xref: /linux/drivers/mmc/host/mmci.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 #include <linux/workqueue.h>
41 
42 #include <asm/div64.h>
43 #include <asm/io.h>
44 
45 #include "mmci.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500_variant_init(struct mmci_host *host);
51 static void ux500v2_variant_init(struct mmci_host *host);
52 
53 static unsigned int fmax = 515633;
54 
55 static struct variant_data variant_arm = {
56 	.fifosize		= 16 * 4,
57 	.fifohalfsize		= 8 * 4,
58 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
59 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
60 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
61 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
62 	.datalength_bits	= 16,
63 	.datactrl_blocksz	= 11,
64 	.pwrreg_powerup		= MCI_PWR_UP,
65 	.f_max			= 100000000,
66 	.reversed_irq_handling	= true,
67 	.mmcimask1		= true,
68 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
69 	.start_err		= MCI_STARTBITERR,
70 	.opendrain		= MCI_ROD,
71 	.init			= mmci_variant_init,
72 };
73 
74 static struct variant_data variant_arm_extended_fifo = {
75 	.fifosize		= 128 * 4,
76 	.fifohalfsize		= 64 * 4,
77 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
78 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
80 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
81 	.datalength_bits	= 16,
82 	.datactrl_blocksz	= 11,
83 	.pwrreg_powerup		= MCI_PWR_UP,
84 	.f_max			= 100000000,
85 	.mmcimask1		= true,
86 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
87 	.start_err		= MCI_STARTBITERR,
88 	.opendrain		= MCI_ROD,
89 	.init			= mmci_variant_init,
90 };
91 
92 static struct variant_data variant_arm_extended_fifo_hwfc = {
93 	.fifosize		= 128 * 4,
94 	.fifohalfsize		= 64 * 4,
95 	.clkreg_enable		= MCI_ARM_HWFCEN,
96 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
97 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
98 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
99 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
100 	.datalength_bits	= 16,
101 	.datactrl_blocksz	= 11,
102 	.pwrreg_powerup		= MCI_PWR_UP,
103 	.f_max			= 100000000,
104 	.mmcimask1		= true,
105 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
106 	.start_err		= MCI_STARTBITERR,
107 	.opendrain		= MCI_ROD,
108 	.init			= mmci_variant_init,
109 };
110 
111 static struct variant_data variant_u300 = {
112 	.fifosize		= 16 * 4,
113 	.fifohalfsize		= 8 * 4,
114 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
115 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
116 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
117 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
118 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
119 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
120 	.datalength_bits	= 16,
121 	.datactrl_blocksz	= 11,
122 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
123 	.st_sdio			= true,
124 	.pwrreg_powerup		= MCI_PWR_ON,
125 	.f_max			= 100000000,
126 	.signal_direction	= true,
127 	.pwrreg_clkgate		= true,
128 	.pwrreg_nopower		= true,
129 	.mmcimask1		= true,
130 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
131 	.start_err		= MCI_STARTBITERR,
132 	.opendrain		= MCI_OD,
133 	.init			= mmci_variant_init,
134 };
135 
136 static struct variant_data variant_nomadik = {
137 	.fifosize		= 16 * 4,
138 	.fifohalfsize		= 8 * 4,
139 	.clkreg			= MCI_CLK_ENABLE,
140 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
141 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
142 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
143 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
144 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
145 	.datalength_bits	= 24,
146 	.datactrl_blocksz	= 11,
147 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
148 	.st_sdio		= true,
149 	.st_clkdiv		= true,
150 	.pwrreg_powerup		= MCI_PWR_ON,
151 	.f_max			= 100000000,
152 	.signal_direction	= true,
153 	.pwrreg_clkgate		= true,
154 	.pwrreg_nopower		= true,
155 	.mmcimask1		= true,
156 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
157 	.start_err		= MCI_STARTBITERR,
158 	.opendrain		= MCI_OD,
159 	.init			= mmci_variant_init,
160 };
161 
162 static struct variant_data variant_ux500 = {
163 	.fifosize		= 30 * 4,
164 	.fifohalfsize		= 8 * 4,
165 	.clkreg			= MCI_CLK_ENABLE,
166 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
167 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
168 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
169 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
170 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
171 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
172 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
173 	.datalength_bits	= 24,
174 	.datactrl_blocksz	= 11,
175 	.datactrl_any_blocksz	= true,
176 	.dma_power_of_2		= true,
177 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
178 	.st_sdio		= true,
179 	.st_clkdiv		= true,
180 	.pwrreg_powerup		= MCI_PWR_ON,
181 	.f_max			= 100000000,
182 	.signal_direction	= true,
183 	.pwrreg_clkgate		= true,
184 	.busy_detect		= true,
185 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
186 	.busy_detect_flag	= MCI_ST_CARDBUSY,
187 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
188 	.pwrreg_nopower		= true,
189 	.mmcimask1		= true,
190 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
191 	.start_err		= MCI_STARTBITERR,
192 	.opendrain		= MCI_OD,
193 	.init			= ux500_variant_init,
194 };
195 
196 static struct variant_data variant_ux500v2 = {
197 	.fifosize		= 30 * 4,
198 	.fifohalfsize		= 8 * 4,
199 	.clkreg			= MCI_CLK_ENABLE,
200 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
201 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
202 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
203 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
204 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
205 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
206 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
207 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
208 	.datalength_bits	= 24,
209 	.datactrl_blocksz	= 11,
210 	.datactrl_any_blocksz	= true,
211 	.dma_power_of_2		= true,
212 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
213 	.st_sdio		= true,
214 	.st_clkdiv		= true,
215 	.pwrreg_powerup		= MCI_PWR_ON,
216 	.f_max			= 100000000,
217 	.signal_direction	= true,
218 	.pwrreg_clkgate		= true,
219 	.busy_detect		= true,
220 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
221 	.busy_detect_flag	= MCI_ST_CARDBUSY,
222 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
223 	.pwrreg_nopower		= true,
224 	.mmcimask1		= true,
225 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
226 	.start_err		= MCI_STARTBITERR,
227 	.opendrain		= MCI_OD,
228 	.init			= ux500v2_variant_init,
229 };
230 
231 static struct variant_data variant_stm32 = {
232 	.fifosize		= 32 * 4,
233 	.fifohalfsize		= 8 * 4,
234 	.clkreg			= MCI_CLK_ENABLE,
235 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
236 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
237 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
238 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
239 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
240 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
241 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
242 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
243 	.datalength_bits	= 24,
244 	.datactrl_blocksz	= 11,
245 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
246 	.st_sdio		= true,
247 	.st_clkdiv		= true,
248 	.pwrreg_powerup		= MCI_PWR_ON,
249 	.f_max			= 48000000,
250 	.pwrreg_clkgate		= true,
251 	.pwrreg_nopower		= true,
252 	.dma_flow_controller	= true,
253 	.init			= mmci_variant_init,
254 };
255 
256 static struct variant_data variant_stm32_sdmmc = {
257 	.fifosize		= 16 * 4,
258 	.fifohalfsize		= 8 * 4,
259 	.f_max			= 208000000,
260 	.stm32_clkdiv		= true,
261 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
262 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
263 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
264 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
265 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
266 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
267 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
268 	.datactrl_first		= true,
269 	.datacnt_useless	= true,
270 	.datalength_bits	= 25,
271 	.datactrl_blocksz	= 14,
272 	.datactrl_any_blocksz	= true,
273 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
274 	.stm32_idmabsize_mask	= GENMASK(12, 5),
275 	.stm32_idmabsize_align	= BIT(5),
276 	.supports_sdio_irq	= true,
277 	.busy_timeout		= true,
278 	.busy_detect		= true,
279 	.busy_detect_flag	= MCI_STM32_BUSYD0,
280 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
281 	.init			= sdmmc_variant_init,
282 };
283 
284 static struct variant_data variant_stm32_sdmmcv2 = {
285 	.fifosize		= 16 * 4,
286 	.fifohalfsize		= 8 * 4,
287 	.f_max			= 267000000,
288 	.stm32_clkdiv		= true,
289 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
290 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
291 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
292 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
293 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
294 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
295 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
296 	.datactrl_first		= true,
297 	.datacnt_useless	= true,
298 	.datalength_bits	= 25,
299 	.datactrl_blocksz	= 14,
300 	.datactrl_any_blocksz	= true,
301 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
302 	.stm32_idmabsize_mask	= GENMASK(16, 5),
303 	.stm32_idmabsize_align	= BIT(5),
304 	.supports_sdio_irq	= true,
305 	.dma_lli		= true,
306 	.busy_timeout		= true,
307 	.busy_detect		= true,
308 	.busy_detect_flag	= MCI_STM32_BUSYD0,
309 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
310 	.init			= sdmmc_variant_init,
311 };
312 
313 static struct variant_data variant_stm32_sdmmcv3 = {
314 	.fifosize		= 256 * 4,
315 	.fifohalfsize		= 128 * 4,
316 	.f_max			= 267000000,
317 	.stm32_clkdiv		= true,
318 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
319 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
320 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
321 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
322 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
323 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
324 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
325 	.datactrl_first		= true,
326 	.datacnt_useless	= true,
327 	.datalength_bits	= 25,
328 	.datactrl_blocksz	= 14,
329 	.datactrl_any_blocksz	= true,
330 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
331 	.stm32_idmabsize_mask	= GENMASK(16, 6),
332 	.stm32_idmabsize_align	= BIT(6),
333 	.supports_sdio_irq	= true,
334 	.dma_lli		= true,
335 	.busy_timeout		= true,
336 	.busy_detect		= true,
337 	.busy_detect_flag	= MCI_STM32_BUSYD0,
338 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
339 	.init			= sdmmc_variant_init,
340 };
341 
342 static struct variant_data variant_qcom = {
343 	.fifosize		= 16 * 4,
344 	.fifohalfsize		= 8 * 4,
345 	.clkreg			= MCI_CLK_ENABLE,
346 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
347 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
348 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
349 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
350 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
351 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
352 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
353 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
354 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
355 	.datalength_bits	= 24,
356 	.datactrl_blocksz	= 11,
357 	.datactrl_any_blocksz	= true,
358 	.pwrreg_powerup		= MCI_PWR_UP,
359 	.f_max			= 208000000,
360 	.explicit_mclk_control	= true,
361 	.qcom_fifo		= true,
362 	.qcom_dml		= true,
363 	.mmcimask1		= true,
364 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
365 	.start_err		= MCI_STARTBITERR,
366 	.opendrain		= MCI_ROD,
367 	.init			= qcom_variant_init,
368 };
369 
370 /* Busy detection for the ST Micro variant */
371 static int mmci_card_busy(struct mmc_host *mmc)
372 {
373 	struct mmci_host *host = mmc_priv(mmc);
374 	unsigned long flags;
375 	int busy = 0;
376 
377 	spin_lock_irqsave(&host->lock, flags);
378 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
379 		busy = 1;
380 	spin_unlock_irqrestore(&host->lock, flags);
381 
382 	return busy;
383 }
384 
385 static void mmci_reg_delay(struct mmci_host *host)
386 {
387 	/*
388 	 * According to the spec, at least three feedback clock cycles
389 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
390 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
391 	 * Worst delay time during card init is at 100 kHz => 30 us.
392 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
393 	 */
394 	if (host->cclk < 25000000)
395 		udelay(30);
396 	else
397 		ndelay(120);
398 }
399 
400 /*
401  * This must be called with host->lock held
402  */
403 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
404 {
405 	if (host->clk_reg != clk) {
406 		host->clk_reg = clk;
407 		writel(clk, host->base + MMCICLOCK);
408 	}
409 }
410 
411 /*
412  * This must be called with host->lock held
413  */
414 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
415 {
416 	if (host->pwr_reg != pwr) {
417 		host->pwr_reg = pwr;
418 		writel(pwr, host->base + MMCIPOWER);
419 	}
420 }
421 
422 /*
423  * This must be called with host->lock held
424  */
425 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
426 {
427 	/* Keep busy mode in DPSM and SDIO mask if enabled */
428 	datactrl |= host->datactrl_reg & (host->variant->busy_dpsm_flag |
429 					  host->variant->datactrl_mask_sdio);
430 
431 	if (host->datactrl_reg != datactrl) {
432 		host->datactrl_reg = datactrl;
433 		writel(datactrl, host->base + MMCIDATACTRL);
434 	}
435 }
436 
437 /*
438  * This must be called with host->lock held
439  */
440 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
441 {
442 	struct variant_data *variant = host->variant;
443 	u32 clk = variant->clkreg;
444 
445 	/* Make sure cclk reflects the current calculated clock */
446 	host->cclk = 0;
447 
448 	if (desired) {
449 		if (variant->explicit_mclk_control) {
450 			host->cclk = host->mclk;
451 		} else if (desired >= host->mclk) {
452 			clk = MCI_CLK_BYPASS;
453 			if (variant->st_clkdiv)
454 				clk |= MCI_ST_UX500_NEG_EDGE;
455 			host->cclk = host->mclk;
456 		} else if (variant->st_clkdiv) {
457 			/*
458 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
459 			 * => clkdiv = (mclk / f) - 2
460 			 * Round the divider up so we don't exceed the max
461 			 * frequency
462 			 */
463 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
464 			if (clk >= 256)
465 				clk = 255;
466 			host->cclk = host->mclk / (clk + 2);
467 		} else {
468 			/*
469 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
470 			 * => clkdiv = mclk / (2 * f) - 1
471 			 */
472 			clk = host->mclk / (2 * desired) - 1;
473 			if (clk >= 256)
474 				clk = 255;
475 			host->cclk = host->mclk / (2 * (clk + 1));
476 		}
477 
478 		clk |= variant->clkreg_enable;
479 		clk |= MCI_CLK_ENABLE;
480 		/* This hasn't proven to be worthwhile */
481 		/* clk |= MCI_CLK_PWRSAVE; */
482 	}
483 
484 	/* Set actual clock for debug */
485 	host->mmc->actual_clock = host->cclk;
486 
487 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
488 		clk |= MCI_4BIT_BUS;
489 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
490 		clk |= variant->clkreg_8bit_bus_enable;
491 
492 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
493 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
494 		clk |= variant->clkreg_neg_edge_enable;
495 
496 	mmci_write_clkreg(host, clk);
497 }
498 
499 static void mmci_dma_release(struct mmci_host *host)
500 {
501 	if (host->ops && host->ops->dma_release)
502 		host->ops->dma_release(host);
503 
504 	host->use_dma = false;
505 }
506 
507 static void mmci_dma_setup(struct mmci_host *host)
508 {
509 	if (!host->ops || !host->ops->dma_setup)
510 		return;
511 
512 	if (host->ops->dma_setup(host))
513 		return;
514 
515 	/* initialize pre request cookie */
516 	host->next_cookie = 1;
517 
518 	host->use_dma = true;
519 }
520 
521 /*
522  * Validate mmc prerequisites
523  */
524 static int mmci_validate_data(struct mmci_host *host,
525 			      struct mmc_data *data)
526 {
527 	struct variant_data *variant = host->variant;
528 
529 	if (!data)
530 		return 0;
531 	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
532 		dev_err(mmc_dev(host->mmc),
533 			"unsupported block size (%d bytes)\n", data->blksz);
534 		return -EINVAL;
535 	}
536 
537 	if (host->ops && host->ops->validate_data)
538 		return host->ops->validate_data(host, data);
539 
540 	return 0;
541 }
542 
543 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
544 {
545 	int err;
546 
547 	if (!host->ops || !host->ops->prep_data)
548 		return 0;
549 
550 	err = host->ops->prep_data(host, data, next);
551 
552 	if (next && !err)
553 		data->host_cookie = ++host->next_cookie < 0 ?
554 			1 : host->next_cookie;
555 
556 	return err;
557 }
558 
559 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
560 		      int err)
561 {
562 	if (host->ops && host->ops->unprep_data)
563 		host->ops->unprep_data(host, data, err);
564 
565 	data->host_cookie = 0;
566 }
567 
568 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
569 {
570 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
571 
572 	if (host->ops && host->ops->get_next_data)
573 		host->ops->get_next_data(host, data);
574 }
575 
576 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
577 {
578 	struct mmc_data *data = host->data;
579 	int ret;
580 
581 	if (!host->use_dma)
582 		return -EINVAL;
583 
584 	ret = mmci_prep_data(host, data, false);
585 	if (ret)
586 		return ret;
587 
588 	if (!host->ops || !host->ops->dma_start)
589 		return -EINVAL;
590 
591 	/* Okay, go for it. */
592 	dev_vdbg(mmc_dev(host->mmc),
593 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
594 		 data->sg_len, data->blksz, data->blocks, data->flags);
595 
596 	ret = host->ops->dma_start(host, &datactrl);
597 	if (ret)
598 		return ret;
599 
600 	/* Trigger the DMA transfer */
601 	mmci_write_datactrlreg(host, datactrl);
602 
603 	/*
604 	 * Let the MMCI say when the data is ended and it's time
605 	 * to fire next DMA request. When that happens, MMCI will
606 	 * call mmci_data_end()
607 	 */
608 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
609 	       host->base + MMCIMASK0);
610 	return 0;
611 }
612 
613 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
614 {
615 	if (!host->use_dma)
616 		return;
617 
618 	if (host->ops && host->ops->dma_finalize)
619 		host->ops->dma_finalize(host, data);
620 }
621 
622 static void mmci_dma_error(struct mmci_host *host)
623 {
624 	if (!host->use_dma)
625 		return;
626 
627 	if (host->ops && host->ops->dma_error)
628 		host->ops->dma_error(host);
629 }
630 
631 static void
632 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
633 {
634 	writel(0, host->base + MMCICOMMAND);
635 
636 	BUG_ON(host->data);
637 
638 	host->mrq = NULL;
639 	host->cmd = NULL;
640 
641 	mmc_request_done(host->mmc, mrq);
642 }
643 
644 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
645 {
646 	void __iomem *base = host->base;
647 	struct variant_data *variant = host->variant;
648 
649 	if (host->singleirq) {
650 		unsigned int mask0 = readl(base + MMCIMASK0);
651 
652 		mask0 &= ~variant->irq_pio_mask;
653 		mask0 |= mask;
654 
655 		writel(mask0, base + MMCIMASK0);
656 	}
657 
658 	if (variant->mmcimask1)
659 		writel(mask, base + MMCIMASK1);
660 
661 	host->mask1_reg = mask;
662 }
663 
664 static void mmci_stop_data(struct mmci_host *host)
665 {
666 	mmci_write_datactrlreg(host, 0);
667 	mmci_set_mask1(host, 0);
668 	host->data = NULL;
669 }
670 
671 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
672 {
673 	unsigned int flags = SG_MITER_ATOMIC;
674 
675 	if (data->flags & MMC_DATA_READ)
676 		flags |= SG_MITER_TO_SG;
677 	else
678 		flags |= SG_MITER_FROM_SG;
679 
680 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
681 }
682 
683 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
684 {
685 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
686 }
687 
688 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
689 {
690 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
691 }
692 
693 static void ux500_busy_clear_mask_done(struct mmci_host *host)
694 {
695 	void __iomem *base = host->base;
696 
697 	writel(host->variant->busy_detect_mask, base + MMCICLEAR);
698 	writel(readl(base + MMCIMASK0) &
699 	       ~host->variant->busy_detect_mask, base + MMCIMASK0);
700 	host->busy_state = MMCI_BUSY_DONE;
701 	host->busy_status = 0;
702 }
703 
704 /*
705  * ux500_busy_complete() - this will wait until the busy status
706  * goes off, saving any status that occur in the meantime into
707  * host->busy_status until we know the card is not busy any more.
708  * The function returns true when the busy detection is ended
709  * and we should continue processing the command.
710  *
711  * The Ux500 typically fires two IRQs over a busy cycle like this:
712  *
713  *  DAT0 busy          +-----------------+
714  *                     |                 |
715  *  DAT0 not busy  ----+                 +--------
716  *
717  *                     ^                 ^
718  *                     |                 |
719  *                    IRQ1              IRQ2
720  */
721 static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
722 				u32 status, u32 err_msk)
723 {
724 	void __iomem *base = host->base;
725 	int retries = 10;
726 
727 	if (status & err_msk) {
728 		/* Stop any ongoing busy detection if an error occurs */
729 		ux500_busy_clear_mask_done(host);
730 		goto out_ret_state;
731 	}
732 
733 	/*
734 	 * The state transitions are encoded in a state machine crossing
735 	 * the edges in this switch statement.
736 	 */
737 	switch (host->busy_state) {
738 
739 	/*
740 	 * Before unmasking for the busy end IRQ, confirm that the
741 	 * command was sent successfully. To keep track of having a
742 	 * command in-progress, waiting for busy signaling to end,
743 	 * store the status in host->busy_status.
744 	 *
745 	 * Note that, the card may need a couple of clock cycles before
746 	 * it starts signaling busy on DAT0, hence re-read the
747 	 * MMCISTATUS register here, to allow the busy bit to be set.
748 	 */
749 	case MMCI_BUSY_DONE:
750 		/*
751 		 * Save the first status register read to be sure to catch
752 		 * all bits that may be lost will retrying. If the command
753 		 * is still busy this will result in assigning 0 to
754 		 * host->busy_status, which is what it should be in IDLE.
755 		 */
756 		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
757 		while (retries) {
758 			status = readl(base + MMCISTATUS);
759 			/* Keep accumulating status bits */
760 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
761 			if (status & host->variant->busy_detect_flag) {
762 				writel(readl(base + MMCIMASK0) |
763 				       host->variant->busy_detect_mask,
764 				       base + MMCIMASK0);
765 				host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
766 				schedule_delayed_work(&host->ux500_busy_timeout_work,
767 				      msecs_to_jiffies(cmd->busy_timeout));
768 				goto out_ret_state;
769 			}
770 			retries--;
771 		}
772 		dev_dbg(mmc_dev(host->mmc),
773 			"no busy signalling in time CMD%02x\n", cmd->opcode);
774 		ux500_busy_clear_mask_done(host);
775 		break;
776 
777 	/*
778 	 * If there is a command in-progress that has been successfully
779 	 * sent, then bail out if busy status is set and wait for the
780 	 * busy end IRQ.
781 	 *
782 	 * Note that, the HW triggers an IRQ on both edges while
783 	 * monitoring DAT0 for busy completion, but there is only one
784 	 * status bit in MMCISTATUS for the busy state. Therefore
785 	 * both the start and the end interrupts needs to be cleared,
786 	 * one after the other. So, clear the busy start IRQ here.
787 	 */
788 	case MMCI_BUSY_WAITING_FOR_START_IRQ:
789 		if (status & host->variant->busy_detect_flag) {
790 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
791 			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
792 			host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
793 		} else {
794 			dev_dbg(mmc_dev(host->mmc),
795 				"lost busy status when waiting for busy start IRQ CMD%02x\n",
796 				cmd->opcode);
797 			cancel_delayed_work(&host->ux500_busy_timeout_work);
798 			ux500_busy_clear_mask_done(host);
799 		}
800 		break;
801 
802 	case MMCI_BUSY_WAITING_FOR_END_IRQ:
803 		if (!(status & host->variant->busy_detect_flag)) {
804 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
805 			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
806 			cancel_delayed_work(&host->ux500_busy_timeout_work);
807 			ux500_busy_clear_mask_done(host);
808 		} else {
809 			dev_dbg(mmc_dev(host->mmc),
810 				"busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
811 				cmd->opcode);
812 		}
813 		break;
814 
815 	default:
816 		dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
817 			host->busy_state, cmd->opcode);
818 		break;
819 	}
820 
821 out_ret_state:
822 	return (host->busy_state == MMCI_BUSY_DONE);
823 }
824 
825 /*
826  * All the DMA operation mode stuff goes inside this ifdef.
827  * This assumes that you have a generic DMA device interface,
828  * no custom DMA interfaces are supported.
829  */
830 #ifdef CONFIG_DMA_ENGINE
831 struct mmci_dmae_next {
832 	struct dma_async_tx_descriptor *desc;
833 	struct dma_chan	*chan;
834 };
835 
836 struct mmci_dmae_priv {
837 	struct dma_chan	*cur;
838 	struct dma_chan	*rx_channel;
839 	struct dma_chan	*tx_channel;
840 	struct dma_async_tx_descriptor	*desc_current;
841 	struct mmci_dmae_next next_data;
842 };
843 
844 int mmci_dmae_setup(struct mmci_host *host)
845 {
846 	const char *rxname, *txname;
847 	struct mmci_dmae_priv *dmae;
848 
849 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
850 	if (!dmae)
851 		return -ENOMEM;
852 
853 	host->dma_priv = dmae;
854 
855 	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
856 	if (IS_ERR(dmae->rx_channel)) {
857 		int ret = PTR_ERR(dmae->rx_channel);
858 		dmae->rx_channel = NULL;
859 		return ret;
860 	}
861 
862 	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
863 	if (IS_ERR(dmae->tx_channel)) {
864 		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
865 			dev_warn(mmc_dev(host->mmc),
866 				 "Deferred probe for TX channel ignored\n");
867 		dmae->tx_channel = NULL;
868 	}
869 
870 	/*
871 	 * If only an RX channel is specified, the driver will
872 	 * attempt to use it bidirectionally, however if it
873 	 * is specified but cannot be located, DMA will be disabled.
874 	 */
875 	if (dmae->rx_channel && !dmae->tx_channel)
876 		dmae->tx_channel = dmae->rx_channel;
877 
878 	if (dmae->rx_channel)
879 		rxname = dma_chan_name(dmae->rx_channel);
880 	else
881 		rxname = "none";
882 
883 	if (dmae->tx_channel)
884 		txname = dma_chan_name(dmae->tx_channel);
885 	else
886 		txname = "none";
887 
888 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
889 		 rxname, txname);
890 
891 	/*
892 	 * Limit the maximum segment size in any SG entry according to
893 	 * the parameters of the DMA engine device.
894 	 */
895 	if (dmae->tx_channel) {
896 		struct device *dev = dmae->tx_channel->device->dev;
897 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
898 
899 		if (max_seg_size < host->mmc->max_seg_size)
900 			host->mmc->max_seg_size = max_seg_size;
901 	}
902 	if (dmae->rx_channel) {
903 		struct device *dev = dmae->rx_channel->device->dev;
904 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
905 
906 		if (max_seg_size < host->mmc->max_seg_size)
907 			host->mmc->max_seg_size = max_seg_size;
908 	}
909 
910 	if (!dmae->tx_channel || !dmae->rx_channel) {
911 		mmci_dmae_release(host);
912 		return -EINVAL;
913 	}
914 
915 	return 0;
916 }
917 
918 /*
919  * This is used in or so inline it
920  * so it can be discarded.
921  */
922 void mmci_dmae_release(struct mmci_host *host)
923 {
924 	struct mmci_dmae_priv *dmae = host->dma_priv;
925 
926 	if (dmae->rx_channel)
927 		dma_release_channel(dmae->rx_channel);
928 	if (dmae->tx_channel)
929 		dma_release_channel(dmae->tx_channel);
930 	dmae->rx_channel = dmae->tx_channel = NULL;
931 }
932 
933 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
934 {
935 	struct mmci_dmae_priv *dmae = host->dma_priv;
936 	struct dma_chan *chan;
937 
938 	if (data->flags & MMC_DATA_READ)
939 		chan = dmae->rx_channel;
940 	else
941 		chan = dmae->tx_channel;
942 
943 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
944 		     mmc_get_dma_dir(data));
945 }
946 
947 void mmci_dmae_error(struct mmci_host *host)
948 {
949 	struct mmci_dmae_priv *dmae = host->dma_priv;
950 
951 	if (!dma_inprogress(host))
952 		return;
953 
954 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
955 	dmaengine_terminate_all(dmae->cur);
956 	host->dma_in_progress = false;
957 	dmae->cur = NULL;
958 	dmae->desc_current = NULL;
959 	host->data->host_cookie = 0;
960 
961 	mmci_dma_unmap(host, host->data);
962 }
963 
964 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
965 {
966 	struct mmci_dmae_priv *dmae = host->dma_priv;
967 	u32 status;
968 	int i;
969 
970 	if (!dma_inprogress(host))
971 		return;
972 
973 	/* Wait up to 1ms for the DMA to complete */
974 	for (i = 0; ; i++) {
975 		status = readl(host->base + MMCISTATUS);
976 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
977 			break;
978 		udelay(10);
979 	}
980 
981 	/*
982 	 * Check to see whether we still have some data left in the FIFO -
983 	 * this catches DMA controllers which are unable to monitor the
984 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
985 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
986 	 */
987 	if (status & MCI_RXDATAAVLBLMASK) {
988 		mmci_dma_error(host);
989 		if (!data->error)
990 			data->error = -EIO;
991 	} else if (!data->host_cookie) {
992 		mmci_dma_unmap(host, data);
993 	}
994 
995 	/*
996 	 * Use of DMA with scatter-gather is impossible.
997 	 * Give up with DMA and switch back to PIO mode.
998 	 */
999 	if (status & MCI_RXDATAAVLBLMASK) {
1000 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
1001 		mmci_dma_release(host);
1002 	}
1003 
1004 	host->dma_in_progress = false;
1005 	dmae->cur = NULL;
1006 	dmae->desc_current = NULL;
1007 }
1008 
1009 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1010 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1011 				struct dma_chan **dma_chan,
1012 				struct dma_async_tx_descriptor **dma_desc)
1013 {
1014 	struct mmci_dmae_priv *dmae = host->dma_priv;
1015 	struct variant_data *variant = host->variant;
1016 	struct dma_slave_config conf = {
1017 		.src_addr = host->phybase + MMCIFIFO,
1018 		.dst_addr = host->phybase + MMCIFIFO,
1019 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1020 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1021 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1022 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1023 		.device_fc = variant->dma_flow_controller,
1024 	};
1025 	struct dma_chan *chan;
1026 	struct dma_device *device;
1027 	struct dma_async_tx_descriptor *desc;
1028 	int nr_sg;
1029 	unsigned long flags = DMA_CTRL_ACK;
1030 
1031 	if (data->flags & MMC_DATA_READ) {
1032 		conf.direction = DMA_DEV_TO_MEM;
1033 		chan = dmae->rx_channel;
1034 	} else {
1035 		conf.direction = DMA_MEM_TO_DEV;
1036 		chan = dmae->tx_channel;
1037 	}
1038 
1039 	/* If there's no DMA channel, fall back to PIO */
1040 	if (!chan)
1041 		return -EINVAL;
1042 
1043 	/* If less than or equal to the fifo size, don't bother with DMA */
1044 	if (data->blksz * data->blocks <= variant->fifosize)
1045 		return -EINVAL;
1046 
1047 	/*
1048 	 * This is necessary to get SDIO working on the Ux500. We do not yet
1049 	 * know if this is a bug in:
1050 	 * - The Ux500 DMA controller (DMA40)
1051 	 * - The MMCI DMA interface on the Ux500
1052 	 * some power of two blocks (such as 64 bytes) are sent regularly
1053 	 * during SDIO traffic and those work fine so for these we enable DMA
1054 	 * transfers.
1055 	 */
1056 	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1057 		return -EINVAL;
1058 
1059 	device = chan->device;
1060 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1061 			   mmc_get_dma_dir(data));
1062 	if (nr_sg == 0)
1063 		return -EINVAL;
1064 
1065 	if (host->variant->qcom_dml)
1066 		flags |= DMA_PREP_INTERRUPT;
1067 
1068 	dmaengine_slave_config(chan, &conf);
1069 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1070 					    conf.direction, flags);
1071 	if (!desc)
1072 		goto unmap_exit;
1073 
1074 	*dma_chan = chan;
1075 	*dma_desc = desc;
1076 
1077 	return 0;
1078 
1079  unmap_exit:
1080 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
1081 		     mmc_get_dma_dir(data));
1082 	return -ENOMEM;
1083 }
1084 
1085 int mmci_dmae_prep_data(struct mmci_host *host,
1086 			struct mmc_data *data,
1087 			bool next)
1088 {
1089 	struct mmci_dmae_priv *dmae = host->dma_priv;
1090 	struct mmci_dmae_next *nd = &dmae->next_data;
1091 
1092 	if (!host->use_dma)
1093 		return -EINVAL;
1094 
1095 	if (next)
1096 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1097 	/* Check if next job is already prepared. */
1098 	if (dmae->cur && dmae->desc_current)
1099 		return 0;
1100 
1101 	/* No job were prepared thus do it now. */
1102 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
1103 				    &dmae->desc_current);
1104 }
1105 
1106 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1107 {
1108 	struct mmci_dmae_priv *dmae = host->dma_priv;
1109 	int ret;
1110 
1111 	host->dma_in_progress = true;
1112 	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1113 	if (ret < 0) {
1114 		host->dma_in_progress = false;
1115 		return ret;
1116 	}
1117 	dma_async_issue_pending(dmae->cur);
1118 
1119 	*datactrl |= MCI_DPSM_DMAENABLE;
1120 
1121 	return 0;
1122 }
1123 
1124 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1125 {
1126 	struct mmci_dmae_priv *dmae = host->dma_priv;
1127 	struct mmci_dmae_next *next = &dmae->next_data;
1128 
1129 	if (!host->use_dma)
1130 		return;
1131 
1132 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1133 
1134 	dmae->desc_current = next->desc;
1135 	dmae->cur = next->chan;
1136 	next->desc = NULL;
1137 	next->chan = NULL;
1138 }
1139 
1140 void mmci_dmae_unprep_data(struct mmci_host *host,
1141 			   struct mmc_data *data, int err)
1142 
1143 {
1144 	struct mmci_dmae_priv *dmae = host->dma_priv;
1145 
1146 	if (!host->use_dma)
1147 		return;
1148 
1149 	mmci_dma_unmap(host, data);
1150 
1151 	if (err) {
1152 		struct mmci_dmae_next *next = &dmae->next_data;
1153 		struct dma_chan *chan;
1154 		if (data->flags & MMC_DATA_READ)
1155 			chan = dmae->rx_channel;
1156 		else
1157 			chan = dmae->tx_channel;
1158 		dmaengine_terminate_all(chan);
1159 
1160 		if (dmae->desc_current == next->desc)
1161 			dmae->desc_current = NULL;
1162 
1163 		if (dmae->cur == next->chan) {
1164 			host->dma_in_progress = false;
1165 			dmae->cur = NULL;
1166 		}
1167 
1168 		next->desc = NULL;
1169 		next->chan = NULL;
1170 	}
1171 }
1172 
1173 static struct mmci_host_ops mmci_variant_ops = {
1174 	.prep_data = mmci_dmae_prep_data,
1175 	.unprep_data = mmci_dmae_unprep_data,
1176 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1177 	.get_next_data = mmci_dmae_get_next_data,
1178 	.dma_setup = mmci_dmae_setup,
1179 	.dma_release = mmci_dmae_release,
1180 	.dma_start = mmci_dmae_start,
1181 	.dma_finalize = mmci_dmae_finalize,
1182 	.dma_error = mmci_dmae_error,
1183 };
1184 #else
1185 static struct mmci_host_ops mmci_variant_ops = {
1186 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1187 };
1188 #endif
1189 
1190 static void mmci_variant_init(struct mmci_host *host)
1191 {
1192 	host->ops = &mmci_variant_ops;
1193 }
1194 
1195 static void ux500_variant_init(struct mmci_host *host)
1196 {
1197 	host->ops = &mmci_variant_ops;
1198 	host->ops->busy_complete = ux500_busy_complete;
1199 }
1200 
1201 static void ux500v2_variant_init(struct mmci_host *host)
1202 {
1203 	host->ops = &mmci_variant_ops;
1204 	host->ops->busy_complete = ux500_busy_complete;
1205 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1206 }
1207 
1208 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1209 {
1210 	struct mmci_host *host = mmc_priv(mmc);
1211 	struct mmc_data *data = mrq->data;
1212 
1213 	if (!data)
1214 		return;
1215 
1216 	WARN_ON(data->host_cookie);
1217 
1218 	if (mmci_validate_data(host, data))
1219 		return;
1220 
1221 	mmci_prep_data(host, data, true);
1222 }
1223 
1224 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1225 			      int err)
1226 {
1227 	struct mmci_host *host = mmc_priv(mmc);
1228 	struct mmc_data *data = mrq->data;
1229 
1230 	if (!data || !data->host_cookie)
1231 		return;
1232 
1233 	mmci_unprep_data(host, data, err);
1234 }
1235 
1236 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1237 {
1238 	struct variant_data *variant = host->variant;
1239 	unsigned int datactrl, timeout, irqmask;
1240 	unsigned long long clks;
1241 	void __iomem *base;
1242 
1243 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1244 		data->blksz, data->blocks, data->flags);
1245 
1246 	host->data = data;
1247 	host->size = data->blksz * data->blocks;
1248 	data->bytes_xfered = 0;
1249 
1250 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1251 	do_div(clks, NSEC_PER_SEC);
1252 
1253 	timeout = data->timeout_clks + (unsigned int)clks;
1254 
1255 	base = host->base;
1256 	writel(timeout, base + MMCIDATATIMER);
1257 	writel(host->size, base + MMCIDATALENGTH);
1258 
1259 	datactrl = host->ops->get_datactrl_cfg(host);
1260 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1261 
1262 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1263 		u32 clk;
1264 
1265 		datactrl |= variant->datactrl_mask_sdio;
1266 
1267 		/*
1268 		 * The ST Micro variant for SDIO small write transfers
1269 		 * needs to have clock H/W flow control disabled,
1270 		 * otherwise the transfer will not start. The threshold
1271 		 * depends on the rate of MCLK.
1272 		 */
1273 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1274 		    (host->size < 8 ||
1275 		     (host->size <= 8 && host->mclk > 50000000)))
1276 			clk = host->clk_reg & ~variant->clkreg_enable;
1277 		else
1278 			clk = host->clk_reg | variant->clkreg_enable;
1279 
1280 		mmci_write_clkreg(host, clk);
1281 	}
1282 
1283 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1284 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1285 		datactrl |= variant->datactrl_mask_ddrmode;
1286 
1287 	/*
1288 	 * Attempt to use DMA operation mode, if this
1289 	 * should fail, fall back to PIO mode
1290 	 */
1291 	if (!mmci_dma_start(host, datactrl))
1292 		return;
1293 
1294 	/* IRQ mode, map the SG list for CPU reading/writing */
1295 	mmci_init_sg(host, data);
1296 
1297 	if (data->flags & MMC_DATA_READ) {
1298 		irqmask = MCI_RXFIFOHALFFULLMASK;
1299 
1300 		/*
1301 		 * If we have less than the fifo 'half-full' threshold to
1302 		 * transfer, trigger a PIO interrupt as soon as any data
1303 		 * is available.
1304 		 */
1305 		if (host->size < variant->fifohalfsize)
1306 			irqmask |= MCI_RXDATAAVLBLMASK;
1307 	} else {
1308 		/*
1309 		 * We don't actually need to include "FIFO empty" here
1310 		 * since its implicit in "FIFO half empty".
1311 		 */
1312 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1313 	}
1314 
1315 	mmci_write_datactrlreg(host, datactrl);
1316 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1317 	mmci_set_mask1(host, irqmask);
1318 }
1319 
1320 static void
1321 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1322 {
1323 	void __iomem *base = host->base;
1324 	bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1325 	unsigned long long clks;
1326 
1327 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1328 	    cmd->opcode, cmd->arg, cmd->flags);
1329 
1330 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1331 		writel(0, base + MMCICOMMAND);
1332 		mmci_reg_delay(host);
1333 	}
1334 
1335 	if (host->variant->cmdreg_stop &&
1336 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1337 		c |= host->variant->cmdreg_stop;
1338 
1339 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1340 	if (cmd->flags & MMC_RSP_PRESENT) {
1341 		if (cmd->flags & MMC_RSP_136)
1342 			c |= host->variant->cmdreg_lrsp_crc;
1343 		else if (cmd->flags & MMC_RSP_CRC)
1344 			c |= host->variant->cmdreg_srsp_crc;
1345 		else
1346 			c |= host->variant->cmdreg_srsp;
1347 	}
1348 
1349 	host->busy_status = 0;
1350 	host->busy_state = MMCI_BUSY_DONE;
1351 
1352 	/* Assign a default timeout if the core does not provide one */
1353 	if (busy_resp && !cmd->busy_timeout)
1354 		cmd->busy_timeout = 10 * MSEC_PER_SEC;
1355 
1356 	if (busy_resp && host->variant->busy_timeout) {
1357 		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1358 			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1359 		else
1360 			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1361 
1362 		do_div(clks, MSEC_PER_SEC);
1363 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1364 	}
1365 
1366 	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1367 		host->ops->pre_sig_volt_switch(host);
1368 
1369 	if (/*interrupt*/0)
1370 		c |= MCI_CPSM_INTERRUPT;
1371 
1372 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1373 		c |= host->variant->data_cmd_enable;
1374 
1375 	host->cmd = cmd;
1376 
1377 	writel(cmd->arg, base + MMCIARGUMENT);
1378 	writel(c, base + MMCICOMMAND);
1379 }
1380 
1381 static void mmci_stop_command(struct mmci_host *host)
1382 {
1383 	host->stop_abort.error = 0;
1384 	mmci_start_command(host, &host->stop_abort, 0);
1385 }
1386 
1387 static void
1388 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1389 	      unsigned int status)
1390 {
1391 	unsigned int status_err;
1392 
1393 	/* Make sure we have data to handle */
1394 	if (!data)
1395 		return;
1396 
1397 	/* First check for errors */
1398 	status_err = status & (host->variant->start_err |
1399 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1400 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1401 
1402 	if (status_err) {
1403 		u32 remain, success;
1404 
1405 		/* Terminate the DMA transfer */
1406 		mmci_dma_error(host);
1407 
1408 		/*
1409 		 * Calculate how far we are into the transfer.  Note that
1410 		 * the data counter gives the number of bytes transferred
1411 		 * on the MMC bus, not on the host side.  On reads, this
1412 		 * can be as much as a FIFO-worth of data ahead.  This
1413 		 * matters for FIFO overruns only.
1414 		 */
1415 		if (!host->variant->datacnt_useless) {
1416 			remain = readl(host->base + MMCIDATACNT);
1417 			success = data->blksz * data->blocks - remain;
1418 		} else {
1419 			success = 0;
1420 		}
1421 
1422 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1423 			status_err, success);
1424 		if (status_err & MCI_DATACRCFAIL) {
1425 			/* Last block was not successful */
1426 			success -= 1;
1427 			data->error = -EILSEQ;
1428 		} else if (status_err & MCI_DATATIMEOUT) {
1429 			data->error = -ETIMEDOUT;
1430 		} else if (status_err & MCI_STARTBITERR) {
1431 			data->error = -ECOMM;
1432 		} else if (status_err & MCI_TXUNDERRUN) {
1433 			data->error = -EIO;
1434 		} else if (status_err & MCI_RXOVERRUN) {
1435 			if (success > host->variant->fifosize)
1436 				success -= host->variant->fifosize;
1437 			else
1438 				success = 0;
1439 			data->error = -EIO;
1440 		}
1441 		data->bytes_xfered = round_down(success, data->blksz);
1442 	}
1443 
1444 	if (status & MCI_DATABLOCKEND)
1445 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1446 
1447 	if (status & MCI_DATAEND || data->error) {
1448 		mmci_dma_finalize(host, data);
1449 
1450 		mmci_stop_data(host);
1451 
1452 		if (!data->error)
1453 			/* The error clause is handled above, success! */
1454 			data->bytes_xfered = data->blksz * data->blocks;
1455 
1456 		if (!data->stop) {
1457 			if (host->variant->cmdreg_stop && data->error)
1458 				mmci_stop_command(host);
1459 			else
1460 				mmci_request_end(host, data->mrq);
1461 		} else if (host->mrq->sbc && !data->error) {
1462 			mmci_request_end(host, data->mrq);
1463 		} else {
1464 			mmci_start_command(host, data->stop, 0);
1465 		}
1466 	}
1467 }
1468 
1469 static void
1470 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1471 	     unsigned int status)
1472 {
1473 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1474 	void __iomem *base = host->base;
1475 	bool sbc, busy_resp;
1476 
1477 	if (!cmd)
1478 		return;
1479 
1480 	sbc = (cmd == host->mrq->sbc);
1481 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1482 
1483 	/*
1484 	 * We need to be one of these interrupts to be considered worth
1485 	 * handling. Note that we tag on any latent IRQs postponed
1486 	 * due to waiting for busy status.
1487 	 */
1488 	if (host->variant->busy_timeout && busy_resp)
1489 		err_msk |= MCI_DATATIMEOUT;
1490 
1491 	if (!((status | host->busy_status) &
1492 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1493 		return;
1494 
1495 	/* Handle busy detection on DAT0 if the variant supports it. */
1496 	if (busy_resp && host->variant->busy_detect)
1497 		if (!host->ops->busy_complete(host, cmd, status, err_msk))
1498 			return;
1499 
1500 	host->cmd = NULL;
1501 
1502 	if (status & MCI_CMDTIMEOUT) {
1503 		cmd->error = -ETIMEDOUT;
1504 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1505 		cmd->error = -EILSEQ;
1506 	} else if (host->variant->busy_timeout && busy_resp &&
1507 		   status & MCI_DATATIMEOUT) {
1508 		cmd->error = -ETIMEDOUT;
1509 		/*
1510 		 * This will wake up mmci_irq_thread() which will issue
1511 		 * a hardware reset of the MMCI block.
1512 		 */
1513 		host->irq_action = IRQ_WAKE_THREAD;
1514 	} else {
1515 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1516 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1517 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1518 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1519 	}
1520 
1521 	if ((!sbc && !cmd->data) || cmd->error) {
1522 		if (host->data) {
1523 			/* Terminate the DMA transfer */
1524 			mmci_dma_error(host);
1525 
1526 			mmci_stop_data(host);
1527 			if (host->variant->cmdreg_stop && cmd->error) {
1528 				mmci_stop_command(host);
1529 				return;
1530 			}
1531 		}
1532 
1533 		if (host->irq_action != IRQ_WAKE_THREAD)
1534 			mmci_request_end(host, host->mrq);
1535 
1536 	} else if (sbc) {
1537 		mmci_start_command(host, host->mrq->cmd, 0);
1538 	} else if (!host->variant->datactrl_first &&
1539 		   !(cmd->data->flags & MMC_DATA_READ)) {
1540 		mmci_start_data(host, cmd->data);
1541 	}
1542 }
1543 
1544 static char *ux500_state_str(struct mmci_host *host)
1545 {
1546 	switch (host->busy_state) {
1547 	case MMCI_BUSY_WAITING_FOR_START_IRQ:
1548 		return "waiting for start IRQ";
1549 	case MMCI_BUSY_WAITING_FOR_END_IRQ:
1550 		return "waiting for end IRQ";
1551 	case MMCI_BUSY_DONE:
1552 		return "not waiting for IRQs";
1553 	default:
1554 		return "unknown";
1555 	}
1556 }
1557 
1558 /*
1559  * This busy timeout worker is used to "kick" the command IRQ if a
1560  * busy detect IRQ fails to appear in reasonable time. Only used on
1561  * variants with busy detection IRQ delivery.
1562  */
1563 static void ux500_busy_timeout_work(struct work_struct *work)
1564 {
1565 	struct mmci_host *host = container_of(work, struct mmci_host,
1566 					ux500_busy_timeout_work.work);
1567 	unsigned long flags;
1568 	u32 status;
1569 
1570 	spin_lock_irqsave(&host->lock, flags);
1571 
1572 	if (host->cmd) {
1573 		/* If we are still busy let's tag on a cmd-timeout error. */
1574 		status = readl(host->base + MMCISTATUS);
1575 		if (status & host->variant->busy_detect_flag) {
1576 			status |= MCI_CMDTIMEOUT;
1577 			dev_err(mmc_dev(host->mmc),
1578 				"timeout in state %s still busy with CMD%02x\n",
1579 				ux500_state_str(host), host->cmd->opcode);
1580 		} else {
1581 			dev_err(mmc_dev(host->mmc),
1582 				"timeout in state %s waiting for busy CMD%02x\n",
1583 				ux500_state_str(host), host->cmd->opcode);
1584 		}
1585 
1586 		mmci_cmd_irq(host, host->cmd, status);
1587 	}
1588 
1589 	spin_unlock_irqrestore(&host->lock, flags);
1590 }
1591 
1592 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1593 {
1594 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1595 }
1596 
1597 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1598 {
1599 	/*
1600 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1601 	 * from the fifo range should be used
1602 	 */
1603 	if (status & MCI_RXFIFOHALFFULL)
1604 		return host->variant->fifohalfsize;
1605 	else if (status & MCI_RXDATAAVLBL)
1606 		return 4;
1607 
1608 	return 0;
1609 }
1610 
1611 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1612 {
1613 	void __iomem *base = host->base;
1614 	char *ptr = buffer;
1615 	u32 status = readl(host->base + MMCISTATUS);
1616 	int host_remain = host->size;
1617 
1618 	do {
1619 		int count = host->get_rx_fifocnt(host, status, host_remain);
1620 
1621 		if (count > remain)
1622 			count = remain;
1623 
1624 		if (count <= 0)
1625 			break;
1626 
1627 		/*
1628 		 * SDIO especially may want to send something that is
1629 		 * not divisible by 4 (as opposed to card sectors
1630 		 * etc). Therefore make sure to always read the last bytes
1631 		 * while only doing full 32-bit reads towards the FIFO.
1632 		 */
1633 		if (unlikely(count & 0x3)) {
1634 			if (count < 4) {
1635 				unsigned char buf[4];
1636 				ioread32_rep(base + MMCIFIFO, buf, 1);
1637 				memcpy(ptr, buf, count);
1638 			} else {
1639 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1640 				count &= ~0x3;
1641 			}
1642 		} else {
1643 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1644 		}
1645 
1646 		ptr += count;
1647 		remain -= count;
1648 		host_remain -= count;
1649 
1650 		if (remain == 0)
1651 			break;
1652 
1653 		status = readl(base + MMCISTATUS);
1654 	} while (status & MCI_RXDATAAVLBL);
1655 
1656 	return ptr - buffer;
1657 }
1658 
1659 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1660 {
1661 	struct variant_data *variant = host->variant;
1662 	void __iomem *base = host->base;
1663 	char *ptr = buffer;
1664 
1665 	do {
1666 		unsigned int count, maxcnt;
1667 
1668 		maxcnt = status & MCI_TXFIFOEMPTY ?
1669 			 variant->fifosize : variant->fifohalfsize;
1670 		count = min(remain, maxcnt);
1671 
1672 		/*
1673 		 * SDIO especially may want to send something that is
1674 		 * not divisible by 4 (as opposed to card sectors
1675 		 * etc), and the FIFO only accept full 32-bit writes.
1676 		 * So compensate by adding +3 on the count, a single
1677 		 * byte become a 32bit write, 7 bytes will be two
1678 		 * 32bit writes etc.
1679 		 */
1680 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1681 
1682 		ptr += count;
1683 		remain -= count;
1684 
1685 		if (remain == 0)
1686 			break;
1687 
1688 		status = readl(base + MMCISTATUS);
1689 	} while (status & MCI_TXFIFOHALFEMPTY);
1690 
1691 	return ptr - buffer;
1692 }
1693 
1694 /*
1695  * PIO data transfer IRQ handler.
1696  */
1697 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1698 {
1699 	struct mmci_host *host = dev_id;
1700 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1701 	struct variant_data *variant = host->variant;
1702 	void __iomem *base = host->base;
1703 	u32 status;
1704 
1705 	status = readl(base + MMCISTATUS);
1706 
1707 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1708 
1709 	do {
1710 		unsigned int remain, len;
1711 		char *buffer;
1712 
1713 		/*
1714 		 * For write, we only need to test the half-empty flag
1715 		 * here - if the FIFO is completely empty, then by
1716 		 * definition it is more than half empty.
1717 		 *
1718 		 * For read, check for data available.
1719 		 */
1720 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1721 			break;
1722 
1723 		if (!sg_miter_next(sg_miter))
1724 			break;
1725 
1726 		buffer = sg_miter->addr;
1727 		remain = sg_miter->length;
1728 
1729 		len = 0;
1730 		if (status & MCI_RXACTIVE)
1731 			len = mmci_pio_read(host, buffer, remain);
1732 		if (status & MCI_TXACTIVE)
1733 			len = mmci_pio_write(host, buffer, remain, status);
1734 
1735 		sg_miter->consumed = len;
1736 
1737 		host->size -= len;
1738 		remain -= len;
1739 
1740 		if (remain)
1741 			break;
1742 
1743 		status = readl(base + MMCISTATUS);
1744 	} while (1);
1745 
1746 	sg_miter_stop(sg_miter);
1747 
1748 	/*
1749 	 * If we have less than the fifo 'half-full' threshold to transfer,
1750 	 * trigger a PIO interrupt as soon as any data is available.
1751 	 */
1752 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1753 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1754 
1755 	/*
1756 	 * If we run out of data, disable the data IRQs; this
1757 	 * prevents a race where the FIFO becomes empty before
1758 	 * the chip itself has disabled the data path, and
1759 	 * stops us racing with our data end IRQ.
1760 	 */
1761 	if (host->size == 0) {
1762 		mmci_set_mask1(host, 0);
1763 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1764 	}
1765 
1766 	return IRQ_HANDLED;
1767 }
1768 
1769 static void mmci_write_sdio_irq_bit(struct mmci_host *host, int enable)
1770 {
1771 	void __iomem *base = host->base;
1772 	u32 mask = readl_relaxed(base + MMCIMASK0);
1773 
1774 	if (enable)
1775 		writel_relaxed(mask | MCI_ST_SDIOITMASK, base + MMCIMASK0);
1776 	else
1777 		writel_relaxed(mask & ~MCI_ST_SDIOITMASK, base + MMCIMASK0);
1778 }
1779 
1780 static void mmci_signal_sdio_irq(struct mmci_host *host, u32 status)
1781 {
1782 	if (status & MCI_ST_SDIOIT) {
1783 		mmci_write_sdio_irq_bit(host, 0);
1784 		sdio_signal_irq(host->mmc);
1785 	}
1786 }
1787 
1788 /*
1789  * Handle completion of command and data transfers.
1790  */
1791 static irqreturn_t mmci_irq(int irq, void *dev_id)
1792 {
1793 	struct mmci_host *host = dev_id;
1794 	u32 status;
1795 
1796 	spin_lock(&host->lock);
1797 	host->irq_action = IRQ_HANDLED;
1798 
1799 	do {
1800 		status = readl(host->base + MMCISTATUS);
1801 		if (!status)
1802 			break;
1803 
1804 		if (host->singleirq) {
1805 			if (status & host->mask1_reg)
1806 				mmci_pio_irq(irq, dev_id);
1807 
1808 			status &= ~host->variant->irq_pio_mask;
1809 		}
1810 
1811 		/*
1812 		 * Busy detection is managed by mmci_cmd_irq(), including to
1813 		 * clear the corresponding IRQ.
1814 		 */
1815 		status &= readl(host->base + MMCIMASK0);
1816 		if (host->variant->busy_detect)
1817 			writel(status & ~host->variant->busy_detect_mask,
1818 			       host->base + MMCICLEAR);
1819 		else
1820 			writel(status, host->base + MMCICLEAR);
1821 
1822 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1823 
1824 		if (host->variant->reversed_irq_handling) {
1825 			mmci_data_irq(host, host->data, status);
1826 			mmci_cmd_irq(host, host->cmd, status);
1827 		} else {
1828 			mmci_cmd_irq(host, host->cmd, status);
1829 			mmci_data_irq(host, host->data, status);
1830 		}
1831 
1832 		if (host->variant->supports_sdio_irq)
1833 			mmci_signal_sdio_irq(host, status);
1834 
1835 		/*
1836 		 * Busy detection has been handled by mmci_cmd_irq() above.
1837 		 * Clear the status bit to prevent polling in IRQ context.
1838 		 */
1839 		if (host->variant->busy_detect_flag)
1840 			status &= ~host->variant->busy_detect_flag;
1841 
1842 	} while (status);
1843 
1844 	spin_unlock(&host->lock);
1845 
1846 	return host->irq_action;
1847 }
1848 
1849 /*
1850  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1851  *
1852  * A reset is needed for some variants, where a datatimeout for a R1B request
1853  * causes the DPSM to stay busy (non-functional).
1854  */
1855 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1856 {
1857 	struct mmci_host *host = dev_id;
1858 	unsigned long flags;
1859 
1860 	if (host->rst) {
1861 		reset_control_assert(host->rst);
1862 		udelay(2);
1863 		reset_control_deassert(host->rst);
1864 	}
1865 
1866 	spin_lock_irqsave(&host->lock, flags);
1867 	writel(host->clk_reg, host->base + MMCICLOCK);
1868 	writel(host->pwr_reg, host->base + MMCIPOWER);
1869 	writel(MCI_IRQENABLE | host->variant->start_err,
1870 	       host->base + MMCIMASK0);
1871 
1872 	host->irq_action = IRQ_HANDLED;
1873 	mmci_request_end(host, host->mrq);
1874 	spin_unlock_irqrestore(&host->lock, flags);
1875 
1876 	return host->irq_action;
1877 }
1878 
1879 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1880 {
1881 	struct mmci_host *host = mmc_priv(mmc);
1882 	unsigned long flags;
1883 
1884 	WARN_ON(host->mrq != NULL);
1885 
1886 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1887 	if (mrq->cmd->error) {
1888 		mmc_request_done(mmc, mrq);
1889 		return;
1890 	}
1891 
1892 	spin_lock_irqsave(&host->lock, flags);
1893 
1894 	host->mrq = mrq;
1895 
1896 	if (mrq->data)
1897 		mmci_get_next_data(host, mrq->data);
1898 
1899 	if (mrq->data &&
1900 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1901 		mmci_start_data(host, mrq->data);
1902 
1903 	if (mrq->sbc)
1904 		mmci_start_command(host, mrq->sbc, 0);
1905 	else
1906 		mmci_start_command(host, mrq->cmd, 0);
1907 
1908 	spin_unlock_irqrestore(&host->lock, flags);
1909 }
1910 
1911 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1912 {
1913 	struct mmci_host *host = mmc_priv(mmc);
1914 	u32 max_busy_timeout = 0;
1915 
1916 	if (!host->variant->busy_detect)
1917 		return;
1918 
1919 	if (host->variant->busy_timeout && mmc->actual_clock)
1920 		max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1921 							  MSEC_PER_SEC);
1922 
1923 	mmc->max_busy_timeout = max_busy_timeout;
1924 }
1925 
1926 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1927 {
1928 	struct mmci_host *host = mmc_priv(mmc);
1929 	struct variant_data *variant = host->variant;
1930 	u32 pwr = 0;
1931 	unsigned long flags;
1932 	int ret;
1933 
1934 	switch (ios->power_mode) {
1935 	case MMC_POWER_OFF:
1936 		if (!IS_ERR(mmc->supply.vmmc))
1937 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1938 
1939 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1940 			regulator_disable(mmc->supply.vqmmc);
1941 			host->vqmmc_enabled = false;
1942 		}
1943 
1944 		break;
1945 	case MMC_POWER_UP:
1946 		if (!IS_ERR(mmc->supply.vmmc))
1947 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1948 
1949 		/*
1950 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1951 		 * and instead uses MCI_PWR_ON so apply whatever value is
1952 		 * configured in the variant data.
1953 		 */
1954 		pwr |= variant->pwrreg_powerup;
1955 
1956 		break;
1957 	case MMC_POWER_ON:
1958 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1959 			ret = regulator_enable(mmc->supply.vqmmc);
1960 			if (ret < 0)
1961 				dev_err(mmc_dev(mmc),
1962 					"failed to enable vqmmc regulator\n");
1963 			else
1964 				host->vqmmc_enabled = true;
1965 		}
1966 
1967 		pwr |= MCI_PWR_ON;
1968 		break;
1969 	}
1970 
1971 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1972 		/*
1973 		 * The ST Micro variant has some additional bits
1974 		 * indicating signal direction for the signals in
1975 		 * the SD/MMC bus and feedback-clock usage.
1976 		 */
1977 		pwr |= host->pwr_reg_add;
1978 
1979 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1980 			pwr &= ~MCI_ST_DATA74DIREN;
1981 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1982 			pwr &= (~MCI_ST_DATA74DIREN &
1983 				~MCI_ST_DATA31DIREN &
1984 				~MCI_ST_DATA2DIREN);
1985 	}
1986 
1987 	if (variant->opendrain) {
1988 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1989 			pwr |= variant->opendrain;
1990 	} else {
1991 		/*
1992 		 * If the variant cannot configure the pads by its own, then we
1993 		 * expect the pinctrl to be able to do that for us
1994 		 */
1995 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1996 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1997 		else
1998 			pinctrl_select_default_state(mmc_dev(mmc));
1999 	}
2000 
2001 	/*
2002 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
2003 	 * gating the clock, the MCI_PWR_ON bit is cleared.
2004 	 */
2005 	if (!ios->clock && variant->pwrreg_clkgate)
2006 		pwr &= ~MCI_PWR_ON;
2007 
2008 	if (host->variant->explicit_mclk_control &&
2009 	    ios->clock != host->clock_cache) {
2010 		ret = clk_set_rate(host->clk, ios->clock);
2011 		if (ret < 0)
2012 			dev_err(mmc_dev(host->mmc),
2013 				"Error setting clock rate (%d)\n", ret);
2014 		else
2015 			host->mclk = clk_get_rate(host->clk);
2016 	}
2017 	host->clock_cache = ios->clock;
2018 
2019 	spin_lock_irqsave(&host->lock, flags);
2020 
2021 	if (host->ops && host->ops->set_clkreg)
2022 		host->ops->set_clkreg(host, ios->clock);
2023 	else
2024 		mmci_set_clkreg(host, ios->clock);
2025 
2026 	mmci_set_max_busy_timeout(mmc);
2027 
2028 	if (host->ops && host->ops->set_pwrreg)
2029 		host->ops->set_pwrreg(host, pwr);
2030 	else
2031 		mmci_write_pwrreg(host, pwr);
2032 
2033 	mmci_reg_delay(host);
2034 
2035 	spin_unlock_irqrestore(&host->lock, flags);
2036 }
2037 
2038 static int mmci_get_cd(struct mmc_host *mmc)
2039 {
2040 	struct mmci_host *host = mmc_priv(mmc);
2041 	struct mmci_platform_data *plat = host->plat;
2042 	unsigned int status = mmc_gpio_get_cd(mmc);
2043 
2044 	if (status == -ENOSYS) {
2045 		if (!plat->status)
2046 			return 1; /* Assume always present */
2047 
2048 		status = plat->status(mmc_dev(host->mmc));
2049 	}
2050 	return status;
2051 }
2052 
2053 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2054 {
2055 	struct mmci_host *host = mmc_priv(mmc);
2056 	int ret;
2057 
2058 	ret = mmc_regulator_set_vqmmc(mmc, ios);
2059 
2060 	if (!ret && host->ops && host->ops->post_sig_volt_switch)
2061 		ret = host->ops->post_sig_volt_switch(host, ios);
2062 	else if (ret)
2063 		ret = 0;
2064 
2065 	if (ret < 0)
2066 		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2067 
2068 	return ret;
2069 }
2070 
2071 static void mmci_enable_sdio_irq(struct mmc_host *mmc, int enable)
2072 {
2073 	struct mmci_host *host = mmc_priv(mmc);
2074 	unsigned long flags;
2075 
2076 	if (enable)
2077 		/* Keep the SDIO mode bit if SDIO irqs are enabled */
2078 		pm_runtime_get_sync(mmc_dev(mmc));
2079 
2080 	spin_lock_irqsave(&host->lock, flags);
2081 	mmci_write_sdio_irq_bit(host, enable);
2082 	spin_unlock_irqrestore(&host->lock, flags);
2083 
2084 	if (!enable) {
2085 		pm_runtime_mark_last_busy(mmc_dev(mmc));
2086 		pm_runtime_put_autosuspend(mmc_dev(mmc));
2087 	}
2088 }
2089 
2090 static void mmci_ack_sdio_irq(struct mmc_host *mmc)
2091 {
2092 	struct mmci_host *host = mmc_priv(mmc);
2093 	unsigned long flags;
2094 
2095 	spin_lock_irqsave(&host->lock, flags);
2096 	mmci_write_sdio_irq_bit(host, 1);
2097 	spin_unlock_irqrestore(&host->lock, flags);
2098 }
2099 
2100 static struct mmc_host_ops mmci_ops = {
2101 	.request	= mmci_request,
2102 	.pre_req	= mmci_pre_request,
2103 	.post_req	= mmci_post_request,
2104 	.set_ios	= mmci_set_ios,
2105 	.get_ro		= mmc_gpio_get_ro,
2106 	.get_cd		= mmci_get_cd,
2107 	.start_signal_voltage_switch = mmci_sig_volt_switch,
2108 };
2109 
2110 static void mmci_probe_level_translator(struct mmc_host *mmc)
2111 {
2112 	struct device *dev = mmc_dev(mmc);
2113 	struct mmci_host *host = mmc_priv(mmc);
2114 	struct gpio_desc *cmd_gpio;
2115 	struct gpio_desc *ck_gpio;
2116 	struct gpio_desc *ckin_gpio;
2117 	int clk_hi, clk_lo;
2118 
2119 	/*
2120 	 * Assume the level translator is present if st,use-ckin is set.
2121 	 * This is to cater for DTs which do not implement this test.
2122 	 */
2123 	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2124 
2125 	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2126 	if (IS_ERR(cmd_gpio))
2127 		goto exit_cmd;
2128 
2129 	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2130 	if (IS_ERR(ck_gpio))
2131 		goto exit_ck;
2132 
2133 	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2134 	if (IS_ERR(ckin_gpio))
2135 		goto exit_ckin;
2136 
2137 	/* All GPIOs are valid, test whether level translator works */
2138 
2139 	/* Sample CKIN */
2140 	clk_hi = !!gpiod_get_value(ckin_gpio);
2141 
2142 	/* Set CK low */
2143 	gpiod_set_value(ck_gpio, 0);
2144 
2145 	/* Sample CKIN */
2146 	clk_lo = !!gpiod_get_value(ckin_gpio);
2147 
2148 	/* Tristate all */
2149 	gpiod_direction_input(cmd_gpio);
2150 	gpiod_direction_input(ck_gpio);
2151 
2152 	/* Level translator is present if CK signal is propagated to CKIN */
2153 	if (!clk_hi || clk_lo) {
2154 		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2155 		dev_warn(dev,
2156 			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2157 	}
2158 
2159 	gpiod_put(ckin_gpio);
2160 
2161 exit_ckin:
2162 	gpiod_put(ck_gpio);
2163 exit_ck:
2164 	gpiod_put(cmd_gpio);
2165 exit_cmd:
2166 	pinctrl_select_default_state(dev);
2167 }
2168 
2169 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2170 {
2171 	struct mmci_host *host = mmc_priv(mmc);
2172 	int ret = mmc_of_parse(mmc);
2173 
2174 	if (ret)
2175 		return ret;
2176 
2177 	if (of_property_read_bool(np, "st,sig-dir-dat0"))
2178 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2179 	if (of_property_read_bool(np, "st,sig-dir-dat2"))
2180 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2181 	if (of_property_read_bool(np, "st,sig-dir-dat31"))
2182 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2183 	if (of_property_read_bool(np, "st,sig-dir-dat74"))
2184 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2185 	if (of_property_read_bool(np, "st,sig-dir-cmd"))
2186 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
2187 	if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2188 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
2189 	if (of_property_read_bool(np, "st,sig-dir"))
2190 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
2191 	if (of_property_read_bool(np, "st,neg-edge"))
2192 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2193 	if (of_property_read_bool(np, "st,use-ckin"))
2194 		mmci_probe_level_translator(mmc);
2195 
2196 	if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2197 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2198 	if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2199 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2200 
2201 	return 0;
2202 }
2203 
2204 static int mmci_probe(struct amba_device *dev,
2205 	const struct amba_id *id)
2206 {
2207 	struct mmci_platform_data *plat = dev->dev.platform_data;
2208 	struct device_node *np = dev->dev.of_node;
2209 	struct variant_data *variant = id->data;
2210 	struct mmci_host *host;
2211 	struct mmc_host *mmc;
2212 	int ret;
2213 
2214 	/* Must have platform data or Device Tree. */
2215 	if (!plat && !np) {
2216 		dev_err(&dev->dev, "No plat data or DT found\n");
2217 		return -EINVAL;
2218 	}
2219 
2220 	if (!plat) {
2221 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2222 		if (!plat)
2223 			return -ENOMEM;
2224 	}
2225 
2226 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2227 	if (!mmc)
2228 		return -ENOMEM;
2229 
2230 	host = mmc_priv(mmc);
2231 	host->mmc = mmc;
2232 	host->mmc_ops = &mmci_ops;
2233 	mmc->ops = &mmci_ops;
2234 
2235 	ret = mmci_of_parse(np, mmc);
2236 	if (ret)
2237 		goto host_free;
2238 
2239 	/*
2240 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2241 	 * pins can be set accordingly using pinctrl
2242 	 */
2243 	if (!variant->opendrain) {
2244 		host->pinctrl = devm_pinctrl_get(&dev->dev);
2245 		if (IS_ERR(host->pinctrl)) {
2246 			dev_err(&dev->dev, "failed to get pinctrl");
2247 			ret = PTR_ERR(host->pinctrl);
2248 			goto host_free;
2249 		}
2250 
2251 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2252 							    MMCI_PINCTRL_STATE_OPENDRAIN);
2253 		if (IS_ERR(host->pins_opendrain)) {
2254 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2255 			ret = PTR_ERR(host->pins_opendrain);
2256 			goto host_free;
2257 		}
2258 	}
2259 
2260 	host->hw_designer = amba_manf(dev);
2261 	host->hw_revision = amba_rev(dev);
2262 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2263 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2264 
2265 	host->clk = devm_clk_get(&dev->dev, NULL);
2266 	if (IS_ERR(host->clk)) {
2267 		ret = PTR_ERR(host->clk);
2268 		goto host_free;
2269 	}
2270 
2271 	ret = clk_prepare_enable(host->clk);
2272 	if (ret)
2273 		goto host_free;
2274 
2275 	if (variant->qcom_fifo)
2276 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2277 	else
2278 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2279 
2280 	host->plat = plat;
2281 	host->variant = variant;
2282 	host->mclk = clk_get_rate(host->clk);
2283 	/*
2284 	 * According to the spec, mclk is max 100 MHz,
2285 	 * so we try to adjust the clock down to this,
2286 	 * (if possible).
2287 	 */
2288 	if (host->mclk > variant->f_max) {
2289 		ret = clk_set_rate(host->clk, variant->f_max);
2290 		if (ret < 0)
2291 			goto clk_disable;
2292 		host->mclk = clk_get_rate(host->clk);
2293 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2294 			host->mclk);
2295 	}
2296 
2297 	host->phybase = dev->res.start;
2298 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2299 	if (IS_ERR(host->base)) {
2300 		ret = PTR_ERR(host->base);
2301 		goto clk_disable;
2302 	}
2303 
2304 	if (variant->init)
2305 		variant->init(host);
2306 
2307 	/*
2308 	 * The ARM and ST versions of the block have slightly different
2309 	 * clock divider equations which means that the minimum divider
2310 	 * differs too.
2311 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2312 	 */
2313 	if (variant->st_clkdiv)
2314 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2315 	else if (variant->stm32_clkdiv)
2316 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2317 	else if (variant->explicit_mclk_control)
2318 		mmc->f_min = clk_round_rate(host->clk, 100000);
2319 	else
2320 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2321 	/*
2322 	 * If no maximum operating frequency is supplied, fall back to use
2323 	 * the module parameter, which has a (low) default value in case it
2324 	 * is not specified. Either value must not exceed the clock rate into
2325 	 * the block, of course.
2326 	 */
2327 	if (mmc->f_max)
2328 		mmc->f_max = variant->explicit_mclk_control ?
2329 				min(variant->f_max, mmc->f_max) :
2330 				min(host->mclk, mmc->f_max);
2331 	else
2332 		mmc->f_max = variant->explicit_mclk_control ?
2333 				fmax : min(host->mclk, fmax);
2334 
2335 
2336 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2337 
2338 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2339 	if (IS_ERR(host->rst)) {
2340 		ret = PTR_ERR(host->rst);
2341 		goto clk_disable;
2342 	}
2343 	ret = reset_control_deassert(host->rst);
2344 	if (ret)
2345 		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2346 
2347 	/* Get regulators and the supported OCR mask */
2348 	ret = mmc_regulator_get_supply(mmc);
2349 	if (ret)
2350 		goto clk_disable;
2351 
2352 	if (!mmc->ocr_avail)
2353 		mmc->ocr_avail = plat->ocr_mask;
2354 	else if (plat->ocr_mask)
2355 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2356 
2357 	/* We support these capabilities. */
2358 	mmc->caps |= MMC_CAP_CMD23;
2359 
2360 	/*
2361 	 * Enable busy detection.
2362 	 */
2363 	if (variant->busy_detect) {
2364 		mmci_ops.card_busy = mmci_card_busy;
2365 		/*
2366 		 * Not all variants have a flag to enable busy detection
2367 		 * in the DPSM, but if they do, set it here.
2368 		 */
2369 		if (variant->busy_dpsm_flag)
2370 			mmci_write_datactrlreg(host,
2371 					       host->variant->busy_dpsm_flag);
2372 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2373 	}
2374 
2375 	if (variant->supports_sdio_irq && host->mmc->caps & MMC_CAP_SDIO_IRQ) {
2376 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2377 
2378 		mmci_ops.enable_sdio_irq = mmci_enable_sdio_irq;
2379 		mmci_ops.ack_sdio_irq	= mmci_ack_sdio_irq;
2380 
2381 		mmci_write_datactrlreg(host,
2382 				       host->variant->datactrl_mask_sdio);
2383 	}
2384 
2385 	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2386 	if (variant->busy_timeout)
2387 		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2388 
2389 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2390 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2391 	host->stop_abort.arg = 0;
2392 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2393 
2394 	/* We support these PM capabilities. */
2395 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2396 
2397 	/*
2398 	 * We can do SGIO
2399 	 */
2400 	mmc->max_segs = NR_SG;
2401 
2402 	/*
2403 	 * Since only a certain number of bits are valid in the data length
2404 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2405 	 * single request.
2406 	 */
2407 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2408 
2409 	/*
2410 	 * Set the maximum segment size.  Since we aren't doing DMA
2411 	 * (yet) we are only limited by the data length register.
2412 	 */
2413 	mmc->max_seg_size = mmc->max_req_size;
2414 
2415 	/*
2416 	 * Block size can be up to 2048 bytes, but must be a power of two.
2417 	 */
2418 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2419 
2420 	/*
2421 	 * Limit the number of blocks transferred so that we don't overflow
2422 	 * the maximum request size.
2423 	 */
2424 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2425 
2426 	spin_lock_init(&host->lock);
2427 
2428 	writel(0, host->base + MMCIMASK0);
2429 
2430 	if (variant->mmcimask1)
2431 		writel(0, host->base + MMCIMASK1);
2432 
2433 	writel(0xfff, host->base + MMCICLEAR);
2434 
2435 	/*
2436 	 * If:
2437 	 * - not using DT but using a descriptor table, or
2438 	 * - using a table of descriptors ALONGSIDE DT, or
2439 	 * look up these descriptors named "cd" and "wp" right here, fail
2440 	 * silently of these do not exist
2441 	 */
2442 	if (!np) {
2443 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2444 		if (ret == -EPROBE_DEFER)
2445 			goto clk_disable;
2446 
2447 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2448 		if (ret == -EPROBE_DEFER)
2449 			goto clk_disable;
2450 	}
2451 
2452 	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2453 					mmci_irq_thread, IRQF_SHARED,
2454 					DRIVER_NAME " (cmd)", host);
2455 	if (ret)
2456 		goto clk_disable;
2457 
2458 	if (!dev->irq[1])
2459 		host->singleirq = true;
2460 	else {
2461 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2462 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2463 		if (ret)
2464 			goto clk_disable;
2465 	}
2466 
2467 	if (host->variant->busy_detect)
2468 		INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2469 				  ux500_busy_timeout_work);
2470 
2471 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2472 
2473 	amba_set_drvdata(dev, mmc);
2474 
2475 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2476 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2477 		 amba_rev(dev), (unsigned long long)dev->res.start,
2478 		 dev->irq[0], dev->irq[1]);
2479 
2480 	mmci_dma_setup(host);
2481 
2482 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2483 	pm_runtime_use_autosuspend(&dev->dev);
2484 
2485 	ret = mmc_add_host(mmc);
2486 	if (ret)
2487 		goto clk_disable;
2488 
2489 	pm_runtime_put(&dev->dev);
2490 	return 0;
2491 
2492  clk_disable:
2493 	clk_disable_unprepare(host->clk);
2494  host_free:
2495 	mmc_free_host(mmc);
2496 	return ret;
2497 }
2498 
2499 static void mmci_remove(struct amba_device *dev)
2500 {
2501 	struct mmc_host *mmc = amba_get_drvdata(dev);
2502 
2503 	if (mmc) {
2504 		struct mmci_host *host = mmc_priv(mmc);
2505 		struct variant_data *variant = host->variant;
2506 
2507 		/*
2508 		 * Undo pm_runtime_put() in probe.  We use the _sync
2509 		 * version here so that we can access the primecell.
2510 		 */
2511 		pm_runtime_get_sync(&dev->dev);
2512 
2513 		mmc_remove_host(mmc);
2514 
2515 		writel(0, host->base + MMCIMASK0);
2516 
2517 		if (variant->mmcimask1)
2518 			writel(0, host->base + MMCIMASK1);
2519 
2520 		writel(0, host->base + MMCICOMMAND);
2521 		writel(0, host->base + MMCIDATACTRL);
2522 
2523 		mmci_dma_release(host);
2524 		clk_disable_unprepare(host->clk);
2525 		mmc_free_host(mmc);
2526 	}
2527 }
2528 
2529 #ifdef CONFIG_PM
2530 static void mmci_save(struct mmci_host *host)
2531 {
2532 	unsigned long flags;
2533 
2534 	spin_lock_irqsave(&host->lock, flags);
2535 
2536 	writel(0, host->base + MMCIMASK0);
2537 	if (host->variant->pwrreg_nopower) {
2538 		writel(0, host->base + MMCIDATACTRL);
2539 		writel(0, host->base + MMCIPOWER);
2540 		writel(0, host->base + MMCICLOCK);
2541 	}
2542 	mmci_reg_delay(host);
2543 
2544 	spin_unlock_irqrestore(&host->lock, flags);
2545 }
2546 
2547 static void mmci_restore(struct mmci_host *host)
2548 {
2549 	unsigned long flags;
2550 
2551 	spin_lock_irqsave(&host->lock, flags);
2552 
2553 	if (host->variant->pwrreg_nopower) {
2554 		writel(host->clk_reg, host->base + MMCICLOCK);
2555 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2556 		writel(host->pwr_reg, host->base + MMCIPOWER);
2557 	}
2558 	writel(MCI_IRQENABLE | host->variant->start_err,
2559 	       host->base + MMCIMASK0);
2560 	mmci_reg_delay(host);
2561 
2562 	spin_unlock_irqrestore(&host->lock, flags);
2563 }
2564 
2565 static int mmci_runtime_suspend(struct device *dev)
2566 {
2567 	struct amba_device *adev = to_amba_device(dev);
2568 	struct mmc_host *mmc = amba_get_drvdata(adev);
2569 
2570 	if (mmc) {
2571 		struct mmci_host *host = mmc_priv(mmc);
2572 		pinctrl_pm_select_sleep_state(dev);
2573 		mmci_save(host);
2574 		clk_disable_unprepare(host->clk);
2575 	}
2576 
2577 	return 0;
2578 }
2579 
2580 static int mmci_runtime_resume(struct device *dev)
2581 {
2582 	struct amba_device *adev = to_amba_device(dev);
2583 	struct mmc_host *mmc = amba_get_drvdata(adev);
2584 
2585 	if (mmc) {
2586 		struct mmci_host *host = mmc_priv(mmc);
2587 		clk_prepare_enable(host->clk);
2588 		mmci_restore(host);
2589 		pinctrl_select_default_state(dev);
2590 	}
2591 
2592 	return 0;
2593 }
2594 #endif
2595 
2596 static const struct dev_pm_ops mmci_dev_pm_ops = {
2597 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2598 				pm_runtime_force_resume)
2599 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2600 };
2601 
2602 static const struct amba_id mmci_ids[] = {
2603 	{
2604 		.id	= 0x00041180,
2605 		.mask	= 0xff0fffff,
2606 		.data	= &variant_arm,
2607 	},
2608 	{
2609 		.id	= 0x01041180,
2610 		.mask	= 0xff0fffff,
2611 		.data	= &variant_arm_extended_fifo,
2612 	},
2613 	{
2614 		.id	= 0x02041180,
2615 		.mask	= 0xff0fffff,
2616 		.data	= &variant_arm_extended_fifo_hwfc,
2617 	},
2618 	{
2619 		.id	= 0x00041181,
2620 		.mask	= 0x000fffff,
2621 		.data	= &variant_arm,
2622 	},
2623 	/* ST Micro variants */
2624 	{
2625 		.id     = 0x00180180,
2626 		.mask   = 0x00ffffff,
2627 		.data	= &variant_u300,
2628 	},
2629 	{
2630 		.id     = 0x10180180,
2631 		.mask   = 0xf0ffffff,
2632 		.data	= &variant_nomadik,
2633 	},
2634 	{
2635 		.id     = 0x00280180,
2636 		.mask   = 0x00ffffff,
2637 		.data	= &variant_nomadik,
2638 	},
2639 	{
2640 		.id     = 0x00480180,
2641 		.mask   = 0xf0ffffff,
2642 		.data	= &variant_ux500,
2643 	},
2644 	{
2645 		.id     = 0x10480180,
2646 		.mask   = 0xf0ffffff,
2647 		.data	= &variant_ux500v2,
2648 	},
2649 	{
2650 		.id     = 0x00880180,
2651 		.mask   = 0x00ffffff,
2652 		.data	= &variant_stm32,
2653 	},
2654 	{
2655 		.id     = 0x10153180,
2656 		.mask	= 0xf0ffffff,
2657 		.data	= &variant_stm32_sdmmc,
2658 	},
2659 	{
2660 		.id     = 0x00253180,
2661 		.mask	= 0xf0ffffff,
2662 		.data	= &variant_stm32_sdmmcv2,
2663 	},
2664 	{
2665 		.id     = 0x20253180,
2666 		.mask	= 0xf0ffffff,
2667 		.data	= &variant_stm32_sdmmcv2,
2668 	},
2669 	{
2670 		.id     = 0x00353180,
2671 		.mask	= 0xf0ffffff,
2672 		.data	= &variant_stm32_sdmmcv3,
2673 	},
2674 	/* Qualcomm variants */
2675 	{
2676 		.id     = 0x00051180,
2677 		.mask	= 0x000fffff,
2678 		.data	= &variant_qcom,
2679 	},
2680 	{ 0, 0 },
2681 };
2682 
2683 MODULE_DEVICE_TABLE(amba, mmci_ids);
2684 
2685 static struct amba_driver mmci_driver = {
2686 	.drv		= {
2687 		.name	= DRIVER_NAME,
2688 		.pm	= &mmci_dev_pm_ops,
2689 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2690 	},
2691 	.probe		= mmci_probe,
2692 	.remove		= mmci_remove,
2693 	.id_table	= mmci_ids,
2694 };
2695 
2696 module_amba_driver(mmci_driver);
2697 
2698 module_param(fmax, uint, 0444);
2699 
2700 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2701 MODULE_LICENSE("GPL");
2702