xref: /linux/drivers/mmc/host/mmci_stm32_sdmmc.c (revision a6021aa24f6417416d93318bbfa022ab229c33c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4  * Author: Ludovic.barre@st.com for STMicroelectronics.
5  */
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/iopoll.h>
10 #include <linux/mmc/host.h>
11 #include <linux/mmc/card.h>
12 #include <linux/of_address.h>
13 #include <linux/reset.h>
14 #include <linux/scatterlist.h>
15 #include "mmci.h"
16 
17 #define SDMMC_LLI_BUF_LEN	PAGE_SIZE
18 
19 #define DLYB_CR			0x0
20 #define DLYB_CR_DEN		BIT(0)
21 #define DLYB_CR_SEN		BIT(1)
22 
23 #define DLYB_CFGR		0x4
24 #define DLYB_CFGR_SEL_MASK	GENMASK(3, 0)
25 #define DLYB_CFGR_UNIT_MASK	GENMASK(14, 8)
26 #define DLYB_CFGR_LNG_MASK	GENMASK(27, 16)
27 #define DLYB_CFGR_LNGF		BIT(31)
28 
29 #define DLYB_NB_DELAY		11
30 #define DLYB_CFGR_SEL_MAX	(DLYB_NB_DELAY + 1)
31 #define DLYB_CFGR_UNIT_MAX	127
32 
33 #define DLYB_LNG_TIMEOUT_US	1000
34 #define SDMMC_VSWEND_TIMEOUT_US 10000
35 
36 #define SYSCFG_DLYBSD_CR	0x0
37 #define DLYBSD_CR_EN		BIT(0)
38 #define DLYBSD_CR_RXTAPSEL_MASK	GENMASK(6, 1)
39 #define DLYBSD_TAPSEL_NB	32
40 #define DLYBSD_BYP_EN		BIT(16)
41 #define DLYBSD_BYP_CMD		GENMASK(21, 17)
42 #define DLYBSD_ANTIGLITCH_EN	BIT(22)
43 
44 #define SYSCFG_DLYBSD_SR	0x4
45 #define DLYBSD_SR_LOCK		BIT(0)
46 #define DLYBSD_SR_RXTAPSEL_ACK	BIT(1)
47 
48 #define DLYBSD_TIMEOUT_1S_IN_US	1000000
49 
50 struct sdmmc_lli_desc {
51 	u32 idmalar;
52 	u32 idmabase;
53 	u32 idmasize;
54 };
55 
56 struct sdmmc_idma {
57 	dma_addr_t sg_dma;
58 	void *sg_cpu;
59 	dma_addr_t bounce_dma_addr;
60 	void *bounce_buf;
61 	bool use_bounce_buffer;
62 };
63 
64 struct sdmmc_dlyb;
65 
66 struct sdmmc_tuning_ops {
67 	int (*dlyb_enable)(struct sdmmc_dlyb *dlyb);
68 	void (*set_input_ck)(struct sdmmc_dlyb *dlyb);
69 	int (*tuning_prepare)(struct mmci_host *host);
70 	int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused,
71 		       int phase, bool sampler __maybe_unused);
72 };
73 
74 struct sdmmc_dlyb {
75 	void __iomem *base;
76 	u32 unit;
77 	u32 max;
78 	struct sdmmc_tuning_ops *ops;
79 };
80 
81 static int sdmmc_idma_validate_data(struct mmci_host *host,
82 				    struct mmc_data *data)
83 {
84 	struct sdmmc_idma *idma = host->dma_priv;
85 	struct device *dev = mmc_dev(host->mmc);
86 	struct scatterlist *sg;
87 	int i;
88 
89 	/*
90 	 * idma has constraints on idmabase & idmasize for each element
91 	 * excepted the last element which has no constraint on idmasize
92 	 */
93 	idma->use_bounce_buffer = false;
94 	for_each_sg(data->sg, sg, data->sg_len - 1, i) {
95 		if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
96 		    !IS_ALIGNED(sg->length,
97 				host->variant->stm32_idmabsize_align)) {
98 			dev_dbg(mmc_dev(host->mmc),
99 				"unaligned scatterlist: ofst:%x length:%d\n",
100 				data->sg->offset, data->sg->length);
101 			goto use_bounce_buffer;
102 		}
103 	}
104 
105 	if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
106 		dev_dbg(mmc_dev(host->mmc),
107 			"unaligned last scatterlist: ofst:%x length:%d\n",
108 			data->sg->offset, data->sg->length);
109 		goto use_bounce_buffer;
110 	}
111 
112 	return 0;
113 
114 use_bounce_buffer:
115 	if (!idma->bounce_buf) {
116 		idma->bounce_buf = dmam_alloc_coherent(dev,
117 						       host->mmc->max_req_size,
118 						       &idma->bounce_dma_addr,
119 						       GFP_KERNEL);
120 		if (!idma->bounce_buf) {
121 			dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
122 			return -ENOMEM;
123 		}
124 	}
125 
126 	idma->use_bounce_buffer = true;
127 
128 	return 0;
129 }
130 
131 static int _sdmmc_idma_prep_data(struct mmci_host *host,
132 				 struct mmc_data *data)
133 {
134 	struct sdmmc_idma *idma = host->dma_priv;
135 
136 	if (idma->use_bounce_buffer) {
137 		if (data->flags & MMC_DATA_WRITE) {
138 			unsigned int xfer_bytes = data->blksz * data->blocks;
139 
140 			sg_copy_to_buffer(data->sg, data->sg_len,
141 					  idma->bounce_buf, xfer_bytes);
142 			dma_wmb();
143 		}
144 	} else {
145 		int n_elem;
146 
147 		n_elem = dma_map_sg(mmc_dev(host->mmc),
148 				    data->sg,
149 				    data->sg_len,
150 				    mmc_get_dma_dir(data));
151 
152 		if (!n_elem) {
153 			dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
154 			return -EINVAL;
155 		}
156 	}
157 	return 0;
158 }
159 
160 static int sdmmc_idma_prep_data(struct mmci_host *host,
161 				struct mmc_data *data, bool next)
162 {
163 	/* Check if job is already prepared. */
164 	if (!next && data->host_cookie == host->next_cookie)
165 		return 0;
166 
167 	return _sdmmc_idma_prep_data(host, data);
168 }
169 
170 static void sdmmc_idma_unprep_data(struct mmci_host *host,
171 				   struct mmc_data *data, int err)
172 {
173 	struct sdmmc_idma *idma = host->dma_priv;
174 
175 	if (idma->use_bounce_buffer) {
176 		if (data->flags & MMC_DATA_READ) {
177 			unsigned int xfer_bytes = data->blksz * data->blocks;
178 
179 			sg_copy_from_buffer(data->sg, data->sg_len,
180 					    idma->bounce_buf, xfer_bytes);
181 		}
182 	} else {
183 		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
184 			     mmc_get_dma_dir(data));
185 	}
186 }
187 
188 static int sdmmc_idma_setup(struct mmci_host *host)
189 {
190 	struct sdmmc_idma *idma;
191 	struct device *dev = mmc_dev(host->mmc);
192 
193 	idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
194 	if (!idma)
195 		return -ENOMEM;
196 
197 	host->dma_priv = idma;
198 
199 	if (host->variant->dma_lli) {
200 		idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
201 						   &idma->sg_dma, GFP_KERNEL);
202 		if (!idma->sg_cpu) {
203 			dev_err(dev, "Failed to alloc IDMA descriptor\n");
204 			return -ENOMEM;
205 		}
206 		host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
207 			sizeof(struct sdmmc_lli_desc);
208 		host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
209 
210 		host->mmc->max_req_size = SZ_1M;
211 	} else {
212 		host->mmc->max_segs = 1;
213 		host->mmc->max_seg_size = host->mmc->max_req_size;
214 	}
215 
216 	dma_set_max_seg_size(dev, host->mmc->max_seg_size);
217 	return 0;
218 }
219 
220 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
221 
222 {
223 	struct sdmmc_idma *idma = host->dma_priv;
224 	struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
225 	struct mmc_data *data = host->data;
226 	struct scatterlist *sg;
227 	int i;
228 
229 	host->dma_in_progress = true;
230 
231 	if (!host->variant->dma_lli || data->sg_len == 1 ||
232 	    idma->use_bounce_buffer) {
233 		u32 dma_addr;
234 
235 		if (idma->use_bounce_buffer)
236 			dma_addr = idma->bounce_dma_addr;
237 		else
238 			dma_addr = sg_dma_address(data->sg);
239 
240 		writel_relaxed(dma_addr,
241 			       host->base + MMCI_STM32_IDMABASE0R);
242 		writel_relaxed(MMCI_STM32_IDMAEN,
243 			       host->base + MMCI_STM32_IDMACTRLR);
244 		return 0;
245 	}
246 
247 	for_each_sg(data->sg, sg, data->sg_len, i) {
248 		desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
249 		desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
250 			| MMCI_STM32_ABR;
251 		desc[i].idmabase = sg_dma_address(sg);
252 		desc[i].idmasize = sg_dma_len(sg);
253 	}
254 
255 	/* notice the end of link list */
256 	desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
257 
258 	dma_wmb();
259 	writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
260 	writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
261 	writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
262 	writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
263 	writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
264 		       host->base + MMCI_STM32_IDMACTRLR);
265 
266 	return 0;
267 }
268 
269 static void sdmmc_idma_error(struct mmci_host *host)
270 {
271 	struct mmc_data *data = host->data;
272 	struct sdmmc_idma *idma = host->dma_priv;
273 
274 	if (!dma_inprogress(host))
275 		return;
276 
277 	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
278 	host->dma_in_progress = false;
279 	data->host_cookie = 0;
280 
281 	if (!idma->use_bounce_buffer)
282 		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
283 			     mmc_get_dma_dir(data));
284 }
285 
286 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
287 {
288 	if (!dma_inprogress(host))
289 		return;
290 
291 	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
292 	host->dma_in_progress = false;
293 
294 	if (!data->host_cookie)
295 		sdmmc_idma_unprep_data(host, data, 0);
296 }
297 
298 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
299 {
300 	unsigned int clk = 0, ddr = 0;
301 
302 	if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
303 	    host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
304 		ddr = MCI_STM32_CLK_DDR;
305 
306 	/*
307 	 * cclk = mclk / (2 * clkdiv)
308 	 * clkdiv 0 => bypass
309 	 * in ddr mode bypass is not possible
310 	 */
311 	if (desired) {
312 		if (desired >= host->mclk && !ddr) {
313 			host->cclk = host->mclk;
314 		} else {
315 			clk = DIV_ROUND_UP(host->mclk, 2 * desired);
316 			if (clk > MCI_STM32_CLK_CLKDIV_MSK)
317 				clk = MCI_STM32_CLK_CLKDIV_MSK;
318 			host->cclk = host->mclk / (2 * clk);
319 		}
320 	} else {
321 		/*
322 		 * while power-on phase the clock can't be define to 0,
323 		 * Only power-off and power-cyc deactivate the clock.
324 		 * if desired clock is 0, set max divider
325 		 */
326 		clk = MCI_STM32_CLK_CLKDIV_MSK;
327 		host->cclk = host->mclk / (2 * clk);
328 	}
329 
330 	/* Set actual clock for debug */
331 	if (host->mmc->ios.power_mode == MMC_POWER_ON)
332 		host->mmc->actual_clock = host->cclk;
333 	else
334 		host->mmc->actual_clock = 0;
335 
336 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
337 		clk |= MCI_STM32_CLK_WIDEBUS_4;
338 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
339 		clk |= MCI_STM32_CLK_WIDEBUS_8;
340 
341 	clk |= MCI_STM32_CLK_HWFCEN;
342 	clk |= host->clk_reg_add;
343 	clk |= ddr;
344 
345 	if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50)
346 		clk |= MCI_STM32_CLK_BUSSPEED;
347 
348 	mmci_write_clkreg(host, clk);
349 }
350 
351 static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb)
352 {
353 	if (!dlyb || !dlyb->base)
354 		return;
355 
356 	/* Output clock = Input clock */
357 	writel_relaxed(0, dlyb->base + DLYB_CR);
358 }
359 
360 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
361 {
362 	struct mmc_ios ios = host->mmc->ios;
363 	struct sdmmc_dlyb *dlyb = host->variant_priv;
364 
365 	/* adds OF options */
366 	pwr = host->pwr_reg_add;
367 
368 	if (dlyb && dlyb->ops->set_input_ck)
369 		dlyb->ops->set_input_ck(dlyb);
370 
371 	if (ios.power_mode == MMC_POWER_OFF) {
372 		/* Only a reset could power-off sdmmc */
373 		reset_control_assert(host->rst);
374 		udelay(2);
375 		reset_control_deassert(host->rst);
376 
377 		/*
378 		 * Set the SDMMC in Power-cycle state.
379 		 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
380 		 * are driven low, to prevent the Card from being supplied
381 		 * through the signal lines.
382 		 */
383 		mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
384 	} else if (ios.power_mode == MMC_POWER_ON) {
385 		/*
386 		 * After power-off (reset): the irq mask defined in probe
387 		 * functionis lost
388 		 * ault irq mask (probe) must be activated
389 		 */
390 		writel(MCI_IRQENABLE | host->variant->start_err,
391 		       host->base + MMCIMASK0);
392 
393 		/* preserves voltage switch bits */
394 		pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
395 					MCI_STM32_VSWITCH);
396 
397 		/*
398 		 * After a power-cycle state, we must set the SDMMC in
399 		 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
400 		 * driven high. Then we can set the SDMMC to Power-on state
401 		 */
402 		mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
403 		mdelay(1);
404 		mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
405 	}
406 }
407 
408 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
409 {
410 	u32 datactrl;
411 
412 	datactrl = mmci_dctrl_blksz(host);
413 
414 	if (host->hw_revision >= 3) {
415 		u32 thr = 0;
416 
417 		if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
418 		    host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
419 			thr = ffs(min_t(unsigned int, host->data->blksz,
420 					host->variant->fifosize));
421 			thr = min_t(u32, thr, MMCI_STM32_THR_MASK);
422 		}
423 
424 		writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR);
425 	}
426 
427 	if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
428 	    host->data->blocks == 1)
429 		datactrl |= MCI_DPSM_STM32_MODE_SDIO;
430 	else if (host->data->stop && !host->mrq->sbc)
431 		datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
432 	else
433 		datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
434 
435 	return datactrl;
436 }
437 
438 static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
439 				u32 status, u32 err_msk)
440 {
441 	void __iomem *base = host->base;
442 	u32 busy_d0, busy_d0end, mask, sdmmc_status;
443 
444 	mask = readl_relaxed(base + MMCIMASK0);
445 	sdmmc_status = readl_relaxed(base + MMCISTATUS);
446 	busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
447 	busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
448 
449 	/* complete if there is an error or busy_d0end */
450 	if ((status & err_msk) || busy_d0end)
451 		goto complete;
452 
453 	/*
454 	 * On response the busy signaling is reflected in the BUSYD0 flag.
455 	 * if busy_d0 is in-progress we must activate busyd0end interrupt
456 	 * to wait this completion. Else this request has no busy step.
457 	 */
458 	if (busy_d0) {
459 		if (!host->busy_status) {
460 			writel_relaxed(mask | host->variant->busy_detect_mask,
461 				       base + MMCIMASK0);
462 			host->busy_status = status &
463 				(MCI_CMDSENT | MCI_CMDRESPEND);
464 		}
465 		return false;
466 	}
467 
468 complete:
469 	if (host->busy_status) {
470 		writel_relaxed(mask & ~host->variant->busy_detect_mask,
471 			       base + MMCIMASK0);
472 		host->busy_status = 0;
473 	}
474 
475 	writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
476 
477 	return true;
478 }
479 
480 static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb)
481 {
482 	writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
483 
484 	return 0;
485 }
486 
487 static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb,
488 				   int unit, int phase, bool sampler)
489 {
490 	u32 cfgr;
491 
492 	writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
493 
494 	cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
495 	       FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
496 	writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
497 
498 	if (!sampler)
499 		writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
500 
501 	return 0;
502 }
503 
504 static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host)
505 {
506 	struct sdmmc_dlyb *dlyb = host->variant_priv;
507 	u32 cfgr;
508 	int i, lng, ret;
509 
510 	for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
511 		dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true);
512 
513 		ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
514 						 (cfgr & DLYB_CFGR_LNGF),
515 						 1, DLYB_LNG_TIMEOUT_US);
516 		if (ret) {
517 			dev_warn(mmc_dev(host->mmc),
518 				 "delay line cfg timeout unit:%d cfgr:%d\n",
519 				 i, cfgr);
520 			continue;
521 		}
522 
523 		lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
524 		if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
525 			break;
526 	}
527 
528 	if (i > DLYB_CFGR_UNIT_MAX)
529 		return -EINVAL;
530 
531 	dlyb->unit = i;
532 	dlyb->max = __fls(lng);
533 
534 	return 0;
535 }
536 
537 static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb)
538 {
539 	u32 cr, sr;
540 
541 	cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
542 	cr |= DLYBSD_CR_EN;
543 
544 	writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
545 
546 	return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
547 					   sr, sr & DLYBSD_SR_LOCK, 1,
548 					   DLYBSD_TIMEOUT_1S_IN_US);
549 }
550 
551 static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb,
552 				   int unit __maybe_unused, int phase,
553 				   bool sampler __maybe_unused)
554 {
555 	u32 cr, sr;
556 
557 	cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
558 	cr &= ~DLYBSD_CR_RXTAPSEL_MASK;
559 	cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase);
560 
561 	writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
562 
563 	return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
564 					  sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1,
565 					  DLYBSD_TIMEOUT_1S_IN_US);
566 }
567 
568 static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host)
569 {
570 	struct sdmmc_dlyb *dlyb = host->variant_priv;
571 
572 	dlyb->max = DLYBSD_TAPSEL_NB;
573 
574 	return 0;
575 }
576 
577 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
578 {
579 	struct sdmmc_dlyb *dlyb = host->variant_priv;
580 	int cur_len = 0, max_len = 0, end_of_len = 0;
581 	int phase, ret;
582 
583 	for (phase = 0; phase <= dlyb->max; phase++) {
584 		ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
585 		if (ret) {
586 			dev_err(mmc_dev(host->mmc), "tuning config failed\n");
587 			return ret;
588 		}
589 
590 		if (mmc_send_tuning(host->mmc, opcode, NULL)) {
591 			cur_len = 0;
592 		} else {
593 			cur_len++;
594 			if (cur_len > max_len) {
595 				max_len = cur_len;
596 				end_of_len = phase;
597 			}
598 		}
599 	}
600 
601 	if (!max_len) {
602 		dev_err(mmc_dev(host->mmc), "no tuning point found\n");
603 		return -EINVAL;
604 	}
605 
606 	if (dlyb->ops->set_input_ck)
607 		dlyb->ops->set_input_ck(dlyb);
608 
609 	phase = end_of_len - max_len / 2;
610 	ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
611 	if (ret) {
612 		dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n");
613 		return ret;
614 	}
615 
616 	dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
617 		dlyb->unit, dlyb->max, phase);
618 
619 	return 0;
620 }
621 
622 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
623 {
624 	struct mmci_host *host = mmc_priv(mmc);
625 	struct sdmmc_dlyb *dlyb = host->variant_priv;
626 	u32 clk;
627 	int ret;
628 
629 	if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 &&
630 	     host->mmc->ios.timing != MMC_TIMING_MMC_HS200) ||
631 	    host->mmc->actual_clock <= 50000000)
632 		return 0;
633 
634 	if (!dlyb || !dlyb->base)
635 		return -EINVAL;
636 
637 	ret = dlyb->ops->dlyb_enable(dlyb);
638 	if (ret)
639 		return ret;
640 
641 	/*
642 	 * SDMMC_FBCK is selected when an external Delay Block is needed
643 	 * with SDR104 or HS200.
644 	 */
645 	clk = host->clk_reg;
646 	clk &= ~MCI_STM32_CLK_SEL_MSK;
647 	clk |= MCI_STM32_CLK_SELFBCK;
648 	mmci_write_clkreg(host, clk);
649 
650 	ret = dlyb->ops->tuning_prepare(host);
651 	if (ret)
652 		return ret;
653 
654 	return sdmmc_dlyb_phase_tuning(host, opcode);
655 }
656 
657 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
658 {
659 	/* clear the voltage switch completion flag */
660 	writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
661 	/* enable Voltage switch procedure */
662 	mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
663 }
664 
665 static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
666 				      struct mmc_ios *ios)
667 {
668 	unsigned long flags;
669 	u32 status;
670 	int ret = 0;
671 
672 	spin_lock_irqsave(&host->lock, flags);
673 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
674 	    host->pwr_reg & MCI_STM32_VSWITCHEN) {
675 		mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
676 		spin_unlock_irqrestore(&host->lock, flags);
677 
678 		/* wait voltage switch completion while 10ms */
679 		ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
680 						 status,
681 						 (status & MCI_STM32_VSWEND),
682 						 10, SDMMC_VSWEND_TIMEOUT_US);
683 
684 		writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
685 			       host->base + MMCICLEAR);
686 		spin_lock_irqsave(&host->lock, flags);
687 		mmci_write_pwrreg(host, host->pwr_reg &
688 				  ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
689 	}
690 	spin_unlock_irqrestore(&host->lock, flags);
691 
692 	return ret;
693 }
694 
695 static struct mmci_host_ops sdmmc_variant_ops = {
696 	.validate_data = sdmmc_idma_validate_data,
697 	.prep_data = sdmmc_idma_prep_data,
698 	.unprep_data = sdmmc_idma_unprep_data,
699 	.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
700 	.dma_setup = sdmmc_idma_setup,
701 	.dma_start = sdmmc_idma_start,
702 	.dma_finalize = sdmmc_idma_finalize,
703 	.dma_error = sdmmc_idma_error,
704 	.set_clkreg = mmci_sdmmc_set_clkreg,
705 	.set_pwrreg = mmci_sdmmc_set_pwrreg,
706 	.busy_complete = sdmmc_busy_complete,
707 	.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
708 	.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
709 };
710 
711 static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = {
712 	.dlyb_enable = sdmmc_dlyb_mp15_enable,
713 	.set_input_ck = sdmmc_dlyb_mp15_input_ck,
714 	.tuning_prepare = sdmmc_dlyb_mp15_prepare,
715 	.set_cfg = sdmmc_dlyb_mp15_set_cfg,
716 };
717 
718 static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = {
719 	.dlyb_enable = sdmmc_dlyb_mp25_enable,
720 	.tuning_prepare = sdmmc_dlyb_mp25_prepare,
721 	.set_cfg = sdmmc_dlyb_mp25_set_cfg,
722 };
723 
724 void sdmmc_variant_init(struct mmci_host *host)
725 {
726 	struct device_node *np = host->mmc->parent->of_node;
727 	void __iomem *base_dlyb;
728 	struct sdmmc_dlyb *dlyb;
729 
730 	host->ops = &sdmmc_variant_ops;
731 	host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
732 
733 	base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
734 	if (IS_ERR(base_dlyb))
735 		return;
736 
737 	dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
738 	if (!dlyb)
739 		return;
740 
741 	dlyb->base = base_dlyb;
742 	if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2"))
743 		dlyb->ops = &dlyb_tuning_mp25_ops;
744 	else
745 		dlyb->ops = &dlyb_tuning_mp15_ops;
746 
747 	host->variant_priv = dlyb;
748 	host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
749 }
750