xref: /linux/drivers/mmc/host/mmci.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/pm.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 
39 #include <asm/div64.h>
40 #include <asm/io.h>
41 #include <asm/sizes.h>
42 
43 #include "mmci.h"
44 
45 #define DRIVER_NAME "mmci-pl18x"
46 
47 static unsigned int fmax = 515633;
48 
49 /**
50  * struct variant_data - MMCI variant-specific quirks
51  * @clkreg: default value for MCICLOCK register
52  * @clkreg_enable: enable value for MMCICLOCK register
53  * @datalength_bits: number of bits in the MMCIDATALENGTH register
54  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55  *	      is asserted (likewise for RX)
56  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57  *		  is asserted (likewise for RX)
58  * @sdio: variant supports SDIO
59  * @st_clkdiv: true if using a ST-specific clock divider algorithm
60  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61  * @pwrreg_powerup: power up value for MMCIPOWER register
62  * @signal_direction: input/out direction of bus signals can be indicated
63  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64  * @busy_detect: true if busy detection on dat0 is supported
65  */
66 struct variant_data {
67 	unsigned int		clkreg;
68 	unsigned int		clkreg_enable;
69 	unsigned int		datalength_bits;
70 	unsigned int		fifosize;
71 	unsigned int		fifohalfsize;
72 	bool			sdio;
73 	bool			st_clkdiv;
74 	bool			blksz_datactrl16;
75 	u32			pwrreg_powerup;
76 	bool			signal_direction;
77 	bool			pwrreg_clkgate;
78 	bool			busy_detect;
79 };
80 
81 static struct variant_data variant_arm = {
82 	.fifosize		= 16 * 4,
83 	.fifohalfsize		= 8 * 4,
84 	.datalength_bits	= 16,
85 	.pwrreg_powerup		= MCI_PWR_UP,
86 };
87 
88 static struct variant_data variant_arm_extended_fifo = {
89 	.fifosize		= 128 * 4,
90 	.fifohalfsize		= 64 * 4,
91 	.datalength_bits	= 16,
92 	.pwrreg_powerup		= MCI_PWR_UP,
93 };
94 
95 static struct variant_data variant_arm_extended_fifo_hwfc = {
96 	.fifosize		= 128 * 4,
97 	.fifohalfsize		= 64 * 4,
98 	.clkreg_enable		= MCI_ARM_HWFCEN,
99 	.datalength_bits	= 16,
100 	.pwrreg_powerup		= MCI_PWR_UP,
101 };
102 
103 static struct variant_data variant_u300 = {
104 	.fifosize		= 16 * 4,
105 	.fifohalfsize		= 8 * 4,
106 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
107 	.datalength_bits	= 16,
108 	.sdio			= true,
109 	.pwrreg_powerup		= MCI_PWR_ON,
110 	.signal_direction	= true,
111 	.pwrreg_clkgate		= true,
112 };
113 
114 static struct variant_data variant_nomadik = {
115 	.fifosize		= 16 * 4,
116 	.fifohalfsize		= 8 * 4,
117 	.clkreg			= MCI_CLK_ENABLE,
118 	.datalength_bits	= 24,
119 	.sdio			= true,
120 	.st_clkdiv		= true,
121 	.pwrreg_powerup		= MCI_PWR_ON,
122 	.signal_direction	= true,
123 	.pwrreg_clkgate		= true,
124 };
125 
126 static struct variant_data variant_ux500 = {
127 	.fifosize		= 30 * 4,
128 	.fifohalfsize		= 8 * 4,
129 	.clkreg			= MCI_CLK_ENABLE,
130 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
131 	.datalength_bits	= 24,
132 	.sdio			= true,
133 	.st_clkdiv		= true,
134 	.pwrreg_powerup		= MCI_PWR_ON,
135 	.signal_direction	= true,
136 	.pwrreg_clkgate		= true,
137 	.busy_detect		= true,
138 };
139 
140 static struct variant_data variant_ux500v2 = {
141 	.fifosize		= 30 * 4,
142 	.fifohalfsize		= 8 * 4,
143 	.clkreg			= MCI_CLK_ENABLE,
144 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
145 	.datalength_bits	= 24,
146 	.sdio			= true,
147 	.st_clkdiv		= true,
148 	.blksz_datactrl16	= true,
149 	.pwrreg_powerup		= MCI_PWR_ON,
150 	.signal_direction	= true,
151 	.pwrreg_clkgate		= true,
152 	.busy_detect		= true,
153 };
154 
155 static int mmci_card_busy(struct mmc_host *mmc)
156 {
157 	struct mmci_host *host = mmc_priv(mmc);
158 	unsigned long flags;
159 	int busy = 0;
160 
161 	pm_runtime_get_sync(mmc_dev(mmc));
162 
163 	spin_lock_irqsave(&host->lock, flags);
164 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
165 		busy = 1;
166 	spin_unlock_irqrestore(&host->lock, flags);
167 
168 	pm_runtime_mark_last_busy(mmc_dev(mmc));
169 	pm_runtime_put_autosuspend(mmc_dev(mmc));
170 
171 	return busy;
172 }
173 
174 /*
175  * Validate mmc prerequisites
176  */
177 static int mmci_validate_data(struct mmci_host *host,
178 			      struct mmc_data *data)
179 {
180 	if (!data)
181 		return 0;
182 
183 	if (!is_power_of_2(data->blksz)) {
184 		dev_err(mmc_dev(host->mmc),
185 			"unsupported block size (%d bytes)\n", data->blksz);
186 		return -EINVAL;
187 	}
188 
189 	return 0;
190 }
191 
192 /*
193  * This must be called with host->lock held
194  */
195 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
196 {
197 	if (host->clk_reg != clk) {
198 		host->clk_reg = clk;
199 		writel(clk, host->base + MMCICLOCK);
200 	}
201 }
202 
203 /*
204  * This must be called with host->lock held
205  */
206 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
207 {
208 	if (host->pwr_reg != pwr) {
209 		host->pwr_reg = pwr;
210 		writel(pwr, host->base + MMCIPOWER);
211 	}
212 }
213 
214 /*
215  * This must be called with host->lock held
216  */
217 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
218 {
219 	/* Keep ST Micro busy mode if enabled */
220 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
221 
222 	if (host->datactrl_reg != datactrl) {
223 		host->datactrl_reg = datactrl;
224 		writel(datactrl, host->base + MMCIDATACTRL);
225 	}
226 }
227 
228 /*
229  * This must be called with host->lock held
230  */
231 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
232 {
233 	struct variant_data *variant = host->variant;
234 	u32 clk = variant->clkreg;
235 
236 	/* Make sure cclk reflects the current calculated clock */
237 	host->cclk = 0;
238 
239 	if (desired) {
240 		if (desired >= host->mclk) {
241 			clk = MCI_CLK_BYPASS;
242 			if (variant->st_clkdiv)
243 				clk |= MCI_ST_UX500_NEG_EDGE;
244 			host->cclk = host->mclk;
245 		} else if (variant->st_clkdiv) {
246 			/*
247 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
248 			 * => clkdiv = (mclk / f) - 2
249 			 * Round the divider up so we don't exceed the max
250 			 * frequency
251 			 */
252 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
253 			if (clk >= 256)
254 				clk = 255;
255 			host->cclk = host->mclk / (clk + 2);
256 		} else {
257 			/*
258 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
259 			 * => clkdiv = mclk / (2 * f) - 1
260 			 */
261 			clk = host->mclk / (2 * desired) - 1;
262 			if (clk >= 256)
263 				clk = 255;
264 			host->cclk = host->mclk / (2 * (clk + 1));
265 		}
266 
267 		clk |= variant->clkreg_enable;
268 		clk |= MCI_CLK_ENABLE;
269 		/* This hasn't proven to be worthwhile */
270 		/* clk |= MCI_CLK_PWRSAVE; */
271 	}
272 
273 	/* Set actual clock for debug */
274 	host->mmc->actual_clock = host->cclk;
275 
276 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
277 		clk |= MCI_4BIT_BUS;
278 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
279 		clk |= MCI_ST_8BIT_BUS;
280 
281 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
282 		clk |= MCI_ST_UX500_NEG_EDGE;
283 
284 	mmci_write_clkreg(host, clk);
285 }
286 
287 static void
288 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
289 {
290 	writel(0, host->base + MMCICOMMAND);
291 
292 	BUG_ON(host->data);
293 
294 	host->mrq = NULL;
295 	host->cmd = NULL;
296 
297 	mmc_request_done(host->mmc, mrq);
298 
299 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
300 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
301 }
302 
303 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
304 {
305 	void __iomem *base = host->base;
306 
307 	if (host->singleirq) {
308 		unsigned int mask0 = readl(base + MMCIMASK0);
309 
310 		mask0 &= ~MCI_IRQ1MASK;
311 		mask0 |= mask;
312 
313 		writel(mask0, base + MMCIMASK0);
314 	}
315 
316 	writel(mask, base + MMCIMASK1);
317 }
318 
319 static void mmci_stop_data(struct mmci_host *host)
320 {
321 	mmci_write_datactrlreg(host, 0);
322 	mmci_set_mask1(host, 0);
323 	host->data = NULL;
324 }
325 
326 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
327 {
328 	unsigned int flags = SG_MITER_ATOMIC;
329 
330 	if (data->flags & MMC_DATA_READ)
331 		flags |= SG_MITER_TO_SG;
332 	else
333 		flags |= SG_MITER_FROM_SG;
334 
335 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
336 }
337 
338 /*
339  * All the DMA operation mode stuff goes inside this ifdef.
340  * This assumes that you have a generic DMA device interface,
341  * no custom DMA interfaces are supported.
342  */
343 #ifdef CONFIG_DMA_ENGINE
344 static void mmci_dma_setup(struct mmci_host *host)
345 {
346 	struct mmci_platform_data *plat = host->plat;
347 	const char *rxname, *txname;
348 	dma_cap_mask_t mask;
349 
350 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
351 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
352 
353 	/* initialize pre request cookie */
354 	host->next_data.cookie = 1;
355 
356 	/* Try to acquire a generic DMA engine slave channel */
357 	dma_cap_zero(mask);
358 	dma_cap_set(DMA_SLAVE, mask);
359 
360 	if (plat && plat->dma_filter) {
361 		if (!host->dma_rx_channel && plat->dma_rx_param) {
362 			host->dma_rx_channel = dma_request_channel(mask,
363 							   plat->dma_filter,
364 							   plat->dma_rx_param);
365 			/* E.g if no DMA hardware is present */
366 			if (!host->dma_rx_channel)
367 				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
368 		}
369 
370 		if (!host->dma_tx_channel && plat->dma_tx_param) {
371 			host->dma_tx_channel = dma_request_channel(mask,
372 							   plat->dma_filter,
373 							   plat->dma_tx_param);
374 			if (!host->dma_tx_channel)
375 				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
376 		}
377 	}
378 
379 	/*
380 	 * If only an RX channel is specified, the driver will
381 	 * attempt to use it bidirectionally, however if it is
382 	 * is specified but cannot be located, DMA will be disabled.
383 	 */
384 	if (host->dma_rx_channel && !host->dma_tx_channel)
385 		host->dma_tx_channel = host->dma_rx_channel;
386 
387 	if (host->dma_rx_channel)
388 		rxname = dma_chan_name(host->dma_rx_channel);
389 	else
390 		rxname = "none";
391 
392 	if (host->dma_tx_channel)
393 		txname = dma_chan_name(host->dma_tx_channel);
394 	else
395 		txname = "none";
396 
397 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
398 		 rxname, txname);
399 
400 	/*
401 	 * Limit the maximum segment size in any SG entry according to
402 	 * the parameters of the DMA engine device.
403 	 */
404 	if (host->dma_tx_channel) {
405 		struct device *dev = host->dma_tx_channel->device->dev;
406 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
407 
408 		if (max_seg_size < host->mmc->max_seg_size)
409 			host->mmc->max_seg_size = max_seg_size;
410 	}
411 	if (host->dma_rx_channel) {
412 		struct device *dev = host->dma_rx_channel->device->dev;
413 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
414 
415 		if (max_seg_size < host->mmc->max_seg_size)
416 			host->mmc->max_seg_size = max_seg_size;
417 	}
418 }
419 
420 /*
421  * This is used in or so inline it
422  * so it can be discarded.
423  */
424 static inline void mmci_dma_release(struct mmci_host *host)
425 {
426 	struct mmci_platform_data *plat = host->plat;
427 
428 	if (host->dma_rx_channel)
429 		dma_release_channel(host->dma_rx_channel);
430 	if (host->dma_tx_channel && plat->dma_tx_param)
431 		dma_release_channel(host->dma_tx_channel);
432 	host->dma_rx_channel = host->dma_tx_channel = NULL;
433 }
434 
435 static void mmci_dma_data_error(struct mmci_host *host)
436 {
437 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
438 	dmaengine_terminate_all(host->dma_current);
439 	host->dma_current = NULL;
440 	host->dma_desc_current = NULL;
441 	host->data->host_cookie = 0;
442 }
443 
444 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
445 {
446 	struct dma_chan *chan;
447 	enum dma_data_direction dir;
448 
449 	if (data->flags & MMC_DATA_READ) {
450 		dir = DMA_FROM_DEVICE;
451 		chan = host->dma_rx_channel;
452 	} else {
453 		dir = DMA_TO_DEVICE;
454 		chan = host->dma_tx_channel;
455 	}
456 
457 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
458 }
459 
460 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
461 {
462 	u32 status;
463 	int i;
464 
465 	/* Wait up to 1ms for the DMA to complete */
466 	for (i = 0; ; i++) {
467 		status = readl(host->base + MMCISTATUS);
468 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
469 			break;
470 		udelay(10);
471 	}
472 
473 	/*
474 	 * Check to see whether we still have some data left in the FIFO -
475 	 * this catches DMA controllers which are unable to monitor the
476 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
477 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
478 	 */
479 	if (status & MCI_RXDATAAVLBLMASK) {
480 		mmci_dma_data_error(host);
481 		if (!data->error)
482 			data->error = -EIO;
483 	}
484 
485 	if (!data->host_cookie)
486 		mmci_dma_unmap(host, data);
487 
488 	/*
489 	 * Use of DMA with scatter-gather is impossible.
490 	 * Give up with DMA and switch back to PIO mode.
491 	 */
492 	if (status & MCI_RXDATAAVLBLMASK) {
493 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
494 		mmci_dma_release(host);
495 	}
496 
497 	host->dma_current = NULL;
498 	host->dma_desc_current = NULL;
499 }
500 
501 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
502 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
503 				struct dma_chan **dma_chan,
504 				struct dma_async_tx_descriptor **dma_desc)
505 {
506 	struct variant_data *variant = host->variant;
507 	struct dma_slave_config conf = {
508 		.src_addr = host->phybase + MMCIFIFO,
509 		.dst_addr = host->phybase + MMCIFIFO,
510 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
511 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
512 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
513 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
514 		.device_fc = false,
515 	};
516 	struct dma_chan *chan;
517 	struct dma_device *device;
518 	struct dma_async_tx_descriptor *desc;
519 	enum dma_data_direction buffer_dirn;
520 	int nr_sg;
521 
522 	if (data->flags & MMC_DATA_READ) {
523 		conf.direction = DMA_DEV_TO_MEM;
524 		buffer_dirn = DMA_FROM_DEVICE;
525 		chan = host->dma_rx_channel;
526 	} else {
527 		conf.direction = DMA_MEM_TO_DEV;
528 		buffer_dirn = DMA_TO_DEVICE;
529 		chan = host->dma_tx_channel;
530 	}
531 
532 	/* If there's no DMA channel, fall back to PIO */
533 	if (!chan)
534 		return -EINVAL;
535 
536 	/* If less than or equal to the fifo size, don't bother with DMA */
537 	if (data->blksz * data->blocks <= variant->fifosize)
538 		return -EINVAL;
539 
540 	device = chan->device;
541 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
542 	if (nr_sg == 0)
543 		return -EINVAL;
544 
545 	dmaengine_slave_config(chan, &conf);
546 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
547 					    conf.direction, DMA_CTRL_ACK);
548 	if (!desc)
549 		goto unmap_exit;
550 
551 	*dma_chan = chan;
552 	*dma_desc = desc;
553 
554 	return 0;
555 
556  unmap_exit:
557 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
558 	return -ENOMEM;
559 }
560 
561 static inline int mmci_dma_prep_data(struct mmci_host *host,
562 				     struct mmc_data *data)
563 {
564 	/* Check if next job is already prepared. */
565 	if (host->dma_current && host->dma_desc_current)
566 		return 0;
567 
568 	/* No job were prepared thus do it now. */
569 	return __mmci_dma_prep_data(host, data, &host->dma_current,
570 				    &host->dma_desc_current);
571 }
572 
573 static inline int mmci_dma_prep_next(struct mmci_host *host,
574 				     struct mmc_data *data)
575 {
576 	struct mmci_host_next *nd = &host->next_data;
577 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
578 }
579 
580 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
581 {
582 	int ret;
583 	struct mmc_data *data = host->data;
584 
585 	ret = mmci_dma_prep_data(host, host->data);
586 	if (ret)
587 		return ret;
588 
589 	/* Okay, go for it. */
590 	dev_vdbg(mmc_dev(host->mmc),
591 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
592 		 data->sg_len, data->blksz, data->blocks, data->flags);
593 	dmaengine_submit(host->dma_desc_current);
594 	dma_async_issue_pending(host->dma_current);
595 
596 	datactrl |= MCI_DPSM_DMAENABLE;
597 
598 	/* Trigger the DMA transfer */
599 	mmci_write_datactrlreg(host, datactrl);
600 
601 	/*
602 	 * Let the MMCI say when the data is ended and it's time
603 	 * to fire next DMA request. When that happens, MMCI will
604 	 * call mmci_data_end()
605 	 */
606 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
607 	       host->base + MMCIMASK0);
608 	return 0;
609 }
610 
611 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
612 {
613 	struct mmci_host_next *next = &host->next_data;
614 
615 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
616 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
617 
618 	host->dma_desc_current = next->dma_desc;
619 	host->dma_current = next->dma_chan;
620 	next->dma_desc = NULL;
621 	next->dma_chan = NULL;
622 }
623 
624 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
625 			     bool is_first_req)
626 {
627 	struct mmci_host *host = mmc_priv(mmc);
628 	struct mmc_data *data = mrq->data;
629 	struct mmci_host_next *nd = &host->next_data;
630 
631 	if (!data)
632 		return;
633 
634 	BUG_ON(data->host_cookie);
635 
636 	if (mmci_validate_data(host, data))
637 		return;
638 
639 	if (!mmci_dma_prep_next(host, data))
640 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
641 }
642 
643 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
644 			      int err)
645 {
646 	struct mmci_host *host = mmc_priv(mmc);
647 	struct mmc_data *data = mrq->data;
648 
649 	if (!data || !data->host_cookie)
650 		return;
651 
652 	mmci_dma_unmap(host, data);
653 
654 	if (err) {
655 		struct mmci_host_next *next = &host->next_data;
656 		struct dma_chan *chan;
657 		if (data->flags & MMC_DATA_READ)
658 			chan = host->dma_rx_channel;
659 		else
660 			chan = host->dma_tx_channel;
661 		dmaengine_terminate_all(chan);
662 
663 		next->dma_desc = NULL;
664 		next->dma_chan = NULL;
665 	}
666 }
667 
668 #else
669 /* Blank functions if the DMA engine is not available */
670 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
671 {
672 }
673 static inline void mmci_dma_setup(struct mmci_host *host)
674 {
675 }
676 
677 static inline void mmci_dma_release(struct mmci_host *host)
678 {
679 }
680 
681 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
682 {
683 }
684 
685 static inline void mmci_dma_finalize(struct mmci_host *host,
686 				     struct mmc_data *data)
687 {
688 }
689 
690 static inline void mmci_dma_data_error(struct mmci_host *host)
691 {
692 }
693 
694 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
695 {
696 	return -ENOSYS;
697 }
698 
699 #define mmci_pre_request NULL
700 #define mmci_post_request NULL
701 
702 #endif
703 
704 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
705 {
706 	struct variant_data *variant = host->variant;
707 	unsigned int datactrl, timeout, irqmask;
708 	unsigned long long clks;
709 	void __iomem *base;
710 	int blksz_bits;
711 
712 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
713 		data->blksz, data->blocks, data->flags);
714 
715 	host->data = data;
716 	host->size = data->blksz * data->blocks;
717 	data->bytes_xfered = 0;
718 
719 	clks = (unsigned long long)data->timeout_ns * host->cclk;
720 	do_div(clks, 1000000000UL);
721 
722 	timeout = data->timeout_clks + (unsigned int)clks;
723 
724 	base = host->base;
725 	writel(timeout, base + MMCIDATATIMER);
726 	writel(host->size, base + MMCIDATALENGTH);
727 
728 	blksz_bits = ffs(data->blksz) - 1;
729 	BUG_ON(1 << blksz_bits != data->blksz);
730 
731 	if (variant->blksz_datactrl16)
732 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
733 	else
734 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
735 
736 	if (data->flags & MMC_DATA_READ)
737 		datactrl |= MCI_DPSM_DIRECTION;
738 
739 	/* The ST Micro variants has a special bit to enable SDIO */
740 	if (variant->sdio && host->mmc->card)
741 		if (mmc_card_sdio(host->mmc->card)) {
742 			/*
743 			 * The ST Micro variants has a special bit
744 			 * to enable SDIO.
745 			 */
746 			u32 clk;
747 
748 			datactrl |= MCI_ST_DPSM_SDIOEN;
749 
750 			/*
751 			 * The ST Micro variant for SDIO small write transfers
752 			 * needs to have clock H/W flow control disabled,
753 			 * otherwise the transfer will not start. The threshold
754 			 * depends on the rate of MCLK.
755 			 */
756 			if (data->flags & MMC_DATA_WRITE &&
757 			    (host->size < 8 ||
758 			     (host->size <= 8 && host->mclk > 50000000)))
759 				clk = host->clk_reg & ~variant->clkreg_enable;
760 			else
761 				clk = host->clk_reg | variant->clkreg_enable;
762 
763 			mmci_write_clkreg(host, clk);
764 		}
765 
766 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
767 		datactrl |= MCI_ST_DPSM_DDRMODE;
768 
769 	/*
770 	 * Attempt to use DMA operation mode, if this
771 	 * should fail, fall back to PIO mode
772 	 */
773 	if (!mmci_dma_start_data(host, datactrl))
774 		return;
775 
776 	/* IRQ mode, map the SG list for CPU reading/writing */
777 	mmci_init_sg(host, data);
778 
779 	if (data->flags & MMC_DATA_READ) {
780 		irqmask = MCI_RXFIFOHALFFULLMASK;
781 
782 		/*
783 		 * If we have less than the fifo 'half-full' threshold to
784 		 * transfer, trigger a PIO interrupt as soon as any data
785 		 * is available.
786 		 */
787 		if (host->size < variant->fifohalfsize)
788 			irqmask |= MCI_RXDATAAVLBLMASK;
789 	} else {
790 		/*
791 		 * We don't actually need to include "FIFO empty" here
792 		 * since its implicit in "FIFO half empty".
793 		 */
794 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
795 	}
796 
797 	mmci_write_datactrlreg(host, datactrl);
798 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
799 	mmci_set_mask1(host, irqmask);
800 }
801 
802 static void
803 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
804 {
805 	void __iomem *base = host->base;
806 
807 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
808 	    cmd->opcode, cmd->arg, cmd->flags);
809 
810 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
811 		writel(0, base + MMCICOMMAND);
812 		udelay(1);
813 	}
814 
815 	c |= cmd->opcode | MCI_CPSM_ENABLE;
816 	if (cmd->flags & MMC_RSP_PRESENT) {
817 		if (cmd->flags & MMC_RSP_136)
818 			c |= MCI_CPSM_LONGRSP;
819 		c |= MCI_CPSM_RESPONSE;
820 	}
821 	if (/*interrupt*/0)
822 		c |= MCI_CPSM_INTERRUPT;
823 
824 	host->cmd = cmd;
825 
826 	writel(cmd->arg, base + MMCIARGUMENT);
827 	writel(c, base + MMCICOMMAND);
828 }
829 
830 static void
831 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
832 	      unsigned int status)
833 {
834 	/* First check for errors */
835 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
836 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
837 		u32 remain, success;
838 
839 		/* Terminate the DMA transfer */
840 		if (dma_inprogress(host)) {
841 			mmci_dma_data_error(host);
842 			mmci_dma_unmap(host, data);
843 		}
844 
845 		/*
846 		 * Calculate how far we are into the transfer.  Note that
847 		 * the data counter gives the number of bytes transferred
848 		 * on the MMC bus, not on the host side.  On reads, this
849 		 * can be as much as a FIFO-worth of data ahead.  This
850 		 * matters for FIFO overruns only.
851 		 */
852 		remain = readl(host->base + MMCIDATACNT);
853 		success = data->blksz * data->blocks - remain;
854 
855 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
856 			status, success);
857 		if (status & MCI_DATACRCFAIL) {
858 			/* Last block was not successful */
859 			success -= 1;
860 			data->error = -EILSEQ;
861 		} else if (status & MCI_DATATIMEOUT) {
862 			data->error = -ETIMEDOUT;
863 		} else if (status & MCI_STARTBITERR) {
864 			data->error = -ECOMM;
865 		} else if (status & MCI_TXUNDERRUN) {
866 			data->error = -EIO;
867 		} else if (status & MCI_RXOVERRUN) {
868 			if (success > host->variant->fifosize)
869 				success -= host->variant->fifosize;
870 			else
871 				success = 0;
872 			data->error = -EIO;
873 		}
874 		data->bytes_xfered = round_down(success, data->blksz);
875 	}
876 
877 	if (status & MCI_DATABLOCKEND)
878 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
879 
880 	if (status & MCI_DATAEND || data->error) {
881 		if (dma_inprogress(host))
882 			mmci_dma_finalize(host, data);
883 		mmci_stop_data(host);
884 
885 		if (!data->error)
886 			/* The error clause is handled above, success! */
887 			data->bytes_xfered = data->blksz * data->blocks;
888 
889 		if (!data->stop || host->mrq->sbc) {
890 			mmci_request_end(host, data->mrq);
891 		} else {
892 			mmci_start_command(host, data->stop, 0);
893 		}
894 	}
895 }
896 
897 static void
898 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
899 	     unsigned int status)
900 {
901 	void __iomem *base = host->base;
902 	bool sbc = (cmd == host->mrq->sbc);
903 
904 	host->cmd = NULL;
905 
906 	if (status & MCI_CMDTIMEOUT) {
907 		cmd->error = -ETIMEDOUT;
908 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
909 		cmd->error = -EILSEQ;
910 	} else {
911 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
912 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
913 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
914 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
915 	}
916 
917 	if ((!sbc && !cmd->data) || cmd->error) {
918 		if (host->data) {
919 			/* Terminate the DMA transfer */
920 			if (dma_inprogress(host)) {
921 				mmci_dma_data_error(host);
922 				mmci_dma_unmap(host, host->data);
923 			}
924 			mmci_stop_data(host);
925 		}
926 		mmci_request_end(host, host->mrq);
927 	} else if (sbc) {
928 		mmci_start_command(host, host->mrq->cmd, 0);
929 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
930 		mmci_start_data(host, cmd->data);
931 	}
932 }
933 
934 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
935 {
936 	void __iomem *base = host->base;
937 	char *ptr = buffer;
938 	u32 status;
939 	int host_remain = host->size;
940 
941 	do {
942 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
943 
944 		if (count > remain)
945 			count = remain;
946 
947 		if (count <= 0)
948 			break;
949 
950 		/*
951 		 * SDIO especially may want to send something that is
952 		 * not divisible by 4 (as opposed to card sectors
953 		 * etc). Therefore make sure to always read the last bytes
954 		 * while only doing full 32-bit reads towards the FIFO.
955 		 */
956 		if (unlikely(count & 0x3)) {
957 			if (count < 4) {
958 				unsigned char buf[4];
959 				ioread32_rep(base + MMCIFIFO, buf, 1);
960 				memcpy(ptr, buf, count);
961 			} else {
962 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
963 				count &= ~0x3;
964 			}
965 		} else {
966 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
967 		}
968 
969 		ptr += count;
970 		remain -= count;
971 		host_remain -= count;
972 
973 		if (remain == 0)
974 			break;
975 
976 		status = readl(base + MMCISTATUS);
977 	} while (status & MCI_RXDATAAVLBL);
978 
979 	return ptr - buffer;
980 }
981 
982 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
983 {
984 	struct variant_data *variant = host->variant;
985 	void __iomem *base = host->base;
986 	char *ptr = buffer;
987 
988 	do {
989 		unsigned int count, maxcnt;
990 
991 		maxcnt = status & MCI_TXFIFOEMPTY ?
992 			 variant->fifosize : variant->fifohalfsize;
993 		count = min(remain, maxcnt);
994 
995 		/*
996 		 * SDIO especially may want to send something that is
997 		 * not divisible by 4 (as opposed to card sectors
998 		 * etc), and the FIFO only accept full 32-bit writes.
999 		 * So compensate by adding +3 on the count, a single
1000 		 * byte become a 32bit write, 7 bytes will be two
1001 		 * 32bit writes etc.
1002 		 */
1003 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1004 
1005 		ptr += count;
1006 		remain -= count;
1007 
1008 		if (remain == 0)
1009 			break;
1010 
1011 		status = readl(base + MMCISTATUS);
1012 	} while (status & MCI_TXFIFOHALFEMPTY);
1013 
1014 	return ptr - buffer;
1015 }
1016 
1017 /*
1018  * PIO data transfer IRQ handler.
1019  */
1020 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1021 {
1022 	struct mmci_host *host = dev_id;
1023 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1024 	struct variant_data *variant = host->variant;
1025 	void __iomem *base = host->base;
1026 	unsigned long flags;
1027 	u32 status;
1028 
1029 	status = readl(base + MMCISTATUS);
1030 
1031 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1032 
1033 	local_irq_save(flags);
1034 
1035 	do {
1036 		unsigned int remain, len;
1037 		char *buffer;
1038 
1039 		/*
1040 		 * For write, we only need to test the half-empty flag
1041 		 * here - if the FIFO is completely empty, then by
1042 		 * definition it is more than half empty.
1043 		 *
1044 		 * For read, check for data available.
1045 		 */
1046 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1047 			break;
1048 
1049 		if (!sg_miter_next(sg_miter))
1050 			break;
1051 
1052 		buffer = sg_miter->addr;
1053 		remain = sg_miter->length;
1054 
1055 		len = 0;
1056 		if (status & MCI_RXACTIVE)
1057 			len = mmci_pio_read(host, buffer, remain);
1058 		if (status & MCI_TXACTIVE)
1059 			len = mmci_pio_write(host, buffer, remain, status);
1060 
1061 		sg_miter->consumed = len;
1062 
1063 		host->size -= len;
1064 		remain -= len;
1065 
1066 		if (remain)
1067 			break;
1068 
1069 		status = readl(base + MMCISTATUS);
1070 	} while (1);
1071 
1072 	sg_miter_stop(sg_miter);
1073 
1074 	local_irq_restore(flags);
1075 
1076 	/*
1077 	 * If we have less than the fifo 'half-full' threshold to transfer,
1078 	 * trigger a PIO interrupt as soon as any data is available.
1079 	 */
1080 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1081 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1082 
1083 	/*
1084 	 * If we run out of data, disable the data IRQs; this
1085 	 * prevents a race where the FIFO becomes empty before
1086 	 * the chip itself has disabled the data path, and
1087 	 * stops us racing with our data end IRQ.
1088 	 */
1089 	if (host->size == 0) {
1090 		mmci_set_mask1(host, 0);
1091 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1092 	}
1093 
1094 	return IRQ_HANDLED;
1095 }
1096 
1097 /*
1098  * Handle completion of command and data transfers.
1099  */
1100 static irqreturn_t mmci_irq(int irq, void *dev_id)
1101 {
1102 	struct mmci_host *host = dev_id;
1103 	u32 status;
1104 	int ret = 0;
1105 
1106 	spin_lock(&host->lock);
1107 
1108 	do {
1109 		struct mmc_command *cmd;
1110 		struct mmc_data *data;
1111 
1112 		status = readl(host->base + MMCISTATUS);
1113 
1114 		if (host->singleirq) {
1115 			if (status & readl(host->base + MMCIMASK1))
1116 				mmci_pio_irq(irq, dev_id);
1117 
1118 			status &= ~MCI_IRQ1MASK;
1119 		}
1120 
1121 		status &= readl(host->base + MMCIMASK0);
1122 		writel(status, host->base + MMCICLEAR);
1123 
1124 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1125 
1126 		data = host->data;
1127 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1128 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1129 			      MCI_DATABLOCKEND) && data)
1130 			mmci_data_irq(host, data, status);
1131 
1132 		cmd = host->cmd;
1133 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1134 			mmci_cmd_irq(host, cmd, status);
1135 
1136 		ret = 1;
1137 	} while (status);
1138 
1139 	spin_unlock(&host->lock);
1140 
1141 	return IRQ_RETVAL(ret);
1142 }
1143 
1144 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1145 {
1146 	struct mmci_host *host = mmc_priv(mmc);
1147 	unsigned long flags;
1148 
1149 	WARN_ON(host->mrq != NULL);
1150 
1151 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1152 	if (mrq->cmd->error) {
1153 		mmc_request_done(mmc, mrq);
1154 		return;
1155 	}
1156 
1157 	pm_runtime_get_sync(mmc_dev(mmc));
1158 
1159 	spin_lock_irqsave(&host->lock, flags);
1160 
1161 	host->mrq = mrq;
1162 
1163 	if (mrq->data)
1164 		mmci_get_next_data(host, mrq->data);
1165 
1166 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1167 		mmci_start_data(host, mrq->data);
1168 
1169 	if (mrq->sbc)
1170 		mmci_start_command(host, mrq->sbc, 0);
1171 	else
1172 		mmci_start_command(host, mrq->cmd, 0);
1173 
1174 	spin_unlock_irqrestore(&host->lock, flags);
1175 }
1176 
1177 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1178 {
1179 	struct mmci_host *host = mmc_priv(mmc);
1180 	struct variant_data *variant = host->variant;
1181 	u32 pwr = 0;
1182 	unsigned long flags;
1183 	int ret;
1184 
1185 	pm_runtime_get_sync(mmc_dev(mmc));
1186 
1187 	if (host->plat->ios_handler &&
1188 		host->plat->ios_handler(mmc_dev(mmc), ios))
1189 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1190 
1191 	switch (ios->power_mode) {
1192 	case MMC_POWER_OFF:
1193 		if (!IS_ERR(mmc->supply.vmmc))
1194 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1195 
1196 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1197 			regulator_disable(mmc->supply.vqmmc);
1198 			host->vqmmc_enabled = false;
1199 		}
1200 
1201 		break;
1202 	case MMC_POWER_UP:
1203 		if (!IS_ERR(mmc->supply.vmmc))
1204 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1205 
1206 		/*
1207 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1208 		 * and instead uses MCI_PWR_ON so apply whatever value is
1209 		 * configured in the variant data.
1210 		 */
1211 		pwr |= variant->pwrreg_powerup;
1212 
1213 		break;
1214 	case MMC_POWER_ON:
1215 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1216 			ret = regulator_enable(mmc->supply.vqmmc);
1217 			if (ret < 0)
1218 				dev_err(mmc_dev(mmc),
1219 					"failed to enable vqmmc regulator\n");
1220 			else
1221 				host->vqmmc_enabled = true;
1222 		}
1223 
1224 		pwr |= MCI_PWR_ON;
1225 		break;
1226 	}
1227 
1228 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1229 		/*
1230 		 * The ST Micro variant has some additional bits
1231 		 * indicating signal direction for the signals in
1232 		 * the SD/MMC bus and feedback-clock usage.
1233 		 */
1234 		pwr |= host->plat->sigdir;
1235 
1236 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1237 			pwr &= ~MCI_ST_DATA74DIREN;
1238 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1239 			pwr &= (~MCI_ST_DATA74DIREN &
1240 				~MCI_ST_DATA31DIREN &
1241 				~MCI_ST_DATA2DIREN);
1242 	}
1243 
1244 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1245 		if (host->hw_designer != AMBA_VENDOR_ST)
1246 			pwr |= MCI_ROD;
1247 		else {
1248 			/*
1249 			 * The ST Micro variant use the ROD bit for something
1250 			 * else and only has OD (Open Drain).
1251 			 */
1252 			pwr |= MCI_OD;
1253 		}
1254 	}
1255 
1256 	/*
1257 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1258 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1259 	 */
1260 	if (!ios->clock && variant->pwrreg_clkgate)
1261 		pwr &= ~MCI_PWR_ON;
1262 
1263 	spin_lock_irqsave(&host->lock, flags);
1264 
1265 	mmci_set_clkreg(host, ios->clock);
1266 	mmci_write_pwrreg(host, pwr);
1267 
1268 	spin_unlock_irqrestore(&host->lock, flags);
1269 
1270 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1271 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1272 }
1273 
1274 static int mmci_get_ro(struct mmc_host *mmc)
1275 {
1276 	struct mmci_host *host = mmc_priv(mmc);
1277 
1278 	if (host->gpio_wp == -ENOSYS)
1279 		return -ENOSYS;
1280 
1281 	return gpio_get_value_cansleep(host->gpio_wp);
1282 }
1283 
1284 static int mmci_get_cd(struct mmc_host *mmc)
1285 {
1286 	struct mmci_host *host = mmc_priv(mmc);
1287 	struct mmci_platform_data *plat = host->plat;
1288 	unsigned int status;
1289 
1290 	if (host->gpio_cd == -ENOSYS) {
1291 		if (!plat->status)
1292 			return 1; /* Assume always present */
1293 
1294 		status = plat->status(mmc_dev(host->mmc));
1295 	} else
1296 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1297 			^ plat->cd_invert;
1298 
1299 	/*
1300 	 * Use positive logic throughout - status is zero for no card,
1301 	 * non-zero for card inserted.
1302 	 */
1303 	return status;
1304 }
1305 
1306 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1307 {
1308 	int ret = 0;
1309 
1310 	if (!IS_ERR(mmc->supply.vqmmc)) {
1311 
1312 		pm_runtime_get_sync(mmc_dev(mmc));
1313 
1314 		switch (ios->signal_voltage) {
1315 		case MMC_SIGNAL_VOLTAGE_330:
1316 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1317 						2700000, 3600000);
1318 			break;
1319 		case MMC_SIGNAL_VOLTAGE_180:
1320 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1321 						1700000, 1950000);
1322 			break;
1323 		case MMC_SIGNAL_VOLTAGE_120:
1324 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1325 						1100000, 1300000);
1326 			break;
1327 		}
1328 
1329 		if (ret)
1330 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1331 
1332 		pm_runtime_mark_last_busy(mmc_dev(mmc));
1333 		pm_runtime_put_autosuspend(mmc_dev(mmc));
1334 	}
1335 
1336 	return ret;
1337 }
1338 
1339 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1340 {
1341 	struct mmci_host *host = dev_id;
1342 
1343 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1344 
1345 	return IRQ_HANDLED;
1346 }
1347 
1348 static struct mmc_host_ops mmci_ops = {
1349 	.request	= mmci_request,
1350 	.pre_req	= mmci_pre_request,
1351 	.post_req	= mmci_post_request,
1352 	.set_ios	= mmci_set_ios,
1353 	.get_ro		= mmci_get_ro,
1354 	.get_cd		= mmci_get_cd,
1355 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1356 };
1357 
1358 #ifdef CONFIG_OF
1359 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1360 					struct mmci_platform_data *pdata)
1361 {
1362 	int bus_width = 0;
1363 
1364 	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1365 	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1366 
1367 	if (of_get_property(np, "cd-inverted", NULL))
1368 		pdata->cd_invert = true;
1369 	else
1370 		pdata->cd_invert = false;
1371 
1372 	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1373 	if (!pdata->f_max)
1374 		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1375 
1376 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1377 		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1378 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1379 		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1380 
1381 	of_property_read_u32(np, "bus-width", &bus_width);
1382 	switch (bus_width) {
1383 	case 0 :
1384 		/* No bus-width supplied. */
1385 		break;
1386 	case 4 :
1387 		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1388 		break;
1389 	case 8 :
1390 		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1391 		break;
1392 	default :
1393 		pr_warn("%s: Unsupported bus width\n", np->full_name);
1394 	}
1395 }
1396 #else
1397 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1398 					struct mmci_platform_data *pdata)
1399 {
1400 	return;
1401 }
1402 #endif
1403 
1404 static int mmci_probe(struct amba_device *dev,
1405 	const struct amba_id *id)
1406 {
1407 	struct mmci_platform_data *plat = dev->dev.platform_data;
1408 	struct device_node *np = dev->dev.of_node;
1409 	struct variant_data *variant = id->data;
1410 	struct mmci_host *host;
1411 	struct mmc_host *mmc;
1412 	int ret;
1413 
1414 	/* Must have platform data or Device Tree. */
1415 	if (!plat && !np) {
1416 		dev_err(&dev->dev, "No plat data or DT found\n");
1417 		return -EINVAL;
1418 	}
1419 
1420 	if (!plat) {
1421 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1422 		if (!plat)
1423 			return -ENOMEM;
1424 	}
1425 
1426 	if (np)
1427 		mmci_dt_populate_generic_pdata(np, plat);
1428 
1429 	ret = amba_request_regions(dev, DRIVER_NAME);
1430 	if (ret)
1431 		goto out;
1432 
1433 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1434 	if (!mmc) {
1435 		ret = -ENOMEM;
1436 		goto rel_regions;
1437 	}
1438 
1439 	host = mmc_priv(mmc);
1440 	host->mmc = mmc;
1441 
1442 	host->gpio_wp = -ENOSYS;
1443 	host->gpio_cd = -ENOSYS;
1444 	host->gpio_cd_irq = -1;
1445 
1446 	host->hw_designer = amba_manf(dev);
1447 	host->hw_revision = amba_rev(dev);
1448 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1449 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1450 
1451 	host->clk = devm_clk_get(&dev->dev, NULL);
1452 	if (IS_ERR(host->clk)) {
1453 		ret = PTR_ERR(host->clk);
1454 		goto host_free;
1455 	}
1456 
1457 	ret = clk_prepare_enable(host->clk);
1458 	if (ret)
1459 		goto host_free;
1460 
1461 	host->plat = plat;
1462 	host->variant = variant;
1463 	host->mclk = clk_get_rate(host->clk);
1464 	/*
1465 	 * According to the spec, mclk is max 100 MHz,
1466 	 * so we try to adjust the clock down to this,
1467 	 * (if possible).
1468 	 */
1469 	if (host->mclk > 100000000) {
1470 		ret = clk_set_rate(host->clk, 100000000);
1471 		if (ret < 0)
1472 			goto clk_disable;
1473 		host->mclk = clk_get_rate(host->clk);
1474 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1475 			host->mclk);
1476 	}
1477 	host->phybase = dev->res.start;
1478 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1479 	if (!host->base) {
1480 		ret = -ENOMEM;
1481 		goto clk_disable;
1482 	}
1483 
1484 	if (variant->busy_detect) {
1485 		mmci_ops.card_busy = mmci_card_busy;
1486 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1487 	}
1488 
1489 	mmc->ops = &mmci_ops;
1490 	/*
1491 	 * The ARM and ST versions of the block have slightly different
1492 	 * clock divider equations which means that the minimum divider
1493 	 * differs too.
1494 	 */
1495 	if (variant->st_clkdiv)
1496 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1497 	else
1498 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1499 	/*
1500 	 * If the platform data supplies a maximum operating
1501 	 * frequency, this takes precedence. Else, we fall back
1502 	 * to using the module parameter, which has a (low)
1503 	 * default value in case it is not specified. Either
1504 	 * value must not exceed the clock rate into the block,
1505 	 * of course.
1506 	 */
1507 	if (plat->f_max)
1508 		mmc->f_max = min(host->mclk, plat->f_max);
1509 	else
1510 		mmc->f_max = min(host->mclk, fmax);
1511 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1512 
1513 	host->pinctrl = devm_pinctrl_get(&dev->dev);
1514 	if (IS_ERR(host->pinctrl)) {
1515 		ret = PTR_ERR(host->pinctrl);
1516 		goto clk_disable;
1517 	}
1518 
1519 	host->pins_default = pinctrl_lookup_state(host->pinctrl,
1520 			PINCTRL_STATE_DEFAULT);
1521 
1522 	/* enable pins to be muxed in and configured */
1523 	if (!IS_ERR(host->pins_default)) {
1524 		ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1525 		if (ret)
1526 			dev_warn(&dev->dev, "could not set default pins\n");
1527 	} else
1528 		dev_warn(&dev->dev, "could not get default pinstate\n");
1529 
1530 	/* Get regulators and the supported OCR mask */
1531 	mmc_regulator_get_supply(mmc);
1532 	if (!mmc->ocr_avail)
1533 		mmc->ocr_avail = plat->ocr_mask;
1534 	else if (plat->ocr_mask)
1535 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1536 
1537 	mmc->caps = plat->capabilities;
1538 	mmc->caps2 = plat->capabilities2;
1539 
1540 	/* We support these PM capabilities. */
1541 	mmc->pm_caps = MMC_PM_KEEP_POWER;
1542 
1543 	/*
1544 	 * We can do SGIO
1545 	 */
1546 	mmc->max_segs = NR_SG;
1547 
1548 	/*
1549 	 * Since only a certain number of bits are valid in the data length
1550 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1551 	 * single request.
1552 	 */
1553 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1554 
1555 	/*
1556 	 * Set the maximum segment size.  Since we aren't doing DMA
1557 	 * (yet) we are only limited by the data length register.
1558 	 */
1559 	mmc->max_seg_size = mmc->max_req_size;
1560 
1561 	/*
1562 	 * Block size can be up to 2048 bytes, but must be a power of two.
1563 	 */
1564 	mmc->max_blk_size = 1 << 11;
1565 
1566 	/*
1567 	 * Limit the number of blocks transferred so that we don't overflow
1568 	 * the maximum request size.
1569 	 */
1570 	mmc->max_blk_count = mmc->max_req_size >> 11;
1571 
1572 	spin_lock_init(&host->lock);
1573 
1574 	writel(0, host->base + MMCIMASK0);
1575 	writel(0, host->base + MMCIMASK1);
1576 	writel(0xfff, host->base + MMCICLEAR);
1577 
1578 	if (plat->gpio_cd == -EPROBE_DEFER) {
1579 		ret = -EPROBE_DEFER;
1580 		goto err_gpio_cd;
1581 	}
1582 	if (gpio_is_valid(plat->gpio_cd)) {
1583 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1584 		if (ret == 0)
1585 			ret = gpio_direction_input(plat->gpio_cd);
1586 		if (ret == 0)
1587 			host->gpio_cd = plat->gpio_cd;
1588 		else if (ret != -ENOSYS)
1589 			goto err_gpio_cd;
1590 
1591 		/*
1592 		 * A gpio pin that will detect cards when inserted and removed
1593 		 * will most likely want to trigger on the edges if it is
1594 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1595 		 * for the inverted case) so we request triggers on both
1596 		 * edges.
1597 		 */
1598 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1599 				mmci_cd_irq,
1600 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1601 				DRIVER_NAME " (cd)", host);
1602 		if (ret >= 0)
1603 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1604 	}
1605 	if (plat->gpio_wp == -EPROBE_DEFER) {
1606 		ret = -EPROBE_DEFER;
1607 		goto err_gpio_wp;
1608 	}
1609 	if (gpio_is_valid(plat->gpio_wp)) {
1610 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1611 		if (ret == 0)
1612 			ret = gpio_direction_input(plat->gpio_wp);
1613 		if (ret == 0)
1614 			host->gpio_wp = plat->gpio_wp;
1615 		else if (ret != -ENOSYS)
1616 			goto err_gpio_wp;
1617 	}
1618 
1619 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1620 	    && host->gpio_cd_irq < 0)
1621 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1622 
1623 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1624 	if (ret)
1625 		goto unmap;
1626 
1627 	if (!dev->irq[1])
1628 		host->singleirq = true;
1629 	else {
1630 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1631 				  DRIVER_NAME " (pio)", host);
1632 		if (ret)
1633 			goto irq0_free;
1634 	}
1635 
1636 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1637 
1638 	amba_set_drvdata(dev, mmc);
1639 
1640 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1641 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1642 		 amba_rev(dev), (unsigned long long)dev->res.start,
1643 		 dev->irq[0], dev->irq[1]);
1644 
1645 	mmci_dma_setup(host);
1646 
1647 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1648 	pm_runtime_use_autosuspend(&dev->dev);
1649 	pm_runtime_put(&dev->dev);
1650 
1651 	mmc_add_host(mmc);
1652 
1653 	return 0;
1654 
1655  irq0_free:
1656 	free_irq(dev->irq[0], host);
1657  unmap:
1658 	if (host->gpio_wp != -ENOSYS)
1659 		gpio_free(host->gpio_wp);
1660  err_gpio_wp:
1661 	if (host->gpio_cd_irq >= 0)
1662 		free_irq(host->gpio_cd_irq, host);
1663 	if (host->gpio_cd != -ENOSYS)
1664 		gpio_free(host->gpio_cd);
1665  err_gpio_cd:
1666 	iounmap(host->base);
1667  clk_disable:
1668 	clk_disable_unprepare(host->clk);
1669  host_free:
1670 	mmc_free_host(mmc);
1671  rel_regions:
1672 	amba_release_regions(dev);
1673  out:
1674 	return ret;
1675 }
1676 
1677 static int mmci_remove(struct amba_device *dev)
1678 {
1679 	struct mmc_host *mmc = amba_get_drvdata(dev);
1680 
1681 	amba_set_drvdata(dev, NULL);
1682 
1683 	if (mmc) {
1684 		struct mmci_host *host = mmc_priv(mmc);
1685 
1686 		/*
1687 		 * Undo pm_runtime_put() in probe.  We use the _sync
1688 		 * version here so that we can access the primecell.
1689 		 */
1690 		pm_runtime_get_sync(&dev->dev);
1691 
1692 		mmc_remove_host(mmc);
1693 
1694 		writel(0, host->base + MMCIMASK0);
1695 		writel(0, host->base + MMCIMASK1);
1696 
1697 		writel(0, host->base + MMCICOMMAND);
1698 		writel(0, host->base + MMCIDATACTRL);
1699 
1700 		mmci_dma_release(host);
1701 		free_irq(dev->irq[0], host);
1702 		if (!host->singleirq)
1703 			free_irq(dev->irq[1], host);
1704 
1705 		if (host->gpio_wp != -ENOSYS)
1706 			gpio_free(host->gpio_wp);
1707 		if (host->gpio_cd_irq >= 0)
1708 			free_irq(host->gpio_cd_irq, host);
1709 		if (host->gpio_cd != -ENOSYS)
1710 			gpio_free(host->gpio_cd);
1711 
1712 		iounmap(host->base);
1713 		clk_disable_unprepare(host->clk);
1714 
1715 		mmc_free_host(mmc);
1716 
1717 		amba_release_regions(dev);
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 #ifdef CONFIG_SUSPEND
1724 static int mmci_suspend(struct device *dev)
1725 {
1726 	struct amba_device *adev = to_amba_device(dev);
1727 	struct mmc_host *mmc = amba_get_drvdata(adev);
1728 	int ret = 0;
1729 
1730 	if (mmc) {
1731 		struct mmci_host *host = mmc_priv(mmc);
1732 
1733 		ret = mmc_suspend_host(mmc);
1734 		if (ret == 0) {
1735 			pm_runtime_get_sync(dev);
1736 			writel(0, host->base + MMCIMASK0);
1737 		}
1738 	}
1739 
1740 	return ret;
1741 }
1742 
1743 static int mmci_resume(struct device *dev)
1744 {
1745 	struct amba_device *adev = to_amba_device(dev);
1746 	struct mmc_host *mmc = amba_get_drvdata(adev);
1747 	int ret = 0;
1748 
1749 	if (mmc) {
1750 		struct mmci_host *host = mmc_priv(mmc);
1751 
1752 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1753 		pm_runtime_put(dev);
1754 
1755 		ret = mmc_resume_host(mmc);
1756 	}
1757 
1758 	return ret;
1759 }
1760 #endif
1761 
1762 #ifdef CONFIG_PM_RUNTIME
1763 static int mmci_runtime_suspend(struct device *dev)
1764 {
1765 	struct amba_device *adev = to_amba_device(dev);
1766 	struct mmc_host *mmc = amba_get_drvdata(adev);
1767 
1768 	if (mmc) {
1769 		struct mmci_host *host = mmc_priv(mmc);
1770 		clk_disable_unprepare(host->clk);
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 static int mmci_runtime_resume(struct device *dev)
1777 {
1778 	struct amba_device *adev = to_amba_device(dev);
1779 	struct mmc_host *mmc = amba_get_drvdata(adev);
1780 
1781 	if (mmc) {
1782 		struct mmci_host *host = mmc_priv(mmc);
1783 		clk_prepare_enable(host->clk);
1784 	}
1785 
1786 	return 0;
1787 }
1788 #endif
1789 
1790 static const struct dev_pm_ops mmci_dev_pm_ops = {
1791 	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1792 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1793 };
1794 
1795 static struct amba_id mmci_ids[] = {
1796 	{
1797 		.id	= 0x00041180,
1798 		.mask	= 0xff0fffff,
1799 		.data	= &variant_arm,
1800 	},
1801 	{
1802 		.id	= 0x01041180,
1803 		.mask	= 0xff0fffff,
1804 		.data	= &variant_arm_extended_fifo,
1805 	},
1806 	{
1807 		.id	= 0x02041180,
1808 		.mask	= 0xff0fffff,
1809 		.data	= &variant_arm_extended_fifo_hwfc,
1810 	},
1811 	{
1812 		.id	= 0x00041181,
1813 		.mask	= 0x000fffff,
1814 		.data	= &variant_arm,
1815 	},
1816 	/* ST Micro variants */
1817 	{
1818 		.id     = 0x00180180,
1819 		.mask   = 0x00ffffff,
1820 		.data	= &variant_u300,
1821 	},
1822 	{
1823 		.id     = 0x10180180,
1824 		.mask   = 0xf0ffffff,
1825 		.data	= &variant_nomadik,
1826 	},
1827 	{
1828 		.id     = 0x00280180,
1829 		.mask   = 0x00ffffff,
1830 		.data	= &variant_u300,
1831 	},
1832 	{
1833 		.id     = 0x00480180,
1834 		.mask   = 0xf0ffffff,
1835 		.data	= &variant_ux500,
1836 	},
1837 	{
1838 		.id     = 0x10480180,
1839 		.mask   = 0xf0ffffff,
1840 		.data	= &variant_ux500v2,
1841 	},
1842 	{ 0, 0 },
1843 };
1844 
1845 MODULE_DEVICE_TABLE(amba, mmci_ids);
1846 
1847 static struct amba_driver mmci_driver = {
1848 	.drv		= {
1849 		.name	= DRIVER_NAME,
1850 		.pm	= &mmci_dev_pm_ops,
1851 	},
1852 	.probe		= mmci_probe,
1853 	.remove		= mmci_remove,
1854 	.id_table	= mmci_ids,
1855 };
1856 
1857 module_amba_driver(mmci_driver);
1858 
1859 module_param(fmax, uint, 0444);
1860 
1861 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1862 MODULE_LICENSE("GPL");
1863