this to a value that allows allocating an entire descriptor
1873 	 * list within a page (zero order allocation). */
1874 	mmc->max_segs = 64;
1875 
1876 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1877 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1878 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1879 
1880 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1881 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1882 
1883 	mmc->caps |= mmc_pdata(host)->caps;
1884 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1885 		mmc->caps |= MMC_CAP_4_BIT_DATA;
1886 
1887 	if (mmc_pdata(host)->nonremovable)
1888 		mmc->caps |= MMC_CAP_NONREMOVABLE;
1889 
1890 	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1891 
1892 	omap_hsmmc_conf_bus_power(host);
1893 
1894 	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1895 	if (IS_ERR(host->rx_chan)) {
1896 		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1897 		ret = PTR_ERR(host->rx_chan);
1898 		goto err_irq;
1899 	}
1900 
1901 	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1902 	if (IS_ERR(host->tx_chan)) {
1903 		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1904 		ret = PTR_ERR(host->tx_chan);
1905 		goto err_irq;
1906 	}
1907 
1908 	/*
1909 	 * Limit the maximum segment size to the lower of the request size
1910 	 * and the DMA engine device segment size limits.  In reality, with
1911 	 * 32-bit transfers, the DMA engine can do longer segments than this
1912 	 * but there is no way to represent that in the DMA model - if we
1913 	 * increase this figure here, we get warnings from the DMA API debug.
1914 	 */
1915 	mmc->max_seg_size = min3(mmc->max_req_size,
1916 			dma_get_max_seg_size(host->rx_chan->device->dev),
1917 			dma_get_max_seg_size(host->tx_chan->device->dev));
1918 
1919 	/* Request IRQ for MMC operations */
1920 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1921 			mmc_hostname(mmc), host);
1922 	if (ret) {
1923 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1924 		goto err_irq;
1925 	}
1926 
1927 	ret = omap_hsmmc_reg_get(host);
1928 	if (ret)
1929 		goto err_irq;
1930 
1931 	if (!mmc->ocr_avail)
1932 		mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1933 
1934 	omap_hsmmc_disable_irq(host);
1935 
1936 	/*
1937 	 * For now, only support SDIO interrupt if we have a separate
1938 	 * wake-up interrupt configured from device tree. This is because
1939 	 * the wake-up interrupt is needed for idle state and some
1940 	 * platforms need special quirks. And we don't want to add new
1941 	 * legacy mux platform init code callbacks any longer as we
1942 	 * are moving to DT based booting anyways.
1943 	 */
1944 	ret = omap_hsmmc_configure_wake_irq(host);
1945 	if (!ret)
1946 		mmc->caps |= MMC_CAP_SDIO_IRQ;
1947 
1948 	ret = mmc_add_host(mmc);
1949 	if (ret)
1950 		goto err_irq;
1951 
1952 	if (mmc_pdata(host)->name != NULL) {
1953 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1954 		if (ret < 0)
1955 			goto err_slot_name;
1956 	}
1957 
1958 	omap_hsmmc_debugfs(mmc);
1959 	pm_runtime_mark_last_busy(host->dev);
1960 	pm_runtime_put_autosuspend(host->dev);
1961 
1962 	return 0;
1963 
1964 err_slot_name:
1965 	mmc_remove_host(mmc);
1966 err_irq:
1967 	device_init_wakeup(&pdev->dev, false);
1968 	if (!IS_ERR_OR_NULL(host->tx_chan))
1969 		dma_release_channel(host->tx_chan);
1970 	if (!IS_ERR_OR_NULL(host->rx_chan))
1971 		dma_release_channel(host->rx_chan);
1972 	pm_runtime_dont_use_autosuspend(host->dev);
1973 	pm_runtime_put_sync(host->dev);
1974 	pm_runtime_disable(host->dev);
1975 	clk_disable_unprepare(host->dbclk);
1976 err1:
1977 	mmc_free_host(mmc);
1978 err:
1979 	return ret;
1980 }
1981 
1982 static void omap_hsmmc_remove(struct platform_device *pdev)
1983 {
1984 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1985 
1986 	pm_runtime_get_sync(host->dev);
1987 	mmc_remove_host(host->mmc);
1988 
1989 	dma_release_channel(host->tx_chan);
1990 	dma_release_channel(host->rx_chan);
1991 
1992 	dev_pm_clear_wake_irq(host->dev);
1993 	pm_runtime_dont_use_autosuspend(host->dev);
1994 	pm_runtime_put_sync(host->dev);
1995 	pm_runtime_disable(host->dev);
1996 	device_init_wakeup(&pdev->dev, false);
1997 	clk_disable_unprepare(host->dbclk);
1998 
1999 	mmc_free_host(host->mmc);
2000 }
2001 
2002 #ifdef CONFIG_PM_SLEEP
2003 static int omap_hsmmc_suspend(struct device *dev)
2004 {
2005 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2006 
2007 	if (!host)
2008 		return 0;
2009 
2010 	pm_runtime_get_sync(host->dev);
2011 
2012 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2013 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2014 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2015 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2016 		OMAP_HSMMC_WRITE(host->base, HCTL,
2017 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2018 	}
2019 
2020 	clk_disable_unprepare(host->dbclk);
2021 
2022 	pm_runtime_put_sync(host->dev);
2023 	return 0;
2024 }
2025 
2026 /* Routine to resume the MMC device */
2027 static int omap_hsmmc_resume(struct device *dev)
2028 {
2029 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2030 
2031 	if (!host)
2032 		return 0;
2033 
2034 	pm_runtime_get_sync(host->dev);
2035 
2036 	clk_prepare_enable(host->dbclk);
2037 
2038 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2039 		omap_hsmmc_conf_bus_power(host);
2040 
2041 	pm_runtime_mark_last_busy(host->dev);
2042 	pm_runtime_put_autosuspend(host->dev);
2043 	return 0;
2044 }
2045 #endif
2046 
2047 #ifdef CONFIG_PM
2048 static int omap_hsmmc_runtime_suspend(struct device *dev)
2049 {
2050 	struct omap_hsmmc_host *host;
2051 	unsigned long flags;
2052 	int ret = 0;
2053 
2054 	host = dev_get_drvdata(dev);
2055 	omap_hsmmc_context_save(host);
2056 	dev_dbg(dev, "disabled\n");
2057 
2058 	spin_lock_irqsave(&host->irq_lock, flags);
2059 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2060 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2061 		/* disable sdio irq handling to prevent race */
2062 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2063 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2064 
2065 		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2066 			/*
2067 			 * dat1 line low, pending sdio irq
2068 			 * race condition: possible irq handler running on
2069 			 * multi-core, abort
2070 			 */
2071 			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2072 			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2073 			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2074 			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2075 			pm_runtime_mark_last_busy(dev);
2076 			ret = -EBUSY;
2077 			goto abort;
2078 		}
2079 
2080 		pinctrl_pm_select_idle_state(dev);
2081 	} else {
2082 		pinctrl_pm_select_idle_state(dev);
2083 	}
2084 
2085 abort:
2086 	spin_unlock_irqrestore(&host->irq_lock, flags);
2087 	return ret;
2088 }
2089 
2090 static int omap_hsmmc_runtime_resume(struct device *dev)
2091 {
2092 	struct omap_hsmmc_host *host;
2093 	unsigned long flags;
2094 
2095 	host = dev_get_drvdata(dev);
2096 	omap_hsmmc_context_restore(host);
2097 	dev_dbg(dev, "enabled\n");
2098 
2099 	spin_lock_irqsave(&host->irq_lock, flags);
2100 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2101 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2102 
2103 		pinctrl_select_default_state(host->dev);
2104 
2105 		/* irq lost, if pinmux incorrect */
2106 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2107 		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2108 		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2109 	} else {
2110 		pinctrl_select_default_state(host->dev);
2111 	}
2112 	spin_unlock_irqrestore(&host->irq_lock, flags);
2113 	return 0;
2114 }
2115 #endif
2116 
2117 static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2118 	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2119 	SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
2120 };
2121 
2122 static struct platform_driver omap_hsmmc_driver = {
2123 	.probe		= omap_hsmmc_probe,
2124 	.remove_new	= omap_hsmmc_remove,
2125 	.driver		= {
2126 		.name = DRIVER_NAME,
2127 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2128 		.pm = &omap_hsmmc_dev_pm_ops,
2129 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2130 	},
2131 };
2132 
2133 module_platform_driver(omap_hsmmc_driver);
2134 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2135 MODULE_LICENSE("GPL");
2136 MODULE_ALIAS("platform:" DRIVER_NAME);
2137 MODULE_AUTHOR("Texas Instruments Inc");
2138