1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved 4 * Author: Ludovic.barre@st.com for STMicroelectronics. 5 */ 6 #include <linux/bitfield.h> 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/iopoll.h> 10 #include <linux/mmc/host.h> 11 #include <linux/mmc/card.h> 12 #include <linux/of_address.h> 13 #include <linux/reset.h> 14 #include <linux/scatterlist.h> 15 #include "mmci.h" 16 17 #define SDMMC_LLI_BUF_LEN PAGE_SIZE 18 19 #define DLYB_CR 0x0 20 #define DLYB_CR_DEN BIT(0) 21 #define DLYB_CR_SEN BIT(1) 22 23 #define DLYB_CFGR 0x4 24 #define DLYB_CFGR_SEL_MASK GENMASK(3, 0) 25 #define DLYB_CFGR_UNIT_MASK GENMASK(14, 8) 26 #define DLYB_CFGR_LNG_MASK GENMASK(27, 16) 27 #define DLYB_CFGR_LNGF BIT(31) 28 29 #define DLYB_NB_DELAY 11 30 #define DLYB_CFGR_SEL_MAX (DLYB_NB_DELAY + 1) 31 #define DLYB_CFGR_UNIT_MAX 127 32 33 #define DLYB_LNG_TIMEOUT_US 1000 34 #define SDMMC_VSWEND_TIMEOUT_US 10000 35 36 #define SYSCFG_DLYBSD_CR 0x0 37 #define DLYBSD_CR_EN BIT(0) 38 #define DLYBSD_CR_RXTAPSEL_MASK GENMASK(6, 1) 39 #define DLYBSD_TAPSEL_NB 32 40 #define DLYBSD_BYP_EN BIT(16) 41 #define DLYBSD_BYP_CMD GENMASK(21, 17) 42 #define DLYBSD_ANTIGLITCH_EN BIT(22) 43 44 #define SYSCFG_DLYBSD_SR 0x4 45 #define DLYBSD_SR_LOCK BIT(0) 46 #define DLYBSD_SR_RXTAPSEL_ACK BIT(1) 47 48 #define DLYBSD_TIMEOUT_1S_IN_US 1000000 49 50 struct sdmmc_lli_desc { 51 u32 idmalar; 52 u32 idmabase; 53 u32 idmasize; 54 }; 55 56 struct sdmmc_idma { 57 dma_addr_t sg_dma; 58 void *sg_cpu; 59 dma_addr_t bounce_dma_addr; 60 void *bounce_buf; 61 bool use_bounce_buffer; 62 }; 63 64 struct sdmmc_dlyb; 65 66 struct sdmmc_tuning_ops { 67 int (*dlyb_enable)(struct sdmmc_dlyb *dlyb); 68 void (*set_input_ck)(struct sdmmc_dlyb *dlyb); 69 int (*tuning_prepare)(struct mmci_host *host); 70 int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused, 71 int phase, bool sampler __maybe_unused); 72 }; 73 74 struct sdmmc_dlyb { 75 void __iomem *base; 76 u32 unit; 77 u32 max; 78 struct sdmmc_tuning_ops *ops; 79 }; 80 81 static int sdmmc_idma_validate_data(struct mmci_host *host, 82 struct mmc_data *data) 83 { 84 struct sdmmc_idma *idma = host->dma_priv; 85 struct device *dev = mmc_dev(host->mmc); 86 struct scatterlist *sg; 87 int i; 88 89 /* 90 * idma has constraints on idmabase & idmasize for each element 91 * excepted the last element which has no constraint on idmasize 92 */ 93 idma->use_bounce_buffer = false; 94 for_each_sg(data->sg, sg, data->sg_len - 1, i) { 95 if (!IS_ALIGNED(sg->offset, sizeof(u32)) || 96 !IS_ALIGNED(sg->length, 97 host->variant->stm32_idmabsize_align)) { 98 dev_dbg(mmc_dev(host->mmc), 99 "unaligned scatterlist: ofst:%x length:%d\n", 100 data->sg->offset, data->sg->length); 101 goto use_bounce_buffer; 102 } 103 } 104 105 if (!IS_ALIGNED(sg->offset, sizeof(u32))) { 106 dev_dbg(mmc_dev(host->mmc), 107 "unaligned last scatterlist: ofst:%x length:%d\n", 108 data->sg->offset, data->sg->length); 109 goto use_bounce_buffer; 110 } 111 112 return 0; 113 114 use_bounce_buffer: 115 if (!idma->bounce_buf) { 116 idma->bounce_buf = dmam_alloc_coherent(dev, 117 host->mmc->max_req_size, 118 &idma->bounce_dma_addr, 119 GFP_KERNEL); 120 if (!idma->bounce_buf) { 121 dev_err(dev, "Unable to map allocate DMA bounce buffer.\n"); 122 return -ENOMEM; 123 } 124 } 125 126 idma->use_bounce_buffer = true; 127 128 return 0; 129 } 130 131 static int _sdmmc_idma_prep_data(struct mmci_host *host, 132 struct mmc_data *data) 133 { 134 struct sdmmc_idma *idma = host->dma_priv; 135 136 if (idma->use_bounce_buffer) { 137 if (data->flags & MMC_DATA_WRITE) { 138 unsigned int xfer_bytes = data->blksz * data->blocks; 139 140 sg_copy_to_buffer(data->sg, data->sg_len, 141 idma->bounce_buf, xfer_bytes); 142 dma_wmb(); 143 } 144 } else { 145 int n_elem; 146 147 n_elem = dma_map_sg(mmc_dev(host->mmc), 148 data->sg, 149 data->sg_len, 150 mmc_get_dma_dir(data)); 151 152 if (!n_elem) { 153 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n"); 154 return -EINVAL; 155 } 156 } 157 return 0; 158 } 159 160 static int sdmmc_idma_prep_data(struct mmci_host *host, 161 struct mmc_data *data, bool next) 162 { 163 /* Check if job is already prepared. */ 164 if (!next && data->host_cookie == host->next_cookie) 165 return 0; 166 167 return _sdmmc_idma_prep_data(host, data); 168 } 169 170 static void sdmmc_idma_unprep_data(struct mmci_host *host, 171 struct mmc_data *data, int err) 172 { 173 struct sdmmc_idma *idma = host->dma_priv; 174 175 if (idma->use_bounce_buffer) { 176 if (data->flags & MMC_DATA_READ) { 177 unsigned int xfer_bytes = data->blksz * data->blocks; 178 179 sg_copy_from_buffer(data->sg, data->sg_len, 180 idma->bounce_buf, xfer_bytes); 181 } 182 } else { 183 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 184 mmc_get_dma_dir(data)); 185 } 186 } 187 188 static int sdmmc_idma_setup(struct mmci_host *host) 189 { 190 struct sdmmc_idma *idma; 191 struct device *dev = mmc_dev(host->mmc); 192 193 idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL); 194 if (!idma) 195 return -ENOMEM; 196 197 host->dma_priv = idma; 198 199 if (host->variant->dma_lli) { 200 idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN, 201 &idma->sg_dma, GFP_KERNEL); 202 if (!idma->sg_cpu) { 203 dev_err(dev, "Failed to alloc IDMA descriptor\n"); 204 return -ENOMEM; 205 } 206 host->mmc->max_segs = SDMMC_LLI_BUF_LEN / 207 sizeof(struct sdmmc_lli_desc); 208 host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask; 209 210 host->mmc->max_req_size = SZ_1M; 211 } else { 212 host->mmc->max_segs = 1; 213 host->mmc->max_seg_size = host->mmc->max_req_size; 214 } 215 216 return dma_set_max_seg_size(dev, host->mmc->max_seg_size); 217 } 218 219 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl) 220 221 { 222 struct sdmmc_idma *idma = host->dma_priv; 223 struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu; 224 struct mmc_data *data = host->data; 225 struct scatterlist *sg; 226 int i; 227 228 if (!host->variant->dma_lli || data->sg_len == 1 || 229 idma->use_bounce_buffer) { 230 u32 dma_addr; 231 232 if (idma->use_bounce_buffer) 233 dma_addr = idma->bounce_dma_addr; 234 else 235 dma_addr = sg_dma_address(data->sg); 236 237 writel_relaxed(dma_addr, 238 host->base + MMCI_STM32_IDMABASE0R); 239 writel_relaxed(MMCI_STM32_IDMAEN, 240 host->base + MMCI_STM32_IDMACTRLR); 241 return 0; 242 } 243 244 for_each_sg(data->sg, sg, data->sg_len, i) { 245 desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc); 246 desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS 247 | MMCI_STM32_ABR; 248 desc[i].idmabase = sg_dma_address(sg); 249 desc[i].idmasize = sg_dma_len(sg); 250 } 251 252 /* notice the end of link list */ 253 desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA; 254 255 dma_wmb(); 256 writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR); 257 writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR); 258 writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R); 259 writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER); 260 writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN, 261 host->base + MMCI_STM32_IDMACTRLR); 262 263 return 0; 264 } 265 266 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data) 267 { 268 writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR); 269 270 if (!data->host_cookie) 271 sdmmc_idma_unprep_data(host, data, 0); 272 } 273 274 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired) 275 { 276 unsigned int clk = 0, ddr = 0; 277 278 if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 || 279 host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) 280 ddr = MCI_STM32_CLK_DDR; 281 282 /* 283 * cclk = mclk / (2 * clkdiv) 284 * clkdiv 0 => bypass 285 * in ddr mode bypass is not possible 286 */ 287 if (desired) { 288 if (desired >= host->mclk && !ddr) { 289 host->cclk = host->mclk; 290 } else { 291 clk = DIV_ROUND_UP(host->mclk, 2 * desired); 292 if (clk > MCI_STM32_CLK_CLKDIV_MSK) 293 clk = MCI_STM32_CLK_CLKDIV_MSK; 294 host->cclk = host->mclk / (2 * clk); 295 } 296 } else { 297 /* 298 * while power-on phase the clock can't be define to 0, 299 * Only power-off and power-cyc deactivate the clock. 300 * if desired clock is 0, set max divider 301 */ 302 clk = MCI_STM32_CLK_CLKDIV_MSK; 303 host->cclk = host->mclk / (2 * clk); 304 } 305 306 /* Set actual clock for debug */ 307 if (host->mmc->ios.power_mode == MMC_POWER_ON) 308 host->mmc->actual_clock = host->cclk; 309 else 310 host->mmc->actual_clock = 0; 311 312 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 313 clk |= MCI_STM32_CLK_WIDEBUS_4; 314 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 315 clk |= MCI_STM32_CLK_WIDEBUS_8; 316 317 clk |= MCI_STM32_CLK_HWFCEN; 318 clk |= host->clk_reg_add; 319 clk |= ddr; 320 321 if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) 322 clk |= MCI_STM32_CLK_BUSSPEED; 323 324 mmci_write_clkreg(host, clk); 325 } 326 327 static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb) 328 { 329 if (!dlyb || !dlyb->base) 330 return; 331 332 /* Output clock = Input clock */ 333 writel_relaxed(0, dlyb->base + DLYB_CR); 334 } 335 336 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr) 337 { 338 struct mmc_ios ios = host->mmc->ios; 339 struct sdmmc_dlyb *dlyb = host->variant_priv; 340 341 /* adds OF options */ 342 pwr = host->pwr_reg_add; 343 344 if (dlyb && dlyb->ops->set_input_ck) 345 dlyb->ops->set_input_ck(dlyb); 346 347 if (ios.power_mode == MMC_POWER_OFF) { 348 /* Only a reset could power-off sdmmc */ 349 reset_control_assert(host->rst); 350 udelay(2); 351 reset_control_deassert(host->rst); 352 353 /* 354 * Set the SDMMC in Power-cycle state. 355 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK 356 * are driven low, to prevent the Card from being supplied 357 * through the signal lines. 358 */ 359 mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr); 360 } else if (ios.power_mode == MMC_POWER_ON) { 361 /* 362 * After power-off (reset): the irq mask defined in probe 363 * functionis lost 364 * ault irq mask (probe) must be activated 365 */ 366 writel(MCI_IRQENABLE | host->variant->start_err, 367 host->base + MMCIMASK0); 368 369 /* preserves voltage switch bits */ 370 pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN | 371 MCI_STM32_VSWITCH); 372 373 /* 374 * After a power-cycle state, we must set the SDMMC in 375 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are 376 * driven high. Then we can set the SDMMC to Power-on state 377 */ 378 mmci_write_pwrreg(host, MCI_PWR_OFF | pwr); 379 mdelay(1); 380 mmci_write_pwrreg(host, MCI_PWR_ON | pwr); 381 } 382 } 383 384 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host) 385 { 386 u32 datactrl; 387 388 datactrl = mmci_dctrl_blksz(host); 389 390 if (host->hw_revision >= 3) { 391 u32 thr = 0; 392 393 if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 || 394 host->mmc->ios.timing == MMC_TIMING_MMC_HS200) { 395 thr = ffs(min_t(unsigned int, host->data->blksz, 396 host->variant->fifosize)); 397 thr = min_t(u32, thr, MMCI_STM32_THR_MASK); 398 } 399 400 writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR); 401 } 402 403 if (host->mmc->card && mmc_card_sdio(host->mmc->card) && 404 host->data->blocks == 1) 405 datactrl |= MCI_DPSM_STM32_MODE_SDIO; 406 else if (host->data->stop && !host->mrq->sbc) 407 datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP; 408 else 409 datactrl |= MCI_DPSM_STM32_MODE_BLOCK; 410 411 return datactrl; 412 } 413 414 static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd, 415 u32 status, u32 err_msk) 416 { 417 void __iomem *base = host->base; 418 u32 busy_d0, busy_d0end, mask, sdmmc_status; 419 420 mask = readl_relaxed(base + MMCIMASK0); 421 sdmmc_status = readl_relaxed(base + MMCISTATUS); 422 busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END; 423 busy_d0 = sdmmc_status & MCI_STM32_BUSYD0; 424 425 /* complete if there is an error or busy_d0end */ 426 if ((status & err_msk) || busy_d0end) 427 goto complete; 428 429 /* 430 * On response the busy signaling is reflected in the BUSYD0 flag. 431 * if busy_d0 is in-progress we must activate busyd0end interrupt 432 * to wait this completion. Else this request has no busy step. 433 */ 434 if (busy_d0) { 435 if (!host->busy_status) { 436 writel_relaxed(mask | host->variant->busy_detect_mask, 437 base + MMCIMASK0); 438 host->busy_status = status & 439 (MCI_CMDSENT | MCI_CMDRESPEND); 440 } 441 return false; 442 } 443 444 complete: 445 if (host->busy_status) { 446 writel_relaxed(mask & ~host->variant->busy_detect_mask, 447 base + MMCIMASK0); 448 host->busy_status = 0; 449 } 450 451 writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR); 452 453 return true; 454 } 455 456 static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb) 457 { 458 writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR); 459 460 return 0; 461 } 462 463 static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb, 464 int unit, int phase, bool sampler) 465 { 466 u32 cfgr; 467 468 writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR); 469 470 cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) | 471 FIELD_PREP(DLYB_CFGR_SEL_MASK, phase); 472 writel_relaxed(cfgr, dlyb->base + DLYB_CFGR); 473 474 if (!sampler) 475 writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR); 476 477 return 0; 478 } 479 480 static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host) 481 { 482 struct sdmmc_dlyb *dlyb = host->variant_priv; 483 u32 cfgr; 484 int i, lng, ret; 485 486 for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) { 487 dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true); 488 489 ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr, 490 (cfgr & DLYB_CFGR_LNGF), 491 1, DLYB_LNG_TIMEOUT_US); 492 if (ret) { 493 dev_warn(mmc_dev(host->mmc), 494 "delay line cfg timeout unit:%d cfgr:%d\n", 495 i, cfgr); 496 continue; 497 } 498 499 lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr); 500 if (lng < BIT(DLYB_NB_DELAY) && lng > 0) 501 break; 502 } 503 504 if (i > DLYB_CFGR_UNIT_MAX) 505 return -EINVAL; 506 507 dlyb->unit = i; 508 dlyb->max = __fls(lng); 509 510 return 0; 511 } 512 513 static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb) 514 { 515 u32 cr, sr; 516 517 cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR); 518 cr |= DLYBSD_CR_EN; 519 520 writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR); 521 522 return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR, 523 sr, sr & DLYBSD_SR_LOCK, 1, 524 DLYBSD_TIMEOUT_1S_IN_US); 525 } 526 527 static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb, 528 int unit __maybe_unused, int phase, 529 bool sampler __maybe_unused) 530 { 531 u32 cr, sr; 532 533 cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR); 534 cr &= ~DLYBSD_CR_RXTAPSEL_MASK; 535 cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase); 536 537 writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR); 538 539 return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR, 540 sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1, 541 DLYBSD_TIMEOUT_1S_IN_US); 542 } 543 544 static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host) 545 { 546 struct sdmmc_dlyb *dlyb = host->variant_priv; 547 548 dlyb->max = DLYBSD_TAPSEL_NB; 549 550 return 0; 551 } 552 553 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode) 554 { 555 struct sdmmc_dlyb *dlyb = host->variant_priv; 556 int cur_len = 0, max_len = 0, end_of_len = 0; 557 int phase, ret; 558 559 for (phase = 0; phase <= dlyb->max; phase++) { 560 ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false); 561 if (ret) { 562 dev_err(mmc_dev(host->mmc), "tuning config failed\n"); 563 return ret; 564 } 565 566 if (mmc_send_tuning(host->mmc, opcode, NULL)) { 567 cur_len = 0; 568 } else { 569 cur_len++; 570 if (cur_len > max_len) { 571 max_len = cur_len; 572 end_of_len = phase; 573 } 574 } 575 } 576 577 if (!max_len) { 578 dev_err(mmc_dev(host->mmc), "no tuning point found\n"); 579 return -EINVAL; 580 } 581 582 if (dlyb->ops->set_input_ck) 583 dlyb->ops->set_input_ck(dlyb); 584 585 phase = end_of_len - max_len / 2; 586 ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false); 587 if (ret) { 588 dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n"); 589 return ret; 590 } 591 592 dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n", 593 dlyb->unit, dlyb->max, phase); 594 595 return 0; 596 } 597 598 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode) 599 { 600 struct mmci_host *host = mmc_priv(mmc); 601 struct sdmmc_dlyb *dlyb = host->variant_priv; 602 u32 clk; 603 int ret; 604 605 if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 && 606 host->mmc->ios.timing != MMC_TIMING_MMC_HS200) || 607 host->mmc->actual_clock <= 50000000) 608 return 0; 609 610 if (!dlyb || !dlyb->base) 611 return -EINVAL; 612 613 ret = dlyb->ops->dlyb_enable(dlyb); 614 if (ret) 615 return ret; 616 617 /* 618 * SDMMC_FBCK is selected when an external Delay Block is needed 619 * with SDR104 or HS200. 620 */ 621 clk = host->clk_reg; 622 clk &= ~MCI_STM32_CLK_SEL_MSK; 623 clk |= MCI_STM32_CLK_SELFBCK; 624 mmci_write_clkreg(host, clk); 625 626 ret = dlyb->ops->tuning_prepare(host); 627 if (ret) 628 return ret; 629 630 return sdmmc_dlyb_phase_tuning(host, opcode); 631 } 632 633 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host) 634 { 635 /* clear the voltage switch completion flag */ 636 writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR); 637 /* enable Voltage switch procedure */ 638 mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN); 639 } 640 641 static int sdmmc_post_sig_volt_switch(struct mmci_host *host, 642 struct mmc_ios *ios) 643 { 644 unsigned long flags; 645 u32 status; 646 int ret = 0; 647 648 spin_lock_irqsave(&host->lock, flags); 649 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 && 650 host->pwr_reg & MCI_STM32_VSWITCHEN) { 651 mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH); 652 spin_unlock_irqrestore(&host->lock, flags); 653 654 /* wait voltage switch completion while 10ms */ 655 ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS, 656 status, 657 (status & MCI_STM32_VSWEND), 658 10, SDMMC_VSWEND_TIMEOUT_US); 659 660 writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC, 661 host->base + MMCICLEAR); 662 spin_lock_irqsave(&host->lock, flags); 663 mmci_write_pwrreg(host, host->pwr_reg & 664 ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH)); 665 } 666 spin_unlock_irqrestore(&host->lock, flags); 667 668 return ret; 669 } 670 671 static struct mmci_host_ops sdmmc_variant_ops = { 672 .validate_data = sdmmc_idma_validate_data, 673 .prep_data = sdmmc_idma_prep_data, 674 .unprep_data = sdmmc_idma_unprep_data, 675 .get_datactrl_cfg = sdmmc_get_dctrl_cfg, 676 .dma_setup = sdmmc_idma_setup, 677 .dma_start = sdmmc_idma_start, 678 .dma_finalize = sdmmc_idma_finalize, 679 .set_clkreg = mmci_sdmmc_set_clkreg, 680 .set_pwrreg = mmci_sdmmc_set_pwrreg, 681 .busy_complete = sdmmc_busy_complete, 682 .pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch, 683 .post_sig_volt_switch = sdmmc_post_sig_volt_switch, 684 }; 685 686 static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = { 687 .dlyb_enable = sdmmc_dlyb_mp15_enable, 688 .set_input_ck = sdmmc_dlyb_mp15_input_ck, 689 .tuning_prepare = sdmmc_dlyb_mp15_prepare, 690 .set_cfg = sdmmc_dlyb_mp15_set_cfg, 691 }; 692 693 static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = { 694 .dlyb_enable = sdmmc_dlyb_mp25_enable, 695 .tuning_prepare = sdmmc_dlyb_mp25_prepare, 696 .set_cfg = sdmmc_dlyb_mp25_set_cfg, 697 }; 698 699 void sdmmc_variant_init(struct mmci_host *host) 700 { 701 struct device_node *np = host->mmc->parent->of_node; 702 void __iomem *base_dlyb; 703 struct sdmmc_dlyb *dlyb; 704 705 host->ops = &sdmmc_variant_ops; 706 host->pwr_reg = readl_relaxed(host->base + MMCIPOWER); 707 708 base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL); 709 if (IS_ERR(base_dlyb)) 710 return; 711 712 dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL); 713 if (!dlyb) 714 return; 715 716 dlyb->base = base_dlyb; 717 if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2")) 718 dlyb->ops = &dlyb_tuning_mp25_ops; 719 else 720 dlyb->ops = &dlyb_tuning_mp15_ops; 721 722 host->variant_priv = dlyb; 723 host->mmc_ops->execute_tuning = sdmmc_execute_tuning; 724 } 725