1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver 4 * 5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. 6 * Copyright (C) 2010 ST-Ericsson SA 7 */ 8 #include <linux/module.h> 9 #include <linux/moduleparam.h> 10 #include <linux/init.h> 11 #include <linux/ioport.h> 12 #include <linux/device.h> 13 #include <linux/io.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/highmem.h> 20 #include <linux/log2.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/pm.h> 23 #include <linux/mmc/host.h> 24 #include <linux/mmc/card.h> 25 #include <linux/mmc/sd.h> 26 #include <linux/mmc/slot-gpio.h> 27 #include <linux/amba/bus.h> 28 #include <linux/clk.h> 29 #include <linux/scatterlist.h> 30 #include <linux/of.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/dmaengine.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/amba/mmci.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/types.h> 37 #include <linux/pinctrl/consumer.h> 38 #include <linux/reset.h> 39 #include <linux/gpio/consumer.h> 40 #include <linux/workqueue.h> 41 42 #include <asm/div64.h> 43 #include <asm/io.h> 44 45 #include "mmci.h" 46 47 #define DRIVER_NAME "mmci-pl18x" 48 49 static void mmci_variant_init(struct mmci_host *host); 50 static void ux500_variant_init(struct mmci_host *host); 51 static void ux500v2_variant_init(struct mmci_host *host); 52 53 static unsigned int fmax = 515633; 54 55 static struct variant_data variant_arm = { 56 .fifosize = 16 * 4, 57 .fifohalfsize = 8 * 4, 58 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 59 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 60 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 61 .cmdreg_srsp = MCI_CPSM_RESPONSE, 62 .datalength_bits = 16, 63 .datactrl_blocksz = 11, 64 .pwrreg_powerup = MCI_PWR_UP, 65 .f_max = 100000000, 66 .reversed_irq_handling = true, 67 .mmcimask1 = true, 68 .irq_pio_mask = MCI_IRQ_PIO_MASK, 69 .start_err = MCI_STARTBITERR, 70 .opendrain = MCI_ROD, 71 .init = mmci_variant_init, 72 }; 73 74 static struct variant_data variant_arm_extended_fifo = { 75 .fifosize = 128 * 4, 76 .fifohalfsize = 64 * 4, 77 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 78 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 79 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 80 .cmdreg_srsp = MCI_CPSM_RESPONSE, 81 .datalength_bits = 16, 82 .datactrl_blocksz = 11, 83 .pwrreg_powerup = MCI_PWR_UP, 84 .f_max = 100000000, 85 .mmcimask1 = true, 86 .irq_pio_mask = MCI_IRQ_PIO_MASK, 87 .start_err = MCI_STARTBITERR, 88 .opendrain = MCI_ROD, 89 .init = mmci_variant_init, 90 }; 91 92 static struct variant_data variant_arm_extended_fifo_hwfc = { 93 .fifosize = 128 * 4, 94 .fifohalfsize = 64 * 4, 95 .clkreg_enable = MCI_ARM_HWFCEN, 96 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 97 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 98 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 99 .cmdreg_srsp = MCI_CPSM_RESPONSE, 100 .datalength_bits = 16, 101 .datactrl_blocksz = 11, 102 .pwrreg_powerup = MCI_PWR_UP, 103 .f_max = 100000000, 104 .mmcimask1 = true, 105 .irq_pio_mask = MCI_IRQ_PIO_MASK, 106 .start_err = MCI_STARTBITERR, 107 .opendrain = MCI_ROD, 108 .init = mmci_variant_init, 109 }; 110 111 static struct variant_data variant_u300 = { 112 .fifosize = 16 * 4, 113 .fifohalfsize = 8 * 4, 114 .clkreg_enable = MCI_ST_U300_HWFCEN, 115 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 116 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 117 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 118 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 119 .cmdreg_srsp = MCI_CPSM_RESPONSE, 120 .datalength_bits = 16, 121 .datactrl_blocksz = 11, 122 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 123 .st_sdio = true, 124 .pwrreg_powerup = MCI_PWR_ON, 125 .f_max = 100000000, 126 .signal_direction = true, 127 .pwrreg_clkgate = true, 128 .pwrreg_nopower = true, 129 .mmcimask1 = true, 130 .irq_pio_mask = MCI_IRQ_PIO_MASK, 131 .start_err = MCI_STARTBITERR, 132 .opendrain = MCI_OD, 133 .init = mmci_variant_init, 134 }; 135 136 static struct variant_data variant_nomadik = { 137 .fifosize = 16 * 4, 138 .fifohalfsize = 8 * 4, 139 .clkreg = MCI_CLK_ENABLE, 140 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 141 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 142 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 143 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 144 .cmdreg_srsp = MCI_CPSM_RESPONSE, 145 .datalength_bits = 24, 146 .datactrl_blocksz = 11, 147 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 148 .st_sdio = true, 149 .st_clkdiv = true, 150 .pwrreg_powerup = MCI_PWR_ON, 151 .f_max = 100000000, 152 .signal_direction = true, 153 .pwrreg_clkgate = true, 154 .pwrreg_nopower = true, 155 .mmcimask1 = true, 156 .irq_pio_mask = MCI_IRQ_PIO_MASK, 157 .start_err = MCI_STARTBITERR, 158 .opendrain = MCI_OD, 159 .init = mmci_variant_init, 160 }; 161 162 static struct variant_data variant_ux500 = { 163 .fifosize = 30 * 4, 164 .fifohalfsize = 8 * 4, 165 .clkreg = MCI_CLK_ENABLE, 166 .clkreg_enable = MCI_ST_UX500_HWFCEN, 167 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 168 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 169 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 170 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 171 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 172 .cmdreg_srsp = MCI_CPSM_RESPONSE, 173 .datalength_bits = 24, 174 .datactrl_blocksz = 11, 175 .datactrl_any_blocksz = true, 176 .dma_power_of_2 = true, 177 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 178 .st_sdio = true, 179 .st_clkdiv = true, 180 .pwrreg_powerup = MCI_PWR_ON, 181 .f_max = 100000000, 182 .signal_direction = true, 183 .pwrreg_clkgate = true, 184 .busy_detect = true, 185 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, 186 .busy_detect_flag = MCI_ST_CARDBUSY, 187 .busy_detect_mask = MCI_ST_BUSYENDMASK, 188 .pwrreg_nopower = true, 189 .mmcimask1 = true, 190 .irq_pio_mask = MCI_IRQ_PIO_MASK, 191 .start_err = MCI_STARTBITERR, 192 .opendrain = MCI_OD, 193 .init = ux500_variant_init, 194 }; 195 196 static struct variant_data variant_ux500v2 = { 197 .fifosize = 30 * 4, 198 .fifohalfsize = 8 * 4, 199 .clkreg = MCI_CLK_ENABLE, 200 .clkreg_enable = MCI_ST_UX500_HWFCEN, 201 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 202 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 203 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 204 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 205 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 206 .cmdreg_srsp = MCI_CPSM_RESPONSE, 207 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE, 208 .datalength_bits = 24, 209 .datactrl_blocksz = 11, 210 .datactrl_any_blocksz = true, 211 .dma_power_of_2 = true, 212 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 213 .st_sdio = true, 214 .st_clkdiv = true, 215 .pwrreg_powerup = MCI_PWR_ON, 216 .f_max = 100000000, 217 .signal_direction = true, 218 .pwrreg_clkgate = true, 219 .busy_detect = true, 220 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, 221 .busy_detect_flag = MCI_ST_CARDBUSY, 222 .busy_detect_mask = MCI_ST_BUSYENDMASK, 223 .pwrreg_nopower = true, 224 .mmcimask1 = true, 225 .irq_pio_mask = MCI_IRQ_PIO_MASK, 226 .start_err = MCI_STARTBITERR, 227 .opendrain = MCI_OD, 228 .init = ux500v2_variant_init, 229 }; 230 231 static struct variant_data variant_stm32 = { 232 .fifosize = 32 * 4, 233 .fifohalfsize = 8 * 4, 234 .clkreg = MCI_CLK_ENABLE, 235 .clkreg_enable = MCI_ST_UX500_HWFCEN, 236 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 237 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 238 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 239 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 240 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 241 .cmdreg_srsp = MCI_CPSM_RESPONSE, 242 .irq_pio_mask = MCI_IRQ_PIO_MASK, 243 .datalength_bits = 24, 244 .datactrl_blocksz = 11, 245 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 246 .st_sdio = true, 247 .st_clkdiv = true, 248 .pwrreg_powerup = MCI_PWR_ON, 249 .f_max = 48000000, 250 .pwrreg_clkgate = true, 251 .pwrreg_nopower = true, 252 .dma_flow_controller = true, 253 .init = mmci_variant_init, 254 }; 255 256 static struct variant_data variant_stm32_sdmmc = { 257 .fifosize = 16 * 4, 258 .fifohalfsize = 8 * 4, 259 .f_max = 208000000, 260 .stm32_clkdiv = true, 261 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, 262 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, 263 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, 264 .cmdreg_srsp = MCI_CPSM_STM32_SRSP, 265 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, 266 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, 267 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, 268 .datactrl_first = true, 269 .datacnt_useless = true, 270 .datalength_bits = 25, 271 .datactrl_blocksz = 14, 272 .datactrl_any_blocksz = true, 273 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 274 .stm32_idmabsize_mask = GENMASK(12, 5), 275 .stm32_idmabsize_align = BIT(5), 276 .supports_sdio_irq = true, 277 .busy_timeout = true, 278 .busy_detect = true, 279 .busy_detect_flag = MCI_STM32_BUSYD0, 280 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, 281 .init = sdmmc_variant_init, 282 }; 283 284 static struct variant_data variant_stm32_sdmmcv2 = { 285 .fifosize = 16 * 4, 286 .fifohalfsize = 8 * 4, 287 .f_max = 267000000, 288 .stm32_clkdiv = true, 289 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, 290 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, 291 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, 292 .cmdreg_srsp = MCI_CPSM_STM32_SRSP, 293 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, 294 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, 295 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, 296 .datactrl_first = true, 297 .datacnt_useless = true, 298 .datalength_bits = 25, 299 .datactrl_blocksz = 14, 300 .datactrl_any_blocksz = true, 301 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 302 .stm32_idmabsize_mask = GENMASK(16, 5), 303 .stm32_idmabsize_align = BIT(5), 304 .supports_sdio_irq = true, 305 .dma_lli = true, 306 .busy_timeout = true, 307 .busy_detect = true, 308 .busy_detect_flag = MCI_STM32_BUSYD0, 309 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, 310 .init = sdmmc_variant_init, 311 }; 312 313 static struct variant_data variant_stm32_sdmmcv3 = { 314 .fifosize = 256 * 4, 315 .fifohalfsize = 128 * 4, 316 .f_max = 267000000, 317 .stm32_clkdiv = true, 318 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, 319 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, 320 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, 321 .cmdreg_srsp = MCI_CPSM_STM32_SRSP, 322 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, 323 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, 324 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, 325 .datactrl_first = true, 326 .datacnt_useless = true, 327 .datalength_bits = 25, 328 .datactrl_blocksz = 14, 329 .datactrl_any_blocksz = true, 330 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 331 .stm32_idmabsize_mask = GENMASK(16, 6), 332 .stm32_idmabsize_align = BIT(6), 333 .supports_sdio_irq = true, 334 .dma_lli = true, 335 .busy_timeout = true, 336 .busy_detect = true, 337 .busy_detect_flag = MCI_STM32_BUSYD0, 338 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, 339 .init = sdmmc_variant_init, 340 }; 341 342 static struct variant_data variant_qcom = { 343 .fifosize = 16 * 4, 344 .fifohalfsize = 8 * 4, 345 .clkreg = MCI_CLK_ENABLE, 346 .clkreg_enable = MCI_QCOM_CLK_FLOWENA | 347 MCI_QCOM_CLK_SELECT_IN_FBCLK, 348 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8, 349 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE, 350 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 351 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 352 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 353 .cmdreg_srsp = MCI_CPSM_RESPONSE, 354 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD, 355 .datalength_bits = 24, 356 .datactrl_blocksz = 11, 357 .datactrl_any_blocksz = true, 358 .pwrreg_powerup = MCI_PWR_UP, 359 .f_max = 208000000, 360 .explicit_mclk_control = true, 361 .qcom_fifo = true, 362 .qcom_dml = true, 363 .mmcimask1 = true, 364 .irq_pio_mask = MCI_IRQ_PIO_MASK, 365 .start_err = MCI_STARTBITERR, 366 .opendrain = MCI_ROD, 367 .init = qcom_variant_init, 368 }; 369 370 /* Busy detection for the ST Micro variant */ 371 static int mmci_card_busy(struct mmc_host *mmc) 372 { 373 struct mmci_host *host = mmc_priv(mmc); 374 unsigned long flags; 375 int busy = 0; 376 377 spin_lock_irqsave(&host->lock, flags); 378 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag) 379 busy = 1; 380 spin_unlock_irqrestore(&host->lock, flags); 381 382 return busy; 383 } 384 385 static void mmci_reg_delay(struct mmci_host *host) 386 { 387 /* 388 * According to the spec, at least three feedback clock cycles 389 * of max 52 MHz must pass between two writes to the MMCICLOCK reg. 390 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. 391 * Worst delay time during card init is at 100 kHz => 30 us. 392 * Worst delay time when up and running is at 25 MHz => 120 ns. 393 */ 394 if (host->cclk < 25000000) 395 udelay(30); 396 else 397 ndelay(120); 398 } 399 400 /* 401 * This must be called with host->lock held 402 */ 403 void mmci_write_clkreg(struct mmci_host *host, u32 clk) 404 { 405 if (host->clk_reg != clk) { 406 host->clk_reg = clk; 407 writel(clk, host->base + MMCICLOCK); 408 } 409 } 410 411 /* 412 * This must be called with host->lock held 413 */ 414 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) 415 { 416 if (host->pwr_reg != pwr) { 417 host->pwr_reg = pwr; 418 writel(pwr, host->base + MMCIPOWER); 419 } 420 } 421 422 /* 423 * This must be called with host->lock held 424 */ 425 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) 426 { 427 /* Keep busy mode in DPSM and SDIO mask if enabled */ 428 datactrl |= host->datactrl_reg & (host->variant->busy_dpsm_flag | 429 host->variant->datactrl_mask_sdio); 430 431 if (host->datactrl_reg != datactrl) { 432 host->datactrl_reg = datactrl; 433 writel(datactrl, host->base + MMCIDATACTRL); 434 } 435 } 436 437 /* 438 * This must be called with host->lock held 439 */ 440 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) 441 { 442 struct variant_data *variant = host->variant; 443 u32 clk = variant->clkreg; 444 445 /* Make sure cclk reflects the current calculated clock */ 446 host->cclk = 0; 447 448 if (desired) { 449 if (variant->explicit_mclk_control) { 450 host->cclk = host->mclk; 451 } else if (desired >= host->mclk) { 452 clk = MCI_CLK_BYPASS; 453 if (variant->st_clkdiv) 454 clk |= MCI_ST_UX500_NEG_EDGE; 455 host->cclk = host->mclk; 456 } else if (variant->st_clkdiv) { 457 /* 458 * DB8500 TRM says f = mclk / (clkdiv + 2) 459 * => clkdiv = (mclk / f) - 2 460 * Round the divider up so we don't exceed the max 461 * frequency 462 */ 463 clk = DIV_ROUND_UP(host->mclk, desired) - 2; 464 if (clk >= 256) 465 clk = 255; 466 host->cclk = host->mclk / (clk + 2); 467 } else { 468 /* 469 * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) 470 * => clkdiv = mclk / (2 * f) - 1 471 */ 472 clk = host->mclk / (2 * desired) - 1; 473 if (clk >= 256) 474 clk = 255; 475 host->cclk = host->mclk / (2 * (clk + 1)); 476 } 477 478 clk |= variant->clkreg_enable; 479 clk |= MCI_CLK_ENABLE; 480 /* This hasn't proven to be worthwhile */ 481 /* clk |= MCI_CLK_PWRSAVE; */ 482 } 483 484 /* Set actual clock for debug */ 485 host->mmc->actual_clock = host->cclk; 486 487 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 488 clk |= MCI_4BIT_BUS; 489 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 490 clk |= variant->clkreg_8bit_bus_enable; 491 492 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 493 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 494 clk |= variant->clkreg_neg_edge_enable; 495 496 mmci_write_clkreg(host, clk); 497 } 498 499 static void mmci_dma_release(struct mmci_host *host) 500 { 501 if (host->ops && host->ops->dma_release) 502 host->ops->dma_release(host); 503 504 host->use_dma = false; 505 } 506 507 static void mmci_dma_setup(struct mmci_host *host) 508 { 509 if (!host->ops || !host->ops->dma_setup) 510 return; 511 512 if (host->ops->dma_setup(host)) 513 return; 514 515 /* initialize pre request cookie */ 516 host->next_cookie = 1; 517 518 host->use_dma = true; 519 } 520 521 /* 522 * Validate mmc prerequisites 523 */ 524 static int mmci_validate_data(struct mmci_host *host, 525 struct mmc_data *data) 526 { 527 struct variant_data *variant = host->variant; 528 529 if (!data) 530 return 0; 531 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) { 532 dev_err(mmc_dev(host->mmc), 533 "unsupported block size (%d bytes)\n", data->blksz); 534 return -EINVAL; 535 } 536 537 if (host->ops && host->ops->validate_data) 538 return host->ops->validate_data(host, data); 539 540 return 0; 541 } 542 543 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next) 544 { 545 int err; 546 547 if (!host->ops || !host->ops->prep_data) 548 return 0; 549 550 err = host->ops->prep_data(host, data, next); 551 552 if (next && !err) 553 data->host_cookie = ++host->next_cookie < 0 ? 554 1 : host->next_cookie; 555 556 return err; 557 } 558 559 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data, 560 int err) 561 { 562 if (host->ops && host->ops->unprep_data) 563 host->ops->unprep_data(host, data, err); 564 565 data->host_cookie = 0; 566 } 567 568 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 569 { 570 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie); 571 572 if (host->ops && host->ops->get_next_data) 573 host->ops->get_next_data(host, data); 574 } 575 576 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl) 577 { 578 struct mmc_data *data = host->data; 579 int ret; 580 581 if (!host->use_dma) 582 return -EINVAL; 583 584 ret = mmci_prep_data(host, data, false); 585 if (ret) 586 return ret; 587 588 if (!host->ops || !host->ops->dma_start) 589 return -EINVAL; 590 591 /* Okay, go for it. */ 592 dev_vdbg(mmc_dev(host->mmc), 593 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", 594 data->sg_len, data->blksz, data->blocks, data->flags); 595 596 ret = host->ops->dma_start(host, &datactrl); 597 if (ret) 598 return ret; 599 600 /* Trigger the DMA transfer */ 601 mmci_write_datactrlreg(host, datactrl); 602 603 /* 604 * Let the MMCI say when the data is ended and it's time 605 * to fire next DMA request. When that happens, MMCI will 606 * call mmci_data_end() 607 */ 608 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, 609 host->base + MMCIMASK0); 610 return 0; 611 } 612 613 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) 614 { 615 if (!host->use_dma) 616 return; 617 618 if (host->ops && host->ops->dma_finalize) 619 host->ops->dma_finalize(host, data); 620 } 621 622 static void mmci_dma_error(struct mmci_host *host) 623 { 624 if (!host->use_dma) 625 return; 626 627 if (host->ops && host->ops->dma_error) 628 host->ops->dma_error(host); 629 } 630 631 static void 632 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) 633 { 634 writel(0, host->base + MMCICOMMAND); 635 636 BUG_ON(host->data); 637 638 host->mrq = NULL; 639 host->cmd = NULL; 640 641 mmc_request_done(host->mmc, mrq); 642 } 643 644 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) 645 { 646 void __iomem *base = host->base; 647 struct variant_data *variant = host->variant; 648 649 if (host->singleirq) { 650 unsigned int mask0 = readl(base + MMCIMASK0); 651 652 mask0 &= ~variant->irq_pio_mask; 653 mask0 |= mask; 654 655 writel(mask0, base + MMCIMASK0); 656 } 657 658 if (variant->mmcimask1) 659 writel(mask, base + MMCIMASK1); 660 661 host->mask1_reg = mask; 662 } 663 664 static void mmci_stop_data(struct mmci_host *host) 665 { 666 mmci_write_datactrlreg(host, 0); 667 mmci_set_mask1(host, 0); 668 host->data = NULL; 669 } 670 671 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) 672 { 673 unsigned int flags = SG_MITER_ATOMIC; 674 675 if (data->flags & MMC_DATA_READ) 676 flags |= SG_MITER_TO_SG; 677 else 678 flags |= SG_MITER_FROM_SG; 679 680 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 681 } 682 683 static u32 mmci_get_dctrl_cfg(struct mmci_host *host) 684 { 685 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host); 686 } 687 688 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host) 689 { 690 return MCI_DPSM_ENABLE | (host->data->blksz << 16); 691 } 692 693 static void ux500_busy_clear_mask_done(struct mmci_host *host) 694 { 695 void __iomem *base = host->base; 696 697 writel(host->variant->busy_detect_mask, base + MMCICLEAR); 698 writel(readl(base + MMCIMASK0) & 699 ~host->variant->busy_detect_mask, base + MMCIMASK0); 700 host->busy_state = MMCI_BUSY_DONE; 701 host->busy_status = 0; 702 } 703 704 /* 705 * ux500_busy_complete() - this will wait until the busy status 706 * goes off, saving any status that occur in the meantime into 707 * host->busy_status until we know the card is not busy any more. 708 * The function returns true when the busy detection is ended 709 * and we should continue processing the command. 710 * 711 * The Ux500 typically fires two IRQs over a busy cycle like this: 712 * 713 * DAT0 busy +-----------------+ 714 * | | 715 * DAT0 not busy ----+ +-------- 716 * 717 * ^ ^ 718 * | | 719 * IRQ1 IRQ2 720 */ 721 static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd, 722 u32 status, u32 err_msk) 723 { 724 void __iomem *base = host->base; 725 int retries = 10; 726 727 if (status & err_msk) { 728 /* Stop any ongoing busy detection if an error occurs */ 729 ux500_busy_clear_mask_done(host); 730 goto out_ret_state; 731 } 732 733 /* 734 * The state transitions are encoded in a state machine crossing 735 * the edges in this switch statement. 736 */ 737 switch (host->busy_state) { 738 739 /* 740 * Before unmasking for the busy end IRQ, confirm that the 741 * command was sent successfully. To keep track of having a 742 * command in-progress, waiting for busy signaling to end, 743 * store the status in host->busy_status. 744 * 745 * Note that, the card may need a couple of clock cycles before 746 * it starts signaling busy on DAT0, hence re-read the 747 * MMCISTATUS register here, to allow the busy bit to be set. 748 */ 749 case MMCI_BUSY_DONE: 750 /* 751 * Save the first status register read to be sure to catch 752 * all bits that may be lost will retrying. If the command 753 * is still busy this will result in assigning 0 to 754 * host->busy_status, which is what it should be in IDLE. 755 */ 756 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND); 757 while (retries) { 758 status = readl(base + MMCISTATUS); 759 /* Keep accumulating status bits */ 760 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); 761 if (status & host->variant->busy_detect_flag) { 762 writel(readl(base + MMCIMASK0) | 763 host->variant->busy_detect_mask, 764 base + MMCIMASK0); 765 host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ; 766 schedule_delayed_work(&host->ux500_busy_timeout_work, 767 msecs_to_jiffies(cmd->busy_timeout)); 768 goto out_ret_state; 769 } 770 retries--; 771 } 772 dev_dbg(mmc_dev(host->mmc), 773 "no busy signalling in time CMD%02x\n", cmd->opcode); 774 ux500_busy_clear_mask_done(host); 775 break; 776 777 /* 778 * If there is a command in-progress that has been successfully 779 * sent, then bail out if busy status is set and wait for the 780 * busy end IRQ. 781 * 782 * Note that, the HW triggers an IRQ on both edges while 783 * monitoring DAT0 for busy completion, but there is only one 784 * status bit in MMCISTATUS for the busy state. Therefore 785 * both the start and the end interrupts needs to be cleared, 786 * one after the other. So, clear the busy start IRQ here. 787 */ 788 case MMCI_BUSY_WAITING_FOR_START_IRQ: 789 if (status & host->variant->busy_detect_flag) { 790 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); 791 writel(host->variant->busy_detect_mask, base + MMCICLEAR); 792 host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ; 793 } else { 794 dev_dbg(mmc_dev(host->mmc), 795 "lost busy status when waiting for busy start IRQ CMD%02x\n", 796 cmd->opcode); 797 cancel_delayed_work(&host->ux500_busy_timeout_work); 798 ux500_busy_clear_mask_done(host); 799 } 800 break; 801 802 case MMCI_BUSY_WAITING_FOR_END_IRQ: 803 if (!(status & host->variant->busy_detect_flag)) { 804 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); 805 writel(host->variant->busy_detect_mask, base + MMCICLEAR); 806 cancel_delayed_work(&host->ux500_busy_timeout_work); 807 ux500_busy_clear_mask_done(host); 808 } else { 809 dev_dbg(mmc_dev(host->mmc), 810 "busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n", 811 cmd->opcode); 812 } 813 break; 814 815 default: 816 dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n", 817 host->busy_state, cmd->opcode); 818 break; 819 } 820 821 out_ret_state: 822 return (host->busy_state == MMCI_BUSY_DONE); 823 } 824 825 /* 826 * All the DMA operation mode stuff goes inside this ifdef. 827 * This assumes that you have a generic DMA device interface, 828 * no custom DMA interfaces are supported. 829 */ 830 #ifdef CONFIG_DMA_ENGINE 831 struct mmci_dmae_next { 832 struct dma_async_tx_descriptor *desc; 833 struct dma_chan *chan; 834 }; 835 836 struct mmci_dmae_priv { 837 struct dma_chan *cur; 838 struct dma_chan *rx_channel; 839 struct dma_chan *tx_channel; 840 struct dma_async_tx_descriptor *desc_current; 841 struct mmci_dmae_next next_data; 842 }; 843 844 int mmci_dmae_setup(struct mmci_host *host) 845 { 846 const char *rxname, *txname; 847 struct mmci_dmae_priv *dmae; 848 849 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL); 850 if (!dmae) 851 return -ENOMEM; 852 853 host->dma_priv = dmae; 854 855 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx"); 856 if (IS_ERR(dmae->rx_channel)) { 857 int ret = PTR_ERR(dmae->rx_channel); 858 dmae->rx_channel = NULL; 859 return ret; 860 } 861 862 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx"); 863 if (IS_ERR(dmae->tx_channel)) { 864 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER) 865 dev_warn(mmc_dev(host->mmc), 866 "Deferred probe for TX channel ignored\n"); 867 dmae->tx_channel = NULL; 868 } 869 870 /* 871 * If only an RX channel is specified, the driver will 872 * attempt to use it bidirectionally, however if it 873 * is specified but cannot be located, DMA will be disabled. 874 */ 875 if (dmae->rx_channel && !dmae->tx_channel) 876 dmae->tx_channel = dmae->rx_channel; 877 878 if (dmae->rx_channel) 879 rxname = dma_chan_name(dmae->rx_channel); 880 else 881 rxname = "none"; 882 883 if (dmae->tx_channel) 884 txname = dma_chan_name(dmae->tx_channel); 885 else 886 txname = "none"; 887 888 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", 889 rxname, txname); 890 891 /* 892 * Limit the maximum segment size in any SG entry according to 893 * the parameters of the DMA engine device. 894 */ 895 if (dmae->tx_channel) { 896 struct device *dev = dmae->tx_channel->device->dev; 897 unsigned int max_seg_size = dma_get_max_seg_size(dev); 898 899 if (max_seg_size < host->mmc->max_seg_size) 900 host->mmc->max_seg_size = max_seg_size; 901 } 902 if (dmae->rx_channel) { 903 struct device *dev = dmae->rx_channel->device->dev; 904 unsigned int max_seg_size = dma_get_max_seg_size(dev); 905 906 if (max_seg_size < host->mmc->max_seg_size) 907 host->mmc->max_seg_size = max_seg_size; 908 } 909 910 if (!dmae->tx_channel || !dmae->rx_channel) { 911 mmci_dmae_release(host); 912 return -EINVAL; 913 } 914 915 return 0; 916 } 917 918 /* 919 * This is used in or so inline it 920 * so it can be discarded. 921 */ 922 void mmci_dmae_release(struct mmci_host *host) 923 { 924 struct mmci_dmae_priv *dmae = host->dma_priv; 925 926 if (dmae->rx_channel) 927 dma_release_channel(dmae->rx_channel); 928 if (dmae->tx_channel) 929 dma_release_channel(dmae->tx_channel); 930 dmae->rx_channel = dmae->tx_channel = NULL; 931 } 932 933 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 934 { 935 struct mmci_dmae_priv *dmae = host->dma_priv; 936 struct dma_chan *chan; 937 938 if (data->flags & MMC_DATA_READ) 939 chan = dmae->rx_channel; 940 else 941 chan = dmae->tx_channel; 942 943 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, 944 mmc_get_dma_dir(data)); 945 } 946 947 void mmci_dmae_error(struct mmci_host *host) 948 { 949 struct mmci_dmae_priv *dmae = host->dma_priv; 950 951 if (!dma_inprogress(host)) 952 return; 953 954 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); 955 dmaengine_terminate_all(dmae->cur); 956 host->dma_in_progress = false; 957 dmae->cur = NULL; 958 dmae->desc_current = NULL; 959 host->data->host_cookie = 0; 960 961 mmci_dma_unmap(host, host->data); 962 } 963 964 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data) 965 { 966 struct mmci_dmae_priv *dmae = host->dma_priv; 967 u32 status; 968 int i; 969 970 if (!dma_inprogress(host)) 971 return; 972 973 /* Wait up to 1ms for the DMA to complete */ 974 for (i = 0; ; i++) { 975 status = readl(host->base + MMCISTATUS); 976 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) 977 break; 978 udelay(10); 979 } 980 981 /* 982 * Check to see whether we still have some data left in the FIFO - 983 * this catches DMA controllers which are unable to monitor the 984 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- 985 * contiguous buffers. On TX, we'll get a FIFO underrun error. 986 */ 987 if (status & MCI_RXDATAAVLBLMASK) { 988 mmci_dma_error(host); 989 if (!data->error) 990 data->error = -EIO; 991 } else if (!data->host_cookie) { 992 mmci_dma_unmap(host, data); 993 } 994 995 /* 996 * Use of DMA with scatter-gather is impossible. 997 * Give up with DMA and switch back to PIO mode. 998 */ 999 if (status & MCI_RXDATAAVLBLMASK) { 1000 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); 1001 mmci_dma_release(host); 1002 } 1003 1004 host->dma_in_progress = false; 1005 dmae->cur = NULL; 1006 dmae->desc_current = NULL; 1007 } 1008 1009 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ 1010 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data, 1011 struct dma_chan **dma_chan, 1012 struct dma_async_tx_descriptor **dma_desc) 1013 { 1014 struct mmci_dmae_priv *dmae = host->dma_priv; 1015 struct variant_data *variant = host->variant; 1016 struct dma_slave_config conf = { 1017 .src_addr = host->phybase + MMCIFIFO, 1018 .dst_addr = host->phybase + MMCIFIFO, 1019 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 1020 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 1021 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ 1022 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ 1023 .device_fc = variant->dma_flow_controller, 1024 }; 1025 struct dma_chan *chan; 1026 struct dma_device *device; 1027 struct dma_async_tx_descriptor *desc; 1028 int nr_sg; 1029 unsigned long flags = DMA_CTRL_ACK; 1030 1031 if (data->flags & MMC_DATA_READ) { 1032 conf.direction = DMA_DEV_TO_MEM; 1033 chan = dmae->rx_channel; 1034 } else { 1035 conf.direction = DMA_MEM_TO_DEV; 1036 chan = dmae->tx_channel; 1037 } 1038 1039 /* If there's no DMA channel, fall back to PIO */ 1040 if (!chan) 1041 return -EINVAL; 1042 1043 /* If less than or equal to the fifo size, don't bother with DMA */ 1044 if (data->blksz * data->blocks <= variant->fifosize) 1045 return -EINVAL; 1046 1047 /* 1048 * This is necessary to get SDIO working on the Ux500. We do not yet 1049 * know if this is a bug in: 1050 * - The Ux500 DMA controller (DMA40) 1051 * - The MMCI DMA interface on the Ux500 1052 * some power of two blocks (such as 64 bytes) are sent regularly 1053 * during SDIO traffic and those work fine so for these we enable DMA 1054 * transfers. 1055 */ 1056 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz)) 1057 return -EINVAL; 1058 1059 device = chan->device; 1060 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, 1061 mmc_get_dma_dir(data)); 1062 if (nr_sg == 0) 1063 return -EINVAL; 1064 1065 if (host->variant->qcom_dml) 1066 flags |= DMA_PREP_INTERRUPT; 1067 1068 dmaengine_slave_config(chan, &conf); 1069 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, 1070 conf.direction, flags); 1071 if (!desc) 1072 goto unmap_exit; 1073 1074 *dma_chan = chan; 1075 *dma_desc = desc; 1076 1077 return 0; 1078 1079 unmap_exit: 1080 dma_unmap_sg(device->dev, data->sg, data->sg_len, 1081 mmc_get_dma_dir(data)); 1082 return -ENOMEM; 1083 } 1084 1085 int mmci_dmae_prep_data(struct mmci_host *host, 1086 struct mmc_data *data, 1087 bool next) 1088 { 1089 struct mmci_dmae_priv *dmae = host->dma_priv; 1090 struct mmci_dmae_next *nd = &dmae->next_data; 1091 1092 if (!host->use_dma) 1093 return -EINVAL; 1094 1095 if (next) 1096 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc); 1097 /* Check if next job is already prepared. */ 1098 if (dmae->cur && dmae->desc_current) 1099 return 0; 1100 1101 /* No job were prepared thus do it now. */ 1102 return _mmci_dmae_prep_data(host, data, &dmae->cur, 1103 &dmae->desc_current); 1104 } 1105 1106 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl) 1107 { 1108 struct mmci_dmae_priv *dmae = host->dma_priv; 1109 int ret; 1110 1111 host->dma_in_progress = true; 1112 ret = dma_submit_error(dmaengine_submit(dmae->desc_current)); 1113 if (ret < 0) { 1114 host->dma_in_progress = false; 1115 return ret; 1116 } 1117 dma_async_issue_pending(dmae->cur); 1118 1119 *datactrl |= MCI_DPSM_DMAENABLE; 1120 1121 return 0; 1122 } 1123 1124 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data) 1125 { 1126 struct mmci_dmae_priv *dmae = host->dma_priv; 1127 struct mmci_dmae_next *next = &dmae->next_data; 1128 1129 if (!host->use_dma) 1130 return; 1131 1132 WARN_ON(!data->host_cookie && (next->desc || next->chan)); 1133 1134 dmae->desc_current = next->desc; 1135 dmae->cur = next->chan; 1136 next->desc = NULL; 1137 next->chan = NULL; 1138 } 1139 1140 void mmci_dmae_unprep_data(struct mmci_host *host, 1141 struct mmc_data *data, int err) 1142 1143 { 1144 struct mmci_dmae_priv *dmae = host->dma_priv; 1145 1146 if (!host->use_dma) 1147 return; 1148 1149 mmci_dma_unmap(host, data); 1150 1151 if (err) { 1152 struct mmci_dmae_next *next = &dmae->next_data; 1153 struct dma_chan *chan; 1154 if (data->flags & MMC_DATA_READ) 1155 chan = dmae->rx_channel; 1156 else 1157 chan = dmae->tx_channel; 1158 dmaengine_terminate_all(chan); 1159 1160 if (dmae->desc_current == next->desc) 1161 dmae->desc_current = NULL; 1162 1163 if (dmae->cur == next->chan) { 1164 host->dma_in_progress = false; 1165 dmae->cur = NULL; 1166 } 1167 1168 next->desc = NULL; 1169 next->chan = NULL; 1170 } 1171 } 1172 1173 static struct mmci_host_ops mmci_variant_ops = { 1174 .prep_data = mmci_dmae_prep_data, 1175 .unprep_data = mmci_dmae_unprep_data, 1176 .get_datactrl_cfg = mmci_get_dctrl_cfg, 1177 .get_next_data = mmci_dmae_get_next_data, 1178 .dma_setup = mmci_dmae_setup, 1179 .dma_release = mmci_dmae_release, 1180 .dma_start = mmci_dmae_start, 1181 .dma_finalize = mmci_dmae_finalize, 1182 .dma_error = mmci_dmae_error, 1183 }; 1184 #else 1185 static struct mmci_host_ops mmci_variant_ops = { 1186 .get_datactrl_cfg = mmci_get_dctrl_cfg, 1187 }; 1188 #endif 1189 1190 static void mmci_variant_init(struct mmci_host *host) 1191 { 1192 host->ops = &mmci_variant_ops; 1193 } 1194 1195 static void ux500_variant_init(struct mmci_host *host) 1196 { 1197 host->ops = &mmci_variant_ops; 1198 host->ops->busy_complete = ux500_busy_complete; 1199 } 1200 1201 static void ux500v2_variant_init(struct mmci_host *host) 1202 { 1203 host->ops = &mmci_variant_ops; 1204 host->ops->busy_complete = ux500_busy_complete; 1205 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg; 1206 } 1207 1208 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq) 1209 { 1210 struct mmci_host *host = mmc_priv(mmc); 1211 struct mmc_data *data = mrq->data; 1212 1213 if (!data) 1214 return; 1215 1216 WARN_ON(data->host_cookie); 1217 1218 if (mmci_validate_data(host, data)) 1219 return; 1220 1221 mmci_prep_data(host, data, true); 1222 } 1223 1224 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, 1225 int err) 1226 { 1227 struct mmci_host *host = mmc_priv(mmc); 1228 struct mmc_data *data = mrq->data; 1229 1230 if (!data || !data->host_cookie) 1231 return; 1232 1233 mmci_unprep_data(host, data, err); 1234 } 1235 1236 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) 1237 { 1238 struct variant_data *variant = host->variant; 1239 unsigned int datactrl, timeout, irqmask; 1240 unsigned long long clks; 1241 void __iomem *base; 1242 1243 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", 1244 data->blksz, data->blocks, data->flags); 1245 1246 host->data = data; 1247 host->size = data->blksz * data->blocks; 1248 data->bytes_xfered = 0; 1249 1250 clks = (unsigned long long)data->timeout_ns * host->cclk; 1251 do_div(clks, NSEC_PER_SEC); 1252 1253 timeout = data->timeout_clks + (unsigned int)clks; 1254 1255 base = host->base; 1256 writel(timeout, base + MMCIDATATIMER); 1257 writel(host->size, base + MMCIDATALENGTH); 1258 1259 datactrl = host->ops->get_datactrl_cfg(host); 1260 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0; 1261 1262 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { 1263 u32 clk; 1264 1265 datactrl |= variant->datactrl_mask_sdio; 1266 1267 /* 1268 * The ST Micro variant for SDIO small write transfers 1269 * needs to have clock H/W flow control disabled, 1270 * otherwise the transfer will not start. The threshold 1271 * depends on the rate of MCLK. 1272 */ 1273 if (variant->st_sdio && data->flags & MMC_DATA_WRITE && 1274 (host->size < 8 || 1275 (host->size <= 8 && host->mclk > 50000000))) 1276 clk = host->clk_reg & ~variant->clkreg_enable; 1277 else 1278 clk = host->clk_reg | variant->clkreg_enable; 1279 1280 mmci_write_clkreg(host, clk); 1281 } 1282 1283 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 1284 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 1285 datactrl |= variant->datactrl_mask_ddrmode; 1286 1287 /* 1288 * Attempt to use DMA operation mode, if this 1289 * should fail, fall back to PIO mode 1290 */ 1291 if (!mmci_dma_start(host, datactrl)) 1292 return; 1293 1294 /* IRQ mode, map the SG list for CPU reading/writing */ 1295 mmci_init_sg(host, data); 1296 1297 if (data->flags & MMC_DATA_READ) { 1298 irqmask = MCI_RXFIFOHALFFULLMASK; 1299 1300 /* 1301 * If we have less than the fifo 'half-full' threshold to 1302 * transfer, trigger a PIO interrupt as soon as any data 1303 * is available. 1304 */ 1305 if (host->size < variant->fifohalfsize) 1306 irqmask |= MCI_RXDATAAVLBLMASK; 1307 } else { 1308 /* 1309 * We don't actually need to include "FIFO empty" here 1310 * since its implicit in "FIFO half empty". 1311 */ 1312 irqmask = MCI_TXFIFOHALFEMPTYMASK; 1313 } 1314 1315 mmci_write_datactrlreg(host, datactrl); 1316 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); 1317 mmci_set_mask1(host, irqmask); 1318 } 1319 1320 static void 1321 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) 1322 { 1323 void __iomem *base = host->base; 1324 bool busy_resp = cmd->flags & MMC_RSP_BUSY; 1325 unsigned long long clks; 1326 1327 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", 1328 cmd->opcode, cmd->arg, cmd->flags); 1329 1330 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) { 1331 writel(0, base + MMCICOMMAND); 1332 mmci_reg_delay(host); 1333 } 1334 1335 if (host->variant->cmdreg_stop && 1336 cmd->opcode == MMC_STOP_TRANSMISSION) 1337 c |= host->variant->cmdreg_stop; 1338 1339 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable; 1340 if (cmd->flags & MMC_RSP_PRESENT) { 1341 if (cmd->flags & MMC_RSP_136) 1342 c |= host->variant->cmdreg_lrsp_crc; 1343 else if (cmd->flags & MMC_RSP_CRC) 1344 c |= host->variant->cmdreg_srsp_crc; 1345 else 1346 c |= host->variant->cmdreg_srsp; 1347 } 1348 1349 host->busy_status = 0; 1350 host->busy_state = MMCI_BUSY_DONE; 1351 1352 /* Assign a default timeout if the core does not provide one */ 1353 if (busy_resp && !cmd->busy_timeout) 1354 cmd->busy_timeout = 10 * MSEC_PER_SEC; 1355 1356 if (busy_resp && host->variant->busy_timeout) { 1357 if (cmd->busy_timeout > host->mmc->max_busy_timeout) 1358 clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk; 1359 else 1360 clks = (unsigned long long)cmd->busy_timeout * host->cclk; 1361 1362 do_div(clks, MSEC_PER_SEC); 1363 writel_relaxed(clks, host->base + MMCIDATATIMER); 1364 } 1365 1366 if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE) 1367 host->ops->pre_sig_volt_switch(host); 1368 1369 if (/*interrupt*/0) 1370 c |= MCI_CPSM_INTERRUPT; 1371 1372 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) 1373 c |= host->variant->data_cmd_enable; 1374 1375 host->cmd = cmd; 1376 1377 writel(cmd->arg, base + MMCIARGUMENT); 1378 writel(c, base + MMCICOMMAND); 1379 } 1380 1381 static void mmci_stop_command(struct mmci_host *host) 1382 { 1383 host->stop_abort.error = 0; 1384 mmci_start_command(host, &host->stop_abort, 0); 1385 } 1386 1387 static void 1388 mmci_data_irq(struct mmci_host *host, struct mmc_data *data, 1389 unsigned int status) 1390 { 1391 unsigned int status_err; 1392 1393 /* Make sure we have data to handle */ 1394 if (!data) 1395 return; 1396 1397 /* First check for errors */ 1398 status_err = status & (host->variant->start_err | 1399 MCI_DATACRCFAIL | MCI_DATATIMEOUT | 1400 MCI_TXUNDERRUN | MCI_RXOVERRUN); 1401 1402 if (status_err) { 1403 u32 remain, success; 1404 1405 /* Terminate the DMA transfer */ 1406 mmci_dma_error(host); 1407 1408 /* 1409 * Calculate how far we are into the transfer. Note that 1410 * the data counter gives the number of bytes transferred 1411 * on the MMC bus, not on the host side. On reads, this 1412 * can be as much as a FIFO-worth of data ahead. This 1413 * matters for FIFO overruns only. 1414 */ 1415 if (!host->variant->datacnt_useless) { 1416 remain = readl(host->base + MMCIDATACNT); 1417 success = data->blksz * data->blocks - remain; 1418 } else { 1419 success = 0; 1420 } 1421 1422 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", 1423 status_err, success); 1424 if (status_err & MCI_DATACRCFAIL) { 1425 /* Last block was not successful */ 1426 success -= 1; 1427 data->error = -EILSEQ; 1428 } else if (status_err & MCI_DATATIMEOUT) { 1429 data->error = -ETIMEDOUT; 1430 } else if (status_err & MCI_STARTBITERR) { 1431 data->error = -ECOMM; 1432 } else if (status_err & MCI_TXUNDERRUN) { 1433 data->error = -EIO; 1434 } else if (status_err & MCI_RXOVERRUN) { 1435 if (success > host->variant->fifosize) 1436 success -= host->variant->fifosize; 1437 else 1438 success = 0; 1439 data->error = -EIO; 1440 } 1441 data->bytes_xfered = round_down(success, data->blksz); 1442 } 1443 1444 if (status & MCI_DATABLOCKEND) 1445 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); 1446 1447 if (status & MCI_DATAEND || data->error) { 1448 mmci_dma_finalize(host, data); 1449 1450 mmci_stop_data(host); 1451 1452 if (!data->error) 1453 /* The error clause is handled above, success! */ 1454 data->bytes_xfered = data->blksz * data->blocks; 1455 1456 if (!data->stop) { 1457 if (host->variant->cmdreg_stop && data->error) 1458 mmci_stop_command(host); 1459 else 1460 mmci_request_end(host, data->mrq); 1461 } else if (host->mrq->sbc && !data->error) { 1462 mmci_request_end(host, data->mrq); 1463 } else { 1464 mmci_start_command(host, data->stop, 0); 1465 } 1466 } 1467 } 1468 1469 static void 1470 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, 1471 unsigned int status) 1472 { 1473 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT; 1474 void __iomem *base = host->base; 1475 bool sbc, busy_resp; 1476 1477 if (!cmd) 1478 return; 1479 1480 sbc = (cmd == host->mrq->sbc); 1481 busy_resp = !!(cmd->flags & MMC_RSP_BUSY); 1482 1483 /* 1484 * We need to be one of these interrupts to be considered worth 1485 * handling. Note that we tag on any latent IRQs postponed 1486 * due to waiting for busy status. 1487 */ 1488 if (host->variant->busy_timeout && busy_resp) 1489 err_msk |= MCI_DATATIMEOUT; 1490 1491 if (!((status | host->busy_status) & 1492 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND))) 1493 return; 1494 1495 /* Handle busy detection on DAT0 if the variant supports it. */ 1496 if (busy_resp && host->variant->busy_detect) 1497 if (!host->ops->busy_complete(host, cmd, status, err_msk)) 1498 return; 1499 1500 host->cmd = NULL; 1501 1502 if (status & MCI_CMDTIMEOUT) { 1503 cmd->error = -ETIMEDOUT; 1504 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { 1505 cmd->error = -EILSEQ; 1506 } else if (host->variant->busy_timeout && busy_resp && 1507 status & MCI_DATATIMEOUT) { 1508 cmd->error = -ETIMEDOUT; 1509 /* 1510 * This will wake up mmci_irq_thread() which will issue 1511 * a hardware reset of the MMCI block. 1512 */ 1513 host->irq_action = IRQ_WAKE_THREAD; 1514 } else { 1515 cmd->resp[0] = readl(base + MMCIRESPONSE0); 1516 cmd->resp[1] = readl(base + MMCIRESPONSE1); 1517 cmd->resp[2] = readl(base + MMCIRESPONSE2); 1518 cmd->resp[3] = readl(base + MMCIRESPONSE3); 1519 } 1520 1521 if ((!sbc && !cmd->data) || cmd->error) { 1522 if (host->data) { 1523 /* Terminate the DMA transfer */ 1524 mmci_dma_error(host); 1525 1526 mmci_stop_data(host); 1527 if (host->variant->cmdreg_stop && cmd->error) { 1528 mmci_stop_command(host); 1529 return; 1530 } 1531 } 1532 1533 if (host->irq_action != IRQ_WAKE_THREAD) 1534 mmci_request_end(host, host->mrq); 1535 1536 } else if (sbc) { 1537 mmci_start_command(host, host->mrq->cmd, 0); 1538 } else if (!host->variant->datactrl_first && 1539 !(cmd->data->flags & MMC_DATA_READ)) { 1540 mmci_start_data(host, cmd->data); 1541 } 1542 } 1543 1544 static char *ux500_state_str(struct mmci_host *host) 1545 { 1546 switch (host->busy_state) { 1547 case MMCI_BUSY_WAITING_FOR_START_IRQ: 1548 return "waiting for start IRQ"; 1549 case MMCI_BUSY_WAITING_FOR_END_IRQ: 1550 return "waiting for end IRQ"; 1551 case MMCI_BUSY_DONE: 1552 return "not waiting for IRQs"; 1553 default: 1554 return "unknown"; 1555 } 1556 } 1557 1558 /* 1559 * This busy timeout worker is used to "kick" the command IRQ if a 1560 * busy detect IRQ fails to appear in reasonable time. Only used on 1561 * variants with busy detection IRQ delivery. 1562 */ 1563 static void ux500_busy_timeout_work(struct work_struct *work) 1564 { 1565 struct mmci_host *host = container_of(work, struct mmci_host, 1566 ux500_busy_timeout_work.work); 1567 unsigned long flags; 1568 u32 status; 1569 1570 spin_lock_irqsave(&host->lock, flags); 1571 1572 if (host->cmd) { 1573 /* If we are still busy let's tag on a cmd-timeout error. */ 1574 status = readl(host->base + MMCISTATUS); 1575 if (status & host->variant->busy_detect_flag) { 1576 status |= MCI_CMDTIMEOUT; 1577 dev_err(mmc_dev(host->mmc), 1578 "timeout in state %s still busy with CMD%02x\n", 1579 ux500_state_str(host), host->cmd->opcode); 1580 } else { 1581 dev_err(mmc_dev(host->mmc), 1582 "timeout in state %s waiting for busy CMD%02x\n", 1583 ux500_state_str(host), host->cmd->opcode); 1584 } 1585 1586 mmci_cmd_irq(host, host->cmd, status); 1587 } 1588 1589 spin_unlock_irqrestore(&host->lock, flags); 1590 } 1591 1592 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain) 1593 { 1594 return remain - (readl(host->base + MMCIFIFOCNT) << 2); 1595 } 1596 1597 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r) 1598 { 1599 /* 1600 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses 1601 * from the fifo range should be used 1602 */ 1603 if (status & MCI_RXFIFOHALFFULL) 1604 return host->variant->fifohalfsize; 1605 else if (status & MCI_RXDATAAVLBL) 1606 return 4; 1607 1608 return 0; 1609 } 1610 1611 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) 1612 { 1613 void __iomem *base = host->base; 1614 char *ptr = buffer; 1615 u32 status = readl(host->base + MMCISTATUS); 1616 int host_remain = host->size; 1617 1618 do { 1619 int count = host->get_rx_fifocnt(host, status, host_remain); 1620 1621 if (count > remain) 1622 count = remain; 1623 1624 if (count <= 0) 1625 break; 1626 1627 /* 1628 * SDIO especially may want to send something that is 1629 * not divisible by 4 (as opposed to card sectors 1630 * etc). Therefore make sure to always read the last bytes 1631 * while only doing full 32-bit reads towards the FIFO. 1632 */ 1633 if (unlikely(count & 0x3)) { 1634 if (count < 4) { 1635 unsigned char buf[4]; 1636 ioread32_rep(base + MMCIFIFO, buf, 1); 1637 memcpy(ptr, buf, count); 1638 } else { 1639 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1640 count &= ~0x3; 1641 } 1642 } else { 1643 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1644 } 1645 1646 ptr += count; 1647 remain -= count; 1648 host_remain -= count; 1649 1650 if (remain == 0) 1651 break; 1652 1653 status = readl(base + MMCISTATUS); 1654 } while (status & MCI_RXDATAAVLBL); 1655 1656 return ptr - buffer; 1657 } 1658 1659 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) 1660 { 1661 struct variant_data *variant = host->variant; 1662 void __iomem *base = host->base; 1663 char *ptr = buffer; 1664 1665 do { 1666 unsigned int count, maxcnt; 1667 1668 maxcnt = status & MCI_TXFIFOEMPTY ? 1669 variant->fifosize : variant->fifohalfsize; 1670 count = min(remain, maxcnt); 1671 1672 /* 1673 * SDIO especially may want to send something that is 1674 * not divisible by 4 (as opposed to card sectors 1675 * etc), and the FIFO only accept full 32-bit writes. 1676 * So compensate by adding +3 on the count, a single 1677 * byte become a 32bit write, 7 bytes will be two 1678 * 32bit writes etc. 1679 */ 1680 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); 1681 1682 ptr += count; 1683 remain -= count; 1684 1685 if (remain == 0) 1686 break; 1687 1688 status = readl(base + MMCISTATUS); 1689 } while (status & MCI_TXFIFOHALFEMPTY); 1690 1691 return ptr - buffer; 1692 } 1693 1694 /* 1695 * PIO data transfer IRQ handler. 1696 */ 1697 static irqreturn_t mmci_pio_irq(int irq, void *dev_id) 1698 { 1699 struct mmci_host *host = dev_id; 1700 struct sg_mapping_iter *sg_miter = &host->sg_miter; 1701 struct variant_data *variant = host->variant; 1702 void __iomem *base = host->base; 1703 u32 status; 1704 1705 status = readl(base + MMCISTATUS); 1706 1707 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); 1708 1709 do { 1710 unsigned int remain, len; 1711 char *buffer; 1712 1713 /* 1714 * For write, we only need to test the half-empty flag 1715 * here - if the FIFO is completely empty, then by 1716 * definition it is more than half empty. 1717 * 1718 * For read, check for data available. 1719 */ 1720 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) 1721 break; 1722 1723 if (!sg_miter_next(sg_miter)) 1724 break; 1725 1726 buffer = sg_miter->addr; 1727 remain = sg_miter->length; 1728 1729 len = 0; 1730 if (status & MCI_RXACTIVE) 1731 len = mmci_pio_read(host, buffer, remain); 1732 if (status & MCI_TXACTIVE) 1733 len = mmci_pio_write(host, buffer, remain, status); 1734 1735 sg_miter->consumed = len; 1736 1737 host->size -= len; 1738 remain -= len; 1739 1740 if (remain) 1741 break; 1742 1743 status = readl(base + MMCISTATUS); 1744 } while (1); 1745 1746 sg_miter_stop(sg_miter); 1747 1748 /* 1749 * If we have less than the fifo 'half-full' threshold to transfer, 1750 * trigger a PIO interrupt as soon as any data is available. 1751 */ 1752 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) 1753 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); 1754 1755 /* 1756 * If we run out of data, disable the data IRQs; this 1757 * prevents a race where the FIFO becomes empty before 1758 * the chip itself has disabled the data path, and 1759 * stops us racing with our data end IRQ. 1760 */ 1761 if (host->size == 0) { 1762 mmci_set_mask1(host, 0); 1763 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); 1764 } 1765 1766 return IRQ_HANDLED; 1767 } 1768 1769 static void mmci_write_sdio_irq_bit(struct mmci_host *host, int enable) 1770 { 1771 void __iomem *base = host->base; 1772 u32 mask = readl_relaxed(base + MMCIMASK0); 1773 1774 if (enable) 1775 writel_relaxed(mask | MCI_ST_SDIOITMASK, base + MMCIMASK0); 1776 else 1777 writel_relaxed(mask & ~MCI_ST_SDIOITMASK, base + MMCIMASK0); 1778 } 1779 1780 static void mmci_signal_sdio_irq(struct mmci_host *host, u32 status) 1781 { 1782 if (status & MCI_ST_SDIOIT) { 1783 mmci_write_sdio_irq_bit(host, 0); 1784 sdio_signal_irq(host->mmc); 1785 } 1786 } 1787 1788 /* 1789 * Handle completion of command and data transfers. 1790 */ 1791 static irqreturn_t mmci_irq(int irq, void *dev_id) 1792 { 1793 struct mmci_host *host = dev_id; 1794 u32 status; 1795 1796 spin_lock(&host->lock); 1797 host->irq_action = IRQ_HANDLED; 1798 1799 do { 1800 status = readl(host->base + MMCISTATUS); 1801 if (!status) 1802 break; 1803 1804 if (host->singleirq) { 1805 if (status & host->mask1_reg) 1806 mmci_pio_irq(irq, dev_id); 1807 1808 status &= ~host->variant->irq_pio_mask; 1809 } 1810 1811 /* 1812 * Busy detection is managed by mmci_cmd_irq(), including to 1813 * clear the corresponding IRQ. 1814 */ 1815 status &= readl(host->base + MMCIMASK0); 1816 if (host->variant->busy_detect) 1817 writel(status & ~host->variant->busy_detect_mask, 1818 host->base + MMCICLEAR); 1819 else 1820 writel(status, host->base + MMCICLEAR); 1821 1822 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); 1823 1824 if (host->variant->reversed_irq_handling) { 1825 mmci_data_irq(host, host->data, status); 1826 mmci_cmd_irq(host, host->cmd, status); 1827 } else { 1828 mmci_cmd_irq(host, host->cmd, status); 1829 mmci_data_irq(host, host->data, status); 1830 } 1831 1832 if (host->variant->supports_sdio_irq) 1833 mmci_signal_sdio_irq(host, status); 1834 1835 /* 1836 * Busy detection has been handled by mmci_cmd_irq() above. 1837 * Clear the status bit to prevent polling in IRQ context. 1838 */ 1839 if (host->variant->busy_detect_flag) 1840 status &= ~host->variant->busy_detect_flag; 1841 1842 } while (status); 1843 1844 spin_unlock(&host->lock); 1845 1846 return host->irq_action; 1847 } 1848 1849 /* 1850 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW. 1851 * 1852 * A reset is needed for some variants, where a datatimeout for a R1B request 1853 * causes the DPSM to stay busy (non-functional). 1854 */ 1855 static irqreturn_t mmci_irq_thread(int irq, void *dev_id) 1856 { 1857 struct mmci_host *host = dev_id; 1858 unsigned long flags; 1859 1860 if (host->rst) { 1861 reset_control_assert(host->rst); 1862 udelay(2); 1863 reset_control_deassert(host->rst); 1864 } 1865 1866 spin_lock_irqsave(&host->lock, flags); 1867 writel(host->clk_reg, host->base + MMCICLOCK); 1868 writel(host->pwr_reg, host->base + MMCIPOWER); 1869 writel(MCI_IRQENABLE | host->variant->start_err, 1870 host->base + MMCIMASK0); 1871 1872 host->irq_action = IRQ_HANDLED; 1873 mmci_request_end(host, host->mrq); 1874 spin_unlock_irqrestore(&host->lock, flags); 1875 1876 return host->irq_action; 1877 } 1878 1879 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1880 { 1881 struct mmci_host *host = mmc_priv(mmc); 1882 unsigned long flags; 1883 1884 WARN_ON(host->mrq != NULL); 1885 1886 mrq->cmd->error = mmci_validate_data(host, mrq->data); 1887 if (mrq->cmd->error) { 1888 mmc_request_done(mmc, mrq); 1889 return; 1890 } 1891 1892 spin_lock_irqsave(&host->lock, flags); 1893 1894 host->mrq = mrq; 1895 1896 if (mrq->data) 1897 mmci_get_next_data(host, mrq->data); 1898 1899 if (mrq->data && 1900 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ)) 1901 mmci_start_data(host, mrq->data); 1902 1903 if (mrq->sbc) 1904 mmci_start_command(host, mrq->sbc, 0); 1905 else 1906 mmci_start_command(host, mrq->cmd, 0); 1907 1908 spin_unlock_irqrestore(&host->lock, flags); 1909 } 1910 1911 static void mmci_set_max_busy_timeout(struct mmc_host *mmc) 1912 { 1913 struct mmci_host *host = mmc_priv(mmc); 1914 u32 max_busy_timeout = 0; 1915 1916 if (!host->variant->busy_detect) 1917 return; 1918 1919 if (host->variant->busy_timeout && mmc->actual_clock) 1920 max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock, 1921 MSEC_PER_SEC); 1922 1923 mmc->max_busy_timeout = max_busy_timeout; 1924 } 1925 1926 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1927 { 1928 struct mmci_host *host = mmc_priv(mmc); 1929 struct variant_data *variant = host->variant; 1930 u32 pwr = 0; 1931 unsigned long flags; 1932 int ret; 1933 1934 switch (ios->power_mode) { 1935 case MMC_POWER_OFF: 1936 if (!IS_ERR(mmc->supply.vmmc)) 1937 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1938 1939 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 1940 regulator_disable(mmc->supply.vqmmc); 1941 host->vqmmc_enabled = false; 1942 } 1943 1944 break; 1945 case MMC_POWER_UP: 1946 if (!IS_ERR(mmc->supply.vmmc)) 1947 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1948 1949 /* 1950 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP 1951 * and instead uses MCI_PWR_ON so apply whatever value is 1952 * configured in the variant data. 1953 */ 1954 pwr |= variant->pwrreg_powerup; 1955 1956 break; 1957 case MMC_POWER_ON: 1958 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 1959 ret = regulator_enable(mmc->supply.vqmmc); 1960 if (ret < 0) 1961 dev_err(mmc_dev(mmc), 1962 "failed to enable vqmmc regulator\n"); 1963 else 1964 host->vqmmc_enabled = true; 1965 } 1966 1967 pwr |= MCI_PWR_ON; 1968 break; 1969 } 1970 1971 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { 1972 /* 1973 * The ST Micro variant has some additional bits 1974 * indicating signal direction for the signals in 1975 * the SD/MMC bus and feedback-clock usage. 1976 */ 1977 pwr |= host->pwr_reg_add; 1978 1979 if (ios->bus_width == MMC_BUS_WIDTH_4) 1980 pwr &= ~MCI_ST_DATA74DIREN; 1981 else if (ios->bus_width == MMC_BUS_WIDTH_1) 1982 pwr &= (~MCI_ST_DATA74DIREN & 1983 ~MCI_ST_DATA31DIREN & 1984 ~MCI_ST_DATA2DIREN); 1985 } 1986 1987 if (variant->opendrain) { 1988 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 1989 pwr |= variant->opendrain; 1990 } else { 1991 /* 1992 * If the variant cannot configure the pads by its own, then we 1993 * expect the pinctrl to be able to do that for us 1994 */ 1995 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 1996 pinctrl_select_state(host->pinctrl, host->pins_opendrain); 1997 else 1998 pinctrl_select_default_state(mmc_dev(mmc)); 1999 } 2000 2001 /* 2002 * If clock = 0 and the variant requires the MMCIPOWER to be used for 2003 * gating the clock, the MCI_PWR_ON bit is cleared. 2004 */ 2005 if (!ios->clock && variant->pwrreg_clkgate) 2006 pwr &= ~MCI_PWR_ON; 2007 2008 if (host->variant->explicit_mclk_control && 2009 ios->clock != host->clock_cache) { 2010 ret = clk_set_rate(host->clk, ios->clock); 2011 if (ret < 0) 2012 dev_err(mmc_dev(host->mmc), 2013 "Error setting clock rate (%d)\n", ret); 2014 else 2015 host->mclk = clk_get_rate(host->clk); 2016 } 2017 host->clock_cache = ios->clock; 2018 2019 spin_lock_irqsave(&host->lock, flags); 2020 2021 if (host->ops && host->ops->set_clkreg) 2022 host->ops->set_clkreg(host, ios->clock); 2023 else 2024 mmci_set_clkreg(host, ios->clock); 2025 2026 mmci_set_max_busy_timeout(mmc); 2027 2028 if (host->ops && host->ops->set_pwrreg) 2029 host->ops->set_pwrreg(host, pwr); 2030 else 2031 mmci_write_pwrreg(host, pwr); 2032 2033 mmci_reg_delay(host); 2034 2035 spin_unlock_irqrestore(&host->lock, flags); 2036 } 2037 2038 static int mmci_get_cd(struct mmc_host *mmc) 2039 { 2040 struct mmci_host *host = mmc_priv(mmc); 2041 struct mmci_platform_data *plat = host->plat; 2042 unsigned int status = mmc_gpio_get_cd(mmc); 2043 2044 if (status == -ENOSYS) { 2045 if (!plat->status) 2046 return 1; /* Assume always present */ 2047 2048 status = plat->status(mmc_dev(host->mmc)); 2049 } 2050 return status; 2051 } 2052 2053 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 2054 { 2055 struct mmci_host *host = mmc_priv(mmc); 2056 int ret; 2057 2058 ret = mmc_regulator_set_vqmmc(mmc, ios); 2059 2060 if (!ret && host->ops && host->ops->post_sig_volt_switch) 2061 ret = host->ops->post_sig_volt_switch(host, ios); 2062 else if (ret) 2063 ret = 0; 2064 2065 if (ret < 0) 2066 dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); 2067 2068 return ret; 2069 } 2070 2071 static void mmci_enable_sdio_irq(struct mmc_host *mmc, int enable) 2072 { 2073 struct mmci_host *host = mmc_priv(mmc); 2074 unsigned long flags; 2075 2076 if (enable) 2077 /* Keep the SDIO mode bit if SDIO irqs are enabled */ 2078 pm_runtime_get_sync(mmc_dev(mmc)); 2079 2080 spin_lock_irqsave(&host->lock, flags); 2081 mmci_write_sdio_irq_bit(host, enable); 2082 spin_unlock_irqrestore(&host->lock, flags); 2083 2084 if (!enable) { 2085 pm_runtime_mark_last_busy(mmc_dev(mmc)); 2086 pm_runtime_put_autosuspend(mmc_dev(mmc)); 2087 } 2088 } 2089 2090 static void mmci_ack_sdio_irq(struct mmc_host *mmc) 2091 { 2092 struct mmci_host *host = mmc_priv(mmc); 2093 unsigned long flags; 2094 2095 spin_lock_irqsave(&host->lock, flags); 2096 mmci_write_sdio_irq_bit(host, 1); 2097 spin_unlock_irqrestore(&host->lock, flags); 2098 } 2099 2100 static struct mmc_host_ops mmci_ops = { 2101 .request = mmci_request, 2102 .pre_req = mmci_pre_request, 2103 .post_req = mmci_post_request, 2104 .set_ios = mmci_set_ios, 2105 .get_ro = mmc_gpio_get_ro, 2106 .get_cd = mmci_get_cd, 2107 .start_signal_voltage_switch = mmci_sig_volt_switch, 2108 }; 2109 2110 static void mmci_probe_level_translator(struct mmc_host *mmc) 2111 { 2112 struct device *dev = mmc_dev(mmc); 2113 struct mmci_host *host = mmc_priv(mmc); 2114 struct gpio_desc *cmd_gpio; 2115 struct gpio_desc *ck_gpio; 2116 struct gpio_desc *ckin_gpio; 2117 int clk_hi, clk_lo; 2118 2119 /* 2120 * Assume the level translator is present if st,use-ckin is set. 2121 * This is to cater for DTs which do not implement this test. 2122 */ 2123 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN; 2124 2125 cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH); 2126 if (IS_ERR(cmd_gpio)) 2127 goto exit_cmd; 2128 2129 ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH); 2130 if (IS_ERR(ck_gpio)) 2131 goto exit_ck; 2132 2133 ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN); 2134 if (IS_ERR(ckin_gpio)) 2135 goto exit_ckin; 2136 2137 /* All GPIOs are valid, test whether level translator works */ 2138 2139 /* Sample CKIN */ 2140 clk_hi = !!gpiod_get_value(ckin_gpio); 2141 2142 /* Set CK low */ 2143 gpiod_set_value(ck_gpio, 0); 2144 2145 /* Sample CKIN */ 2146 clk_lo = !!gpiod_get_value(ckin_gpio); 2147 2148 /* Tristate all */ 2149 gpiod_direction_input(cmd_gpio); 2150 gpiod_direction_input(ck_gpio); 2151 2152 /* Level translator is present if CK signal is propagated to CKIN */ 2153 if (!clk_hi || clk_lo) { 2154 host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN; 2155 dev_warn(dev, 2156 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n"); 2157 } 2158 2159 gpiod_put(ckin_gpio); 2160 2161 exit_ckin: 2162 gpiod_put(ck_gpio); 2163 exit_ck: 2164 gpiod_put(cmd_gpio); 2165 exit_cmd: 2166 pinctrl_select_default_state(dev); 2167 } 2168 2169 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc) 2170 { 2171 struct mmci_host *host = mmc_priv(mmc); 2172 int ret = mmc_of_parse(mmc); 2173 2174 if (ret) 2175 return ret; 2176 2177 if (of_property_read_bool(np, "st,sig-dir-dat0")) 2178 host->pwr_reg_add |= MCI_ST_DATA0DIREN; 2179 if (of_property_read_bool(np, "st,sig-dir-dat2")) 2180 host->pwr_reg_add |= MCI_ST_DATA2DIREN; 2181 if (of_property_read_bool(np, "st,sig-dir-dat31")) 2182 host->pwr_reg_add |= MCI_ST_DATA31DIREN; 2183 if (of_property_read_bool(np, "st,sig-dir-dat74")) 2184 host->pwr_reg_add |= MCI_ST_DATA74DIREN; 2185 if (of_property_read_bool(np, "st,sig-dir-cmd")) 2186 host->pwr_reg_add |= MCI_ST_CMDDIREN; 2187 if (of_property_read_bool(np, "st,sig-pin-fbclk")) 2188 host->pwr_reg_add |= MCI_ST_FBCLKEN; 2189 if (of_property_read_bool(np, "st,sig-dir")) 2190 host->pwr_reg_add |= MCI_STM32_DIRPOL; 2191 if (of_property_read_bool(np, "st,neg-edge")) 2192 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE; 2193 if (of_property_read_bool(np, "st,use-ckin")) 2194 mmci_probe_level_translator(mmc); 2195 2196 if (of_property_read_bool(np, "mmc-cap-mmc-highspeed")) 2197 mmc->caps |= MMC_CAP_MMC_HIGHSPEED; 2198 if (of_property_read_bool(np, "mmc-cap-sd-highspeed")) 2199 mmc->caps |= MMC_CAP_SD_HIGHSPEED; 2200 2201 return 0; 2202 } 2203 2204 static int mmci_probe(struct amba_device *dev, 2205 const struct amba_id *id) 2206 { 2207 struct mmci_platform_data *plat = dev->dev.platform_data; 2208 struct device_node *np = dev->dev.of_node; 2209 struct variant_data *variant = id->data; 2210 struct mmci_host *host; 2211 struct mmc_host *mmc; 2212 int ret; 2213 2214 /* Must have platform data or Device Tree. */ 2215 if (!plat && !np) { 2216 dev_err(&dev->dev, "No plat data or DT found\n"); 2217 return -EINVAL; 2218 } 2219 2220 if (!plat) { 2221 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); 2222 if (!plat) 2223 return -ENOMEM; 2224 } 2225 2226 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); 2227 if (!mmc) 2228 return -ENOMEM; 2229 2230 host = mmc_priv(mmc); 2231 host->mmc = mmc; 2232 host->mmc_ops = &mmci_ops; 2233 mmc->ops = &mmci_ops; 2234 2235 ret = mmci_of_parse(np, mmc); 2236 if (ret) 2237 goto host_free; 2238 2239 /* 2240 * Some variant (STM32) doesn't have opendrain bit, nevertheless 2241 * pins can be set accordingly using pinctrl 2242 */ 2243 if (!variant->opendrain) { 2244 host->pinctrl = devm_pinctrl_get(&dev->dev); 2245 if (IS_ERR(host->pinctrl)) { 2246 dev_err(&dev->dev, "failed to get pinctrl"); 2247 ret = PTR_ERR(host->pinctrl); 2248 goto host_free; 2249 } 2250 2251 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl, 2252 MMCI_PINCTRL_STATE_OPENDRAIN); 2253 if (IS_ERR(host->pins_opendrain)) { 2254 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n"); 2255 ret = PTR_ERR(host->pins_opendrain); 2256 goto host_free; 2257 } 2258 } 2259 2260 host->hw_designer = amba_manf(dev); 2261 host->hw_revision = amba_rev(dev); 2262 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); 2263 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); 2264 2265 host->clk = devm_clk_get(&dev->dev, NULL); 2266 if (IS_ERR(host->clk)) { 2267 ret = PTR_ERR(host->clk); 2268 goto host_free; 2269 } 2270 2271 ret = clk_prepare_enable(host->clk); 2272 if (ret) 2273 goto host_free; 2274 2275 if (variant->qcom_fifo) 2276 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt; 2277 else 2278 host->get_rx_fifocnt = mmci_get_rx_fifocnt; 2279 2280 host->plat = plat; 2281 host->variant = variant; 2282 host->mclk = clk_get_rate(host->clk); 2283 /* 2284 * According to the spec, mclk is max 100 MHz, 2285 * so we try to adjust the clock down to this, 2286 * (if possible). 2287 */ 2288 if (host->mclk > variant->f_max) { 2289 ret = clk_set_rate(host->clk, variant->f_max); 2290 if (ret < 0) 2291 goto clk_disable; 2292 host->mclk = clk_get_rate(host->clk); 2293 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", 2294 host->mclk); 2295 } 2296 2297 host->phybase = dev->res.start; 2298 host->base = devm_ioremap_resource(&dev->dev, &dev->res); 2299 if (IS_ERR(host->base)) { 2300 ret = PTR_ERR(host->base); 2301 goto clk_disable; 2302 } 2303 2304 if (variant->init) 2305 variant->init(host); 2306 2307 /* 2308 * The ARM and ST versions of the block have slightly different 2309 * clock divider equations which means that the minimum divider 2310 * differs too. 2311 * on Qualcomm like controllers get the nearest minimum clock to 100Khz 2312 */ 2313 if (variant->st_clkdiv) 2314 mmc->f_min = DIV_ROUND_UP(host->mclk, 257); 2315 else if (variant->stm32_clkdiv) 2316 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046); 2317 else if (variant->explicit_mclk_control) 2318 mmc->f_min = clk_round_rate(host->clk, 100000); 2319 else 2320 mmc->f_min = DIV_ROUND_UP(host->mclk, 512); 2321 /* 2322 * If no maximum operating frequency is supplied, fall back to use 2323 * the module parameter, which has a (low) default value in case it 2324 * is not specified. Either value must not exceed the clock rate into 2325 * the block, of course. 2326 */ 2327 if (mmc->f_max) 2328 mmc->f_max = variant->explicit_mclk_control ? 2329 min(variant->f_max, mmc->f_max) : 2330 min(host->mclk, mmc->f_max); 2331 else 2332 mmc->f_max = variant->explicit_mclk_control ? 2333 fmax : min(host->mclk, fmax); 2334 2335 2336 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); 2337 2338 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL); 2339 if (IS_ERR(host->rst)) { 2340 ret = PTR_ERR(host->rst); 2341 goto clk_disable; 2342 } 2343 ret = reset_control_deassert(host->rst); 2344 if (ret) 2345 dev_err(mmc_dev(mmc), "failed to de-assert reset\n"); 2346 2347 /* Get regulators and the supported OCR mask */ 2348 ret = mmc_regulator_get_supply(mmc); 2349 if (ret) 2350 goto clk_disable; 2351 2352 if (!mmc->ocr_avail) 2353 mmc->ocr_avail = plat->ocr_mask; 2354 else if (plat->ocr_mask) 2355 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 2356 2357 /* We support these capabilities. */ 2358 mmc->caps |= MMC_CAP_CMD23; 2359 2360 /* 2361 * Enable busy detection. 2362 */ 2363 if (variant->busy_detect) { 2364 mmci_ops.card_busy = mmci_card_busy; 2365 /* 2366 * Not all variants have a flag to enable busy detection 2367 * in the DPSM, but if they do, set it here. 2368 */ 2369 if (variant->busy_dpsm_flag) 2370 mmci_write_datactrlreg(host, 2371 host->variant->busy_dpsm_flag); 2372 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; 2373 } 2374 2375 if (variant->supports_sdio_irq && host->mmc->caps & MMC_CAP_SDIO_IRQ) { 2376 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; 2377 2378 mmci_ops.enable_sdio_irq = mmci_enable_sdio_irq; 2379 mmci_ops.ack_sdio_irq = mmci_ack_sdio_irq; 2380 2381 mmci_write_datactrlreg(host, 2382 host->variant->datactrl_mask_sdio); 2383 } 2384 2385 /* Variants with mandatory busy timeout in HW needs R1B responses. */ 2386 if (variant->busy_timeout) 2387 mmc->caps |= MMC_CAP_NEED_RSP_BUSY; 2388 2389 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */ 2390 host->stop_abort.opcode = MMC_STOP_TRANSMISSION; 2391 host->stop_abort.arg = 0; 2392 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC; 2393 2394 /* We support these PM capabilities. */ 2395 mmc->pm_caps |= MMC_PM_KEEP_POWER; 2396 2397 /* 2398 * We can do SGIO 2399 */ 2400 mmc->max_segs = NR_SG; 2401 2402 /* 2403 * Since only a certain number of bits are valid in the data length 2404 * register, we must ensure that we don't exceed 2^num-1 bytes in a 2405 * single request. 2406 */ 2407 mmc->max_req_size = (1 << variant->datalength_bits) - 1; 2408 2409 /* 2410 * Set the maximum segment size. Since we aren't doing DMA 2411 * (yet) we are only limited by the data length register. 2412 */ 2413 mmc->max_seg_size = mmc->max_req_size; 2414 2415 /* 2416 * Block size can be up to 2048 bytes, but must be a power of two. 2417 */ 2418 mmc->max_blk_size = 1 << variant->datactrl_blocksz; 2419 2420 /* 2421 * Limit the number of blocks transferred so that we don't overflow 2422 * the maximum request size. 2423 */ 2424 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz; 2425 2426 spin_lock_init(&host->lock); 2427 2428 writel(0, host->base + MMCIMASK0); 2429 2430 if (variant->mmcimask1) 2431 writel(0, host->base + MMCIMASK1); 2432 2433 writel(0xfff, host->base + MMCICLEAR); 2434 2435 /* 2436 * If: 2437 * - not using DT but using a descriptor table, or 2438 * - using a table of descriptors ALONGSIDE DT, or 2439 * look up these descriptors named "cd" and "wp" right here, fail 2440 * silently of these do not exist 2441 */ 2442 if (!np) { 2443 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0); 2444 if (ret == -EPROBE_DEFER) 2445 goto clk_disable; 2446 2447 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0); 2448 if (ret == -EPROBE_DEFER) 2449 goto clk_disable; 2450 } 2451 2452 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq, 2453 mmci_irq_thread, IRQF_SHARED, 2454 DRIVER_NAME " (cmd)", host); 2455 if (ret) 2456 goto clk_disable; 2457 2458 if (!dev->irq[1]) 2459 host->singleirq = true; 2460 else { 2461 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq, 2462 IRQF_SHARED, DRIVER_NAME " (pio)", host); 2463 if (ret) 2464 goto clk_disable; 2465 } 2466 2467 if (host->variant->busy_detect) 2468 INIT_DELAYED_WORK(&host->ux500_busy_timeout_work, 2469 ux500_busy_timeout_work); 2470 2471 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0); 2472 2473 amba_set_drvdata(dev, mmc); 2474 2475 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", 2476 mmc_hostname(mmc), amba_part(dev), amba_manf(dev), 2477 amba_rev(dev), (unsigned long long)dev->res.start, 2478 dev->irq[0], dev->irq[1]); 2479 2480 mmci_dma_setup(host); 2481 2482 pm_runtime_set_autosuspend_delay(&dev->dev, 50); 2483 pm_runtime_use_autosuspend(&dev->dev); 2484 2485 ret = mmc_add_host(mmc); 2486 if (ret) 2487 goto clk_disable; 2488 2489 pm_runtime_put(&dev->dev); 2490 return 0; 2491 2492 clk_disable: 2493 clk_disable_unprepare(host->clk); 2494 host_free: 2495 mmc_free_host(mmc); 2496 return ret; 2497 } 2498 2499 static void mmci_remove(struct amba_device *dev) 2500 { 2501 struct mmc_host *mmc = amba_get_drvdata(dev); 2502 2503 if (mmc) { 2504 struct mmci_host *host = mmc_priv(mmc); 2505 struct variant_data *variant = host->variant; 2506 2507 /* 2508 * Undo pm_runtime_put() in probe. We use the _sync 2509 * version here so that we can access the primecell. 2510 */ 2511 pm_runtime_get_sync(&dev->dev); 2512 2513 mmc_remove_host(mmc); 2514 2515 writel(0, host->base + MMCIMASK0); 2516 2517 if (variant->mmcimask1) 2518 writel(0, host->base + MMCIMASK1); 2519 2520 writel(0, host->base + MMCICOMMAND); 2521 writel(0, host->base + MMCIDATACTRL); 2522 2523 mmci_dma_release(host); 2524 clk_disable_unprepare(host->clk); 2525 mmc_free_host(mmc); 2526 } 2527 } 2528 2529 #ifdef CONFIG_PM 2530 static void mmci_save(struct mmci_host *host) 2531 { 2532 unsigned long flags; 2533 2534 spin_lock_irqsave(&host->lock, flags); 2535 2536 writel(0, host->base + MMCIMASK0); 2537 if (host->variant->pwrreg_nopower) { 2538 writel(0, host->base + MMCIDATACTRL); 2539 writel(0, host->base + MMCIPOWER); 2540 writel(0, host->base + MMCICLOCK); 2541 } 2542 mmci_reg_delay(host); 2543 2544 spin_unlock_irqrestore(&host->lock, flags); 2545 } 2546 2547 static void mmci_restore(struct mmci_host *host) 2548 { 2549 unsigned long flags; 2550 2551 spin_lock_irqsave(&host->lock, flags); 2552 2553 if (host->variant->pwrreg_nopower) { 2554 writel(host->clk_reg, host->base + MMCICLOCK); 2555 writel(host->datactrl_reg, host->base + MMCIDATACTRL); 2556 writel(host->pwr_reg, host->base + MMCIPOWER); 2557 } 2558 writel(MCI_IRQENABLE | host->variant->start_err, 2559 host->base + MMCIMASK0); 2560 mmci_reg_delay(host); 2561 2562 spin_unlock_irqrestore(&host->lock, flags); 2563 } 2564 2565 static int mmci_runtime_suspend(struct device *dev) 2566 { 2567 struct amba_device *adev = to_amba_device(dev); 2568 struct mmc_host *mmc = amba_get_drvdata(adev); 2569 2570 if (mmc) { 2571 struct mmci_host *host = mmc_priv(mmc); 2572 pinctrl_pm_select_sleep_state(dev); 2573 mmci_save(host); 2574 clk_disable_unprepare(host->clk); 2575 } 2576 2577 return 0; 2578 } 2579 2580 static int mmci_runtime_resume(struct device *dev) 2581 { 2582 struct amba_device *adev = to_amba_device(dev); 2583 struct mmc_host *mmc = amba_get_drvdata(adev); 2584 2585 if (mmc) { 2586 struct mmci_host *host = mmc_priv(mmc); 2587 clk_prepare_enable(host->clk); 2588 mmci_restore(host); 2589 pinctrl_select_default_state(dev); 2590 } 2591 2592 return 0; 2593 } 2594 #endif 2595 2596 static const struct dev_pm_ops mmci_dev_pm_ops = { 2597 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2598 pm_runtime_force_resume) 2599 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) 2600 }; 2601 2602 static const struct amba_id mmci_ids[] = { 2603 { 2604 .id = 0x00041180, 2605 .mask = 0xff0fffff, 2606 .data = &variant_arm, 2607 }, 2608 { 2609 .id = 0x01041180, 2610 .mask = 0xff0fffff, 2611 .data = &variant_arm_extended_fifo, 2612 }, 2613 { 2614 .id = 0x02041180, 2615 .mask = 0xff0fffff, 2616 .data = &variant_arm_extended_fifo_hwfc, 2617 }, 2618 { 2619 .id = 0x00041181, 2620 .mask = 0x000fffff, 2621 .data = &variant_arm, 2622 }, 2623 /* ST Micro variants */ 2624 { 2625 .id = 0x00180180, 2626 .mask = 0x00ffffff, 2627 .data = &variant_u300, 2628 }, 2629 { 2630 .id = 0x10180180, 2631 .mask = 0xf0ffffff, 2632 .data = &variant_nomadik, 2633 }, 2634 { 2635 .id = 0x00280180, 2636 .mask = 0x00ffffff, 2637 .data = &variant_nomadik, 2638 }, 2639 { 2640 .id = 0x00480180, 2641 .mask = 0xf0ffffff, 2642 .data = &variant_ux500, 2643 }, 2644 { 2645 .id = 0x10480180, 2646 .mask = 0xf0ffffff, 2647 .data = &variant_ux500v2, 2648 }, 2649 { 2650 .id = 0x00880180, 2651 .mask = 0x00ffffff, 2652 .data = &variant_stm32, 2653 }, 2654 { 2655 .id = 0x10153180, 2656 .mask = 0xf0ffffff, 2657 .data = &variant_stm32_sdmmc, 2658 }, 2659 { 2660 .id = 0x00253180, 2661 .mask = 0xf0ffffff, 2662 .data = &variant_stm32_sdmmcv2, 2663 }, 2664 { 2665 .id = 0x20253180, 2666 .mask = 0xf0ffffff, 2667 .data = &variant_stm32_sdmmcv2, 2668 }, 2669 { 2670 .id = 0x00353180, 2671 .mask = 0xf0ffffff, 2672 .data = &variant_stm32_sdmmcv3, 2673 }, 2674 /* Qualcomm variants */ 2675 { 2676 .id = 0x00051180, 2677 .mask = 0x000fffff, 2678 .data = &variant_qcom, 2679 }, 2680 { 0, 0 }, 2681 }; 2682 2683 MODULE_DEVICE_TABLE(amba, mmci_ids); 2684 2685 static struct amba_driver mmci_driver = { 2686 .drv = { 2687 .name = DRIVER_NAME, 2688 .pm = &mmci_dev_pm_ops, 2689 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2690 }, 2691 .probe = mmci_probe, 2692 .remove = mmci_remove, 2693 .id_table = mmci_ids, 2694 }; 2695 2696 module_amba_driver(mmci_driver); 2697 2698 module_param(fmax, uint, 0444); 2699 2700 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); 2701 MODULE_LICENSE("GPL"); 2702