1 /* 2 * drivers/mmc/host/omap_hsmmc.c 3 * 4 * Driver for OMAP2430/3430 MMC controller. 5 * 6 * Copyright (C) 2007 Texas Instruments. 7 * 8 * Authors: 9 * Syed Mohammed Khasim <x0khasim@ti.com> 10 * Madhusudhan <madhu.cr@ti.com> 11 * Mohit Jalori <mjalori@ti.com> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/debugfs.h> 22 #include <linux/dmaengine.h> 23 #include <linux/seq_file.h> 24 #include <linux/sizes.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/platform_device.h> 29 #include <linux/timer.h> 30 #include <linux/clk.h> 31 #include <linux/of.h> 32 #include <linux/of_irq.h> 33 #include <linux/of_gpio.h> 34 #include <linux/of_device.h> 35 #include <linux/omap-dmaengine.h> 36 #include <linux/mmc/host.h> 37 #include <linux/mmc/core.h> 38 #include <linux/mmc/mmc.h> 39 #include <linux/mmc/slot-gpio.h> 40 #include <linux/io.h> 41 #include <linux/irq.h> 42 #include <linux/gpio.h> 43 #include <linux/regulator/consumer.h> 44 #include <linux/pinctrl/consumer.h> 45 #include <linux/pm_runtime.h> 46 #include <linux/pm_wakeirq.h> 47 #include <linux/platform_data/hsmmc-omap.h> 48 49 /* OMAP HSMMC Host Controller Registers */ 50 #define OMAP_HSMMC_SYSSTATUS 0x0014 51 #define OMAP_HSMMC_CON 0x002C 52 #define OMAP_HSMMC_SDMASA 0x0100 53 #define OMAP_HSMMC_BLK 0x0104 54 #define OMAP_HSMMC_ARG 0x0108 55 #define OMAP_HSMMC_CMD 0x010C 56 #define OMAP_HSMMC_RSP10 0x0110 57 #define OMAP_HSMMC_RSP32 0x0114 58 #define OMAP_HSMMC_RSP54 0x0118 59 #define OMAP_HSMMC_RSP76 0x011C 60 #define OMAP_HSMMC_DATA 0x0120 61 #define OMAP_HSMMC_PSTATE 0x0124 62 #define OMAP_HSMMC_HCTL 0x0128 63 #define OMAP_HSMMC_SYSCTL 0x012C 64 #define OMAP_HSMMC_STAT 0x0130 65 #define OMAP_HSMMC_IE 0x0134 66 #define OMAP_HSMMC_ISE 0x0138 67 #define OMAP_HSMMC_AC12 0x013C 68 #define OMAP_HSMMC_CAPA 0x0140 69 70 #define VS18 (1 << 26) 71 #define VS30 (1 << 25) 72 #define HSS (1 << 21) 73 #define SDVS18 (0x5 << 9) 74 #define SDVS30 (0x6 << 9) 75 #define SDVS33 (0x7 << 9) 76 #define SDVS_MASK 0x00000E00 77 #define SDVSCLR 0xFFFFF1FF 78 #define SDVSDET 0x00000400 79 #define AUTOIDLE 0x1 80 #define SDBP (1 << 8) 81 #define DTO 0xe 82 #define ICE 0x1 83 #define ICS 0x2 84 #define CEN (1 << 2) 85 #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */ 86 #define CLKD_MASK 0x0000FFC0 87 #define CLKD_SHIFT 6 88 #define DTO_MASK 0x000F0000 89 #define DTO_SHIFT 16 90 #define INIT_STREAM (1 << 1) 91 #define ACEN_ACMD23 (2 << 2) 92 #define DP_SELECT (1 << 21) 93 #define DDIR (1 << 4) 94 #define DMAE 0x1 95 #define MSBS (1 << 5) 96 #define BCE (1 << 1) 97 #define FOUR_BIT (1 << 1) 98 #define HSPE (1 << 2) 99 #define IWE (1 << 24) 100 #define DDR (1 << 19) 101 #define CLKEXTFREE (1 << 16) 102 #define CTPL (1 << 11) 103 #define DW8 (1 << 5) 104 #define OD 0x1 105 #define STAT_CLEAR 0xFFFFFFFF 106 #define INIT_STREAM_CMD 0x00000000 107 #define DUAL_VOLT_OCR_BIT 7 108 #define SRC (1 << 25) 109 #define SRD (1 << 26) 110 #define SOFTRESET (1 << 1) 111 112 /* PSTATE */ 113 #define DLEV_DAT(x) (1 << (20 + (x))) 114 115 /* Interrupt masks for IE and ISE register */ 116 #define CC_EN (1 << 0) 117 #define TC_EN (1 << 1) 118 #define BWR_EN (1 << 4) 119 #define BRR_EN (1 << 5) 120 #define CIRQ_EN (1 << 8) 121 #define ERR_EN (1 << 15) 122 #define CTO_EN (1 << 16) 123 #define CCRC_EN (1 << 17) 124 #define CEB_EN (1 << 18) 125 #define CIE_EN (1 << 19) 126 #define DTO_EN (1 << 20) 127 #define DCRC_EN (1 << 21) 128 #define DEB_EN (1 << 22) 129 #define ACE_EN (1 << 24) 130 #define CERR_EN (1 << 28) 131 #define BADA_EN (1 << 29) 132 133 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\ 134 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \ 135 BRR_EN | BWR_EN | TC_EN | CC_EN) 136 137 #define CNI (1 << 7) 138 #define ACIE (1 << 4) 139 #define ACEB (1 << 3) 140 #define ACCE (1 << 2) 141 #define ACTO (1 << 1) 142 #define ACNE (1 << 0) 143 144 #define MMC_AUTOSUSPEND_DELAY 100 145 #define MMC_TIMEOUT_MS 20 /* 20 mSec */ 146 #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */ 147 #define OMAP_MMC_MIN_CLOCK 400000 148 #define OMAP_MMC_MAX_CLOCK 52000000 149 #define DRIVER_NAME "omap_hsmmc" 150 151 #define VDD_1V8 1800000 /* 180000 uV */ 152 #define VDD_3V0 3000000 /* 300000 uV */ 153 #define VDD_165_195 (ffs(MMC_VDD_165_195) - 1) 154 155 /* 156 * One controller can have multiple slots, like on some omap boards using 157 * omap.c controller driver. Luckily this is not currently done on any known 158 * omap_hsmmc.c device. 159 */ 160 #define mmc_pdata(host) host->pdata 161 162 /* 163 * MMC Host controller read/write API's 164 */ 165 #define OMAP_HSMMC_READ(base, reg) \ 166 __raw_readl((base) + OMAP_HSMMC_##reg) 167 168 #define OMAP_HSMMC_WRITE(base, reg, val) \ 169 __raw_writel((val), (base) + OMAP_HSMMC_##reg) 170 171 struct omap_hsmmc_next { 172 unsigned int dma_len; 173 s32 cookie; 174 }; 175 176 struct omap_hsmmc_host { 177 struct device *dev; 178 struct mmc_host *mmc; 179 struct mmc_request *mrq; 180 struct mmc_command *cmd; 181 struct mmc_data *data; 182 struct clk *fclk; 183 struct clk *dbclk; 184 /* 185 * vcc == configured supply 186 * vcc_aux == optional 187 * - MMC1, supply for DAT4..DAT7 188 * - MMC2/MMC2, external level shifter voltage supply, for 189 * chip (SDIO, eMMC, etc) or transceiver (MMC2 only) 190 */ 191 struct regulator *vcc; 192 struct regulator *vcc_aux; 193 struct regulator *pbias; 194 bool pbias_enabled; 195 void __iomem *base; 196 resource_size_t mapbase; 197 spinlock_t irq_lock; /* Prevent races with irq handler */ 198 unsigned int dma_len; 199 unsigned int dma_sg_idx; 200 unsigned char bus_mode; 201 unsigned char power_mode; 202 int suspended; 203 u32 con; 204 u32 hctl; 205 u32 sysctl; 206 u32 capa; 207 int irq; 208 int wake_irq; 209 int use_dma, dma_ch; 210 struct dma_chan *tx_chan; 211 struct dma_chan *rx_chan; 212 int response_busy; 213 int context_loss; 214 int protect_card; 215 int reqs_blocked; 216 int use_reg; 217 int req_in_progress; 218 unsigned long clk_rate; 219 unsigned int flags; 220 #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */ 221 #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */ 222 struct omap_hsmmc_next next_data; 223 struct omap_hsmmc_platform_data *pdata; 224 225 /* return MMC cover switch state, can be NULL if not supported. 226 * 227 * possible return values: 228 * 0 - closed 229 * 1 - open 230 */ 231 int (*get_cover_state)(struct device *dev); 232 233 int (*card_detect)(struct device *dev); 234 }; 235 236 struct omap_mmc_of_data { 237 u32 reg_offset; 238 u8 controller_flags; 239 }; 240 241 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host); 242 243 static int omap_hsmmc_card_detect(struct device *dev) 244 { 245 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 246 247 return mmc_gpio_get_cd(host->mmc); 248 } 249 250 static int omap_hsmmc_get_cover_state(struct device *dev) 251 { 252 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 253 254 return mmc_gpio_get_cd(host->mmc); 255 } 256 257 #ifdef CONFIG_REGULATOR 258 259 static int omap_hsmmc_set_power(struct device *dev, int power_on, int vdd) 260 { 261 struct omap_hsmmc_host *host = 262 platform_get_drvdata(to_platform_device(dev)); 263 int ret = 0; 264 265 /* 266 * If we don't see a Vcc regulator, assume it's a fixed 267 * voltage always-on regulator. 268 */ 269 if (!host->vcc) 270 return 0; 271 272 if (mmc_pdata(host)->before_set_reg) 273 mmc_pdata(host)->before_set_reg(dev, power_on, vdd); 274 275 if (host->pbias) { 276 if (host->pbias_enabled == 1) { 277 ret = regulator_disable(host->pbias); 278 if (!ret) 279 host->pbias_enabled = 0; 280 } 281 regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0); 282 } 283 284 /* 285 * Assume Vcc regulator is used only to power the card ... OMAP 286 * VDDS is used to power the pins, optionally with a transceiver to 287 * support cards using voltages other than VDDS (1.8V nominal). When a 288 * transceiver is used, DAT3..7 are muxed as transceiver control pins. 289 * 290 * In some cases this regulator won't support enable/disable; 291 * e.g. it's a fixed rail for a WLAN chip. 292 * 293 * In other cases vcc_aux switches interface power. Example, for 294 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO 295 * chips/cards need an interface voltage rail too. 296 */ 297 if (power_on) { 298 if (host->vcc) 299 ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd); 300 /* Enable interface voltage rail, if needed */ 301 if (ret == 0 && host->vcc_aux) { 302 ret = regulator_enable(host->vcc_aux); 303 if (ret < 0 && host->vcc) 304 ret = mmc_regulator_set_ocr(host->mmc, 305 host->vcc, 0); 306 } 307 } else { 308 /* Shut down the rail */ 309 if (host->vcc_aux) 310 ret = regulator_disable(host->vcc_aux); 311 if (host->vcc) { 312 /* Then proceed to shut down the local regulator */ 313 ret = mmc_regulator_set_ocr(host->mmc, 314 host->vcc, 0); 315 } 316 } 317 318 if (host->pbias) { 319 if (vdd <= VDD_165_195) 320 ret = regulator_set_voltage(host->pbias, VDD_1V8, 321 VDD_1V8); 322 else 323 ret = regulator_set_voltage(host->pbias, VDD_3V0, 324 VDD_3V0); 325 if (ret < 0) 326 goto error_set_power; 327 328 if (host->pbias_enabled == 0) { 329 ret = regulator_enable(host->pbias); 330 if (!ret) 331 host->pbias_enabled = 1; 332 } 333 } 334 335 if (mmc_pdata(host)->after_set_reg) 336 mmc_pdata(host)->after_set_reg(dev, power_on, vdd); 337 338 error_set_power: 339 return ret; 340 } 341 342 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host) 343 { 344 struct regulator *reg; 345 int ocr_value = 0; 346 347 reg = devm_regulator_get(host->dev, "vmmc"); 348 if (IS_ERR(reg)) { 349 dev_err(host->dev, "unable to get vmmc regulator %ld\n", 350 PTR_ERR(reg)); 351 return PTR_ERR(reg); 352 } else { 353 host->vcc = reg; 354 ocr_value = mmc_regulator_get_ocrmask(reg); 355 if (!mmc_pdata(host)->ocr_mask) { 356 mmc_pdata(host)->ocr_mask = ocr_value; 357 } else { 358 if (!(mmc_pdata(host)->ocr_mask & ocr_value)) { 359 dev_err(host->dev, "ocrmask %x is not supported\n", 360 mmc_pdata(host)->ocr_mask); 361 mmc_pdata(host)->ocr_mask = 0; 362 return -EINVAL; 363 } 364 } 365 } 366 mmc_pdata(host)->set_power = omap_hsmmc_set_power; 367 368 /* Allow an aux regulator */ 369 reg = devm_regulator_get_optional(host->dev, "vmmc_aux"); 370 host->vcc_aux = IS_ERR(reg) ? NULL : reg; 371 372 reg = devm_regulator_get_optional(host->dev, "pbias"); 373 host->pbias = IS_ERR(reg) ? NULL : reg; 374 375 /* For eMMC do not power off when not in sleep state */ 376 if (mmc_pdata(host)->no_regulator_off_init) 377 return 0; 378 /* 379 * To disable boot_on regulator, enable regulator 380 * to increase usecount and then disable it. 381 */ 382 if ((host->vcc && regulator_is_enabled(host->vcc) > 0) || 383 (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) { 384 int vdd = ffs(mmc_pdata(host)->ocr_mask) - 1; 385 386 mmc_pdata(host)->set_power(host->dev, 1, vdd); 387 mmc_pdata(host)->set_power(host->dev, 0, 0); 388 } 389 390 return 0; 391 } 392 393 static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host) 394 { 395 mmc_pdata(host)->set_power = NULL; 396 } 397 398 static inline int omap_hsmmc_have_reg(void) 399 { 400 return 1; 401 } 402 403 #else 404 405 static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host) 406 { 407 return -EINVAL; 408 } 409 410 static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host) 411 { 412 } 413 414 static inline int omap_hsmmc_have_reg(void) 415 { 416 return 0; 417 } 418 419 #endif 420 421 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id); 422 423 static int omap_hsmmc_gpio_init(struct mmc_host *mmc, 424 struct omap_hsmmc_host *host, 425 struct omap_hsmmc_platform_data *pdata) 426 { 427 int ret; 428 429 if (gpio_is_valid(pdata->gpio_cod)) { 430 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0); 431 if (ret) 432 return ret; 433 434 host->get_cover_state = omap_hsmmc_get_cover_state; 435 mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq); 436 } else if (gpio_is_valid(pdata->gpio_cd)) { 437 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0); 438 if (ret) 439 return ret; 440 441 host->card_detect = omap_hsmmc_card_detect; 442 } 443 444 if (gpio_is_valid(pdata->gpio_wp)) { 445 ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp); 446 if (ret) 447 return ret; 448 } 449 450 return 0; 451 } 452 453 /* 454 * Start clock to the card 455 */ 456 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host) 457 { 458 OMAP_HSMMC_WRITE(host->base, SYSCTL, 459 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN); 460 } 461 462 /* 463 * Stop clock to the card 464 */ 465 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host) 466 { 467 OMAP_HSMMC_WRITE(host->base, SYSCTL, 468 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN); 469 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0) 470 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n"); 471 } 472 473 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host, 474 struct mmc_command *cmd) 475 { 476 u32 irq_mask = INT_EN_MASK; 477 unsigned long flags; 478 479 if (host->use_dma) 480 irq_mask &= ~(BRR_EN | BWR_EN); 481 482 /* Disable timeout for erases */ 483 if (cmd->opcode == MMC_ERASE) 484 irq_mask &= ~DTO_EN; 485 486 spin_lock_irqsave(&host->irq_lock, flags); 487 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 488 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 489 490 /* latch pending CIRQ, but don't signal MMC core */ 491 if (host->flags & HSMMC_SDIO_IRQ_ENABLED) 492 irq_mask |= CIRQ_EN; 493 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 494 spin_unlock_irqrestore(&host->irq_lock, flags); 495 } 496 497 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host) 498 { 499 u32 irq_mask = 0; 500 unsigned long flags; 501 502 spin_lock_irqsave(&host->irq_lock, flags); 503 /* no transfer running but need to keep cirq if enabled */ 504 if (host->flags & HSMMC_SDIO_IRQ_ENABLED) 505 irq_mask |= CIRQ_EN; 506 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 507 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 508 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 509 spin_unlock_irqrestore(&host->irq_lock, flags); 510 } 511 512 /* Calculate divisor for the given clock frequency */ 513 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios) 514 { 515 u16 dsor = 0; 516 517 if (ios->clock) { 518 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock); 519 if (dsor > CLKD_MAX) 520 dsor = CLKD_MAX; 521 } 522 523 return dsor; 524 } 525 526 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host) 527 { 528 struct mmc_ios *ios = &host->mmc->ios; 529 unsigned long regval; 530 unsigned long timeout; 531 unsigned long clkdiv; 532 533 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock); 534 535 omap_hsmmc_stop_clock(host); 536 537 regval = OMAP_HSMMC_READ(host->base, SYSCTL); 538 regval = regval & ~(CLKD_MASK | DTO_MASK); 539 clkdiv = calc_divisor(host, ios); 540 regval = regval | (clkdiv << 6) | (DTO << 16); 541 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval); 542 OMAP_HSMMC_WRITE(host->base, SYSCTL, 543 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE); 544 545 /* Wait till the ICS bit is set */ 546 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 547 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS 548 && time_before(jiffies, timeout)) 549 cpu_relax(); 550 551 /* 552 * Enable High-Speed Support 553 * Pre-Requisites 554 * - Controller should support High-Speed-Enable Bit 555 * - Controller should not be using DDR Mode 556 * - Controller should advertise that it supports High Speed 557 * in capabilities register 558 * - MMC/SD clock coming out of controller > 25MHz 559 */ 560 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) && 561 (ios->timing != MMC_TIMING_MMC_DDR52) && 562 (ios->timing != MMC_TIMING_UHS_DDR50) && 563 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) { 564 regval = OMAP_HSMMC_READ(host->base, HCTL); 565 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000) 566 regval |= HSPE; 567 else 568 regval &= ~HSPE; 569 570 OMAP_HSMMC_WRITE(host->base, HCTL, regval); 571 } 572 573 omap_hsmmc_start_clock(host); 574 } 575 576 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host) 577 { 578 struct mmc_ios *ios = &host->mmc->ios; 579 u32 con; 580 581 con = OMAP_HSMMC_READ(host->base, CON); 582 if (ios->timing == MMC_TIMING_MMC_DDR52 || 583 ios->timing == MMC_TIMING_UHS_DDR50) 584 con |= DDR; /* configure in DDR mode */ 585 else 586 con &= ~DDR; 587 switch (ios->bus_width) { 588 case MMC_BUS_WIDTH_8: 589 OMAP_HSMMC_WRITE(host->base, CON, con | DW8); 590 break; 591 case MMC_BUS_WIDTH_4: 592 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); 593 OMAP_HSMMC_WRITE(host->base, HCTL, 594 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT); 595 break; 596 case MMC_BUS_WIDTH_1: 597 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); 598 OMAP_HSMMC_WRITE(host->base, HCTL, 599 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT); 600 break; 601 } 602 } 603 604 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host) 605 { 606 struct mmc_ios *ios = &host->mmc->ios; 607 u32 con; 608 609 con = OMAP_HSMMC_READ(host->base, CON); 610 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 611 OMAP_HSMMC_WRITE(host->base, CON, con | OD); 612 else 613 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD); 614 } 615 616 #ifdef CONFIG_PM 617 618 /* 619 * Restore the MMC host context, if it was lost as result of a 620 * power state change. 621 */ 622 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host) 623 { 624 struct mmc_ios *ios = &host->mmc->ios; 625 u32 hctl, capa; 626 unsigned long timeout; 627 628 if (host->con == OMAP_HSMMC_READ(host->base, CON) && 629 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) && 630 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) && 631 host->capa == OMAP_HSMMC_READ(host->base, CAPA)) 632 return 0; 633 634 host->context_loss++; 635 636 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 637 if (host->power_mode != MMC_POWER_OFF && 638 (1 << ios->vdd) <= MMC_VDD_23_24) 639 hctl = SDVS18; 640 else 641 hctl = SDVS30; 642 capa = VS30 | VS18; 643 } else { 644 hctl = SDVS18; 645 capa = VS18; 646 } 647 648 if (host->mmc->caps & MMC_CAP_SDIO_IRQ) 649 hctl |= IWE; 650 651 OMAP_HSMMC_WRITE(host->base, HCTL, 652 OMAP_HSMMC_READ(host->base, HCTL) | hctl); 653 654 OMAP_HSMMC_WRITE(host->base, CAPA, 655 OMAP_HSMMC_READ(host->base, CAPA) | capa); 656 657 OMAP_HSMMC_WRITE(host->base, HCTL, 658 OMAP_HSMMC_READ(host->base, HCTL) | SDBP); 659 660 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 661 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP 662 && time_before(jiffies, timeout)) 663 ; 664 665 OMAP_HSMMC_WRITE(host->base, ISE, 0); 666 OMAP_HSMMC_WRITE(host->base, IE, 0); 667 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 668 669 /* Do not initialize card-specific things if the power is off */ 670 if (host->power_mode == MMC_POWER_OFF) 671 goto out; 672 673 omap_hsmmc_set_bus_width(host); 674 675 omap_hsmmc_set_clock(host); 676 677 omap_hsmmc_set_bus_mode(host); 678 679 out: 680 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n", 681 host->context_loss); 682 return 0; 683 } 684 685 /* 686 * Save the MMC host context (store the number of power state changes so far). 687 */ 688 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host) 689 { 690 host->con = OMAP_HSMMC_READ(host->base, CON); 691 host->hctl = OMAP_HSMMC_READ(host->base, HCTL); 692 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL); 693 host->capa = OMAP_HSMMC_READ(host->base, CAPA); 694 } 695 696 #else 697 698 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host) 699 { 700 return 0; 701 } 702 703 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host) 704 { 705 } 706 707 #endif 708 709 /* 710 * Send init stream sequence to card 711 * before sending IDLE command 712 */ 713 static void send_init_stream(struct omap_hsmmc_host *host) 714 { 715 int reg = 0; 716 unsigned long timeout; 717 718 if (host->protect_card) 719 return; 720 721 disable_irq(host->irq); 722 723 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK); 724 OMAP_HSMMC_WRITE(host->base, CON, 725 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM); 726 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD); 727 728 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 729 while ((reg != CC_EN) && time_before(jiffies, timeout)) 730 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN; 731 732 OMAP_HSMMC_WRITE(host->base, CON, 733 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM); 734 735 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 736 OMAP_HSMMC_READ(host->base, STAT); 737 738 enable_irq(host->irq); 739 } 740 741 static inline 742 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host) 743 { 744 int r = 1; 745 746 if (host->get_cover_state) 747 r = host->get_cover_state(host->dev); 748 return r; 749 } 750 751 static ssize_t 752 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr, 753 char *buf) 754 { 755 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); 756 struct omap_hsmmc_host *host = mmc_priv(mmc); 757 758 return sprintf(buf, "%s\n", 759 omap_hsmmc_cover_is_closed(host) ? "closed" : "open"); 760 } 761 762 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL); 763 764 static ssize_t 765 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr, 766 char *buf) 767 { 768 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); 769 struct omap_hsmmc_host *host = mmc_priv(mmc); 770 771 return sprintf(buf, "%s\n", mmc_pdata(host)->name); 772 } 773 774 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL); 775 776 /* 777 * Configure the response type and send the cmd. 778 */ 779 static void 780 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd, 781 struct mmc_data *data) 782 { 783 int cmdreg = 0, resptype = 0, cmdtype = 0; 784 785 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n", 786 mmc_hostname(host->mmc), cmd->opcode, cmd->arg); 787 host->cmd = cmd; 788 789 omap_hsmmc_enable_irq(host, cmd); 790 791 host->response_busy = 0; 792 if (cmd->flags & MMC_RSP_PRESENT) { 793 if (cmd->flags & MMC_RSP_136) 794 resptype = 1; 795 else if (cmd->flags & MMC_RSP_BUSY) { 796 resptype = 3; 797 host->response_busy = 1; 798 } else 799 resptype = 2; 800 } 801 802 /* 803 * Unlike OMAP1 controller, the cmdtype does not seem to be based on 804 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need 805 * a val of 0x3, rest 0x0. 806 */ 807 if (cmd == host->mrq->stop) 808 cmdtype = 0x3; 809 810 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22); 811 812 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) && 813 host->mrq->sbc) { 814 cmdreg |= ACEN_ACMD23; 815 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg); 816 } 817 if (data) { 818 cmdreg |= DP_SELECT | MSBS | BCE; 819 if (data->flags & MMC_DATA_READ) 820 cmdreg |= DDIR; 821 else 822 cmdreg &= ~(DDIR); 823 } 824 825 if (host->use_dma) 826 cmdreg |= DMAE; 827 828 host->req_in_progress = 1; 829 830 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg); 831 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg); 832 } 833 834 static int 835 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data) 836 { 837 if (data->flags & MMC_DATA_WRITE) 838 return DMA_TO_DEVICE; 839 else 840 return DMA_FROM_DEVICE; 841 } 842 843 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host, 844 struct mmc_data *data) 845 { 846 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan; 847 } 848 849 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq) 850 { 851 int dma_ch; 852 unsigned long flags; 853 854 spin_lock_irqsave(&host->irq_lock, flags); 855 host->req_in_progress = 0; 856 dma_ch = host->dma_ch; 857 spin_unlock_irqrestore(&host->irq_lock, flags); 858 859 omap_hsmmc_disable_irq(host); 860 /* Do not complete the request if DMA is still in progress */ 861 if (mrq->data && host->use_dma && dma_ch != -1) 862 return; 863 host->mrq = NULL; 864 mmc_request_done(host->mmc, mrq); 865 pm_runtime_mark_last_busy(host->dev); 866 pm_runtime_put_autosuspend(host->dev); 867 } 868 869 /* 870 * Notify the transfer complete to MMC core 871 */ 872 static void 873 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data) 874 { 875 if (!data) { 876 struct mmc_request *mrq = host->mrq; 877 878 /* TC before CC from CMD6 - don't know why, but it happens */ 879 if (host->cmd && host->cmd->opcode == 6 && 880 host->response_busy) { 881 host->response_busy = 0; 882 return; 883 } 884 885 omap_hsmmc_request_done(host, mrq); 886 return; 887 } 888 889 host->data = NULL; 890 891 if (!data->error) 892 data->bytes_xfered += data->blocks * (data->blksz); 893 else 894 data->bytes_xfered = 0; 895 896 if (data->stop && (data->error || !host->mrq->sbc)) 897 omap_hsmmc_start_command(host, data->stop, NULL); 898 else 899 omap_hsmmc_request_done(host, data->mrq); 900 } 901 902 /* 903 * Notify the core about command completion 904 */ 905 static void 906 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd) 907 { 908 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) && 909 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) { 910 host->cmd = NULL; 911 omap_hsmmc_start_dma_transfer(host); 912 omap_hsmmc_start_command(host, host->mrq->cmd, 913 host->mrq->data); 914 return; 915 } 916 917 host->cmd = NULL; 918 919 if (cmd->flags & MMC_RSP_PRESENT) { 920 if (cmd->flags & MMC_RSP_136) { 921 /* response type 2 */ 922 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10); 923 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32); 924 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54); 925 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76); 926 } else { 927 /* response types 1, 1b, 3, 4, 5, 6 */ 928 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10); 929 } 930 } 931 if ((host->data == NULL && !host->response_busy) || cmd->error) 932 omap_hsmmc_request_done(host, host->mrq); 933 } 934 935 /* 936 * DMA clean up for command errors 937 */ 938 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno) 939 { 940 int dma_ch; 941 unsigned long flags; 942 943 host->data->error = errno; 944 945 spin_lock_irqsave(&host->irq_lock, flags); 946 dma_ch = host->dma_ch; 947 host->dma_ch = -1; 948 spin_unlock_irqrestore(&host->irq_lock, flags); 949 950 if (host->use_dma && dma_ch != -1) { 951 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data); 952 953 dmaengine_terminate_all(chan); 954 dma_unmap_sg(chan->device->dev, 955 host->data->sg, host->data->sg_len, 956 omap_hsmmc_get_dma_dir(host, host->data)); 957 958 host->data->host_cookie = 0; 959 } 960 host->data = NULL; 961 } 962 963 /* 964 * Readable error output 965 */ 966 #ifdef CONFIG_MMC_DEBUG 967 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status) 968 { 969 /* --- means reserved bit without definition at documentation */ 970 static const char *omap_hsmmc_status_bits[] = { 971 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" , 972 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI", 973 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" , 974 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---" 975 }; 976 char res[256]; 977 char *buf = res; 978 int len, i; 979 980 len = sprintf(buf, "MMC IRQ 0x%x :", status); 981 buf += len; 982 983 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++) 984 if (status & (1 << i)) { 985 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]); 986 buf += len; 987 } 988 989 dev_vdbg(mmc_dev(host->mmc), "%s\n", res); 990 } 991 #else 992 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, 993 u32 status) 994 { 995 } 996 #endif /* CONFIG_MMC_DEBUG */ 997 998 /* 999 * MMC controller internal state machines reset 1000 * 1001 * Used to reset command or data internal state machines, using respectively 1002 * SRC or SRD bit of SYSCTL register 1003 * Can be called from interrupt context 1004 */ 1005 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host, 1006 unsigned long bit) 1007 { 1008 unsigned long i = 0; 1009 unsigned long limit = MMC_TIMEOUT_US; 1010 1011 OMAP_HSMMC_WRITE(host->base, SYSCTL, 1012 OMAP_HSMMC_READ(host->base, SYSCTL) | bit); 1013 1014 /* 1015 * OMAP4 ES2 and greater has an updated reset logic. 1016 * Monitor a 0->1 transition first 1017 */ 1018 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) { 1019 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit)) 1020 && (i++ < limit)) 1021 udelay(1); 1022 } 1023 i = 0; 1024 1025 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) && 1026 (i++ < limit)) 1027 udelay(1); 1028 1029 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit) 1030 dev_err(mmc_dev(host->mmc), 1031 "Timeout waiting on controller reset in %s\n", 1032 __func__); 1033 } 1034 1035 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host, 1036 int err, int end_cmd) 1037 { 1038 if (end_cmd) { 1039 omap_hsmmc_reset_controller_fsm(host, SRC); 1040 if (host->cmd) 1041 host->cmd->error = err; 1042 } 1043 1044 if (host->data) { 1045 omap_hsmmc_reset_controller_fsm(host, SRD); 1046 omap_hsmmc_dma_cleanup(host, err); 1047 } else if (host->mrq && host->mrq->cmd) 1048 host->mrq->cmd->error = err; 1049 } 1050 1051 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status) 1052 { 1053 struct mmc_data *data; 1054 int end_cmd = 0, end_trans = 0; 1055 int error = 0; 1056 1057 data = host->data; 1058 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status); 1059 1060 if (status & ERR_EN) { 1061 omap_hsmmc_dbg_report_irq(host, status); 1062 1063 if (status & (CTO_EN | CCRC_EN)) 1064 end_cmd = 1; 1065 if (status & (CTO_EN | DTO_EN)) 1066 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd); 1067 else if (status & (CCRC_EN | DCRC_EN)) 1068 hsmmc_command_incomplete(host, -EILSEQ, end_cmd); 1069 1070 if (status & ACE_EN) { 1071 u32 ac12; 1072 ac12 = OMAP_HSMMC_READ(host->base, AC12); 1073 if (!(ac12 & ACNE) && host->mrq->sbc) { 1074 end_cmd = 1; 1075 if (ac12 & ACTO) 1076 error = -ETIMEDOUT; 1077 else if (ac12 & (ACCE | ACEB | ACIE)) 1078 error = -EILSEQ; 1079 host->mrq->sbc->error = error; 1080 hsmmc_command_incomplete(host, error, end_cmd); 1081 } 1082 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12); 1083 } 1084 if (host->data || host->response_busy) { 1085 end_trans = !end_cmd; 1086 host->response_busy = 0; 1087 } 1088 } 1089 1090 OMAP_HSMMC_WRITE(host->base, STAT, status); 1091 if (end_cmd || ((status & CC_EN) && host->cmd)) 1092 omap_hsmmc_cmd_done(host, host->cmd); 1093 if ((end_trans || (status & TC_EN)) && host->mrq) 1094 omap_hsmmc_xfer_done(host, data); 1095 } 1096 1097 /* 1098 * MMC controller IRQ handler 1099 */ 1100 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id) 1101 { 1102 struct omap_hsmmc_host *host = dev_id; 1103 int status; 1104 1105 status = OMAP_HSMMC_READ(host->base, STAT); 1106 while (status & (INT_EN_MASK | CIRQ_EN)) { 1107 if (host->req_in_progress) 1108 omap_hsmmc_do_irq(host, status); 1109 1110 if (status & CIRQ_EN) 1111 mmc_signal_sdio_irq(host->mmc); 1112 1113 /* Flush posted write */ 1114 status = OMAP_HSMMC_READ(host->base, STAT); 1115 } 1116 1117 return IRQ_HANDLED; 1118 } 1119 1120 static void set_sd_bus_power(struct omap_hsmmc_host *host) 1121 { 1122 unsigned long i; 1123 1124 OMAP_HSMMC_WRITE(host->base, HCTL, 1125 OMAP_HSMMC_READ(host->base, HCTL) | SDBP); 1126 for (i = 0; i < loops_per_jiffy; i++) { 1127 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP) 1128 break; 1129 cpu_relax(); 1130 } 1131 } 1132 1133 /* 1134 * Switch MMC interface voltage ... only relevant for MMC1. 1135 * 1136 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver. 1137 * The MMC2 transceiver controls are used instead of DAT4..DAT7. 1138 * Some chips, like eMMC ones, use internal transceivers. 1139 */ 1140 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd) 1141 { 1142 u32 reg_val = 0; 1143 int ret; 1144 1145 /* Disable the clocks */ 1146 pm_runtime_put_sync(host->dev); 1147 if (host->dbclk) 1148 clk_disable_unprepare(host->dbclk); 1149 1150 /* Turn the power off */ 1151 ret = mmc_pdata(host)->set_power(host->dev, 0, 0); 1152 1153 /* Turn the power ON with given VDD 1.8 or 3.0v */ 1154 if (!ret) 1155 ret = mmc_pdata(host)->set_power(host->dev, 1, vdd); 1156 pm_runtime_get_sync(host->dev); 1157 if (host->dbclk) 1158 clk_prepare_enable(host->dbclk); 1159 1160 if (ret != 0) 1161 goto err; 1162 1163 OMAP_HSMMC_WRITE(host->base, HCTL, 1164 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR); 1165 reg_val = OMAP_HSMMC_READ(host->base, HCTL); 1166 1167 /* 1168 * If a MMC dual voltage card is detected, the set_ios fn calls 1169 * this fn with VDD bit set for 1.8V. Upon card removal from the 1170 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF. 1171 * 1172 * Cope with a bit of slop in the range ... per data sheets: 1173 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max, 1174 * but recommended values are 1.71V to 1.89V 1175 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max, 1176 * but recommended values are 2.7V to 3.3V 1177 * 1178 * Board setup code shouldn't permit anything very out-of-range. 1179 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the 1180 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V. 1181 */ 1182 if ((1 << vdd) <= MMC_VDD_23_24) 1183 reg_val |= SDVS18; 1184 else 1185 reg_val |= SDVS30; 1186 1187 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val); 1188 set_sd_bus_power(host); 1189 1190 return 0; 1191 err: 1192 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n"); 1193 return ret; 1194 } 1195 1196 /* Protect the card while the cover is open */ 1197 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host) 1198 { 1199 if (!host->get_cover_state) 1200 return; 1201 1202 host->reqs_blocked = 0; 1203 if (host->get_cover_state(host->dev)) { 1204 if (host->protect_card) { 1205 dev_info(host->dev, "%s: cover is closed, " 1206 "card is now accessible\n", 1207 mmc_hostname(host->mmc)); 1208 host->protect_card = 0; 1209 } 1210 } else { 1211 if (!host->protect_card) { 1212 dev_info(host->dev, "%s: cover is open, " 1213 "card is now inaccessible\n", 1214 mmc_hostname(host->mmc)); 1215 host->protect_card = 1; 1216 } 1217 } 1218 } 1219 1220 /* 1221 * irq handler when (cell-phone) cover is mounted/removed 1222 */ 1223 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id) 1224 { 1225 struct omap_hsmmc_host *host = dev_id; 1226 1227 sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch"); 1228 1229 omap_hsmmc_protect_card(host); 1230 mmc_detect_change(host->mmc, (HZ * 200) / 1000); 1231 return IRQ_HANDLED; 1232 } 1233 1234 static void omap_hsmmc_dma_callback(void *param) 1235 { 1236 struct omap_hsmmc_host *host = param; 1237 struct dma_chan *chan; 1238 struct mmc_data *data; 1239 int req_in_progress; 1240 1241 spin_lock_irq(&host->irq_lock); 1242 if (host->dma_ch < 0) { 1243 spin_unlock_irq(&host->irq_lock); 1244 return; 1245 } 1246 1247 data = host->mrq->data; 1248 chan = omap_hsmmc_get_dma_chan(host, data); 1249 if (!data->host_cookie) 1250 dma_unmap_sg(chan->device->dev, 1251 data->sg, data->sg_len, 1252 omap_hsmmc_get_dma_dir(host, data)); 1253 1254 req_in_progress = host->req_in_progress; 1255 host->dma_ch = -1; 1256 spin_unlock_irq(&host->irq_lock); 1257 1258 /* If DMA has finished after TC, complete the request */ 1259 if (!req_in_progress) { 1260 struct mmc_request *mrq = host->mrq; 1261 1262 host->mrq = NULL; 1263 mmc_request_done(host->mmc, mrq); 1264 pm_runtime_mark_last_busy(host->dev); 1265 pm_runtime_put_autosuspend(host->dev); 1266 } 1267 } 1268 1269 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host, 1270 struct mmc_data *data, 1271 struct omap_hsmmc_next *next, 1272 struct dma_chan *chan) 1273 { 1274 int dma_len; 1275 1276 if (!next && data->host_cookie && 1277 data->host_cookie != host->next_data.cookie) { 1278 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d" 1279 " host->next_data.cookie %d\n", 1280 __func__, data->host_cookie, host->next_data.cookie); 1281 data->host_cookie = 0; 1282 } 1283 1284 /* Check if next job is already prepared */ 1285 if (next || data->host_cookie != host->next_data.cookie) { 1286 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len, 1287 omap_hsmmc_get_dma_dir(host, data)); 1288 1289 } else { 1290 dma_len = host->next_data.dma_len; 1291 host->next_data.dma_len = 0; 1292 } 1293 1294 1295 if (dma_len == 0) 1296 return -EINVAL; 1297 1298 if (next) { 1299 next->dma_len = dma_len; 1300 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie; 1301 } else 1302 host->dma_len = dma_len; 1303 1304 return 0; 1305 } 1306 1307 /* 1308 * Routine to configure and start DMA for the MMC card 1309 */ 1310 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host, 1311 struct mmc_request *req) 1312 { 1313 struct dma_slave_config cfg; 1314 struct dma_async_tx_descriptor *tx; 1315 int ret = 0, i; 1316 struct mmc_data *data = req->data; 1317 struct dma_chan *chan; 1318 1319 /* Sanity check: all the SG entries must be aligned by block size. */ 1320 for (i = 0; i < data->sg_len; i++) { 1321 struct scatterlist *sgl; 1322 1323 sgl = data->sg + i; 1324 if (sgl->length % data->blksz) 1325 return -EINVAL; 1326 } 1327 if ((data->blksz % 4) != 0) 1328 /* REVISIT: The MMC buffer increments only when MSB is written. 1329 * Return error for blksz which is non multiple of four. 1330 */ 1331 return -EINVAL; 1332 1333 BUG_ON(host->dma_ch != -1); 1334 1335 chan = omap_hsmmc_get_dma_chan(host, data); 1336 1337 cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA; 1338 cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA; 1339 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1340 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1341 cfg.src_maxburst = data->blksz / 4; 1342 cfg.dst_maxburst = data->blksz / 4; 1343 1344 ret = dmaengine_slave_config(chan, &cfg); 1345 if (ret) 1346 return ret; 1347 1348 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan); 1349 if (ret) 1350 return ret; 1351 1352 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len, 1353 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, 1354 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1355 if (!tx) { 1356 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n"); 1357 /* FIXME: cleanup */ 1358 return -1; 1359 } 1360 1361 tx->callback = omap_hsmmc_dma_callback; 1362 tx->callback_param = host; 1363 1364 /* Does not fail */ 1365 dmaengine_submit(tx); 1366 1367 host->dma_ch = 1; 1368 1369 return 0; 1370 } 1371 1372 static void set_data_timeout(struct omap_hsmmc_host *host, 1373 unsigned int timeout_ns, 1374 unsigned int timeout_clks) 1375 { 1376 unsigned int timeout, cycle_ns; 1377 uint32_t reg, clkd, dto = 0; 1378 1379 reg = OMAP_HSMMC_READ(host->base, SYSCTL); 1380 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT; 1381 if (clkd == 0) 1382 clkd = 1; 1383 1384 cycle_ns = 1000000000 / (host->clk_rate / clkd); 1385 timeout = timeout_ns / cycle_ns; 1386 timeout += timeout_clks; 1387 if (timeout) { 1388 while ((timeout & 0x80000000) == 0) { 1389 dto += 1; 1390 timeout <<= 1; 1391 } 1392 dto = 31 - dto; 1393 timeout <<= 1; 1394 if (timeout && dto) 1395 dto += 1; 1396 if (dto >= 13) 1397 dto -= 13; 1398 else 1399 dto = 0; 1400 if (dto > 14) 1401 dto = 14; 1402 } 1403 1404 reg &= ~DTO_MASK; 1405 reg |= dto << DTO_SHIFT; 1406 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg); 1407 } 1408 1409 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host) 1410 { 1411 struct mmc_request *req = host->mrq; 1412 struct dma_chan *chan; 1413 1414 if (!req->data) 1415 return; 1416 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz) 1417 | (req->data->blocks << 16)); 1418 set_data_timeout(host, req->data->timeout_ns, 1419 req->data->timeout_clks); 1420 chan = omap_hsmmc_get_dma_chan(host, req->data); 1421 dma_async_issue_pending(chan); 1422 } 1423 1424 /* 1425 * Configure block length for MMC/SD cards and initiate the transfer. 1426 */ 1427 static int 1428 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req) 1429 { 1430 int ret; 1431 host->data = req->data; 1432 1433 if (req->data == NULL) { 1434 OMAP_HSMMC_WRITE(host->base, BLK, 0); 1435 /* 1436 * Set an arbitrary 100ms data timeout for commands with 1437 * busy signal. 1438 */ 1439 if (req->cmd->flags & MMC_RSP_BUSY) 1440 set_data_timeout(host, 100000000U, 0); 1441 return 0; 1442 } 1443 1444 if (host->use_dma) { 1445 ret = omap_hsmmc_setup_dma_transfer(host, req); 1446 if (ret != 0) { 1447 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n"); 1448 return ret; 1449 } 1450 } 1451 return 0; 1452 } 1453 1454 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, 1455 int err) 1456 { 1457 struct omap_hsmmc_host *host = mmc_priv(mmc); 1458 struct mmc_data *data = mrq->data; 1459 1460 if (host->use_dma && data->host_cookie) { 1461 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data); 1462 1463 dma_unmap_sg(c->device->dev, data->sg, data->sg_len, 1464 omap_hsmmc_get_dma_dir(host, data)); 1465 data->host_cookie = 0; 1466 } 1467 } 1468 1469 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq, 1470 bool is_first_req) 1471 { 1472 struct omap_hsmmc_host *host = mmc_priv(mmc); 1473 1474 if (mrq->data->host_cookie) { 1475 mrq->data->host_cookie = 0; 1476 return ; 1477 } 1478 1479 if (host->use_dma) { 1480 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data); 1481 1482 if (omap_hsmmc_pre_dma_transfer(host, mrq->data, 1483 &host->next_data, c)) 1484 mrq->data->host_cookie = 0; 1485 } 1486 } 1487 1488 /* 1489 * Request function. for read/write operation 1490 */ 1491 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req) 1492 { 1493 struct omap_hsmmc_host *host = mmc_priv(mmc); 1494 int err; 1495 1496 BUG_ON(host->req_in_progress); 1497 BUG_ON(host->dma_ch != -1); 1498 pm_runtime_get_sync(host->dev); 1499 if (host->protect_card) { 1500 if (host->reqs_blocked < 3) { 1501 /* 1502 * Ensure the controller is left in a consistent 1503 * state by resetting the command and data state 1504 * machines. 1505 */ 1506 omap_hsmmc_reset_controller_fsm(host, SRD); 1507 omap_hsmmc_reset_controller_fsm(host, SRC); 1508 host->reqs_blocked += 1; 1509 } 1510 req->cmd->error = -EBADF; 1511 if (req->data) 1512 req->data->error = -EBADF; 1513 req->cmd->retries = 0; 1514 mmc_request_done(mmc, req); 1515 pm_runtime_mark_last_busy(host->dev); 1516 pm_runtime_put_autosuspend(host->dev); 1517 return; 1518 } else if (host->reqs_blocked) 1519 host->reqs_blocked = 0; 1520 WARN_ON(host->mrq != NULL); 1521 host->mrq = req; 1522 host->clk_rate = clk_get_rate(host->fclk); 1523 err = omap_hsmmc_prepare_data(host, req); 1524 if (err) { 1525 req->cmd->error = err; 1526 if (req->data) 1527 req->data->error = err; 1528 host->mrq = NULL; 1529 mmc_request_done(mmc, req); 1530 pm_runtime_mark_last_busy(host->dev); 1531 pm_runtime_put_autosuspend(host->dev); 1532 return; 1533 } 1534 if (req->sbc && !(host->flags & AUTO_CMD23)) { 1535 omap_hsmmc_start_command(host, req->sbc, NULL); 1536 return; 1537 } 1538 1539 omap_hsmmc_start_dma_transfer(host); 1540 omap_hsmmc_start_command(host, req->cmd, req->data); 1541 } 1542 1543 /* Routine to configure clock values. Exposed API to core */ 1544 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1545 { 1546 struct omap_hsmmc_host *host = mmc_priv(mmc); 1547 int do_send_init_stream = 0; 1548 1549 pm_runtime_get_sync(host->dev); 1550 1551 if (ios->power_mode != host->power_mode) { 1552 switch (ios->power_mode) { 1553 case MMC_POWER_OFF: 1554 mmc_pdata(host)->set_power(host->dev, 0, 0); 1555 break; 1556 case MMC_POWER_UP: 1557 mmc_pdata(host)->set_power(host->dev, 1, ios->vdd); 1558 break; 1559 case MMC_POWER_ON: 1560 do_send_init_stream = 1; 1561 break; 1562 } 1563 host->power_mode = ios->power_mode; 1564 } 1565 1566 /* FIXME: set registers based only on changes to ios */ 1567 1568 omap_hsmmc_set_bus_width(host); 1569 1570 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 1571 /* Only MMC1 can interface at 3V without some flavor 1572 * of external transceiver; but they all handle 1.8V. 1573 */ 1574 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) && 1575 (ios->vdd == DUAL_VOLT_OCR_BIT)) { 1576 /* 1577 * The mmc_select_voltage fn of the core does 1578 * not seem to set the power_mode to 1579 * MMC_POWER_UP upon recalculating the voltage. 1580 * vdd 1.8v. 1581 */ 1582 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0) 1583 dev_dbg(mmc_dev(host->mmc), 1584 "Switch operation failed\n"); 1585 } 1586 } 1587 1588 omap_hsmmc_set_clock(host); 1589 1590 if (do_send_init_stream) 1591 send_init_stream(host); 1592 1593 omap_hsmmc_set_bus_mode(host); 1594 1595 pm_runtime_put_autosuspend(host->dev); 1596 } 1597 1598 static int omap_hsmmc_get_cd(struct mmc_host *mmc) 1599 { 1600 struct omap_hsmmc_host *host = mmc_priv(mmc); 1601 1602 if (!host->card_detect) 1603 return -ENOSYS; 1604 return host->card_detect(host->dev); 1605 } 1606 1607 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card) 1608 { 1609 struct omap_hsmmc_host *host = mmc_priv(mmc); 1610 1611 if (mmc_pdata(host)->init_card) 1612 mmc_pdata(host)->init_card(card); 1613 } 1614 1615 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 1616 { 1617 struct omap_hsmmc_host *host = mmc_priv(mmc); 1618 u32 irq_mask, con; 1619 unsigned long flags; 1620 1621 spin_lock_irqsave(&host->irq_lock, flags); 1622 1623 con = OMAP_HSMMC_READ(host->base, CON); 1624 irq_mask = OMAP_HSMMC_READ(host->base, ISE); 1625 if (enable) { 1626 host->flags |= HSMMC_SDIO_IRQ_ENABLED; 1627 irq_mask |= CIRQ_EN; 1628 con |= CTPL | CLKEXTFREE; 1629 } else { 1630 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED; 1631 irq_mask &= ~CIRQ_EN; 1632 con &= ~(CTPL | CLKEXTFREE); 1633 } 1634 OMAP_HSMMC_WRITE(host->base, CON, con); 1635 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 1636 1637 /* 1638 * if enable, piggy back detection on current request 1639 * but always disable immediately 1640 */ 1641 if (!host->req_in_progress || !enable) 1642 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 1643 1644 /* flush posted write */ 1645 OMAP_HSMMC_READ(host->base, IE); 1646 1647 spin_unlock_irqrestore(&host->irq_lock, flags); 1648 } 1649 1650 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host) 1651 { 1652 int ret; 1653 1654 /* 1655 * For omaps with wake-up path, wakeirq will be irq from pinctrl and 1656 * for other omaps, wakeirq will be from GPIO (dat line remuxed to 1657 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state 1658 * with functional clock disabled. 1659 */ 1660 if (!host->dev->of_node || !host->wake_irq) 1661 return -ENODEV; 1662 1663 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq); 1664 if (ret) { 1665 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n"); 1666 goto err; 1667 } 1668 1669 /* 1670 * Some omaps don't have wake-up path from deeper idle states 1671 * and need to remux SDIO DAT1 to GPIO for wake-up from idle. 1672 */ 1673 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) { 1674 struct pinctrl *p = devm_pinctrl_get(host->dev); 1675 if (!p) { 1676 ret = -ENODEV; 1677 goto err_free_irq; 1678 } 1679 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) { 1680 dev_info(host->dev, "missing default pinctrl state\n"); 1681 devm_pinctrl_put(p); 1682 ret = -EINVAL; 1683 goto err_free_irq; 1684 } 1685 1686 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) { 1687 dev_info(host->dev, "missing idle pinctrl state\n"); 1688 devm_pinctrl_put(p); 1689 ret = -EINVAL; 1690 goto err_free_irq; 1691 } 1692 devm_pinctrl_put(p); 1693 } 1694 1695 OMAP_HSMMC_WRITE(host->base, HCTL, 1696 OMAP_HSMMC_READ(host->base, HCTL) | IWE); 1697 return 0; 1698 1699 err_free_irq: 1700 dev_pm_clear_wake_irq(host->dev); 1701 err: 1702 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n"); 1703 host->wake_irq = 0; 1704 return ret; 1705 } 1706 1707 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host) 1708 { 1709 u32 hctl, capa, value; 1710 1711 /* Only MMC1 supports 3.0V */ 1712 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 1713 hctl = SDVS30; 1714 capa = VS30 | VS18; 1715 } else { 1716 hctl = SDVS18; 1717 capa = VS18; 1718 } 1719 1720 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK; 1721 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl); 1722 1723 value = OMAP_HSMMC_READ(host->base, CAPA); 1724 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa); 1725 1726 /* Set SD bus power bit */ 1727 set_sd_bus_power(host); 1728 } 1729 1730 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card, 1731 unsigned int direction, int blk_size) 1732 { 1733 /* This controller can't do multiblock reads due to hw bugs */ 1734 if (direction == MMC_DATA_READ) 1735 return 1; 1736 1737 return blk_size; 1738 } 1739 1740 static struct mmc_host_ops omap_hsmmc_ops = { 1741 .post_req = omap_hsmmc_post_req, 1742 .pre_req = omap_hsmmc_pre_req, 1743 .request = omap_hsmmc_request, 1744 .set_ios = omap_hsmmc_set_ios, 1745 .get_cd = omap_hsmmc_get_cd, 1746 .get_ro = mmc_gpio_get_ro, 1747 .init_card = omap_hsmmc_init_card, 1748 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq, 1749 }; 1750 1751 #ifdef CONFIG_DEBUG_FS 1752 1753 static int omap_hsmmc_regs_show(struct seq_file *s, void *data) 1754 { 1755 struct mmc_host *mmc = s->private; 1756 struct omap_hsmmc_host *host = mmc_priv(mmc); 1757 1758 seq_printf(s, "mmc%d:\n", mmc->index); 1759 seq_printf(s, "sdio irq mode\t%s\n", 1760 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling"); 1761 1762 if (mmc->caps & MMC_CAP_SDIO_IRQ) { 1763 seq_printf(s, "sdio irq \t%s\n", 1764 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled" 1765 : "disabled"); 1766 } 1767 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss); 1768 1769 pm_runtime_get_sync(host->dev); 1770 seq_puts(s, "\nregs:\n"); 1771 seq_printf(s, "CON:\t\t0x%08x\n", 1772 OMAP_HSMMC_READ(host->base, CON)); 1773 seq_printf(s, "PSTATE:\t\t0x%08x\n", 1774 OMAP_HSMMC_READ(host->base, PSTATE)); 1775 seq_printf(s, "HCTL:\t\t0x%08x\n", 1776 OMAP_HSMMC_READ(host->base, HCTL)); 1777 seq_printf(s, "SYSCTL:\t\t0x%08x\n", 1778 OMAP_HSMMC_READ(host->base, SYSCTL)); 1779 seq_printf(s, "IE:\t\t0x%08x\n", 1780 OMAP_HSMMC_READ(host->base, IE)); 1781 seq_printf(s, "ISE:\t\t0x%08x\n", 1782 OMAP_HSMMC_READ(host->base, ISE)); 1783 seq_printf(s, "CAPA:\t\t0x%08x\n", 1784 OMAP_HSMMC_READ(host->base, CAPA)); 1785 1786 pm_runtime_mark_last_busy(host->dev); 1787 pm_runtime_put_autosuspend(host->dev); 1788 1789 return 0; 1790 } 1791 1792 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file) 1793 { 1794 return single_open(file, omap_hsmmc_regs_show, inode->i_private); 1795 } 1796 1797 static const struct file_operations mmc_regs_fops = { 1798 .open = omap_hsmmc_regs_open, 1799 .read = seq_read, 1800 .llseek = seq_lseek, 1801 .release = single_release, 1802 }; 1803 1804 static void omap_hsmmc_debugfs(struct mmc_host *mmc) 1805 { 1806 if (mmc->debugfs_root) 1807 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root, 1808 mmc, &mmc_regs_fops); 1809 } 1810 1811 #else 1812 1813 static void omap_hsmmc_debugfs(struct mmc_host *mmc) 1814 { 1815 } 1816 1817 #endif 1818 1819 #ifdef CONFIG_OF 1820 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = { 1821 /* See 35xx errata 2.1.1.128 in SPRZ278F */ 1822 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ, 1823 }; 1824 1825 static const struct omap_mmc_of_data omap4_mmc_of_data = { 1826 .reg_offset = 0x100, 1827 }; 1828 static const struct omap_mmc_of_data am33xx_mmc_of_data = { 1829 .reg_offset = 0x100, 1830 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING, 1831 }; 1832 1833 static const struct of_device_id omap_mmc_of_match[] = { 1834 { 1835 .compatible = "ti,omap2-hsmmc", 1836 }, 1837 { 1838 .compatible = "ti,omap3-pre-es3-hsmmc", 1839 .data = &omap3_pre_es3_mmc_of_data, 1840 }, 1841 { 1842 .compatible = "ti,omap3-hsmmc", 1843 }, 1844 { 1845 .compatible = "ti,omap4-hsmmc", 1846 .data = &omap4_mmc_of_data, 1847 }, 1848 { 1849 .compatible = "ti,am33xx-hsmmc", 1850 .data = &am33xx_mmc_of_data, 1851 }, 1852 {}, 1853 }; 1854 MODULE_DEVICE_TABLE(of, omap_mmc_of_match); 1855 1856 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev) 1857 { 1858 struct omap_hsmmc_platform_data *pdata; 1859 struct device_node *np = dev->of_node; 1860 1861 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1862 if (!pdata) 1863 return ERR_PTR(-ENOMEM); /* out of memory */ 1864 1865 if (of_find_property(np, "ti,dual-volt", NULL)) 1866 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT; 1867 1868 pdata->gpio_cd = -EINVAL; 1869 pdata->gpio_cod = -EINVAL; 1870 pdata->gpio_wp = -EINVAL; 1871 1872 if (of_find_property(np, "ti,non-removable", NULL)) { 1873 pdata->nonremovable = true; 1874 pdata->no_regulator_off_init = true; 1875 } 1876 1877 if (of_find_property(np, "ti,needs-special-reset", NULL)) 1878 pdata->features |= HSMMC_HAS_UPDATED_RESET; 1879 1880 if (of_find_property(np, "ti,needs-special-hs-handling", NULL)) 1881 pdata->features |= HSMMC_HAS_HSPE_SUPPORT; 1882 1883 return pdata; 1884 } 1885 #else 1886 static inline struct omap_hsmmc_platform_data 1887 *of_get_hsmmc_pdata(struct device *dev) 1888 { 1889 return ERR_PTR(-EINVAL); 1890 } 1891 #endif 1892 1893 static int omap_hsmmc_probe(struct platform_device *pdev) 1894 { 1895 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data; 1896 struct mmc_host *mmc; 1897 struct omap_hsmmc_host *host = NULL; 1898 struct resource *res; 1899 int ret, irq; 1900 const struct of_device_id *match; 1901 dma_cap_mask_t mask; 1902 unsigned tx_req, rx_req; 1903 const struct omap_mmc_of_data *data; 1904 void __iomem *base; 1905 1906 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev); 1907 if (match) { 1908 pdata = of_get_hsmmc_pdata(&pdev->dev); 1909 1910 if (IS_ERR(pdata)) 1911 return PTR_ERR(pdata); 1912 1913 if (match->data) { 1914 data = match->data; 1915 pdata->reg_offset = data->reg_offset; 1916 pdata->controller_flags |= data->controller_flags; 1917 } 1918 } 1919 1920 if (pdata == NULL) { 1921 dev_err(&pdev->dev, "Platform Data is missing\n"); 1922 return -ENXIO; 1923 } 1924 1925 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1926 irq = platform_get_irq(pdev, 0); 1927 if (res == NULL || irq < 0) 1928 return -ENXIO; 1929 1930 base = devm_ioremap_resource(&pdev->dev, res); 1931 if (IS_ERR(base)) 1932 return PTR_ERR(base); 1933 1934 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev); 1935 if (!mmc) { 1936 ret = -ENOMEM; 1937 goto err; 1938 } 1939 1940 ret = mmc_of_parse(mmc); 1941 if (ret) 1942 goto err1; 1943 1944 host = mmc_priv(mmc); 1945 host->mmc = mmc; 1946 host->pdata = pdata; 1947 host->dev = &pdev->dev; 1948 host->use_dma = 1; 1949 host->dma_ch = -1; 1950 host->irq = irq; 1951 host->mapbase = res->start + pdata->reg_offset; 1952 host->base = base + pdata->reg_offset; 1953 host->power_mode = MMC_POWER_OFF; 1954 host->next_data.cookie = 1; 1955 host->pbias_enabled = 0; 1956 1957 ret = omap_hsmmc_gpio_init(mmc, host, pdata); 1958 if (ret) 1959 goto err_gpio; 1960 1961 platform_set_drvdata(pdev, host); 1962 1963 if (pdev->dev.of_node) 1964 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1); 1965 1966 mmc->ops = &omap_hsmmc_ops; 1967 1968 mmc->f_min = OMAP_MMC_MIN_CLOCK; 1969 1970 if (pdata->max_freq > 0) 1971 mmc->f_max = pdata->max_freq; 1972 else if (mmc->f_max == 0) 1973 mmc->f_max = OMAP_MMC_MAX_CLOCK; 1974 1975 spin_lock_init(&host->irq_lock); 1976 1977 host->fclk = devm_clk_get(&pdev->dev, "fck"); 1978 if (IS_ERR(host->fclk)) { 1979 ret = PTR_ERR(host->fclk); 1980 host->fclk = NULL; 1981 goto err1; 1982 } 1983 1984 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) { 1985 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n"); 1986 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk; 1987 } 1988 1989 device_init_wakeup(&pdev->dev, true); 1990 pm_runtime_enable(host->dev); 1991 pm_runtime_get_sync(host->dev); 1992 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY); 1993 pm_runtime_use_autosuspend(host->dev); 1994 1995 omap_hsmmc_context_save(host); 1996 1997 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck"); 1998 /* 1999 * MMC can still work without debounce clock. 2000 */ 2001 if (IS_ERR(host->dbclk)) { 2002 host->dbclk = NULL; 2003 } else if (clk_prepare_enable(host->dbclk) != 0) { 2004 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n"); 2005 host->dbclk = NULL; 2006 } 2007 2008 /* Since we do only SG emulation, we can have as many segs 2009 * as we want. */ 2010 mmc->max_segs = 1024; 2011 2012 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */ 2013 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */ 2014 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; 2015 mmc->max_seg_size = mmc->max_req_size; 2016 2017 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | 2018 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE; 2019 2020 mmc->caps |= mmc_pdata(host)->caps; 2021 if (mmc->caps & MMC_CAP_8_BIT_DATA) 2022 mmc->caps |= MMC_CAP_4_BIT_DATA; 2023 2024 if (mmc_pdata(host)->nonremovable) 2025 mmc->caps |= MMC_CAP_NONREMOVABLE; 2026 2027 mmc->pm_caps |= mmc_pdata(host)->pm_caps; 2028 2029 omap_hsmmc_conf_bus_power(host); 2030 2031 if (!pdev->dev.of_node) { 2032 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx"); 2033 if (!res) { 2034 dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n"); 2035 ret = -ENXIO; 2036 goto err_irq; 2037 } 2038 tx_req = res->start; 2039 2040 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx"); 2041 if (!res) { 2042 dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n"); 2043 ret = -ENXIO; 2044 goto err_irq; 2045 } 2046 rx_req = res->start; 2047 } 2048 2049 dma_cap_zero(mask); 2050 dma_cap_set(DMA_SLAVE, mask); 2051 2052 host->rx_chan = 2053 dma_request_slave_channel_compat(mask, omap_dma_filter_fn, 2054 &rx_req, &pdev->dev, "rx"); 2055 2056 if (!host->rx_chan) { 2057 dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req); 2058 ret = -ENXIO; 2059 goto err_irq; 2060 } 2061 2062 host->tx_chan = 2063 dma_request_slave_channel_compat(mask, omap_dma_filter_fn, 2064 &tx_req, &pdev->dev, "tx"); 2065 2066 if (!host->tx_chan) { 2067 dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req); 2068 ret = -ENXIO; 2069 goto err_irq; 2070 } 2071 2072 /* Request IRQ for MMC operations */ 2073 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0, 2074 mmc_hostname(mmc), host); 2075 if (ret) { 2076 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n"); 2077 goto err_irq; 2078 } 2079 2080 if (omap_hsmmc_have_reg() && !mmc_pdata(host)->set_power) { 2081 ret = omap_hsmmc_reg_get(host); 2082 if (ret) 2083 goto err_irq; 2084 host->use_reg = 1; 2085 } 2086 2087 mmc->ocr_avail = mmc_pdata(host)->ocr_mask; 2088 2089 omap_hsmmc_disable_irq(host); 2090 2091 /* 2092 * For now, only support SDIO interrupt if we have a separate 2093 * wake-up interrupt configured from device tree. This is because 2094 * the wake-up interrupt is needed for idle state and some 2095 * platforms need special quirks. And we don't want to add new 2096 * legacy mux platform init code callbacks any longer as we 2097 * are moving to DT based booting anyways. 2098 */ 2099 ret = omap_hsmmc_configure_wake_irq(host); 2100 if (!ret) 2101 mmc->caps |= MMC_CAP_SDIO_IRQ; 2102 2103 omap_hsmmc_protect_card(host); 2104 2105 mmc_add_host(mmc); 2106 2107 if (mmc_pdata(host)->name != NULL) { 2108 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name); 2109 if (ret < 0) 2110 goto err_slot_name; 2111 } 2112 if (host->get_cover_state) { 2113 ret = device_create_file(&mmc->class_dev, 2114 &dev_attr_cover_switch); 2115 if (ret < 0) 2116 goto err_slot_name; 2117 } 2118 2119 omap_hsmmc_debugfs(mmc); 2120 pm_runtime_mark_last_busy(host->dev); 2121 pm_runtime_put_autosuspend(host->dev); 2122 2123 return 0; 2124 2125 err_slot_name: 2126 mmc_remove_host(mmc); 2127 if (host->use_reg) 2128 omap_hsmmc_reg_put(host); 2129 err_irq: 2130 device_init_wakeup(&pdev->dev, false); 2131 if (host->tx_chan) 2132 dma_release_channel(host->tx_chan); 2133 if (host->rx_chan) 2134 dma_release_channel(host->rx_chan); 2135 pm_runtime_put_sync(host->dev); 2136 pm_runtime_disable(host->dev); 2137 if (host->dbclk) 2138 clk_disable_unprepare(host->dbclk); 2139 err1: 2140 err_gpio: 2141 mmc_free_host(mmc); 2142 err: 2143 return ret; 2144 } 2145 2146 static int omap_hsmmc_remove(struct platform_device *pdev) 2147 { 2148 struct omap_hsmmc_host *host = platform_get_drvdata(pdev); 2149 2150 pm_runtime_get_sync(host->dev); 2151 mmc_remove_host(host->mmc); 2152 if (host->use_reg) 2153 omap_hsmmc_reg_put(host); 2154 2155 if (host->tx_chan) 2156 dma_release_channel(host->tx_chan); 2157 if (host->rx_chan) 2158 dma_release_channel(host->rx_chan); 2159 2160 pm_runtime_put_sync(host->dev); 2161 pm_runtime_disable(host->dev); 2162 device_init_wakeup(&pdev->dev, false); 2163 if (host->dbclk) 2164 clk_disable_unprepare(host->dbclk); 2165 2166 mmc_free_host(host->mmc); 2167 2168 return 0; 2169 } 2170 2171 #ifdef CONFIG_PM_SLEEP 2172 static int omap_hsmmc_suspend(struct device *dev) 2173 { 2174 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 2175 2176 if (!host) 2177 return 0; 2178 2179 pm_runtime_get_sync(host->dev); 2180 2181 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) { 2182 OMAP_HSMMC_WRITE(host->base, ISE, 0); 2183 OMAP_HSMMC_WRITE(host->base, IE, 0); 2184 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2185 OMAP_HSMMC_WRITE(host->base, HCTL, 2186 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP); 2187 } 2188 2189 if (host->dbclk) 2190 clk_disable_unprepare(host->dbclk); 2191 2192 pm_runtime_put_sync(host->dev); 2193 return 0; 2194 } 2195 2196 /* Routine to resume the MMC device */ 2197 static int omap_hsmmc_resume(struct device *dev) 2198 { 2199 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 2200 2201 if (!host) 2202 return 0; 2203 2204 pm_runtime_get_sync(host->dev); 2205 2206 if (host->dbclk) 2207 clk_prepare_enable(host->dbclk); 2208 2209 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) 2210 omap_hsmmc_conf_bus_power(host); 2211 2212 omap_hsmmc_protect_card(host); 2213 pm_runtime_mark_last_busy(host->dev); 2214 pm_runtime_put_autosuspend(host->dev); 2215 return 0; 2216 } 2217 #endif 2218 2219 static int omap_hsmmc_runtime_suspend(struct device *dev) 2220 { 2221 struct omap_hsmmc_host *host; 2222 unsigned long flags; 2223 int ret = 0; 2224 2225 host = platform_get_drvdata(to_platform_device(dev)); 2226 omap_hsmmc_context_save(host); 2227 dev_dbg(dev, "disabled\n"); 2228 2229 spin_lock_irqsave(&host->irq_lock, flags); 2230 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && 2231 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) { 2232 /* disable sdio irq handling to prevent race */ 2233 OMAP_HSMMC_WRITE(host->base, ISE, 0); 2234 OMAP_HSMMC_WRITE(host->base, IE, 0); 2235 2236 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) { 2237 /* 2238 * dat1 line low, pending sdio irq 2239 * race condition: possible irq handler running on 2240 * multi-core, abort 2241 */ 2242 dev_dbg(dev, "pending sdio irq, abort suspend\n"); 2243 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2244 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN); 2245 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN); 2246 pm_runtime_mark_last_busy(dev); 2247 ret = -EBUSY; 2248 goto abort; 2249 } 2250 2251 pinctrl_pm_select_idle_state(dev); 2252 } else { 2253 pinctrl_pm_select_idle_state(dev); 2254 } 2255 2256 abort: 2257 spin_unlock_irqrestore(&host->irq_lock, flags); 2258 return ret; 2259 } 2260 2261 static int omap_hsmmc_runtime_resume(struct device *dev) 2262 { 2263 struct omap_hsmmc_host *host; 2264 unsigned long flags; 2265 2266 host = platform_get_drvdata(to_platform_device(dev)); 2267 omap_hsmmc_context_restore(host); 2268 dev_dbg(dev, "enabled\n"); 2269 2270 spin_lock_irqsave(&host->irq_lock, flags); 2271 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && 2272 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) { 2273 2274 pinctrl_pm_select_default_state(host->dev); 2275 2276 /* irq lost, if pinmux incorrect */ 2277 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2278 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN); 2279 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN); 2280 } else { 2281 pinctrl_pm_select_default_state(host->dev); 2282 } 2283 spin_unlock_irqrestore(&host->irq_lock, flags); 2284 return 0; 2285 } 2286 2287 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = { 2288 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume) 2289 .runtime_suspend = omap_hsmmc_runtime_suspend, 2290 .runtime_resume = omap_hsmmc_runtime_resume, 2291 }; 2292 2293 static struct platform_driver omap_hsmmc_driver = { 2294 .probe = omap_hsmmc_probe, 2295 .remove = omap_hsmmc_remove, 2296 .driver = { 2297 .name = DRIVER_NAME, 2298 .pm = &omap_hsmmc_dev_pm_ops, 2299 .of_match_table = of_match_ptr(omap_mmc_of_match), 2300 }, 2301 }; 2302 2303 module_platform_driver(omap_hsmmc_driver); 2304 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver"); 2305 MODULE_LICENSE("GPL"); 2306 MODULE_ALIAS("platform:" DRIVER_NAME); 2307 MODULE_AUTHOR("Texas Instruments Inc"); 2308