xref: /linux/drivers/mmc/host/omap_hsmmc.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_device.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/core.h>
36 #include <linux/mmc/mmc.h>
37 #include <linux/mmc/slot-gpio.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/pm_wakeirq.h>
44 #include <linux/platform_data/hsmmc-omap.h>
45 
46 /* OMAP HSMMC Host Controller Registers */
47 #define OMAP_HSMMC_SYSSTATUS	0x0014
48 #define OMAP_HSMMC_CON		0x002C
49 #define OMAP_HSMMC_SDMASA	0x0100
50 #define OMAP_HSMMC_BLK		0x0104
51 #define OMAP_HSMMC_ARG		0x0108
52 #define OMAP_HSMMC_CMD		0x010C
53 #define OMAP_HSMMC_RSP10	0x0110
54 #define OMAP_HSMMC_RSP32	0x0114
55 #define OMAP_HSMMC_RSP54	0x0118
56 #define OMAP_HSMMC_RSP76	0x011C
57 #define OMAP_HSMMC_DATA		0x0120
58 #define OMAP_HSMMC_PSTATE	0x0124
59 #define OMAP_HSMMC_HCTL		0x0128
60 #define OMAP_HSMMC_SYSCTL	0x012C
61 #define OMAP_HSMMC_STAT		0x0130
62 #define OMAP_HSMMC_IE		0x0134
63 #define OMAP_HSMMC_ISE		0x0138
64 #define OMAP_HSMMC_AC12		0x013C
65 #define OMAP_HSMMC_CAPA		0x0140
66 
67 #define VS18			(1 << 26)
68 #define VS30			(1 << 25)
69 #define HSS			(1 << 21)
70 #define SDVS18			(0x5 << 9)
71 #define SDVS30			(0x6 << 9)
72 #define SDVS33			(0x7 << 9)
73 #define SDVS_MASK		0x00000E00
74 #define SDVSCLR			0xFFFFF1FF
75 #define SDVSDET			0x00000400
76 #define AUTOIDLE		0x1
77 #define SDBP			(1 << 8)
78 #define DTO			0xe
79 #define ICE			0x1
80 #define ICS			0x2
81 #define CEN			(1 << 2)
82 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
83 #define CLKD_MASK		0x0000FFC0
84 #define CLKD_SHIFT		6
85 #define DTO_MASK		0x000F0000
86 #define DTO_SHIFT		16
87 #define INIT_STREAM		(1 << 1)
88 #define ACEN_ACMD23		(2 << 2)
89 #define DP_SELECT		(1 << 21)
90 #define DDIR			(1 << 4)
91 #define DMAE			0x1
92 #define MSBS			(1 << 5)
93 #define BCE			(1 << 1)
94 #define FOUR_BIT		(1 << 1)
95 #define HSPE			(1 << 2)
96 #define IWE			(1 << 24)
97 #define DDR			(1 << 19)
98 #define CLKEXTFREE		(1 << 16)
99 #define CTPL			(1 << 11)
100 #define DW8			(1 << 5)
101 #define OD			0x1
102 #define STAT_CLEAR		0xFFFFFFFF
103 #define INIT_STREAM_CMD		0x00000000
104 #define DUAL_VOLT_OCR_BIT	7
105 #define SRC			(1 << 25)
106 #define SRD			(1 << 26)
107 #define SOFTRESET		(1 << 1)
108 
109 /* PSTATE */
110 #define DLEV_DAT(x)		(1 << (20 + (x)))
111 
112 /* Interrupt masks for IE and ISE register */
113 #define CC_EN			(1 << 0)
114 #define TC_EN			(1 << 1)
115 #define BWR_EN			(1 << 4)
116 #define BRR_EN			(1 << 5)
117 #define CIRQ_EN			(1 << 8)
118 #define ERR_EN			(1 << 15)
119 #define CTO_EN			(1 << 16)
120 #define CCRC_EN			(1 << 17)
121 #define CEB_EN			(1 << 18)
122 #define CIE_EN			(1 << 19)
123 #define DTO_EN			(1 << 20)
124 #define DCRC_EN			(1 << 21)
125 #define DEB_EN			(1 << 22)
126 #define ACE_EN			(1 << 24)
127 #define CERR_EN			(1 << 28)
128 #define BADA_EN			(1 << 29)
129 
130 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132 		BRR_EN | BWR_EN | TC_EN | CC_EN)
133 
134 #define CNI	(1 << 7)
135 #define ACIE	(1 << 4)
136 #define ACEB	(1 << 3)
137 #define ACCE	(1 << 2)
138 #define ACTO	(1 << 1)
139 #define ACNE	(1 << 0)
140 
141 #define MMC_AUTOSUSPEND_DELAY	100
142 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
143 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
144 #define OMAP_MMC_MIN_CLOCK	400000
145 #define OMAP_MMC_MAX_CLOCK	52000000
146 #define DRIVER_NAME		"omap_hsmmc"
147 
148 /*
149  * One controller can have multiple slots, like on some omap boards using
150  * omap.c controller driver. Luckily this is not currently done on any known
151  * omap_hsmmc.c device.
152  */
153 #define mmc_pdata(host)		host->pdata
154 
155 /*
156  * MMC Host controller read/write API's
157  */
158 #define OMAP_HSMMC_READ(base, reg)	\
159 	__raw_readl((base) + OMAP_HSMMC_##reg)
160 
161 #define OMAP_HSMMC_WRITE(base, reg, val) \
162 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
163 
164 struct omap_hsmmc_next {
165 	unsigned int	dma_len;
166 	s32		cookie;
167 };
168 
169 struct omap_hsmmc_host {
170 	struct	device		*dev;
171 	struct	mmc_host	*mmc;
172 	struct	mmc_request	*mrq;
173 	struct	mmc_command	*cmd;
174 	struct	mmc_data	*data;
175 	struct	clk		*fclk;
176 	struct	clk		*dbclk;
177 	struct	regulator	*pbias;
178 	bool			pbias_enabled;
179 	void	__iomem		*base;
180 	bool			vqmmc_enabled;
181 	resource_size_t		mapbase;
182 	spinlock_t		irq_lock; /* Prevent races with irq handler */
183 	unsigned int		dma_len;
184 	unsigned int		dma_sg_idx;
185 	unsigned char		bus_mode;
186 	unsigned char		power_mode;
187 	int			suspended;
188 	u32			con;
189 	u32			hctl;
190 	u32			sysctl;
191 	u32			capa;
192 	int			irq;
193 	int			wake_irq;
194 	int			use_dma, dma_ch;
195 	struct dma_chan		*tx_chan;
196 	struct dma_chan		*rx_chan;
197 	int			response_busy;
198 	int			context_loss;
199 	int			reqs_blocked;
200 	int			req_in_progress;
201 	unsigned long		clk_rate;
202 	unsigned int		flags;
203 #define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
204 #define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
205 	struct omap_hsmmc_next	next_data;
206 	struct	omap_hsmmc_platform_data	*pdata;
207 };
208 
209 struct omap_mmc_of_data {
210 	u32 reg_offset;
211 	u8 controller_flags;
212 };
213 
214 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215 
216 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217 {
218 	int ret;
219 	struct omap_hsmmc_host *host = mmc_priv(mmc);
220 	struct mmc_ios *ios = &mmc->ios;
221 
222 	if (!IS_ERR(mmc->supply.vmmc)) {
223 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224 		if (ret)
225 			return ret;
226 	}
227 
228 	/* Enable interface voltage rail, if needed */
229 	if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230 		ret = regulator_enable(mmc->supply.vqmmc);
231 		if (ret) {
232 			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233 			goto err_vqmmc;
234 		}
235 		host->vqmmc_enabled = true;
236 	}
237 
238 	return 0;
239 
240 err_vqmmc:
241 	if (!IS_ERR(mmc->supply.vmmc))
242 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243 
244 	return ret;
245 }
246 
247 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248 {
249 	int ret;
250 	int status;
251 	struct omap_hsmmc_host *host = mmc_priv(mmc);
252 
253 	if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254 		ret = regulator_disable(mmc->supply.vqmmc);
255 		if (ret) {
256 			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257 			return ret;
258 		}
259 		host->vqmmc_enabled = false;
260 	}
261 
262 	if (!IS_ERR(mmc->supply.vmmc)) {
263 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264 		if (ret)
265 			goto err_set_ocr;
266 	}
267 
268 	return 0;
269 
270 err_set_ocr:
271 	if (!IS_ERR(mmc->supply.vqmmc)) {
272 		status = regulator_enable(mmc->supply.vqmmc);
273 		if (status)
274 			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275 	}
276 
277 	return ret;
278 }
279 
280 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281 {
282 	int ret;
283 
284 	if (IS_ERR(host->pbias))
285 		return 0;
286 
287 	if (power_on) {
288 		if (!host->pbias_enabled) {
289 			ret = regulator_enable(host->pbias);
290 			if (ret) {
291 				dev_err(host->dev, "pbias reg enable fail\n");
292 				return ret;
293 			}
294 			host->pbias_enabled = true;
295 		}
296 	} else {
297 		if (host->pbias_enabled) {
298 			ret = regulator_disable(host->pbias);
299 			if (ret) {
300 				dev_err(host->dev, "pbias reg disable fail\n");
301 				return ret;
302 			}
303 			host->pbias_enabled = false;
304 		}
305 	}
306 
307 	return 0;
308 }
309 
310 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311 {
312 	struct mmc_host *mmc = host->mmc;
313 	int ret = 0;
314 
315 	/*
316 	 * If we don't see a Vcc regulator, assume it's a fixed
317 	 * voltage always-on regulator.
318 	 */
319 	if (IS_ERR(mmc->supply.vmmc))
320 		return 0;
321 
322 	ret = omap_hsmmc_set_pbias(host, false);
323 	if (ret)
324 		return ret;
325 
326 	/*
327 	 * Assume Vcc regulator is used only to power the card ... OMAP
328 	 * VDDS is used to power the pins, optionally with a transceiver to
329 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
330 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331 	 *
332 	 * In some cases this regulator won't support enable/disable;
333 	 * e.g. it's a fixed rail for a WLAN chip.
334 	 *
335 	 * In other cases vcc_aux switches interface power.  Example, for
336 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
337 	 * chips/cards need an interface voltage rail too.
338 	 */
339 	if (power_on) {
340 		ret = omap_hsmmc_enable_supply(mmc);
341 		if (ret)
342 			return ret;
343 
344 		ret = omap_hsmmc_set_pbias(host, true);
345 		if (ret)
346 			goto err_set_voltage;
347 	} else {
348 		ret = omap_hsmmc_disable_supply(mmc);
349 		if (ret)
350 			return ret;
351 	}
352 
353 	return 0;
354 
355 err_set_voltage:
356 	omap_hsmmc_disable_supply(mmc);
357 
358 	return ret;
359 }
360 
361 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362 {
363 	int ret;
364 
365 	if (IS_ERR(reg))
366 		return 0;
367 
368 	if (regulator_is_enabled(reg)) {
369 		ret = regulator_enable(reg);
370 		if (ret)
371 			return ret;
372 
373 		ret = regulator_disable(reg);
374 		if (ret)
375 			return ret;
376 	}
377 
378 	return 0;
379 }
380 
381 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382 {
383 	struct mmc_host *mmc = host->mmc;
384 	int ret;
385 
386 	/*
387 	 * disable regulators enabled during boot and get the usecount
388 	 * right so that regulators can be enabled/disabled by checking
389 	 * the return value of regulator_is_enabled
390 	 */
391 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392 	if (ret) {
393 		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394 		return ret;
395 	}
396 
397 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398 	if (ret) {
399 		dev_err(host->dev,
400 			"fail to disable boot enabled vmmc_aux reg\n");
401 		return ret;
402 	}
403 
404 	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405 	if (ret) {
406 		dev_err(host->dev,
407 			"failed to disable boot enabled pbias reg\n");
408 		return ret;
409 	}
410 
411 	return 0;
412 }
413 
414 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415 {
416 	int ret;
417 	struct mmc_host *mmc = host->mmc;
418 
419 
420 	ret = mmc_regulator_get_supply(mmc);
421 	if (ret)
422 		return ret;
423 
424 	/* Allow an aux regulator */
425 	if (IS_ERR(mmc->supply.vqmmc)) {
426 		mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427 								"vmmc_aux");
428 		if (IS_ERR(mmc->supply.vqmmc)) {
429 			ret = PTR_ERR(mmc->supply.vqmmc);
430 			if ((ret != -ENODEV) && host->dev->of_node)
431 				return ret;
432 			dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433 				PTR_ERR(mmc->supply.vqmmc));
434 		}
435 	}
436 
437 	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438 	if (IS_ERR(host->pbias)) {
439 		ret = PTR_ERR(host->pbias);
440 		if ((ret != -ENODEV) && host->dev->of_node) {
441 			dev_err(host->dev,
442 			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443 			return ret;
444 		}
445 		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446 			PTR_ERR(host->pbias));
447 	}
448 
449 	/* For eMMC do not power off when not in sleep state */
450 	if (mmc_pdata(host)->no_regulator_off_init)
451 		return 0;
452 
453 	ret = omap_hsmmc_disable_boot_regulators(host);
454 	if (ret)
455 		return ret;
456 
457 	return 0;
458 }
459 
460 /*
461  * Start clock to the card
462  */
463 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464 {
465 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
466 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467 }
468 
469 /*
470  * Stop clock to the card
471  */
472 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473 {
474 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
475 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478 }
479 
480 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481 				  struct mmc_command *cmd)
482 {
483 	u32 irq_mask = INT_EN_MASK;
484 	unsigned long flags;
485 
486 	if (host->use_dma)
487 		irq_mask &= ~(BRR_EN | BWR_EN);
488 
489 	/* Disable timeout for erases */
490 	if (cmd->opcode == MMC_ERASE)
491 		irq_mask &= ~DTO_EN;
492 
493 	spin_lock_irqsave(&host->irq_lock, flags);
494 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496 
497 	/* latch pending CIRQ, but don't signal MMC core */
498 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499 		irq_mask |= CIRQ_EN;
500 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501 	spin_unlock_irqrestore(&host->irq_lock, flags);
502 }
503 
504 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505 {
506 	u32 irq_mask = 0;
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&host->irq_lock, flags);
510 	/* no transfer running but need to keep cirq if enabled */
511 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512 		irq_mask |= CIRQ_EN;
513 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516 	spin_unlock_irqrestore(&host->irq_lock, flags);
517 }
518 
519 /* Calculate divisor for the given clock frequency */
520 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521 {
522 	u16 dsor = 0;
523 
524 	if (ios->clock) {
525 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526 		if (dsor > CLKD_MAX)
527 			dsor = CLKD_MAX;
528 	}
529 
530 	return dsor;
531 }
532 
533 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534 {
535 	struct mmc_ios *ios = &host->mmc->ios;
536 	unsigned long regval;
537 	unsigned long timeout;
538 	unsigned long clkdiv;
539 
540 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541 
542 	omap_hsmmc_stop_clock(host);
543 
544 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545 	regval = regval & ~(CLKD_MASK | DTO_MASK);
546 	clkdiv = calc_divisor(host, ios);
547 	regval = regval | (clkdiv << 6) | (DTO << 16);
548 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
550 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551 
552 	/* Wait till the ICS bit is set */
553 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555 		&& time_before(jiffies, timeout))
556 		cpu_relax();
557 
558 	/*
559 	 * Enable High-Speed Support
560 	 * Pre-Requisites
561 	 *	- Controller should support High-Speed-Enable Bit
562 	 *	- Controller should not be using DDR Mode
563 	 *	- Controller should advertise that it supports High Speed
564 	 *	  in capabilities register
565 	 *	- MMC/SD clock coming out of controller > 25MHz
566 	 */
567 	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
569 	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
570 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571 		regval = OMAP_HSMMC_READ(host->base, HCTL);
572 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573 			regval |= HSPE;
574 		else
575 			regval &= ~HSPE;
576 
577 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578 	}
579 
580 	omap_hsmmc_start_clock(host);
581 }
582 
583 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584 {
585 	struct mmc_ios *ios = &host->mmc->ios;
586 	u32 con;
587 
588 	con = OMAP_HSMMC_READ(host->base, CON);
589 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590 	    ios->timing == MMC_TIMING_UHS_DDR50)
591 		con |= DDR;	/* configure in DDR mode */
592 	else
593 		con &= ~DDR;
594 	switch (ios->bus_width) {
595 	case MMC_BUS_WIDTH_8:
596 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597 		break;
598 	case MMC_BUS_WIDTH_4:
599 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600 		OMAP_HSMMC_WRITE(host->base, HCTL,
601 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602 		break;
603 	case MMC_BUS_WIDTH_1:
604 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605 		OMAP_HSMMC_WRITE(host->base, HCTL,
606 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607 		break;
608 	}
609 }
610 
611 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612 {
613 	struct mmc_ios *ios = &host->mmc->ios;
614 	u32 con;
615 
616 	con = OMAP_HSMMC_READ(host->base, CON);
617 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619 	else
620 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621 }
622 
623 /*
624  * Restore the MMC host context, if it was lost as result of a
625  * power state change.
626  */
627 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
628 {
629 	struct mmc_ios *ios = &host->mmc->ios;
630 	u32 hctl, capa;
631 	unsigned long timeout;
632 
633 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
634 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
635 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
636 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
637 		return 0;
638 
639 	host->context_loss++;
640 
641 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
642 		if (host->power_mode != MMC_POWER_OFF &&
643 		    (1 << ios->vdd) <= MMC_VDD_23_24)
644 			hctl = SDVS18;
645 		else
646 			hctl = SDVS30;
647 		capa = VS30 | VS18;
648 	} else {
649 		hctl = SDVS18;
650 		capa = VS18;
651 	}
652 
653 	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
654 		hctl |= IWE;
655 
656 	OMAP_HSMMC_WRITE(host->base, HCTL,
657 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
658 
659 	OMAP_HSMMC_WRITE(host->base, CAPA,
660 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
661 
662 	OMAP_HSMMC_WRITE(host->base, HCTL,
663 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
664 
665 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
666 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
667 		&& time_before(jiffies, timeout))
668 		;
669 
670 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
671 	OMAP_HSMMC_WRITE(host->base, IE, 0);
672 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
673 
674 	/* Do not initialize card-specific things if the power is off */
675 	if (host->power_mode == MMC_POWER_OFF)
676 		goto out;
677 
678 	omap_hsmmc_set_bus_width(host);
679 
680 	omap_hsmmc_set_clock(host);
681 
682 	omap_hsmmc_set_bus_mode(host);
683 
684 out:
685 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
686 		host->context_loss);
687 	return 0;
688 }
689 
690 #ifdef CONFIG_PM
691 /*
692  * Save the MMC host context (store the number of power state changes so far).
693  */
694 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
695 {
696 	host->con =  OMAP_HSMMC_READ(host->base, CON);
697 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
698 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
699 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
700 }
701 
702 #else
703 
704 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
705 {
706 }
707 
708 #endif
709 
710 /*
711  * Send init stream sequence to card
712  * before sending IDLE command
713  */
714 static void send_init_stream(struct omap_hsmmc_host *host)
715 {
716 	int reg = 0;
717 	unsigned long timeout;
718 
719 	disable_irq(host->irq);
720 
721 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
722 	OMAP_HSMMC_WRITE(host->base, CON,
723 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
724 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
725 
726 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
727 	while ((reg != CC_EN) && time_before(jiffies, timeout))
728 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
729 
730 	OMAP_HSMMC_WRITE(host->base, CON,
731 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
732 
733 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
734 	OMAP_HSMMC_READ(host->base, STAT);
735 
736 	enable_irq(host->irq);
737 }
738 
739 static ssize_t
740 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
741 			char *buf)
742 {
743 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
744 	struct omap_hsmmc_host *host = mmc_priv(mmc);
745 
746 	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
747 }
748 
749 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
750 
751 /*
752  * Configure the response type and send the cmd.
753  */
754 static void
755 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
756 	struct mmc_data *data)
757 {
758 	int cmdreg = 0, resptype = 0, cmdtype = 0;
759 
760 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
761 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
762 	host->cmd = cmd;
763 
764 	omap_hsmmc_enable_irq(host, cmd);
765 
766 	host->response_busy = 0;
767 	if (cmd->flags & MMC_RSP_PRESENT) {
768 		if (cmd->flags & MMC_RSP_136)
769 			resptype = 1;
770 		else if (cmd->flags & MMC_RSP_BUSY) {
771 			resptype = 3;
772 			host->response_busy = 1;
773 		} else
774 			resptype = 2;
775 	}
776 
777 	/*
778 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
779 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
780 	 * a val of 0x3, rest 0x0.
781 	 */
782 	if (cmd == host->mrq->stop)
783 		cmdtype = 0x3;
784 
785 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
786 
787 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
788 	    host->mrq->sbc) {
789 		cmdreg |= ACEN_ACMD23;
790 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
791 	}
792 	if (data) {
793 		cmdreg |= DP_SELECT | MSBS | BCE;
794 		if (data->flags & MMC_DATA_READ)
795 			cmdreg |= DDIR;
796 		else
797 			cmdreg &= ~(DDIR);
798 	}
799 
800 	if (host->use_dma)
801 		cmdreg |= DMAE;
802 
803 	host->req_in_progress = 1;
804 
805 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
806 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
807 }
808 
809 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
810 	struct mmc_data *data)
811 {
812 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
813 }
814 
815 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
816 {
817 	int dma_ch;
818 	unsigned long flags;
819 
820 	spin_lock_irqsave(&host->irq_lock, flags);
821 	host->req_in_progress = 0;
822 	dma_ch = host->dma_ch;
823 	spin_unlock_irqrestore(&host->irq_lock, flags);
824 
825 	omap_hsmmc_disable_irq(host);
826 	/* Do not complete the request if DMA is still in progress */
827 	if (mrq->data && host->use_dma && dma_ch != -1)
828 		return;
829 	host->mrq = NULL;
830 	mmc_request_done(host->mmc, mrq);
831 }
832 
833 /*
834  * Notify the transfer complete to MMC core
835  */
836 static void
837 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
838 {
839 	if (!data) {
840 		struct mmc_request *mrq = host->mrq;
841 
842 		/* TC before CC from CMD6 - don't know why, but it happens */
843 		if (host->cmd && host->cmd->opcode == 6 &&
844 		    host->response_busy) {
845 			host->response_busy = 0;
846 			return;
847 		}
848 
849 		omap_hsmmc_request_done(host, mrq);
850 		return;
851 	}
852 
853 	host->data = NULL;
854 
855 	if (!data->error)
856 		data->bytes_xfered += data->blocks * (data->blksz);
857 	else
858 		data->bytes_xfered = 0;
859 
860 	if (data->stop && (data->error || !host->mrq->sbc))
861 		omap_hsmmc_start_command(host, data->stop, NULL);
862 	else
863 		omap_hsmmc_request_done(host, data->mrq);
864 }
865 
866 /*
867  * Notify the core about command completion
868  */
869 static void
870 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
871 {
872 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
873 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
874 		host->cmd = NULL;
875 		omap_hsmmc_start_dma_transfer(host);
876 		omap_hsmmc_start_command(host, host->mrq->cmd,
877 						host->mrq->data);
878 		return;
879 	}
880 
881 	host->cmd = NULL;
882 
883 	if (cmd->flags & MMC_RSP_PRESENT) {
884 		if (cmd->flags & MMC_RSP_136) {
885 			/* response type 2 */
886 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
887 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
888 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
889 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
890 		} else {
891 			/* response types 1, 1b, 3, 4, 5, 6 */
892 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
893 		}
894 	}
895 	if ((host->data == NULL && !host->response_busy) || cmd->error)
896 		omap_hsmmc_request_done(host, host->mrq);
897 }
898 
899 /*
900  * DMA clean up for command errors
901  */
902 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
903 {
904 	int dma_ch;
905 	unsigned long flags;
906 
907 	host->data->error = errno;
908 
909 	spin_lock_irqsave(&host->irq_lock, flags);
910 	dma_ch = host->dma_ch;
911 	host->dma_ch = -1;
912 	spin_unlock_irqrestore(&host->irq_lock, flags);
913 
914 	if (host->use_dma && dma_ch != -1) {
915 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
916 
917 		dmaengine_terminate_all(chan);
918 		dma_unmap_sg(chan->device->dev,
919 			host->data->sg, host->data->sg_len,
920 			mmc_get_dma_dir(host->data));
921 
922 		host->data->host_cookie = 0;
923 	}
924 	host->data = NULL;
925 }
926 
927 /*
928  * Readable error output
929  */
930 #ifdef CONFIG_MMC_DEBUG
931 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
932 {
933 	/* --- means reserved bit without definition at documentation */
934 	static const char *omap_hsmmc_status_bits[] = {
935 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
936 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
937 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
938 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
939 	};
940 	char res[256];
941 	char *buf = res;
942 	int len, i;
943 
944 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
945 	buf += len;
946 
947 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
948 		if (status & (1 << i)) {
949 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
950 			buf += len;
951 		}
952 
953 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
954 }
955 #else
956 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
957 					     u32 status)
958 {
959 }
960 #endif  /* CONFIG_MMC_DEBUG */
961 
962 /*
963  * MMC controller internal state machines reset
964  *
965  * Used to reset command or data internal state machines, using respectively
966  *  SRC or SRD bit of SYSCTL register
967  * Can be called from interrupt context
968  */
969 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
970 						   unsigned long bit)
971 {
972 	unsigned long i = 0;
973 	unsigned long limit = MMC_TIMEOUT_US;
974 
975 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
976 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
977 
978 	/*
979 	 * OMAP4 ES2 and greater has an updated reset logic.
980 	 * Monitor a 0->1 transition first
981 	 */
982 	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
983 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
984 					&& (i++ < limit))
985 			udelay(1);
986 	}
987 	i = 0;
988 
989 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
990 		(i++ < limit))
991 		udelay(1);
992 
993 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
994 		dev_err(mmc_dev(host->mmc),
995 			"Timeout waiting on controller reset in %s\n",
996 			__func__);
997 }
998 
999 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1000 					int err, int end_cmd)
1001 {
1002 	if (end_cmd) {
1003 		omap_hsmmc_reset_controller_fsm(host, SRC);
1004 		if (host->cmd)
1005 			host->cmd->error = err;
1006 	}
1007 
1008 	if (host->data) {
1009 		omap_hsmmc_reset_controller_fsm(host, SRD);
1010 		omap_hsmmc_dma_cleanup(host, err);
1011 	} else if (host->mrq && host->mrq->cmd)
1012 		host->mrq->cmd->error = err;
1013 }
1014 
1015 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1016 {
1017 	struct mmc_data *data;
1018 	int end_cmd = 0, end_trans = 0;
1019 	int error = 0;
1020 
1021 	data = host->data;
1022 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1023 
1024 	if (status & ERR_EN) {
1025 		omap_hsmmc_dbg_report_irq(host, status);
1026 
1027 		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1028 			end_cmd = 1;
1029 		if (host->data || host->response_busy) {
1030 			end_trans = !end_cmd;
1031 			host->response_busy = 0;
1032 		}
1033 		if (status & (CTO_EN | DTO_EN))
1034 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1035 		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1036 				   BADA_EN))
1037 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1038 
1039 		if (status & ACE_EN) {
1040 			u32 ac12;
1041 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1042 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1043 				end_cmd = 1;
1044 				if (ac12 & ACTO)
1045 					error =  -ETIMEDOUT;
1046 				else if (ac12 & (ACCE | ACEB | ACIE))
1047 					error = -EILSEQ;
1048 				host->mrq->sbc->error = error;
1049 				hsmmc_command_incomplete(host, error, end_cmd);
1050 			}
1051 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1052 		}
1053 	}
1054 
1055 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1056 	if (end_cmd || ((status & CC_EN) && host->cmd))
1057 		omap_hsmmc_cmd_done(host, host->cmd);
1058 	if ((end_trans || (status & TC_EN)) && host->mrq)
1059 		omap_hsmmc_xfer_done(host, data);
1060 }
1061 
1062 /*
1063  * MMC controller IRQ handler
1064  */
1065 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1066 {
1067 	struct omap_hsmmc_host *host = dev_id;
1068 	int status;
1069 
1070 	status = OMAP_HSMMC_READ(host->base, STAT);
1071 	while (status & (INT_EN_MASK | CIRQ_EN)) {
1072 		if (host->req_in_progress)
1073 			omap_hsmmc_do_irq(host, status);
1074 
1075 		if (status & CIRQ_EN)
1076 			mmc_signal_sdio_irq(host->mmc);
1077 
1078 		/* Flush posted write */
1079 		status = OMAP_HSMMC_READ(host->base, STAT);
1080 	}
1081 
1082 	return IRQ_HANDLED;
1083 }
1084 
1085 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1086 {
1087 	unsigned long i;
1088 
1089 	OMAP_HSMMC_WRITE(host->base, HCTL,
1090 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1091 	for (i = 0; i < loops_per_jiffy; i++) {
1092 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1093 			break;
1094 		cpu_relax();
1095 	}
1096 }
1097 
1098 /*
1099  * Switch MMC interface voltage ... only relevant for MMC1.
1100  *
1101  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1102  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1103  * Some chips, like eMMC ones, use internal transceivers.
1104  */
1105 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1106 {
1107 	u32 reg_val = 0;
1108 	int ret;
1109 
1110 	/* Disable the clocks */
1111 	clk_disable_unprepare(host->dbclk);
1112 
1113 	/* Turn the power off */
1114 	ret = omap_hsmmc_set_power(host, 0);
1115 
1116 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1117 	if (!ret)
1118 		ret = omap_hsmmc_set_power(host, 1);
1119 	clk_prepare_enable(host->dbclk);
1120 
1121 	if (ret != 0)
1122 		goto err;
1123 
1124 	OMAP_HSMMC_WRITE(host->base, HCTL,
1125 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1126 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1127 
1128 	/*
1129 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1130 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1131 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1132 	 *
1133 	 * Cope with a bit of slop in the range ... per data sheets:
1134 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1135 	 *    but recommended values are 1.71V to 1.89V
1136 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1137 	 *    but recommended values are 2.7V to 3.3V
1138 	 *
1139 	 * Board setup code shouldn't permit anything very out-of-range.
1140 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1141 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1142 	 */
1143 	if ((1 << vdd) <= MMC_VDD_23_24)
1144 		reg_val |= SDVS18;
1145 	else
1146 		reg_val |= SDVS30;
1147 
1148 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1149 	set_sd_bus_power(host);
1150 
1151 	return 0;
1152 err:
1153 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1154 	return ret;
1155 }
1156 
1157 static void omap_hsmmc_dma_callback(void *param)
1158 {
1159 	struct omap_hsmmc_host *host = param;
1160 	struct dma_chan *chan;
1161 	struct mmc_data *data;
1162 	int req_in_progress;
1163 
1164 	spin_lock_irq(&host->irq_lock);
1165 	if (host->dma_ch < 0) {
1166 		spin_unlock_irq(&host->irq_lock);
1167 		return;
1168 	}
1169 
1170 	data = host->mrq->data;
1171 	chan = omap_hsmmc_get_dma_chan(host, data);
1172 	if (!data->host_cookie)
1173 		dma_unmap_sg(chan->device->dev,
1174 			     data->sg, data->sg_len,
1175 			     mmc_get_dma_dir(data));
1176 
1177 	req_in_progress = host->req_in_progress;
1178 	host->dma_ch = -1;
1179 	spin_unlock_irq(&host->irq_lock);
1180 
1181 	/* If DMA has finished after TC, complete the request */
1182 	if (!req_in_progress) {
1183 		struct mmc_request *mrq = host->mrq;
1184 
1185 		host->mrq = NULL;
1186 		mmc_request_done(host->mmc, mrq);
1187 	}
1188 }
1189 
1190 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1191 				       struct mmc_data *data,
1192 				       struct omap_hsmmc_next *next,
1193 				       struct dma_chan *chan)
1194 {
1195 	int dma_len;
1196 
1197 	if (!next && data->host_cookie &&
1198 	    data->host_cookie != host->next_data.cookie) {
1199 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1200 		       " host->next_data.cookie %d\n",
1201 		       __func__, data->host_cookie, host->next_data.cookie);
1202 		data->host_cookie = 0;
1203 	}
1204 
1205 	/* Check if next job is already prepared */
1206 	if (next || data->host_cookie != host->next_data.cookie) {
1207 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1208 				     mmc_get_dma_dir(data));
1209 
1210 	} else {
1211 		dma_len = host->next_data.dma_len;
1212 		host->next_data.dma_len = 0;
1213 	}
1214 
1215 
1216 	if (dma_len == 0)
1217 		return -EINVAL;
1218 
1219 	if (next) {
1220 		next->dma_len = dma_len;
1221 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1222 	} else
1223 		host->dma_len = dma_len;
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Routine to configure and start DMA for the MMC card
1230  */
1231 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1232 					struct mmc_request *req)
1233 {
1234 	struct dma_async_tx_descriptor *tx;
1235 	int ret = 0, i;
1236 	struct mmc_data *data = req->data;
1237 	struct dma_chan *chan;
1238 	struct dma_slave_config cfg = {
1239 		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1240 		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1241 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1242 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1243 		.src_maxburst = data->blksz / 4,
1244 		.dst_maxburst = data->blksz / 4,
1245 	};
1246 
1247 	/* Sanity check: all the SG entries must be aligned by block size. */
1248 	for (i = 0; i < data->sg_len; i++) {
1249 		struct scatterlist *sgl;
1250 
1251 		sgl = data->sg + i;
1252 		if (sgl->length % data->blksz)
1253 			return -EINVAL;
1254 	}
1255 	if ((data->blksz % 4) != 0)
1256 		/* REVISIT: The MMC buffer increments only when MSB is written.
1257 		 * Return error for blksz which is non multiple of four.
1258 		 */
1259 		return -EINVAL;
1260 
1261 	BUG_ON(host->dma_ch != -1);
1262 
1263 	chan = omap_hsmmc_get_dma_chan(host, data);
1264 
1265 	ret = dmaengine_slave_config(chan, &cfg);
1266 	if (ret)
1267 		return ret;
1268 
1269 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1270 	if (ret)
1271 		return ret;
1272 
1273 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1274 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1275 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1276 	if (!tx) {
1277 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1278 		/* FIXME: cleanup */
1279 		return -1;
1280 	}
1281 
1282 	tx->callback = omap_hsmmc_dma_callback;
1283 	tx->callback_param = host;
1284 
1285 	/* Does not fail */
1286 	dmaengine_submit(tx);
1287 
1288 	host->dma_ch = 1;
1289 
1290 	return 0;
1291 }
1292 
1293 static void set_data_timeout(struct omap_hsmmc_host *host,
1294 			     unsigned long long timeout_ns,
1295 			     unsigned int timeout_clks)
1296 {
1297 	unsigned long long timeout = timeout_ns;
1298 	unsigned int cycle_ns;
1299 	uint32_t reg, clkd, dto = 0;
1300 
1301 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1302 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1303 	if (clkd == 0)
1304 		clkd = 1;
1305 
1306 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1307 	do_div(timeout, cycle_ns);
1308 	timeout += timeout_clks;
1309 	if (timeout) {
1310 		while ((timeout & 0x80000000) == 0) {
1311 			dto += 1;
1312 			timeout <<= 1;
1313 		}
1314 		dto = 31 - dto;
1315 		timeout <<= 1;
1316 		if (timeout && dto)
1317 			dto += 1;
1318 		if (dto >= 13)
1319 			dto -= 13;
1320 		else
1321 			dto = 0;
1322 		if (dto > 14)
1323 			dto = 14;
1324 	}
1325 
1326 	reg &= ~DTO_MASK;
1327 	reg |= dto << DTO_SHIFT;
1328 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1329 }
1330 
1331 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1332 {
1333 	struct mmc_request *req = host->mrq;
1334 	struct dma_chan *chan;
1335 
1336 	if (!req->data)
1337 		return;
1338 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1339 				| (req->data->blocks << 16));
1340 	set_data_timeout(host, req->data->timeout_ns,
1341 				req->data->timeout_clks);
1342 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1343 	dma_async_issue_pending(chan);
1344 }
1345 
1346 /*
1347  * Configure block length for MMC/SD cards and initiate the transfer.
1348  */
1349 static int
1350 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1351 {
1352 	int ret;
1353 	unsigned long long timeout;
1354 
1355 	host->data = req->data;
1356 
1357 	if (req->data == NULL) {
1358 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1359 		if (req->cmd->flags & MMC_RSP_BUSY) {
1360 			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1361 
1362 			/*
1363 			 * Set an arbitrary 100ms data timeout for commands with
1364 			 * busy signal and no indication of busy_timeout.
1365 			 */
1366 			if (!timeout)
1367 				timeout = 100000000U;
1368 
1369 			set_data_timeout(host, timeout, 0);
1370 		}
1371 		return 0;
1372 	}
1373 
1374 	if (host->use_dma) {
1375 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1376 		if (ret != 0) {
1377 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1378 			return ret;
1379 		}
1380 	}
1381 	return 0;
1382 }
1383 
1384 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1385 				int err)
1386 {
1387 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1388 	struct mmc_data *data = mrq->data;
1389 
1390 	if (host->use_dma && data->host_cookie) {
1391 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1392 
1393 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1394 			     mmc_get_dma_dir(data));
1395 		data->host_cookie = 0;
1396 	}
1397 }
1398 
1399 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1400 {
1401 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1402 
1403 	if (mrq->data->host_cookie) {
1404 		mrq->data->host_cookie = 0;
1405 		return ;
1406 	}
1407 
1408 	if (host->use_dma) {
1409 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1410 
1411 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1412 						&host->next_data, c))
1413 			mrq->data->host_cookie = 0;
1414 	}
1415 }
1416 
1417 /*
1418  * Request function. for read/write operation
1419  */
1420 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1421 {
1422 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1423 	int err;
1424 
1425 	BUG_ON(host->req_in_progress);
1426 	BUG_ON(host->dma_ch != -1);
1427 	if (host->reqs_blocked)
1428 		host->reqs_blocked = 0;
1429 	WARN_ON(host->mrq != NULL);
1430 	host->mrq = req;
1431 	host->clk_rate = clk_get_rate(host->fclk);
1432 	err = omap_hsmmc_prepare_data(host, req);
1433 	if (err) {
1434 		req->cmd->error = err;
1435 		if (req->data)
1436 			req->data->error = err;
1437 		host->mrq = NULL;
1438 		mmc_request_done(mmc, req);
1439 		return;
1440 	}
1441 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1442 		omap_hsmmc_start_command(host, req->sbc, NULL);
1443 		return;
1444 	}
1445 
1446 	omap_hsmmc_start_dma_transfer(host);
1447 	omap_hsmmc_start_command(host, req->cmd, req->data);
1448 }
1449 
1450 /* Routine to configure clock values. Exposed API to core */
1451 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1452 {
1453 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1454 	int do_send_init_stream = 0;
1455 
1456 	if (ios->power_mode != host->power_mode) {
1457 		switch (ios->power_mode) {
1458 		case MMC_POWER_OFF:
1459 			omap_hsmmc_set_power(host, 0);
1460 			break;
1461 		case MMC_POWER_UP:
1462 			omap_hsmmc_set_power(host, 1);
1463 			break;
1464 		case MMC_POWER_ON:
1465 			do_send_init_stream = 1;
1466 			break;
1467 		}
1468 		host->power_mode = ios->power_mode;
1469 	}
1470 
1471 	/* FIXME: set registers based only on changes to ios */
1472 
1473 	omap_hsmmc_set_bus_width(host);
1474 
1475 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1476 		/* Only MMC1 can interface at 3V without some flavor
1477 		 * of external transceiver; but they all handle 1.8V.
1478 		 */
1479 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1480 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1481 				/*
1482 				 * The mmc_select_voltage fn of the core does
1483 				 * not seem to set the power_mode to
1484 				 * MMC_POWER_UP upon recalculating the voltage.
1485 				 * vdd 1.8v.
1486 				 */
1487 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1488 				dev_dbg(mmc_dev(host->mmc),
1489 						"Switch operation failed\n");
1490 		}
1491 	}
1492 
1493 	omap_hsmmc_set_clock(host);
1494 
1495 	if (do_send_init_stream)
1496 		send_init_stream(host);
1497 
1498 	omap_hsmmc_set_bus_mode(host);
1499 }
1500 
1501 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1502 {
1503 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1504 	u32 irq_mask, con;
1505 	unsigned long flags;
1506 
1507 	spin_lock_irqsave(&host->irq_lock, flags);
1508 
1509 	con = OMAP_HSMMC_READ(host->base, CON);
1510 	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1511 	if (enable) {
1512 		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1513 		irq_mask |= CIRQ_EN;
1514 		con |= CTPL | CLKEXTFREE;
1515 	} else {
1516 		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1517 		irq_mask &= ~CIRQ_EN;
1518 		con &= ~(CTPL | CLKEXTFREE);
1519 	}
1520 	OMAP_HSMMC_WRITE(host->base, CON, con);
1521 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1522 
1523 	/*
1524 	 * if enable, piggy back detection on current request
1525 	 * but always disable immediately
1526 	 */
1527 	if (!host->req_in_progress || !enable)
1528 		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1529 
1530 	/* flush posted write */
1531 	OMAP_HSMMC_READ(host->base, IE);
1532 
1533 	spin_unlock_irqrestore(&host->irq_lock, flags);
1534 }
1535 
1536 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1537 {
1538 	int ret;
1539 
1540 	/*
1541 	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1542 	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1543 	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1544 	 * with functional clock disabled.
1545 	 */
1546 	if (!host->dev->of_node || !host->wake_irq)
1547 		return -ENODEV;
1548 
1549 	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1550 	if (ret) {
1551 		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1552 		goto err;
1553 	}
1554 
1555 	/*
1556 	 * Some omaps don't have wake-up path from deeper idle states
1557 	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1558 	 */
1559 	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1560 		struct pinctrl *p = devm_pinctrl_get(host->dev);
1561 		if (IS_ERR(p)) {
1562 			ret = PTR_ERR(p);
1563 			goto err_free_irq;
1564 		}
1565 
1566 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1567 			dev_info(host->dev, "missing idle pinctrl state\n");
1568 			devm_pinctrl_put(p);
1569 			ret = -EINVAL;
1570 			goto err_free_irq;
1571 		}
1572 		devm_pinctrl_put(p);
1573 	}
1574 
1575 	OMAP_HSMMC_WRITE(host->base, HCTL,
1576 			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1577 	return 0;
1578 
1579 err_free_irq:
1580 	dev_pm_clear_wake_irq(host->dev);
1581 err:
1582 	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1583 	host->wake_irq = 0;
1584 	return ret;
1585 }
1586 
1587 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1588 {
1589 	u32 hctl, capa, value;
1590 
1591 	/* Only MMC1 supports 3.0V */
1592 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1593 		hctl = SDVS30;
1594 		capa = VS30 | VS18;
1595 	} else {
1596 		hctl = SDVS18;
1597 		capa = VS18;
1598 	}
1599 
1600 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1601 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1602 
1603 	value = OMAP_HSMMC_READ(host->base, CAPA);
1604 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1605 
1606 	/* Set SD bus power bit */
1607 	set_sd_bus_power(host);
1608 }
1609 
1610 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1611 				     unsigned int direction, int blk_size)
1612 {
1613 	/* This controller can't do multiblock reads due to hw bugs */
1614 	if (direction == MMC_DATA_READ)
1615 		return 1;
1616 
1617 	return blk_size;
1618 }
1619 
1620 static struct mmc_host_ops omap_hsmmc_ops = {
1621 	.post_req = omap_hsmmc_post_req,
1622 	.pre_req = omap_hsmmc_pre_req,
1623 	.request = omap_hsmmc_request,
1624 	.set_ios = omap_hsmmc_set_ios,
1625 	.get_cd = mmc_gpio_get_cd,
1626 	.get_ro = mmc_gpio_get_ro,
1627 	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1628 };
1629 
1630 #ifdef CONFIG_DEBUG_FS
1631 
1632 static int mmc_regs_show(struct seq_file *s, void *data)
1633 {
1634 	struct mmc_host *mmc = s->private;
1635 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1636 
1637 	seq_printf(s, "mmc%d:\n", mmc->index);
1638 	seq_printf(s, "sdio irq mode\t%s\n",
1639 		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1640 
1641 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1642 		seq_printf(s, "sdio irq \t%s\n",
1643 			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1644 			   : "disabled");
1645 	}
1646 	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1647 
1648 	pm_runtime_get_sync(host->dev);
1649 	seq_puts(s, "\nregs:\n");
1650 	seq_printf(s, "CON:\t\t0x%08x\n",
1651 			OMAP_HSMMC_READ(host->base, CON));
1652 	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1653 		   OMAP_HSMMC_READ(host->base, PSTATE));
1654 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1655 			OMAP_HSMMC_READ(host->base, HCTL));
1656 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1657 			OMAP_HSMMC_READ(host->base, SYSCTL));
1658 	seq_printf(s, "IE:\t\t0x%08x\n",
1659 			OMAP_HSMMC_READ(host->base, IE));
1660 	seq_printf(s, "ISE:\t\t0x%08x\n",
1661 			OMAP_HSMMC_READ(host->base, ISE));
1662 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1663 			OMAP_HSMMC_READ(host->base, CAPA));
1664 
1665 	pm_runtime_put_autosuspend(host->dev);
1666 
1667 	return 0;
1668 }
1669 
1670 DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1671 
1672 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1673 {
1674 	if (mmc->debugfs_root)
1675 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1676 			mmc, &mmc_regs_fops);
1677 }
1678 
1679 #else
1680 
1681 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1682 {
1683 }
1684 
1685 #endif
1686 
1687 #ifdef CONFIG_OF
1688 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1689 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1690 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1691 };
1692 
1693 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1694 	.reg_offset = 0x100,
1695 };
1696 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1697 	.reg_offset = 0x100,
1698 	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1699 };
1700 
1701 static const struct of_device_id omap_mmc_of_match[] = {
1702 	{
1703 		.compatible = "ti,omap2-hsmmc",
1704 	},
1705 	{
1706 		.compatible = "ti,omap3-pre-es3-hsmmc",
1707 		.data = &omap3_pre_es3_mmc_of_data,
1708 	},
1709 	{
1710 		.compatible = "ti,omap3-hsmmc",
1711 	},
1712 	{
1713 		.compatible = "ti,omap4-hsmmc",
1714 		.data = &omap4_mmc_of_data,
1715 	},
1716 	{
1717 		.compatible = "ti,am33xx-hsmmc",
1718 		.data = &am33xx_mmc_of_data,
1719 	},
1720 	{},
1721 };
1722 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1723 
1724 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1725 {
1726 	struct omap_hsmmc_platform_data *pdata, *legacy;
1727 	struct device_node *np = dev->of_node;
1728 
1729 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1730 	if (!pdata)
1731 		return ERR_PTR(-ENOMEM); /* out of memory */
1732 
1733 	legacy = dev_get_platdata(dev);
1734 	if (legacy && legacy->name)
1735 		pdata->name = legacy->name;
1736 
1737 	if (of_property_read_bool(np, "ti,dual-volt"))
1738 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1739 
1740 	if (of_property_read_bool(np, "ti,non-removable")) {
1741 		pdata->nonremovable = true;
1742 		pdata->no_regulator_off_init = true;
1743 	}
1744 
1745 	if (of_property_read_bool(np, "ti,needs-special-reset"))
1746 		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1747 
1748 	if (of_property_read_bool(np, "ti,needs-special-hs-handling"))
1749 		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1750 
1751 	return pdata;
1752 }
1753 #else
1754 static inline struct omap_hsmmc_platform_data
1755 			*of_get_hsmmc_pdata(struct device *dev)
1756 {
1757 	return ERR_PTR(-EINVAL);
1758 }
1759 #endif
1760 
1761 static int omap_hsmmc_probe(struct platform_device *pdev)
1762 {
1763 	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1764 	struct mmc_host *mmc;
1765 	struct omap_hsmmc_host *host = NULL;
1766 	struct resource *res;
1767 	int ret, irq;
1768 	const struct of_device_id *match;
1769 	const struct omap_mmc_of_data *data;
1770 	void __iomem *base;
1771 
1772 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1773 	if (match) {
1774 		pdata = of_get_hsmmc_pdata(&pdev->dev);
1775 
1776 		if (IS_ERR(pdata))
1777 			return PTR_ERR(pdata);
1778 
1779 		if (match->data) {
1780 			data = match->data;
1781 			pdata->reg_offset = data->reg_offset;
1782 			pdata->controller_flags |= data->controller_flags;
1783 		}
1784 	}
1785 
1786 	if (pdata == NULL) {
1787 		dev_err(&pdev->dev, "Platform Data is missing\n");
1788 		return -ENXIO;
1789 	}
1790 
1791 	irq = platform_get_irq(pdev, 0);
1792 	if (irq < 0)
1793 		return irq;
1794 
1795 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1796 	if (IS_ERR(base))
1797 		return PTR_ERR(base);
1798 
1799 	mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(*host));
1800 	if (!mmc)
1801 		return -ENOMEM;
1802 
1803 	ret = mmc_of_parse(mmc);
1804 	if (ret)
1805 		return ret;
1806 
1807 	host		= mmc_priv(mmc);
1808 	host->mmc	= mmc;
1809 	host->pdata	= pdata;
1810 	host->dev	= &pdev->dev;
1811 	host->use_dma	= 1;
1812 	host->dma_ch	= -1;
1813 	host->irq	= irq;
1814 	host->mapbase	= res->start + pdata->reg_offset;
1815 	host->base	= base + pdata->reg_offset;
1816 	host->power_mode = MMC_POWER_OFF;
1817 	host->next_data.cookie = 1;
1818 	host->pbias_enabled = false;
1819 	host->vqmmc_enabled = false;
1820 
1821 	platform_set_drvdata(pdev, host);
1822 
1823 	if (pdev->dev.of_node)
1824 		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1825 
1826 	mmc->ops	= &omap_hsmmc_ops;
1827 
1828 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1829 
1830 	if (pdata->max_freq > 0)
1831 		mmc->f_max = pdata->max_freq;
1832 	else if (mmc->f_max == 0)
1833 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1834 
1835 	spin_lock_init(&host->irq_lock);
1836 
1837 	host->fclk = devm_clk_get(&pdev->dev, "fck");
1838 	if (IS_ERR(host->fclk)) {
1839 		ret = PTR_ERR(host->fclk);
1840 		host->fclk = NULL;
1841 		return ret;
1842 	}
1843 
1844 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1845 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1846 		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1847 	}
1848 
1849 	device_init_wakeup(&pdev->dev, true);
1850 	pm_runtime_enable(host->dev);
1851 	pm_runtime_get_sync(host->dev);
1852 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1853 	pm_runtime_use_autosuspend(host->dev);
1854 
1855 	omap_hsmmc_context_save(host);
1856 
1857 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1858 	/*
1859 	 * MMC can still work without debounce clock.
1860 	 */
1861 	if (IS_ERR(host->dbclk)) {
1862 		host->dbclk = NULL;
1863 	} else if (clk_prepare_enable(host->dbclk) != 0) {
1864 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1865 		host->dbclk = NULL;
1866 	}
1867 
1868 	/* Set this to a value that allows allocating an entire descriptor
1869 	 * list within a page (zero order allocation). */
1870 	mmc->max_segs = 64;
1871 
1872 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1873 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1874 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1875 
1876 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1877 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1878 
1879 	mmc->caps |= mmc_pdata(host)->caps;
1880 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1881 		mmc->caps |= MMC_CAP_4_BIT_DATA;
1882 
1883 	if (mmc_pdata(host)->nonremovable)
1884 		mmc->caps |= MMC_CAP_NONREMOVABLE;
1885 
1886 	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1887 
1888 	omap_hsmmc_conf_bus_power(host);
1889 
1890 	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1891 	if (IS_ERR(host->rx_chan)) {
1892 		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1893 		ret = PTR_ERR(host->rx_chan);
1894 		goto err_irq;
1895 	}
1896 
1897 	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1898 	if (IS_ERR(host->tx_chan)) {
1899 		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1900 		ret = PTR_ERR(host->tx_chan);
1901 		goto err_irq;
1902 	}
1903 
1904 	/*
1905 	 * Limit the maximum segment size to the lower of the request size
1906 	 * and the DMA engine device segment size limits.  In reality, with
1907 	 * 32-bit transfers, the DMA engine can do longer segments than this
1908 	 * but there is no way to represent that in the DMA model - if we
1909 	 * increase this figure here, we get warnings from the DMA API debug.
1910 	 */
1911 	mmc->max_seg_size = min3(mmc->max_req_size,
1912 			dma_get_max_seg_size(host->rx_chan->device->dev),
1913 			dma_get_max_seg_size(host->tx_chan->device->dev));
1914 
1915 	/* Request IRQ for MMC operations */
1916 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1917 			mmc_hostname(mmc), host);
1918 	if (ret) {
1919 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1920 		goto err_irq;
1921 	}
1922 
1923 	ret = omap_hsmmc_reg_get(host);
1924 	if (ret)
1925 		goto err_irq;
1926 
1927 	if (!mmc->ocr_avail)
1928 		mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1929 
1930 	omap_hsmmc_disable_irq(host);
1931 
1932 	/*
1933 	 * For now, only support SDIO interrupt if we have a separate
1934 	 * wake-up interrupt configured from device tree. This is because
1935 	 * the wake-up interrupt is needed for idle state and some
1936 	 * platforms need special quirks. And we don't want to add new
1937 	 * legacy mux platform init code callbacks any longer as we
1938 	 * are moving to DT based booting anyways.
1939 	 */
1940 	ret = omap_hsmmc_configure_wake_irq(host);
1941 	if (!ret)
1942 		mmc->caps |= MMC_CAP_SDIO_IRQ;
1943 
1944 	ret = mmc_add_host(mmc);
1945 	if (ret)
1946 		goto err_irq;
1947 
1948 	if (mmc_pdata(host)->name != NULL) {
1949 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1950 		if (ret < 0)
1951 			goto err_slot_name;
1952 	}
1953 
1954 	omap_hsmmc_debugfs(mmc);
1955 	pm_runtime_put_autosuspend(host->dev);
1956 
1957 	return 0;
1958 
1959 err_slot_name:
1960 	mmc_remove_host(mmc);
1961 err_irq:
1962 	device_init_wakeup(&pdev->dev, false);
1963 	if (!IS_ERR_OR_NULL(host->tx_chan))
1964 		dma_release_channel(host->tx_chan);
1965 	if (!IS_ERR_OR_NULL(host->rx_chan))
1966 		dma_release_channel(host->rx_chan);
1967 	pm_runtime_dont_use_autosuspend(host->dev);
1968 	pm_runtime_put_sync(host->dev);
1969 	pm_runtime_disable(host->dev);
1970 	clk_disable_unprepare(host->dbclk);
1971 	return ret;
1972 }
1973 
1974 static void omap_hsmmc_remove(struct platform_device *pdev)
1975 {
1976 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1977 
1978 	pm_runtime_get_sync(host->dev);
1979 	mmc_remove_host(host->mmc);
1980 
1981 	dma_release_channel(host->tx_chan);
1982 	dma_release_channel(host->rx_chan);
1983 
1984 	dev_pm_clear_wake_irq(host->dev);
1985 	pm_runtime_dont_use_autosuspend(host->dev);
1986 	pm_runtime_put_sync(host->dev);
1987 	pm_runtime_disable(host->dev);
1988 	device_init_wakeup(&pdev->dev, false);
1989 	clk_disable_unprepare(host->dbclk);
1990 }
1991 
1992 static int omap_hsmmc_suspend(struct device *dev)
1993 {
1994 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
1995 
1996 	if (!host)
1997 		return 0;
1998 
1999 	pm_runtime_get_sync(host->dev);
2000 
2001 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2002 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2003 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2004 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2005 		OMAP_HSMMC_WRITE(host->base, HCTL,
2006 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2007 	}
2008 
2009 	clk_disable_unprepare(host->dbclk);
2010 
2011 	pm_runtime_put_sync(host->dev);
2012 	return 0;
2013 }
2014 
2015 /* Routine to resume the MMC device */
2016 static int omap_hsmmc_resume(struct device *dev)
2017 {
2018 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2019 
2020 	if (!host)
2021 		return 0;
2022 
2023 	pm_runtime_get_sync(host->dev);
2024 
2025 	clk_prepare_enable(host->dbclk);
2026 
2027 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2028 		omap_hsmmc_conf_bus_power(host);
2029 
2030 	pm_runtime_put_autosuspend(host->dev);
2031 	return 0;
2032 }
2033 
2034 static int omap_hsmmc_runtime_suspend(struct device *dev)
2035 {
2036 	struct omap_hsmmc_host *host;
2037 	unsigned long flags;
2038 	int ret = 0;
2039 
2040 	host = dev_get_drvdata(dev);
2041 	omap_hsmmc_context_save(host);
2042 	dev_dbg(dev, "disabled\n");
2043 
2044 	spin_lock_irqsave(&host->irq_lock, flags);
2045 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2046 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2047 		/* disable sdio irq handling to prevent race */
2048 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2049 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2050 
2051 		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2052 			/*
2053 			 * dat1 line low, pending sdio irq
2054 			 * race condition: possible irq handler running on
2055 			 * multi-core, abort
2056 			 */
2057 			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2058 			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2059 			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2060 			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2061 			pm_runtime_mark_last_busy(dev);
2062 			ret = -EBUSY;
2063 			goto abort;
2064 		}
2065 
2066 		pinctrl_pm_select_idle_state(dev);
2067 	} else {
2068 		pinctrl_pm_select_idle_state(dev);
2069 	}
2070 
2071 abort:
2072 	spin_unlock_irqrestore(&host->irq_lock, flags);
2073 	return ret;
2074 }
2075 
2076 static int omap_hsmmc_runtime_resume(struct device *dev)
2077 {
2078 	struct omap_hsmmc_host *host;
2079 	unsigned long flags;
2080 
2081 	host = dev_get_drvdata(dev);
2082 	omap_hsmmc_context_restore(host);
2083 	dev_dbg(dev, "enabled\n");
2084 
2085 	spin_lock_irqsave(&host->irq_lock, flags);
2086 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2087 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2088 
2089 		pinctrl_select_default_state(host->dev);
2090 
2091 		/* irq lost, if pinmux incorrect */
2092 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2093 		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2094 		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2095 	} else {
2096 		pinctrl_select_default_state(host->dev);
2097 	}
2098 	spin_unlock_irqrestore(&host->irq_lock, flags);
2099 	return 0;
2100 }
2101 
2102 static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2103 	SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2104 	RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
2105 };
2106 
2107 static struct platform_driver omap_hsmmc_driver = {
2108 	.probe		= omap_hsmmc_probe,
2109 	.remove		= omap_hsmmc_remove,
2110 	.driver		= {
2111 		.name = DRIVER_NAME,
2112 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2113 		.pm = pm_ptr(&omap_hsmmc_dev_pm_ops),
2114 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2115 	},
2116 };
2117 
2118 module_platform_driver(omap_hsmmc_driver);
2119 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2120 MODULE_LICENSE("GPL");
2121 MODULE_ALIAS("platform:" DRIVER_NAME);
2122 MODULE_AUTHOR("Texas Instruments Inc");
2123