xref: /linux/drivers/mmc/host/mmci_stm32_sdmmc.c (revision 802fee26d8afd073c630a74dbe1a996970f3fd90)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4  * Author: Ludovic.barre@st.com for STMicroelectronics.
5  */
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/iopoll.h>
10 #include <linux/mmc/host.h>
11 #include <linux/mmc/card.h>
12 #include <linux/of_address.h>
13 #include <linux/reset.h>
14 #include <linux/scatterlist.h>
15 #include "mmci.h"
16 
17 #define SDMMC_LLI_BUF_LEN	PAGE_SIZE
18 #define SDMMC_IDMA_BURST	BIT(MMCI_STM32_IDMABNDT_SHIFT)
19 
20 #define DLYB_CR			0x0
21 #define DLYB_CR_DEN		BIT(0)
22 #define DLYB_CR_SEN		BIT(1)
23 
24 #define DLYB_CFGR		0x4
25 #define DLYB_CFGR_SEL_MASK	GENMASK(3, 0)
26 #define DLYB_CFGR_UNIT_MASK	GENMASK(14, 8)
27 #define DLYB_CFGR_LNG_MASK	GENMASK(27, 16)
28 #define DLYB_CFGR_LNGF		BIT(31)
29 
30 #define DLYB_NB_DELAY		11
31 #define DLYB_CFGR_SEL_MAX	(DLYB_NB_DELAY + 1)
32 #define DLYB_CFGR_UNIT_MAX	127
33 
34 #define DLYB_LNG_TIMEOUT_US	1000
35 #define SDMMC_VSWEND_TIMEOUT_US 10000
36 
37 struct sdmmc_lli_desc {
38 	u32 idmalar;
39 	u32 idmabase;
40 	u32 idmasize;
41 };
42 
43 struct sdmmc_idma {
44 	dma_addr_t sg_dma;
45 	void *sg_cpu;
46 };
47 
48 struct sdmmc_dlyb {
49 	void __iomem *base;
50 	u32 unit;
51 	u32 max;
52 };
53 
54 static int sdmmc_idma_validate_data(struct mmci_host *host,
55 				    struct mmc_data *data)
56 {
57 	struct scatterlist *sg;
58 	int i;
59 
60 	/*
61 	 * idma has constraints on idmabase & idmasize for each element
62 	 * excepted the last element which has no constraint on idmasize
63 	 */
64 	for_each_sg(data->sg, sg, data->sg_len - 1, i) {
65 		if (!IS_ALIGNED(data->sg->offset, sizeof(u32)) ||
66 		    !IS_ALIGNED(data->sg->length, SDMMC_IDMA_BURST)) {
67 			dev_err(mmc_dev(host->mmc),
68 				"unaligned scatterlist: ofst:%x length:%d\n",
69 				data->sg->offset, data->sg->length);
70 			return -EINVAL;
71 		}
72 	}
73 
74 	if (!IS_ALIGNED(data->sg->offset, sizeof(u32))) {
75 		dev_err(mmc_dev(host->mmc),
76 			"unaligned last scatterlist: ofst:%x length:%d\n",
77 			data->sg->offset, data->sg->length);
78 		return -EINVAL;
79 	}
80 
81 	return 0;
82 }
83 
84 static int _sdmmc_idma_prep_data(struct mmci_host *host,
85 				 struct mmc_data *data)
86 {
87 	int n_elem;
88 
89 	n_elem = dma_map_sg(mmc_dev(host->mmc),
90 			    data->sg,
91 			    data->sg_len,
92 			    mmc_get_dma_dir(data));
93 
94 	if (!n_elem) {
95 		dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
96 		return -EINVAL;
97 	}
98 
99 	return 0;
100 }
101 
102 static int sdmmc_idma_prep_data(struct mmci_host *host,
103 				struct mmc_data *data, bool next)
104 {
105 	/* Check if job is already prepared. */
106 	if (!next && data->host_cookie == host->next_cookie)
107 		return 0;
108 
109 	return _sdmmc_idma_prep_data(host, data);
110 }
111 
112 static void sdmmc_idma_unprep_data(struct mmci_host *host,
113 				   struct mmc_data *data, int err)
114 {
115 	dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
116 		     mmc_get_dma_dir(data));
117 }
118 
119 static int sdmmc_idma_setup(struct mmci_host *host)
120 {
121 	struct sdmmc_idma *idma;
122 	struct device *dev = mmc_dev(host->mmc);
123 
124 	idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
125 	if (!idma)
126 		return -ENOMEM;
127 
128 	host->dma_priv = idma;
129 
130 	if (host->variant->dma_lli) {
131 		idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
132 						   &idma->sg_dma, GFP_KERNEL);
133 		if (!idma->sg_cpu) {
134 			dev_err(dev, "Failed to alloc IDMA descriptor\n");
135 			return -ENOMEM;
136 		}
137 		host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
138 			sizeof(struct sdmmc_lli_desc);
139 		host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
140 	} else {
141 		host->mmc->max_segs = 1;
142 		host->mmc->max_seg_size = host->mmc->max_req_size;
143 	}
144 
145 	return dma_set_max_seg_size(dev, host->mmc->max_seg_size);
146 }
147 
148 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
149 
150 {
151 	struct sdmmc_idma *idma = host->dma_priv;
152 	struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
153 	struct mmc_data *data = host->data;
154 	struct scatterlist *sg;
155 	int i;
156 
157 	if (!host->variant->dma_lli || data->sg_len == 1) {
158 		writel_relaxed(sg_dma_address(data->sg),
159 			       host->base + MMCI_STM32_IDMABASE0R);
160 		writel_relaxed(MMCI_STM32_IDMAEN,
161 			       host->base + MMCI_STM32_IDMACTRLR);
162 		return 0;
163 	}
164 
165 	for_each_sg(data->sg, sg, data->sg_len, i) {
166 		desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
167 		desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
168 			| MMCI_STM32_ABR;
169 		desc[i].idmabase = sg_dma_address(sg);
170 		desc[i].idmasize = sg_dma_len(sg);
171 	}
172 
173 	/* notice the end of link list */
174 	desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
175 
176 	dma_wmb();
177 	writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
178 	writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
179 	writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
180 	writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
181 	writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
182 		       host->base + MMCI_STM32_IDMACTRLR);
183 
184 	return 0;
185 }
186 
187 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
188 {
189 	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
190 
191 	if (!data->host_cookie)
192 		sdmmc_idma_unprep_data(host, data, 0);
193 }
194 
195 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
196 {
197 	unsigned int clk = 0, ddr = 0;
198 
199 	if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
200 	    host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
201 		ddr = MCI_STM32_CLK_DDR;
202 
203 	/*
204 	 * cclk = mclk / (2 * clkdiv)
205 	 * clkdiv 0 => bypass
206 	 * in ddr mode bypass is not possible
207 	 */
208 	if (desired) {
209 		if (desired >= host->mclk && !ddr) {
210 			host->cclk = host->mclk;
211 		} else {
212 			clk = DIV_ROUND_UP(host->mclk, 2 * desired);
213 			if (clk > MCI_STM32_CLK_CLKDIV_MSK)
214 				clk = MCI_STM32_CLK_CLKDIV_MSK;
215 			host->cclk = host->mclk / (2 * clk);
216 		}
217 	} else {
218 		/*
219 		 * while power-on phase the clock can't be define to 0,
220 		 * Only power-off and power-cyc deactivate the clock.
221 		 * if desired clock is 0, set max divider
222 		 */
223 		clk = MCI_STM32_CLK_CLKDIV_MSK;
224 		host->cclk = host->mclk / (2 * clk);
225 	}
226 
227 	/* Set actual clock for debug */
228 	if (host->mmc->ios.power_mode == MMC_POWER_ON)
229 		host->mmc->actual_clock = host->cclk;
230 	else
231 		host->mmc->actual_clock = 0;
232 
233 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
234 		clk |= MCI_STM32_CLK_WIDEBUS_4;
235 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
236 		clk |= MCI_STM32_CLK_WIDEBUS_8;
237 
238 	clk |= MCI_STM32_CLK_HWFCEN;
239 	clk |= host->clk_reg_add;
240 	clk |= ddr;
241 
242 	/*
243 	 * SDMMC_FBCK is selected when an external Delay Block is needed
244 	 * with SDR104.
245 	 */
246 	if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) {
247 		clk |= MCI_STM32_CLK_BUSSPEED;
248 		if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104) {
249 			clk &= ~MCI_STM32_CLK_SEL_MSK;
250 			clk |= MCI_STM32_CLK_SELFBCK;
251 		}
252 	}
253 
254 	mmci_write_clkreg(host, clk);
255 }
256 
257 static void sdmmc_dlyb_input_ck(struct sdmmc_dlyb *dlyb)
258 {
259 	if (!dlyb || !dlyb->base)
260 		return;
261 
262 	/* Output clock = Input clock */
263 	writel_relaxed(0, dlyb->base + DLYB_CR);
264 }
265 
266 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
267 {
268 	struct mmc_ios ios = host->mmc->ios;
269 	struct sdmmc_dlyb *dlyb = host->variant_priv;
270 
271 	/* adds OF options */
272 	pwr = host->pwr_reg_add;
273 
274 	sdmmc_dlyb_input_ck(dlyb);
275 
276 	if (ios.power_mode == MMC_POWER_OFF) {
277 		/* Only a reset could power-off sdmmc */
278 		reset_control_assert(host->rst);
279 		udelay(2);
280 		reset_control_deassert(host->rst);
281 
282 		/*
283 		 * Set the SDMMC in Power-cycle state.
284 		 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
285 		 * are driven low, to prevent the Card from being supplied
286 		 * through the signal lines.
287 		 */
288 		mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
289 	} else if (ios.power_mode == MMC_POWER_ON) {
290 		/*
291 		 * After power-off (reset): the irq mask defined in probe
292 		 * functionis lost
293 		 * ault irq mask (probe) must be activated
294 		 */
295 		writel(MCI_IRQENABLE | host->variant->start_err,
296 		       host->base + MMCIMASK0);
297 
298 		/* preserves voltage switch bits */
299 		pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
300 					MCI_STM32_VSWITCH);
301 
302 		/*
303 		 * After a power-cycle state, we must set the SDMMC in
304 		 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
305 		 * driven high. Then we can set the SDMMC to Power-on state
306 		 */
307 		mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
308 		mdelay(1);
309 		mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
310 	}
311 }
312 
313 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
314 {
315 	u32 datactrl;
316 
317 	datactrl = mmci_dctrl_blksz(host);
318 
319 	if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
320 	    host->data->blocks == 1)
321 		datactrl |= MCI_DPSM_STM32_MODE_SDIO;
322 	else if (host->data->stop && !host->mrq->sbc)
323 		datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
324 	else
325 		datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
326 
327 	return datactrl;
328 }
329 
330 static bool sdmmc_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
331 {
332 	void __iomem *base = host->base;
333 	u32 busy_d0, busy_d0end, mask, sdmmc_status;
334 
335 	mask = readl_relaxed(base + MMCIMASK0);
336 	sdmmc_status = readl_relaxed(base + MMCISTATUS);
337 	busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
338 	busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
339 
340 	/* complete if there is an error or busy_d0end */
341 	if ((status & err_msk) || busy_d0end)
342 		goto complete;
343 
344 	/*
345 	 * On response the busy signaling is reflected in the BUSYD0 flag.
346 	 * if busy_d0 is in-progress we must activate busyd0end interrupt
347 	 * to wait this completion. Else this request has no busy step.
348 	 */
349 	if (busy_d0) {
350 		if (!host->busy_status) {
351 			writel_relaxed(mask | host->variant->busy_detect_mask,
352 				       base + MMCIMASK0);
353 			host->busy_status = status &
354 				(MCI_CMDSENT | MCI_CMDRESPEND);
355 		}
356 		return false;
357 	}
358 
359 complete:
360 	if (host->busy_status) {
361 		writel_relaxed(mask & ~host->variant->busy_detect_mask,
362 			       base + MMCIMASK0);
363 		host->busy_status = 0;
364 	}
365 
366 	writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
367 
368 	return true;
369 }
370 
371 static void sdmmc_dlyb_set_cfgr(struct sdmmc_dlyb *dlyb,
372 				int unit, int phase, bool sampler)
373 {
374 	u32 cfgr;
375 
376 	writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
377 
378 	cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
379 	       FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
380 	writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
381 
382 	if (!sampler)
383 		writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
384 }
385 
386 static int sdmmc_dlyb_lng_tuning(struct mmci_host *host)
387 {
388 	struct sdmmc_dlyb *dlyb = host->variant_priv;
389 	u32 cfgr;
390 	int i, lng, ret;
391 
392 	for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
393 		sdmmc_dlyb_set_cfgr(dlyb, i, DLYB_CFGR_SEL_MAX, true);
394 
395 		ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
396 						 (cfgr & DLYB_CFGR_LNGF),
397 						 1, DLYB_LNG_TIMEOUT_US);
398 		if (ret) {
399 			dev_warn(mmc_dev(host->mmc),
400 				 "delay line cfg timeout unit:%d cfgr:%d\n",
401 				 i, cfgr);
402 			continue;
403 		}
404 
405 		lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
406 		if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
407 			break;
408 	}
409 
410 	if (i > DLYB_CFGR_UNIT_MAX)
411 		return -EINVAL;
412 
413 	dlyb->unit = i;
414 	dlyb->max = __fls(lng);
415 
416 	return 0;
417 }
418 
419 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
420 {
421 	struct sdmmc_dlyb *dlyb = host->variant_priv;
422 	int cur_len = 0, max_len = 0, end_of_len = 0;
423 	int phase;
424 
425 	for (phase = 0; phase <= dlyb->max; phase++) {
426 		sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
427 
428 		if (mmc_send_tuning(host->mmc, opcode, NULL)) {
429 			cur_len = 0;
430 		} else {
431 			cur_len++;
432 			if (cur_len > max_len) {
433 				max_len = cur_len;
434 				end_of_len = phase;
435 			}
436 		}
437 	}
438 
439 	if (!max_len) {
440 		dev_err(mmc_dev(host->mmc), "no tuning point found\n");
441 		return -EINVAL;
442 	}
443 
444 	phase = end_of_len - max_len / 2;
445 	sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
446 
447 	dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
448 		dlyb->unit, dlyb->max, phase);
449 
450 	return 0;
451 }
452 
453 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
454 {
455 	struct mmci_host *host = mmc_priv(mmc);
456 	struct sdmmc_dlyb *dlyb = host->variant_priv;
457 
458 	if (!dlyb || !dlyb->base)
459 		return -EINVAL;
460 
461 	if (sdmmc_dlyb_lng_tuning(host))
462 		return -EINVAL;
463 
464 	return sdmmc_dlyb_phase_tuning(host, opcode);
465 }
466 
467 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
468 {
469 	/* clear the voltage switch completion flag */
470 	writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
471 	/* enable Voltage switch procedure */
472 	mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
473 }
474 
475 static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
476 				      struct mmc_ios *ios)
477 {
478 	unsigned long flags;
479 	u32 status;
480 	int ret = 0;
481 
482 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
483 		spin_lock_irqsave(&host->lock, flags);
484 		mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
485 		spin_unlock_irqrestore(&host->lock, flags);
486 
487 		/* wait voltage switch completion while 10ms */
488 		ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
489 						 status,
490 						 (status & MCI_STM32_VSWEND),
491 						 10, SDMMC_VSWEND_TIMEOUT_US);
492 
493 		writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
494 			       host->base + MMCICLEAR);
495 		mmci_write_pwrreg(host, host->pwr_reg &
496 				  ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
497 	}
498 
499 	return ret;
500 }
501 
502 static struct mmci_host_ops sdmmc_variant_ops = {
503 	.validate_data = sdmmc_idma_validate_data,
504 	.prep_data = sdmmc_idma_prep_data,
505 	.unprep_data = sdmmc_idma_unprep_data,
506 	.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
507 	.dma_setup = sdmmc_idma_setup,
508 	.dma_start = sdmmc_idma_start,
509 	.dma_finalize = sdmmc_idma_finalize,
510 	.set_clkreg = mmci_sdmmc_set_clkreg,
511 	.set_pwrreg = mmci_sdmmc_set_pwrreg,
512 	.busy_complete = sdmmc_busy_complete,
513 	.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
514 	.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
515 };
516 
517 void sdmmc_variant_init(struct mmci_host *host)
518 {
519 	struct device_node *np = host->mmc->parent->of_node;
520 	void __iomem *base_dlyb;
521 	struct sdmmc_dlyb *dlyb;
522 
523 	host->ops = &sdmmc_variant_ops;
524 	host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
525 
526 	base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
527 	if (IS_ERR(base_dlyb))
528 		return;
529 
530 	dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
531 	if (!dlyb)
532 		return;
533 
534 	dlyb->base = base_dlyb;
535 	host->variant_priv = dlyb;
536 	host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
537 }
538