xref: /linux/drivers/mmc/host/mmci.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <asm/div64.h>
35 #include <asm/io.h>
36 #include <asm/sizes.h>
37 
38 #include "mmci.h"
39 
40 #define DRIVER_NAME "mmci-pl18x"
41 
42 static unsigned int fmax = 515633;
43 
44 /**
45  * struct variant_data - MMCI variant-specific quirks
46  * @clkreg: default value for MCICLOCK register
47  * @clkreg_enable: enable value for MMCICLOCK register
48  * @datalength_bits: number of bits in the MMCIDATALENGTH register
49  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50  *	      is asserted (likewise for RX)
51  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52  *		  is asserted (likewise for RX)
53  * @sdio: variant supports SDIO
54  * @st_clkdiv: true if using a ST-specific clock divider algorithm
55  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56  */
57 struct variant_data {
58 	unsigned int		clkreg;
59 	unsigned int		clkreg_enable;
60 	unsigned int		datalength_bits;
61 	unsigned int		fifosize;
62 	unsigned int		fifohalfsize;
63 	bool			sdio;
64 	bool			st_clkdiv;
65 	bool			blksz_datactrl16;
66 };
67 
68 static struct variant_data variant_arm = {
69 	.fifosize		= 16 * 4,
70 	.fifohalfsize		= 8 * 4,
71 	.datalength_bits	= 16,
72 };
73 
74 static struct variant_data variant_arm_extended_fifo = {
75 	.fifosize		= 128 * 4,
76 	.fifohalfsize		= 64 * 4,
77 	.datalength_bits	= 16,
78 };
79 
80 static struct variant_data variant_u300 = {
81 	.fifosize		= 16 * 4,
82 	.fifohalfsize		= 8 * 4,
83 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
84 	.datalength_bits	= 16,
85 	.sdio			= true,
86 };
87 
88 static struct variant_data variant_ux500 = {
89 	.fifosize		= 30 * 4,
90 	.fifohalfsize		= 8 * 4,
91 	.clkreg			= MCI_CLK_ENABLE,
92 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
93 	.datalength_bits	= 24,
94 	.sdio			= true,
95 	.st_clkdiv		= true,
96 };
97 
98 static struct variant_data variant_ux500v2 = {
99 	.fifosize		= 30 * 4,
100 	.fifohalfsize		= 8 * 4,
101 	.clkreg			= MCI_CLK_ENABLE,
102 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
103 	.datalength_bits	= 24,
104 	.sdio			= true,
105 	.st_clkdiv		= true,
106 	.blksz_datactrl16	= true,
107 };
108 
109 /*
110  * This must be called with host->lock held
111  */
112 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
113 {
114 	struct variant_data *variant = host->variant;
115 	u32 clk = variant->clkreg;
116 
117 	if (desired) {
118 		if (desired >= host->mclk) {
119 			clk = MCI_CLK_BYPASS;
120 			if (variant->st_clkdiv)
121 				clk |= MCI_ST_UX500_NEG_EDGE;
122 			host->cclk = host->mclk;
123 		} else if (variant->st_clkdiv) {
124 			/*
125 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
126 			 * => clkdiv = (mclk / f) - 2
127 			 * Round the divider up so we don't exceed the max
128 			 * frequency
129 			 */
130 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
131 			if (clk >= 256)
132 				clk = 255;
133 			host->cclk = host->mclk / (clk + 2);
134 		} else {
135 			/*
136 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
137 			 * => clkdiv = mclk / (2 * f) - 1
138 			 */
139 			clk = host->mclk / (2 * desired) - 1;
140 			if (clk >= 256)
141 				clk = 255;
142 			host->cclk = host->mclk / (2 * (clk + 1));
143 		}
144 
145 		clk |= variant->clkreg_enable;
146 		clk |= MCI_CLK_ENABLE;
147 		/* This hasn't proven to be worthwhile */
148 		/* clk |= MCI_CLK_PWRSAVE; */
149 	}
150 
151 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
152 		clk |= MCI_4BIT_BUS;
153 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
154 		clk |= MCI_ST_8BIT_BUS;
155 
156 	writel(clk, host->base + MMCICLOCK);
157 }
158 
159 static void
160 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
161 {
162 	writel(0, host->base + MMCICOMMAND);
163 
164 	BUG_ON(host->data);
165 
166 	host->mrq = NULL;
167 	host->cmd = NULL;
168 
169 	/*
170 	 * Need to drop the host lock here; mmc_request_done may call
171 	 * back into the driver...
172 	 */
173 	spin_unlock(&host->lock);
174 	pm_runtime_put(mmc_dev(host->mmc));
175 	mmc_request_done(host->mmc, mrq);
176 	spin_lock(&host->lock);
177 }
178 
179 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
180 {
181 	void __iomem *base = host->base;
182 
183 	if (host->singleirq) {
184 		unsigned int mask0 = readl(base + MMCIMASK0);
185 
186 		mask0 &= ~MCI_IRQ1MASK;
187 		mask0 |= mask;
188 
189 		writel(mask0, base + MMCIMASK0);
190 	}
191 
192 	writel(mask, base + MMCIMASK1);
193 }
194 
195 static void mmci_stop_data(struct mmci_host *host)
196 {
197 	writel(0, host->base + MMCIDATACTRL);
198 	mmci_set_mask1(host, 0);
199 	host->data = NULL;
200 }
201 
202 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
203 {
204 	unsigned int flags = SG_MITER_ATOMIC;
205 
206 	if (data->flags & MMC_DATA_READ)
207 		flags |= SG_MITER_TO_SG;
208 	else
209 		flags |= SG_MITER_FROM_SG;
210 
211 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
212 }
213 
214 /*
215  * All the DMA operation mode stuff goes inside this ifdef.
216  * This assumes that you have a generic DMA device interface,
217  * no custom DMA interfaces are supported.
218  */
219 #ifdef CONFIG_DMA_ENGINE
220 static void __devinit mmci_dma_setup(struct mmci_host *host)
221 {
222 	struct mmci_platform_data *plat = host->plat;
223 	const char *rxname, *txname;
224 	dma_cap_mask_t mask;
225 
226 	if (!plat || !plat->dma_filter) {
227 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
228 		return;
229 	}
230 
231 	/* initialize pre request cookie */
232 	host->next_data.cookie = 1;
233 
234 	/* Try to acquire a generic DMA engine slave channel */
235 	dma_cap_zero(mask);
236 	dma_cap_set(DMA_SLAVE, mask);
237 
238 	/*
239 	 * If only an RX channel is specified, the driver will
240 	 * attempt to use it bidirectionally, however if it is
241 	 * is specified but cannot be located, DMA will be disabled.
242 	 */
243 	if (plat->dma_rx_param) {
244 		host->dma_rx_channel = dma_request_channel(mask,
245 							   plat->dma_filter,
246 							   plat->dma_rx_param);
247 		/* E.g if no DMA hardware is present */
248 		if (!host->dma_rx_channel)
249 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
250 	}
251 
252 	if (plat->dma_tx_param) {
253 		host->dma_tx_channel = dma_request_channel(mask,
254 							   plat->dma_filter,
255 							   plat->dma_tx_param);
256 		if (!host->dma_tx_channel)
257 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
258 	} else {
259 		host->dma_tx_channel = host->dma_rx_channel;
260 	}
261 
262 	if (host->dma_rx_channel)
263 		rxname = dma_chan_name(host->dma_rx_channel);
264 	else
265 		rxname = "none";
266 
267 	if (host->dma_tx_channel)
268 		txname = dma_chan_name(host->dma_tx_channel);
269 	else
270 		txname = "none";
271 
272 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
273 		 rxname, txname);
274 
275 	/*
276 	 * Limit the maximum segment size in any SG entry according to
277 	 * the parameters of the DMA engine device.
278 	 */
279 	if (host->dma_tx_channel) {
280 		struct device *dev = host->dma_tx_channel->device->dev;
281 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
282 
283 		if (max_seg_size < host->mmc->max_seg_size)
284 			host->mmc->max_seg_size = max_seg_size;
285 	}
286 	if (host->dma_rx_channel) {
287 		struct device *dev = host->dma_rx_channel->device->dev;
288 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
289 
290 		if (max_seg_size < host->mmc->max_seg_size)
291 			host->mmc->max_seg_size = max_seg_size;
292 	}
293 }
294 
295 /*
296  * This is used in __devinit or __devexit so inline it
297  * so it can be discarded.
298  */
299 static inline void mmci_dma_release(struct mmci_host *host)
300 {
301 	struct mmci_platform_data *plat = host->plat;
302 
303 	if (host->dma_rx_channel)
304 		dma_release_channel(host->dma_rx_channel);
305 	if (host->dma_tx_channel && plat->dma_tx_param)
306 		dma_release_channel(host->dma_tx_channel);
307 	host->dma_rx_channel = host->dma_tx_channel = NULL;
308 }
309 
310 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
311 {
312 	struct dma_chan *chan = host->dma_current;
313 	enum dma_data_direction dir;
314 	u32 status;
315 	int i;
316 
317 	/* Wait up to 1ms for the DMA to complete */
318 	for (i = 0; ; i++) {
319 		status = readl(host->base + MMCISTATUS);
320 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
321 			break;
322 		udelay(10);
323 	}
324 
325 	/*
326 	 * Check to see whether we still have some data left in the FIFO -
327 	 * this catches DMA controllers which are unable to monitor the
328 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
329 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
330 	 */
331 	if (status & MCI_RXDATAAVLBLMASK) {
332 		dmaengine_terminate_all(chan);
333 		if (!data->error)
334 			data->error = -EIO;
335 	}
336 
337 	if (data->flags & MMC_DATA_WRITE) {
338 		dir = DMA_TO_DEVICE;
339 	} else {
340 		dir = DMA_FROM_DEVICE;
341 	}
342 
343 	if (!data->host_cookie)
344 		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
345 
346 	/*
347 	 * Use of DMA with scatter-gather is impossible.
348 	 * Give up with DMA and switch back to PIO mode.
349 	 */
350 	if (status & MCI_RXDATAAVLBLMASK) {
351 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
352 		mmci_dma_release(host);
353 	}
354 }
355 
356 static void mmci_dma_data_error(struct mmci_host *host)
357 {
358 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
359 	dmaengine_terminate_all(host->dma_current);
360 }
361 
362 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
363 			      struct mmci_host_next *next)
364 {
365 	struct variant_data *variant = host->variant;
366 	struct dma_slave_config conf = {
367 		.src_addr = host->phybase + MMCIFIFO,
368 		.dst_addr = host->phybase + MMCIFIFO,
369 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
370 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
371 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
372 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
373 	};
374 	struct dma_chan *chan;
375 	struct dma_device *device;
376 	struct dma_async_tx_descriptor *desc;
377 	int nr_sg;
378 
379 	/* Check if next job is already prepared */
380 	if (data->host_cookie && !next &&
381 	    host->dma_current && host->dma_desc_current)
382 		return 0;
383 
384 	if (!next) {
385 		host->dma_current = NULL;
386 		host->dma_desc_current = NULL;
387 	}
388 
389 	if (data->flags & MMC_DATA_READ) {
390 		conf.direction = DMA_FROM_DEVICE;
391 		chan = host->dma_rx_channel;
392 	} else {
393 		conf.direction = DMA_TO_DEVICE;
394 		chan = host->dma_tx_channel;
395 	}
396 
397 	/* If there's no DMA channel, fall back to PIO */
398 	if (!chan)
399 		return -EINVAL;
400 
401 	/* If less than or equal to the fifo size, don't bother with DMA */
402 	if (data->blksz * data->blocks <= variant->fifosize)
403 		return -EINVAL;
404 
405 	device = chan->device;
406 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
407 	if (nr_sg == 0)
408 		return -EINVAL;
409 
410 	dmaengine_slave_config(chan, &conf);
411 	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
412 					    conf.direction, DMA_CTRL_ACK);
413 	if (!desc)
414 		goto unmap_exit;
415 
416 	if (next) {
417 		next->dma_chan = chan;
418 		next->dma_desc = desc;
419 	} else {
420 		host->dma_current = chan;
421 		host->dma_desc_current = desc;
422 	}
423 
424 	return 0;
425 
426  unmap_exit:
427 	if (!next)
428 		dmaengine_terminate_all(chan);
429 	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
430 	return -ENOMEM;
431 }
432 
433 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
434 {
435 	int ret;
436 	struct mmc_data *data = host->data;
437 
438 	ret = mmci_dma_prep_data(host, host->data, NULL);
439 	if (ret)
440 		return ret;
441 
442 	/* Okay, go for it. */
443 	dev_vdbg(mmc_dev(host->mmc),
444 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
445 		 data->sg_len, data->blksz, data->blocks, data->flags);
446 	dmaengine_submit(host->dma_desc_current);
447 	dma_async_issue_pending(host->dma_current);
448 
449 	datactrl |= MCI_DPSM_DMAENABLE;
450 
451 	/* Trigger the DMA transfer */
452 	writel(datactrl, host->base + MMCIDATACTRL);
453 
454 	/*
455 	 * Let the MMCI say when the data is ended and it's time
456 	 * to fire next DMA request. When that happens, MMCI will
457 	 * call mmci_data_end()
458 	 */
459 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
460 	       host->base + MMCIMASK0);
461 	return 0;
462 }
463 
464 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
465 {
466 	struct mmci_host_next *next = &host->next_data;
467 
468 	if (data->host_cookie && data->host_cookie != next->cookie) {
469 		pr_warning("[%s] invalid cookie: data->host_cookie %d"
470 		       " host->next_data.cookie %d\n",
471 		       __func__, data->host_cookie, host->next_data.cookie);
472 		data->host_cookie = 0;
473 	}
474 
475 	if (!data->host_cookie)
476 		return;
477 
478 	host->dma_desc_current = next->dma_desc;
479 	host->dma_current = next->dma_chan;
480 
481 	next->dma_desc = NULL;
482 	next->dma_chan = NULL;
483 }
484 
485 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
486 			     bool is_first_req)
487 {
488 	struct mmci_host *host = mmc_priv(mmc);
489 	struct mmc_data *data = mrq->data;
490 	struct mmci_host_next *nd = &host->next_data;
491 
492 	if (!data)
493 		return;
494 
495 	if (data->host_cookie) {
496 		data->host_cookie = 0;
497 		return;
498 	}
499 
500 	/* if config for dma */
501 	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
502 	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
503 		if (mmci_dma_prep_data(host, data, nd))
504 			data->host_cookie = 0;
505 		else
506 			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
507 	}
508 }
509 
510 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
511 			      int err)
512 {
513 	struct mmci_host *host = mmc_priv(mmc);
514 	struct mmc_data *data = mrq->data;
515 	struct dma_chan *chan;
516 	enum dma_data_direction dir;
517 
518 	if (!data)
519 		return;
520 
521 	if (data->flags & MMC_DATA_READ) {
522 		dir = DMA_FROM_DEVICE;
523 		chan = host->dma_rx_channel;
524 	} else {
525 		dir = DMA_TO_DEVICE;
526 		chan = host->dma_tx_channel;
527 	}
528 
529 
530 	/* if config for dma */
531 	if (chan) {
532 		if (err)
533 			dmaengine_terminate_all(chan);
534 		if (data->host_cookie)
535 			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
536 				     data->sg_len, dir);
537 		mrq->data->host_cookie = 0;
538 	}
539 }
540 
541 #else
542 /* Blank functions if the DMA engine is not available */
543 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
544 {
545 }
546 static inline void mmci_dma_setup(struct mmci_host *host)
547 {
548 }
549 
550 static inline void mmci_dma_release(struct mmci_host *host)
551 {
552 }
553 
554 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
555 {
556 }
557 
558 static inline void mmci_dma_data_error(struct mmci_host *host)
559 {
560 }
561 
562 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
563 {
564 	return -ENOSYS;
565 }
566 
567 #define mmci_pre_request NULL
568 #define mmci_post_request NULL
569 
570 #endif
571 
572 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
573 {
574 	struct variant_data *variant = host->variant;
575 	unsigned int datactrl, timeout, irqmask;
576 	unsigned long long clks;
577 	void __iomem *base;
578 	int blksz_bits;
579 
580 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
581 		data->blksz, data->blocks, data->flags);
582 
583 	host->data = data;
584 	host->size = data->blksz * data->blocks;
585 	data->bytes_xfered = 0;
586 
587 	clks = (unsigned long long)data->timeout_ns * host->cclk;
588 	do_div(clks, 1000000000UL);
589 
590 	timeout = data->timeout_clks + (unsigned int)clks;
591 
592 	base = host->base;
593 	writel(timeout, base + MMCIDATATIMER);
594 	writel(host->size, base + MMCIDATALENGTH);
595 
596 	blksz_bits = ffs(data->blksz) - 1;
597 	BUG_ON(1 << blksz_bits != data->blksz);
598 
599 	if (variant->blksz_datactrl16)
600 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
601 	else
602 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
603 
604 	if (data->flags & MMC_DATA_READ)
605 		datactrl |= MCI_DPSM_DIRECTION;
606 
607 	/*
608 	 * Attempt to use DMA operation mode, if this
609 	 * should fail, fall back to PIO mode
610 	 */
611 	if (!mmci_dma_start_data(host, datactrl))
612 		return;
613 
614 	/* IRQ mode, map the SG list for CPU reading/writing */
615 	mmci_init_sg(host, data);
616 
617 	if (data->flags & MMC_DATA_READ) {
618 		irqmask = MCI_RXFIFOHALFFULLMASK;
619 
620 		/*
621 		 * If we have less than the fifo 'half-full' threshold to
622 		 * transfer, trigger a PIO interrupt as soon as any data
623 		 * is available.
624 		 */
625 		if (host->size < variant->fifohalfsize)
626 			irqmask |= MCI_RXDATAAVLBLMASK;
627 	} else {
628 		/*
629 		 * We don't actually need to include "FIFO empty" here
630 		 * since its implicit in "FIFO half empty".
631 		 */
632 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
633 	}
634 
635 	/* The ST Micro variants has a special bit to enable SDIO */
636 	if (variant->sdio && host->mmc->card)
637 		if (mmc_card_sdio(host->mmc->card))
638 			datactrl |= MCI_ST_DPSM_SDIOEN;
639 
640 	writel(datactrl, base + MMCIDATACTRL);
641 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
642 	mmci_set_mask1(host, irqmask);
643 }
644 
645 static void
646 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
647 {
648 	void __iomem *base = host->base;
649 
650 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
651 	    cmd->opcode, cmd->arg, cmd->flags);
652 
653 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
654 		writel(0, base + MMCICOMMAND);
655 		udelay(1);
656 	}
657 
658 	c |= cmd->opcode | MCI_CPSM_ENABLE;
659 	if (cmd->flags & MMC_RSP_PRESENT) {
660 		if (cmd->flags & MMC_RSP_136)
661 			c |= MCI_CPSM_LONGRSP;
662 		c |= MCI_CPSM_RESPONSE;
663 	}
664 	if (/*interrupt*/0)
665 		c |= MCI_CPSM_INTERRUPT;
666 
667 	host->cmd = cmd;
668 
669 	writel(cmd->arg, base + MMCIARGUMENT);
670 	writel(c, base + MMCICOMMAND);
671 }
672 
673 static void
674 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
675 	      unsigned int status)
676 {
677 	/* First check for errors */
678 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
679 		u32 remain, success;
680 
681 		/* Terminate the DMA transfer */
682 		if (dma_inprogress(host))
683 			mmci_dma_data_error(host);
684 
685 		/*
686 		 * Calculate how far we are into the transfer.  Note that
687 		 * the data counter gives the number of bytes transferred
688 		 * on the MMC bus, not on the host side.  On reads, this
689 		 * can be as much as a FIFO-worth of data ahead.  This
690 		 * matters for FIFO overruns only.
691 		 */
692 		remain = readl(host->base + MMCIDATACNT);
693 		success = data->blksz * data->blocks - remain;
694 
695 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
696 			status, success);
697 		if (status & MCI_DATACRCFAIL) {
698 			/* Last block was not successful */
699 			success -= 1;
700 			data->error = -EILSEQ;
701 		} else if (status & MCI_DATATIMEOUT) {
702 			data->error = -ETIMEDOUT;
703 		} else if (status & MCI_STARTBITERR) {
704 			data->error = -ECOMM;
705 		} else if (status & MCI_TXUNDERRUN) {
706 			data->error = -EIO;
707 		} else if (status & MCI_RXOVERRUN) {
708 			if (success > host->variant->fifosize)
709 				success -= host->variant->fifosize;
710 			else
711 				success = 0;
712 			data->error = -EIO;
713 		}
714 		data->bytes_xfered = round_down(success, data->blksz);
715 	}
716 
717 	if (status & MCI_DATABLOCKEND)
718 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
719 
720 	if (status & MCI_DATAEND || data->error) {
721 		if (dma_inprogress(host))
722 			mmci_dma_unmap(host, data);
723 		mmci_stop_data(host);
724 
725 		if (!data->error)
726 			/* The error clause is handled above, success! */
727 			data->bytes_xfered = data->blksz * data->blocks;
728 
729 		if (!data->stop) {
730 			mmci_request_end(host, data->mrq);
731 		} else {
732 			mmci_start_command(host, data->stop, 0);
733 		}
734 	}
735 }
736 
737 static void
738 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
739 	     unsigned int status)
740 {
741 	void __iomem *base = host->base;
742 
743 	host->cmd = NULL;
744 
745 	if (status & MCI_CMDTIMEOUT) {
746 		cmd->error = -ETIMEDOUT;
747 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
748 		cmd->error = -EILSEQ;
749 	} else {
750 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
751 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
752 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
753 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
754 	}
755 
756 	if (!cmd->data || cmd->error) {
757 		if (host->data)
758 			mmci_stop_data(host);
759 		mmci_request_end(host, cmd->mrq);
760 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
761 		mmci_start_data(host, cmd->data);
762 	}
763 }
764 
765 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
766 {
767 	void __iomem *base = host->base;
768 	char *ptr = buffer;
769 	u32 status;
770 	int host_remain = host->size;
771 
772 	do {
773 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
774 
775 		if (count > remain)
776 			count = remain;
777 
778 		if (count <= 0)
779 			break;
780 
781 		readsl(base + MMCIFIFO, ptr, count >> 2);
782 
783 		ptr += count;
784 		remain -= count;
785 		host_remain -= count;
786 
787 		if (remain == 0)
788 			break;
789 
790 		status = readl(base + MMCISTATUS);
791 	} while (status & MCI_RXDATAAVLBL);
792 
793 	return ptr - buffer;
794 }
795 
796 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
797 {
798 	struct variant_data *variant = host->variant;
799 	void __iomem *base = host->base;
800 	char *ptr = buffer;
801 
802 	do {
803 		unsigned int count, maxcnt;
804 
805 		maxcnt = status & MCI_TXFIFOEMPTY ?
806 			 variant->fifosize : variant->fifohalfsize;
807 		count = min(remain, maxcnt);
808 
809 		/*
810 		 * The ST Micro variant for SDIO transfer sizes
811 		 * less then 8 bytes should have clock H/W flow
812 		 * control disabled.
813 		 */
814 		if (variant->sdio &&
815 		    mmc_card_sdio(host->mmc->card)) {
816 			if (count < 8)
817 				writel(readl(host->base + MMCICLOCK) &
818 					~variant->clkreg_enable,
819 					host->base + MMCICLOCK);
820 			else
821 				writel(readl(host->base + MMCICLOCK) |
822 					variant->clkreg_enable,
823 					host->base + MMCICLOCK);
824 		}
825 
826 		/*
827 		 * SDIO especially may want to send something that is
828 		 * not divisible by 4 (as opposed to card sectors
829 		 * etc), and the FIFO only accept full 32-bit writes.
830 		 * So compensate by adding +3 on the count, a single
831 		 * byte become a 32bit write, 7 bytes will be two
832 		 * 32bit writes etc.
833 		 */
834 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
835 
836 		ptr += count;
837 		remain -= count;
838 
839 		if (remain == 0)
840 			break;
841 
842 		status = readl(base + MMCISTATUS);
843 	} while (status & MCI_TXFIFOHALFEMPTY);
844 
845 	return ptr - buffer;
846 }
847 
848 /*
849  * PIO data transfer IRQ handler.
850  */
851 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
852 {
853 	struct mmci_host *host = dev_id;
854 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
855 	struct variant_data *variant = host->variant;
856 	void __iomem *base = host->base;
857 	unsigned long flags;
858 	u32 status;
859 
860 	status = readl(base + MMCISTATUS);
861 
862 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
863 
864 	local_irq_save(flags);
865 
866 	do {
867 		unsigned int remain, len;
868 		char *buffer;
869 
870 		/*
871 		 * For write, we only need to test the half-empty flag
872 		 * here - if the FIFO is completely empty, then by
873 		 * definition it is more than half empty.
874 		 *
875 		 * For read, check for data available.
876 		 */
877 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
878 			break;
879 
880 		if (!sg_miter_next(sg_miter))
881 			break;
882 
883 		buffer = sg_miter->addr;
884 		remain = sg_miter->length;
885 
886 		len = 0;
887 		if (status & MCI_RXACTIVE)
888 			len = mmci_pio_read(host, buffer, remain);
889 		if (status & MCI_TXACTIVE)
890 			len = mmci_pio_write(host, buffer, remain, status);
891 
892 		sg_miter->consumed = len;
893 
894 		host->size -= len;
895 		remain -= len;
896 
897 		if (remain)
898 			break;
899 
900 		status = readl(base + MMCISTATUS);
901 	} while (1);
902 
903 	sg_miter_stop(sg_miter);
904 
905 	local_irq_restore(flags);
906 
907 	/*
908 	 * If we have less than the fifo 'half-full' threshold to transfer,
909 	 * trigger a PIO interrupt as soon as any data is available.
910 	 */
911 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
912 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
913 
914 	/*
915 	 * If we run out of data, disable the data IRQs; this
916 	 * prevents a race where the FIFO becomes empty before
917 	 * the chip itself has disabled the data path, and
918 	 * stops us racing with our data end IRQ.
919 	 */
920 	if (host->size == 0) {
921 		mmci_set_mask1(host, 0);
922 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
923 	}
924 
925 	return IRQ_HANDLED;
926 }
927 
928 /*
929  * Handle completion of command and data transfers.
930  */
931 static irqreturn_t mmci_irq(int irq, void *dev_id)
932 {
933 	struct mmci_host *host = dev_id;
934 	u32 status;
935 	int ret = 0;
936 
937 	spin_lock(&host->lock);
938 
939 	do {
940 		struct mmc_command *cmd;
941 		struct mmc_data *data;
942 
943 		status = readl(host->base + MMCISTATUS);
944 
945 		if (host->singleirq) {
946 			if (status & readl(host->base + MMCIMASK1))
947 				mmci_pio_irq(irq, dev_id);
948 
949 			status &= ~MCI_IRQ1MASK;
950 		}
951 
952 		status &= readl(host->base + MMCIMASK0);
953 		writel(status, host->base + MMCICLEAR);
954 
955 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
956 
957 		data = host->data;
958 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
959 			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
960 			mmci_data_irq(host, data, status);
961 
962 		cmd = host->cmd;
963 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
964 			mmci_cmd_irq(host, cmd, status);
965 
966 		ret = 1;
967 	} while (status);
968 
969 	spin_unlock(&host->lock);
970 
971 	return IRQ_RETVAL(ret);
972 }
973 
974 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
975 {
976 	struct mmci_host *host = mmc_priv(mmc);
977 	unsigned long flags;
978 
979 	WARN_ON(host->mrq != NULL);
980 
981 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
982 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
983 			mrq->data->blksz);
984 		mrq->cmd->error = -EINVAL;
985 		mmc_request_done(mmc, mrq);
986 		return;
987 	}
988 
989 	pm_runtime_get_sync(mmc_dev(mmc));
990 
991 	spin_lock_irqsave(&host->lock, flags);
992 
993 	host->mrq = mrq;
994 
995 	if (mrq->data)
996 		mmci_get_next_data(host, mrq->data);
997 
998 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
999 		mmci_start_data(host, mrq->data);
1000 
1001 	mmci_start_command(host, mrq->cmd, 0);
1002 
1003 	spin_unlock_irqrestore(&host->lock, flags);
1004 }
1005 
1006 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1007 {
1008 	struct mmci_host *host = mmc_priv(mmc);
1009 	u32 pwr = 0;
1010 	unsigned long flags;
1011 	int ret;
1012 
1013 	switch (ios->power_mode) {
1014 	case MMC_POWER_OFF:
1015 		if (host->vcc)
1016 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1017 		break;
1018 	case MMC_POWER_UP:
1019 		if (host->vcc) {
1020 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1021 			if (ret) {
1022 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1023 				/*
1024 				 * The .set_ios() function in the mmc_host_ops
1025 				 * struct return void, and failing to set the
1026 				 * power should be rare so we print an error
1027 				 * and return here.
1028 				 */
1029 				return;
1030 			}
1031 		}
1032 		if (host->plat->vdd_handler)
1033 			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1034 						       ios->power_mode);
1035 		/* The ST version does not have this, fall through to POWER_ON */
1036 		if (host->hw_designer != AMBA_VENDOR_ST) {
1037 			pwr |= MCI_PWR_UP;
1038 			break;
1039 		}
1040 	case MMC_POWER_ON:
1041 		pwr |= MCI_PWR_ON;
1042 		break;
1043 	}
1044 
1045 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1046 		if (host->hw_designer != AMBA_VENDOR_ST)
1047 			pwr |= MCI_ROD;
1048 		else {
1049 			/*
1050 			 * The ST Micro variant use the ROD bit for something
1051 			 * else and only has OD (Open Drain).
1052 			 */
1053 			pwr |= MCI_OD;
1054 		}
1055 	}
1056 
1057 	spin_lock_irqsave(&host->lock, flags);
1058 
1059 	mmci_set_clkreg(host, ios->clock);
1060 
1061 	if (host->pwr != pwr) {
1062 		host->pwr = pwr;
1063 		writel(pwr, host->base + MMCIPOWER);
1064 	}
1065 
1066 	spin_unlock_irqrestore(&host->lock, flags);
1067 }
1068 
1069 static int mmci_get_ro(struct mmc_host *mmc)
1070 {
1071 	struct mmci_host *host = mmc_priv(mmc);
1072 
1073 	if (host->gpio_wp == -ENOSYS)
1074 		return -ENOSYS;
1075 
1076 	return gpio_get_value_cansleep(host->gpio_wp);
1077 }
1078 
1079 static int mmci_get_cd(struct mmc_host *mmc)
1080 {
1081 	struct mmci_host *host = mmc_priv(mmc);
1082 	struct mmci_platform_data *plat = host->plat;
1083 	unsigned int status;
1084 
1085 	if (host->gpio_cd == -ENOSYS) {
1086 		if (!plat->status)
1087 			return 1; /* Assume always present */
1088 
1089 		status = plat->status(mmc_dev(host->mmc));
1090 	} else
1091 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1092 			^ plat->cd_invert;
1093 
1094 	/*
1095 	 * Use positive logic throughout - status is zero for no card,
1096 	 * non-zero for card inserted.
1097 	 */
1098 	return status;
1099 }
1100 
1101 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1102 {
1103 	struct mmci_host *host = dev_id;
1104 
1105 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1106 
1107 	return IRQ_HANDLED;
1108 }
1109 
1110 static const struct mmc_host_ops mmci_ops = {
1111 	.request	= mmci_request,
1112 	.pre_req	= mmci_pre_request,
1113 	.post_req	= mmci_post_request,
1114 	.set_ios	= mmci_set_ios,
1115 	.get_ro		= mmci_get_ro,
1116 	.get_cd		= mmci_get_cd,
1117 };
1118 
1119 static int __devinit mmci_probe(struct amba_device *dev,
1120 	const struct amba_id *id)
1121 {
1122 	struct mmci_platform_data *plat = dev->dev.platform_data;
1123 	struct variant_data *variant = id->data;
1124 	struct mmci_host *host;
1125 	struct mmc_host *mmc;
1126 	int ret;
1127 
1128 	/* must have platform data */
1129 	if (!plat) {
1130 		ret = -EINVAL;
1131 		goto out;
1132 	}
1133 
1134 	ret = amba_request_regions(dev, DRIVER_NAME);
1135 	if (ret)
1136 		goto out;
1137 
1138 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1139 	if (!mmc) {
1140 		ret = -ENOMEM;
1141 		goto rel_regions;
1142 	}
1143 
1144 	host = mmc_priv(mmc);
1145 	host->mmc = mmc;
1146 
1147 	host->gpio_wp = -ENOSYS;
1148 	host->gpio_cd = -ENOSYS;
1149 	host->gpio_cd_irq = -1;
1150 
1151 	host->hw_designer = amba_manf(dev);
1152 	host->hw_revision = amba_rev(dev);
1153 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1154 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1155 
1156 	host->clk = clk_get(&dev->dev, NULL);
1157 	if (IS_ERR(host->clk)) {
1158 		ret = PTR_ERR(host->clk);
1159 		host->clk = NULL;
1160 		goto host_free;
1161 	}
1162 
1163 	ret = clk_prepare(host->clk);
1164 	if (ret)
1165 		goto clk_free;
1166 
1167 	ret = clk_enable(host->clk);
1168 	if (ret)
1169 		goto clk_unprep;
1170 
1171 	host->plat = plat;
1172 	host->variant = variant;
1173 	host->mclk = clk_get_rate(host->clk);
1174 	/*
1175 	 * According to the spec, mclk is max 100 MHz,
1176 	 * so we try to adjust the clock down to this,
1177 	 * (if possible).
1178 	 */
1179 	if (host->mclk > 100000000) {
1180 		ret = clk_set_rate(host->clk, 100000000);
1181 		if (ret < 0)
1182 			goto clk_disable;
1183 		host->mclk = clk_get_rate(host->clk);
1184 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1185 			host->mclk);
1186 	}
1187 	host->phybase = dev->res.start;
1188 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1189 	if (!host->base) {
1190 		ret = -ENOMEM;
1191 		goto clk_disable;
1192 	}
1193 
1194 	mmc->ops = &mmci_ops;
1195 	/*
1196 	 * The ARM and ST versions of the block have slightly different
1197 	 * clock divider equations which means that the minimum divider
1198 	 * differs too.
1199 	 */
1200 	if (variant->st_clkdiv)
1201 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1202 	else
1203 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1204 	/*
1205 	 * If the platform data supplies a maximum operating
1206 	 * frequency, this takes precedence. Else, we fall back
1207 	 * to using the module parameter, which has a (low)
1208 	 * default value in case it is not specified. Either
1209 	 * value must not exceed the clock rate into the block,
1210 	 * of course.
1211 	 */
1212 	if (plat->f_max)
1213 		mmc->f_max = min(host->mclk, plat->f_max);
1214 	else
1215 		mmc->f_max = min(host->mclk, fmax);
1216 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1217 
1218 #ifdef CONFIG_REGULATOR
1219 	/* If we're using the regulator framework, try to fetch a regulator */
1220 	host->vcc = regulator_get(&dev->dev, "vmmc");
1221 	if (IS_ERR(host->vcc))
1222 		host->vcc = NULL;
1223 	else {
1224 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1225 
1226 		if (mask < 0)
1227 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1228 				mask);
1229 		else {
1230 			host->mmc->ocr_avail = (u32) mask;
1231 			if (plat->ocr_mask)
1232 				dev_warn(&dev->dev,
1233 				 "Provided ocr_mask/setpower will not be used "
1234 				 "(using regulator instead)\n");
1235 		}
1236 	}
1237 #endif
1238 	/* Fall back to platform data if no regulator is found */
1239 	if (host->vcc == NULL)
1240 		mmc->ocr_avail = plat->ocr_mask;
1241 	mmc->caps = plat->capabilities;
1242 
1243 	/*
1244 	 * We can do SGIO
1245 	 */
1246 	mmc->max_segs = NR_SG;
1247 
1248 	/*
1249 	 * Since only a certain number of bits are valid in the data length
1250 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1251 	 * single request.
1252 	 */
1253 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1254 
1255 	/*
1256 	 * Set the maximum segment size.  Since we aren't doing DMA
1257 	 * (yet) we are only limited by the data length register.
1258 	 */
1259 	mmc->max_seg_size = mmc->max_req_size;
1260 
1261 	/*
1262 	 * Block size can be up to 2048 bytes, but must be a power of two.
1263 	 */
1264 	mmc->max_blk_size = 2048;
1265 
1266 	/*
1267 	 * No limit on the number of blocks transferred.
1268 	 */
1269 	mmc->max_blk_count = mmc->max_req_size;
1270 
1271 	spin_lock_init(&host->lock);
1272 
1273 	writel(0, host->base + MMCIMASK0);
1274 	writel(0, host->base + MMCIMASK1);
1275 	writel(0xfff, host->base + MMCICLEAR);
1276 
1277 	if (gpio_is_valid(plat->gpio_cd)) {
1278 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1279 		if (ret == 0)
1280 			ret = gpio_direction_input(plat->gpio_cd);
1281 		if (ret == 0)
1282 			host->gpio_cd = plat->gpio_cd;
1283 		else if (ret != -ENOSYS)
1284 			goto err_gpio_cd;
1285 
1286 		/*
1287 		 * A gpio pin that will detect cards when inserted and removed
1288 		 * will most likely want to trigger on the edges if it is
1289 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1290 		 * for the inverted case) so we request triggers on both
1291 		 * edges.
1292 		 */
1293 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1294 				mmci_cd_irq,
1295 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1296 				DRIVER_NAME " (cd)", host);
1297 		if (ret >= 0)
1298 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1299 	}
1300 	if (gpio_is_valid(plat->gpio_wp)) {
1301 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1302 		if (ret == 0)
1303 			ret = gpio_direction_input(plat->gpio_wp);
1304 		if (ret == 0)
1305 			host->gpio_wp = plat->gpio_wp;
1306 		else if (ret != -ENOSYS)
1307 			goto err_gpio_wp;
1308 	}
1309 
1310 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1311 	    && host->gpio_cd_irq < 0)
1312 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1313 
1314 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1315 	if (ret)
1316 		goto unmap;
1317 
1318 	if (dev->irq[1] == NO_IRQ)
1319 		host->singleirq = true;
1320 	else {
1321 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1322 				  DRIVER_NAME " (pio)", host);
1323 		if (ret)
1324 			goto irq0_free;
1325 	}
1326 
1327 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1328 
1329 	amba_set_drvdata(dev, mmc);
1330 
1331 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1332 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1333 		 amba_rev(dev), (unsigned long long)dev->res.start,
1334 		 dev->irq[0], dev->irq[1]);
1335 
1336 	mmci_dma_setup(host);
1337 
1338 	pm_runtime_put(&dev->dev);
1339 
1340 	mmc_add_host(mmc);
1341 
1342 	return 0;
1343 
1344  irq0_free:
1345 	free_irq(dev->irq[0], host);
1346  unmap:
1347 	if (host->gpio_wp != -ENOSYS)
1348 		gpio_free(host->gpio_wp);
1349  err_gpio_wp:
1350 	if (host->gpio_cd_irq >= 0)
1351 		free_irq(host->gpio_cd_irq, host);
1352 	if (host->gpio_cd != -ENOSYS)
1353 		gpio_free(host->gpio_cd);
1354  err_gpio_cd:
1355 	iounmap(host->base);
1356  clk_disable:
1357 	clk_disable(host->clk);
1358  clk_unprep:
1359 	clk_unprepare(host->clk);
1360  clk_free:
1361 	clk_put(host->clk);
1362  host_free:
1363 	mmc_free_host(mmc);
1364  rel_regions:
1365 	amba_release_regions(dev);
1366  out:
1367 	return ret;
1368 }
1369 
1370 static int __devexit mmci_remove(struct amba_device *dev)
1371 {
1372 	struct mmc_host *mmc = amba_get_drvdata(dev);
1373 
1374 	amba_set_drvdata(dev, NULL);
1375 
1376 	if (mmc) {
1377 		struct mmci_host *host = mmc_priv(mmc);
1378 
1379 		/*
1380 		 * Undo pm_runtime_put() in probe.  We use the _sync
1381 		 * version here so that we can access the primecell.
1382 		 */
1383 		pm_runtime_get_sync(&dev->dev);
1384 
1385 		mmc_remove_host(mmc);
1386 
1387 		writel(0, host->base + MMCIMASK0);
1388 		writel(0, host->base + MMCIMASK1);
1389 
1390 		writel(0, host->base + MMCICOMMAND);
1391 		writel(0, host->base + MMCIDATACTRL);
1392 
1393 		mmci_dma_release(host);
1394 		free_irq(dev->irq[0], host);
1395 		if (!host->singleirq)
1396 			free_irq(dev->irq[1], host);
1397 
1398 		if (host->gpio_wp != -ENOSYS)
1399 			gpio_free(host->gpio_wp);
1400 		if (host->gpio_cd_irq >= 0)
1401 			free_irq(host->gpio_cd_irq, host);
1402 		if (host->gpio_cd != -ENOSYS)
1403 			gpio_free(host->gpio_cd);
1404 
1405 		iounmap(host->base);
1406 		clk_disable(host->clk);
1407 		clk_unprepare(host->clk);
1408 		clk_put(host->clk);
1409 
1410 		if (host->vcc)
1411 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1412 		regulator_put(host->vcc);
1413 
1414 		mmc_free_host(mmc);
1415 
1416 		amba_release_regions(dev);
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 #ifdef CONFIG_PM
1423 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1424 {
1425 	struct mmc_host *mmc = amba_get_drvdata(dev);
1426 	int ret = 0;
1427 
1428 	if (mmc) {
1429 		struct mmci_host *host = mmc_priv(mmc);
1430 
1431 		ret = mmc_suspend_host(mmc);
1432 		if (ret == 0)
1433 			writel(0, host->base + MMCIMASK0);
1434 	}
1435 
1436 	return ret;
1437 }
1438 
1439 static int mmci_resume(struct amba_device *dev)
1440 {
1441 	struct mmc_host *mmc = amba_get_drvdata(dev);
1442 	int ret = 0;
1443 
1444 	if (mmc) {
1445 		struct mmci_host *host = mmc_priv(mmc);
1446 
1447 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1448 
1449 		ret = mmc_resume_host(mmc);
1450 	}
1451 
1452 	return ret;
1453 }
1454 #else
1455 #define mmci_suspend	NULL
1456 #define mmci_resume	NULL
1457 #endif
1458 
1459 static struct amba_id mmci_ids[] = {
1460 	{
1461 		.id	= 0x00041180,
1462 		.mask	= 0xff0fffff,
1463 		.data	= &variant_arm,
1464 	},
1465 	{
1466 		.id	= 0x01041180,
1467 		.mask	= 0xff0fffff,
1468 		.data	= &variant_arm_extended_fifo,
1469 	},
1470 	{
1471 		.id	= 0x00041181,
1472 		.mask	= 0x000fffff,
1473 		.data	= &variant_arm,
1474 	},
1475 	/* ST Micro variants */
1476 	{
1477 		.id     = 0x00180180,
1478 		.mask   = 0x00ffffff,
1479 		.data	= &variant_u300,
1480 	},
1481 	{
1482 		.id     = 0x00280180,
1483 		.mask   = 0x00ffffff,
1484 		.data	= &variant_u300,
1485 	},
1486 	{
1487 		.id     = 0x00480180,
1488 		.mask   = 0xf0ffffff,
1489 		.data	= &variant_ux500,
1490 	},
1491 	{
1492 		.id     = 0x10480180,
1493 		.mask   = 0xf0ffffff,
1494 		.data	= &variant_ux500v2,
1495 	},
1496 	{ 0, 0 },
1497 };
1498 
1499 static struct amba_driver mmci_driver = {
1500 	.drv		= {
1501 		.name	= DRIVER_NAME,
1502 	},
1503 	.probe		= mmci_probe,
1504 	.remove		= __devexit_p(mmci_remove),
1505 	.suspend	= mmci_suspend,
1506 	.resume		= mmci_resume,
1507 	.id_table	= mmci_ids,
1508 };
1509 
1510 static int __init mmci_init(void)
1511 {
1512 	return amba_driver_register(&mmci_driver);
1513 }
1514 
1515 static void __exit mmci_exit(void)
1516 {
1517 	amba_driver_unregister(&mmci_driver);
1518 }
1519 
1520 module_init(mmci_init);
1521 module_exit(mmci_exit);
1522 module_param(fmax, uint, 0444);
1523 
1524 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1525 MODULE_LICENSE("GPL");
1526