1 /* 2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver 3 * 4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. 5 * Copyright (C) 2010 ST-Ericsson SA 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/highmem.h> 23 #include <linux/log2.h> 24 #include <linux/mmc/pm.h> 25 #include <linux/mmc/host.h> 26 #include <linux/mmc/card.h> 27 #include <linux/mmc/slot-gpio.h> 28 #include <linux/amba/bus.h> 29 #include <linux/clk.h> 30 #include <linux/scatterlist.h> 31 #include <linux/gpio.h> 32 #include <linux/of_gpio.h> 33 #include <linux/regulator/consumer.h> 34 #include <linux/dmaengine.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/amba/mmci.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/types.h> 39 #include <linux/pinctrl/consumer.h> 40 41 #include <asm/div64.h> 42 #include <asm/io.h> 43 44 #include "mmci.h" 45 #include "mmci_qcom_dml.h" 46 47 #define DRIVER_NAME "mmci-pl18x" 48 49 static unsigned int fmax = 515633; 50 51 /** 52 * struct variant_data - MMCI variant-specific quirks 53 * @clkreg: default value for MCICLOCK register 54 * @clkreg_enable: enable value for MMCICLOCK register 55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus 56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output 57 * @datalength_bits: number of bits in the MMCIDATALENGTH register 58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY 59 * is asserted (likewise for RX) 60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY 61 * is asserted (likewise for RX) 62 * @data_cmd_enable: enable value for data commands. 63 * @st_sdio: enable ST specific SDIO logic 64 * @st_clkdiv: true if using a ST-specific clock divider algorithm 65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register. 66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register 67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl 68 * register 69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register 70 * @pwrreg_powerup: power up value for MMCIPOWER register 71 * @f_max: maximum clk frequency supported by the controller. 72 * @signal_direction: input/out direction of bus signals can be indicated 73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock 74 * @busy_detect: true if the variant supports busy detection on DAT0. 75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM 76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register 77 * indicating that the card is busy 78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for 79 * getting busy end detection interrupts 80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply 81 * @explicit_mclk_control: enable explicit mclk control in driver. 82 * @qcom_fifo: enables qcom specific fifo pio read logic. 83 * @qcom_dml: enables qcom specific dma glue for dma transfers. 84 * @reversed_irq_handling: handle data irq before cmd irq. 85 */ 86 struct variant_data { 87 unsigned int clkreg; 88 unsigned int clkreg_enable; 89 unsigned int clkreg_8bit_bus_enable; 90 unsigned int clkreg_neg_edge_enable; 91 unsigned int datalength_bits; 92 unsigned int fifosize; 93 unsigned int fifohalfsize; 94 unsigned int data_cmd_enable; 95 unsigned int datactrl_mask_ddrmode; 96 unsigned int datactrl_mask_sdio; 97 bool st_sdio; 98 bool st_clkdiv; 99 bool blksz_datactrl16; 100 bool blksz_datactrl4; 101 u32 pwrreg_powerup; 102 u32 f_max; 103 bool signal_direction; 104 bool pwrreg_clkgate; 105 bool busy_detect; 106 u32 busy_dpsm_flag; 107 u32 busy_detect_flag; 108 u32 busy_detect_mask; 109 bool pwrreg_nopower; 110 bool explicit_mclk_control; 111 bool qcom_fifo; 112 bool qcom_dml; 113 bool reversed_irq_handling; 114 }; 115 116 static struct variant_data variant_arm = { 117 .fifosize = 16 * 4, 118 .fifohalfsize = 8 * 4, 119 .datalength_bits = 16, 120 .pwrreg_powerup = MCI_PWR_UP, 121 .f_max = 100000000, 122 .reversed_irq_handling = true, 123 }; 124 125 static struct variant_data variant_arm_extended_fifo = { 126 .fifosize = 128 * 4, 127 .fifohalfsize = 64 * 4, 128 .datalength_bits = 16, 129 .pwrreg_powerup = MCI_PWR_UP, 130 .f_max = 100000000, 131 }; 132 133 static struct variant_data variant_arm_extended_fifo_hwfc = { 134 .fifosize = 128 * 4, 135 .fifohalfsize = 64 * 4, 136 .clkreg_enable = MCI_ARM_HWFCEN, 137 .datalength_bits = 16, 138 .pwrreg_powerup = MCI_PWR_UP, 139 .f_max = 100000000, 140 }; 141 142 static struct variant_data variant_u300 = { 143 .fifosize = 16 * 4, 144 .fifohalfsize = 8 * 4, 145 .clkreg_enable = MCI_ST_U300_HWFCEN, 146 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 147 .datalength_bits = 16, 148 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 149 .st_sdio = true, 150 .pwrreg_powerup = MCI_PWR_ON, 151 .f_max = 100000000, 152 .signal_direction = true, 153 .pwrreg_clkgate = true, 154 .pwrreg_nopower = true, 155 }; 156 157 static struct variant_data variant_nomadik = { 158 .fifosize = 16 * 4, 159 .fifohalfsize = 8 * 4, 160 .clkreg = MCI_CLK_ENABLE, 161 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 162 .datalength_bits = 24, 163 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 164 .st_sdio = true, 165 .st_clkdiv = true, 166 .pwrreg_powerup = MCI_PWR_ON, 167 .f_max = 100000000, 168 .signal_direction = true, 169 .pwrreg_clkgate = true, 170 .pwrreg_nopower = true, 171 }; 172 173 static struct variant_data variant_ux500 = { 174 .fifosize = 30 * 4, 175 .fifohalfsize = 8 * 4, 176 .clkreg = MCI_CLK_ENABLE, 177 .clkreg_enable = MCI_ST_UX500_HWFCEN, 178 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 179 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 180 .datalength_bits = 24, 181 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 182 .st_sdio = true, 183 .st_clkdiv = true, 184 .pwrreg_powerup = MCI_PWR_ON, 185 .f_max = 100000000, 186 .signal_direction = true, 187 .pwrreg_clkgate = true, 188 .busy_detect = true, 189 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, 190 .busy_detect_flag = MCI_ST_CARDBUSY, 191 .busy_detect_mask = MCI_ST_BUSYENDMASK, 192 .pwrreg_nopower = true, 193 }; 194 195 static struct variant_data variant_ux500v2 = { 196 .fifosize = 30 * 4, 197 .fifohalfsize = 8 * 4, 198 .clkreg = MCI_CLK_ENABLE, 199 .clkreg_enable = MCI_ST_UX500_HWFCEN, 200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 202 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE, 203 .datalength_bits = 24, 204 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 205 .st_sdio = true, 206 .st_clkdiv = true, 207 .blksz_datactrl16 = true, 208 .pwrreg_powerup = MCI_PWR_ON, 209 .f_max = 100000000, 210 .signal_direction = true, 211 .pwrreg_clkgate = true, 212 .busy_detect = true, 213 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, 214 .busy_detect_flag = MCI_ST_CARDBUSY, 215 .busy_detect_mask = MCI_ST_BUSYENDMASK, 216 .pwrreg_nopower = true, 217 }; 218 219 static struct variant_data variant_qcom = { 220 .fifosize = 16 * 4, 221 .fifohalfsize = 8 * 4, 222 .clkreg = MCI_CLK_ENABLE, 223 .clkreg_enable = MCI_QCOM_CLK_FLOWENA | 224 MCI_QCOM_CLK_SELECT_IN_FBCLK, 225 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8, 226 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE, 227 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD, 228 .blksz_datactrl4 = true, 229 .datalength_bits = 24, 230 .pwrreg_powerup = MCI_PWR_UP, 231 .f_max = 208000000, 232 .explicit_mclk_control = true, 233 .qcom_fifo = true, 234 .qcom_dml = true, 235 }; 236 237 /* Busy detection for the ST Micro variant */ 238 static int mmci_card_busy(struct mmc_host *mmc) 239 { 240 struct mmci_host *host = mmc_priv(mmc); 241 unsigned long flags; 242 int busy = 0; 243 244 spin_lock_irqsave(&host->lock, flags); 245 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag) 246 busy = 1; 247 spin_unlock_irqrestore(&host->lock, flags); 248 249 return busy; 250 } 251 252 /* 253 * Validate mmc prerequisites 254 */ 255 static int mmci_validate_data(struct mmci_host *host, 256 struct mmc_data *data) 257 { 258 if (!data) 259 return 0; 260 261 if (!is_power_of_2(data->blksz)) { 262 dev_err(mmc_dev(host->mmc), 263 "unsupported block size (%d bytes)\n", data->blksz); 264 return -EINVAL; 265 } 266 267 return 0; 268 } 269 270 static void mmci_reg_delay(struct mmci_host *host) 271 { 272 /* 273 * According to the spec, at least three feedback clock cycles 274 * of max 52 MHz must pass between two writes to the MMCICLOCK reg. 275 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. 276 * Worst delay time during card init is at 100 kHz => 30 us. 277 * Worst delay time when up and running is at 25 MHz => 120 ns. 278 */ 279 if (host->cclk < 25000000) 280 udelay(30); 281 else 282 ndelay(120); 283 } 284 285 /* 286 * This must be called with host->lock held 287 */ 288 static void mmci_write_clkreg(struct mmci_host *host, u32 clk) 289 { 290 if (host->clk_reg != clk) { 291 host->clk_reg = clk; 292 writel(clk, host->base + MMCICLOCK); 293 } 294 } 295 296 /* 297 * This must be called with host->lock held 298 */ 299 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) 300 { 301 if (host->pwr_reg != pwr) { 302 host->pwr_reg = pwr; 303 writel(pwr, host->base + MMCIPOWER); 304 } 305 } 306 307 /* 308 * This must be called with host->lock held 309 */ 310 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) 311 { 312 /* Keep busy mode in DPSM if enabled */ 313 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag; 314 315 if (host->datactrl_reg != datactrl) { 316 host->datactrl_reg = datactrl; 317 writel(datactrl, host->base + MMCIDATACTRL); 318 } 319 } 320 321 /* 322 * This must be called with host->lock held 323 */ 324 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) 325 { 326 struct variant_data *variant = host->variant; 327 u32 clk = variant->clkreg; 328 329 /* Make sure cclk reflects the current calculated clock */ 330 host->cclk = 0; 331 332 if (desired) { 333 if (variant->explicit_mclk_control) { 334 host->cclk = host->mclk; 335 } else if (desired >= host->mclk) { 336 clk = MCI_CLK_BYPASS; 337 if (variant->st_clkdiv) 338 clk |= MCI_ST_UX500_NEG_EDGE; 339 host->cclk = host->mclk; 340 } else if (variant->st_clkdiv) { 341 /* 342 * DB8500 TRM says f = mclk / (clkdiv + 2) 343 * => clkdiv = (mclk / f) - 2 344 * Round the divider up so we don't exceed the max 345 * frequency 346 */ 347 clk = DIV_ROUND_UP(host->mclk, desired) - 2; 348 if (clk >= 256) 349 clk = 255; 350 host->cclk = host->mclk / (clk + 2); 351 } else { 352 /* 353 * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) 354 * => clkdiv = mclk / (2 * f) - 1 355 */ 356 clk = host->mclk / (2 * desired) - 1; 357 if (clk >= 256) 358 clk = 255; 359 host->cclk = host->mclk / (2 * (clk + 1)); 360 } 361 362 clk |= variant->clkreg_enable; 363 clk |= MCI_CLK_ENABLE; 364 /* This hasn't proven to be worthwhile */ 365 /* clk |= MCI_CLK_PWRSAVE; */ 366 } 367 368 /* Set actual clock for debug */ 369 host->mmc->actual_clock = host->cclk; 370 371 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 372 clk |= MCI_4BIT_BUS; 373 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 374 clk |= variant->clkreg_8bit_bus_enable; 375 376 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 377 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 378 clk |= variant->clkreg_neg_edge_enable; 379 380 mmci_write_clkreg(host, clk); 381 } 382 383 static void 384 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) 385 { 386 writel(0, host->base + MMCICOMMAND); 387 388 BUG_ON(host->data); 389 390 host->mrq = NULL; 391 host->cmd = NULL; 392 393 mmc_request_done(host->mmc, mrq); 394 } 395 396 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) 397 { 398 void __iomem *base = host->base; 399 400 if (host->singleirq) { 401 unsigned int mask0 = readl(base + MMCIMASK0); 402 403 mask0 &= ~MCI_IRQ1MASK; 404 mask0 |= mask; 405 406 writel(mask0, base + MMCIMASK0); 407 } 408 409 writel(mask, base + MMCIMASK1); 410 } 411 412 static void mmci_stop_data(struct mmci_host *host) 413 { 414 mmci_write_datactrlreg(host, 0); 415 mmci_set_mask1(host, 0); 416 host->data = NULL; 417 } 418 419 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) 420 { 421 unsigned int flags = SG_MITER_ATOMIC; 422 423 if (data->flags & MMC_DATA_READ) 424 flags |= SG_MITER_TO_SG; 425 else 426 flags |= SG_MITER_FROM_SG; 427 428 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 429 } 430 431 /* 432 * All the DMA operation mode stuff goes inside this ifdef. 433 * This assumes that you have a generic DMA device interface, 434 * no custom DMA interfaces are supported. 435 */ 436 #ifdef CONFIG_DMA_ENGINE 437 static void mmci_dma_setup(struct mmci_host *host) 438 { 439 const char *rxname, *txname; 440 struct variant_data *variant = host->variant; 441 442 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx"); 443 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx"); 444 445 /* initialize pre request cookie */ 446 host->next_data.cookie = 1; 447 448 /* 449 * If only an RX channel is specified, the driver will 450 * attempt to use it bidirectionally, however if it is 451 * is specified but cannot be located, DMA will be disabled. 452 */ 453 if (host->dma_rx_channel && !host->dma_tx_channel) 454 host->dma_tx_channel = host->dma_rx_channel; 455 456 if (host->dma_rx_channel) 457 rxname = dma_chan_name(host->dma_rx_channel); 458 else 459 rxname = "none"; 460 461 if (host->dma_tx_channel) 462 txname = dma_chan_name(host->dma_tx_channel); 463 else 464 txname = "none"; 465 466 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", 467 rxname, txname); 468 469 /* 470 * Limit the maximum segment size in any SG entry according to 471 * the parameters of the DMA engine device. 472 */ 473 if (host->dma_tx_channel) { 474 struct device *dev = host->dma_tx_channel->device->dev; 475 unsigned int max_seg_size = dma_get_max_seg_size(dev); 476 477 if (max_seg_size < host->mmc->max_seg_size) 478 host->mmc->max_seg_size = max_seg_size; 479 } 480 if (host->dma_rx_channel) { 481 struct device *dev = host->dma_rx_channel->device->dev; 482 unsigned int max_seg_size = dma_get_max_seg_size(dev); 483 484 if (max_seg_size < host->mmc->max_seg_size) 485 host->mmc->max_seg_size = max_seg_size; 486 } 487 488 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel) 489 if (dml_hw_init(host, host->mmc->parent->of_node)) 490 variant->qcom_dml = false; 491 } 492 493 /* 494 * This is used in or so inline it 495 * so it can be discarded. 496 */ 497 static inline void mmci_dma_release(struct mmci_host *host) 498 { 499 if (host->dma_rx_channel) 500 dma_release_channel(host->dma_rx_channel); 501 if (host->dma_tx_channel) 502 dma_release_channel(host->dma_tx_channel); 503 host->dma_rx_channel = host->dma_tx_channel = NULL; 504 } 505 506 static void mmci_dma_data_error(struct mmci_host *host) 507 { 508 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); 509 dmaengine_terminate_all(host->dma_current); 510 host->dma_in_progress = false; 511 host->dma_current = NULL; 512 host->dma_desc_current = NULL; 513 host->data->host_cookie = 0; 514 } 515 516 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 517 { 518 struct dma_chan *chan; 519 520 if (data->flags & MMC_DATA_READ) 521 chan = host->dma_rx_channel; 522 else 523 chan = host->dma_tx_channel; 524 525 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, 526 mmc_get_dma_dir(data)); 527 } 528 529 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) 530 { 531 u32 status; 532 int i; 533 534 /* Wait up to 1ms for the DMA to complete */ 535 for (i = 0; ; i++) { 536 status = readl(host->base + MMCISTATUS); 537 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) 538 break; 539 udelay(10); 540 } 541 542 /* 543 * Check to see whether we still have some data left in the FIFO - 544 * this catches DMA controllers which are unable to monitor the 545 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- 546 * contiguous buffers. On TX, we'll get a FIFO underrun error. 547 */ 548 if (status & MCI_RXDATAAVLBLMASK) { 549 mmci_dma_data_error(host); 550 if (!data->error) 551 data->error = -EIO; 552 } 553 554 if (!data->host_cookie) 555 mmci_dma_unmap(host, data); 556 557 /* 558 * Use of DMA with scatter-gather is impossible. 559 * Give up with DMA and switch back to PIO mode. 560 */ 561 if (status & MCI_RXDATAAVLBLMASK) { 562 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); 563 mmci_dma_release(host); 564 } 565 566 host->dma_in_progress = false; 567 host->dma_current = NULL; 568 host->dma_desc_current = NULL; 569 } 570 571 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ 572 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, 573 struct dma_chan **dma_chan, 574 struct dma_async_tx_descriptor **dma_desc) 575 { 576 struct variant_data *variant = host->variant; 577 struct dma_slave_config conf = { 578 .src_addr = host->phybase + MMCIFIFO, 579 .dst_addr = host->phybase + MMCIFIFO, 580 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 581 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 582 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ 583 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ 584 .device_fc = false, 585 }; 586 struct dma_chan *chan; 587 struct dma_device *device; 588 struct dma_async_tx_descriptor *desc; 589 int nr_sg; 590 unsigned long flags = DMA_CTRL_ACK; 591 592 if (data->flags & MMC_DATA_READ) { 593 conf.direction = DMA_DEV_TO_MEM; 594 chan = host->dma_rx_channel; 595 } else { 596 conf.direction = DMA_MEM_TO_DEV; 597 chan = host->dma_tx_channel; 598 } 599 600 /* If there's no DMA channel, fall back to PIO */ 601 if (!chan) 602 return -EINVAL; 603 604 /* If less than or equal to the fifo size, don't bother with DMA */ 605 if (data->blksz * data->blocks <= variant->fifosize) 606 return -EINVAL; 607 608 device = chan->device; 609 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, 610 mmc_get_dma_dir(data)); 611 if (nr_sg == 0) 612 return -EINVAL; 613 614 if (host->variant->qcom_dml) 615 flags |= DMA_PREP_INTERRUPT; 616 617 dmaengine_slave_config(chan, &conf); 618 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, 619 conf.direction, flags); 620 if (!desc) 621 goto unmap_exit; 622 623 *dma_chan = chan; 624 *dma_desc = desc; 625 626 return 0; 627 628 unmap_exit: 629 dma_unmap_sg(device->dev, data->sg, data->sg_len, 630 mmc_get_dma_dir(data)); 631 return -ENOMEM; 632 } 633 634 static inline int mmci_dma_prep_data(struct mmci_host *host, 635 struct mmc_data *data) 636 { 637 /* Check if next job is already prepared. */ 638 if (host->dma_current && host->dma_desc_current) 639 return 0; 640 641 /* No job were prepared thus do it now. */ 642 return __mmci_dma_prep_data(host, data, &host->dma_current, 643 &host->dma_desc_current); 644 } 645 646 static inline int mmci_dma_prep_next(struct mmci_host *host, 647 struct mmc_data *data) 648 { 649 struct mmci_host_next *nd = &host->next_data; 650 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc); 651 } 652 653 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 654 { 655 int ret; 656 struct mmc_data *data = host->data; 657 658 ret = mmci_dma_prep_data(host, host->data); 659 if (ret) 660 return ret; 661 662 /* Okay, go for it. */ 663 dev_vdbg(mmc_dev(host->mmc), 664 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", 665 data->sg_len, data->blksz, data->blocks, data->flags); 666 host->dma_in_progress = true; 667 dmaengine_submit(host->dma_desc_current); 668 dma_async_issue_pending(host->dma_current); 669 670 if (host->variant->qcom_dml) 671 dml_start_xfer(host, data); 672 673 datactrl |= MCI_DPSM_DMAENABLE; 674 675 /* Trigger the DMA transfer */ 676 mmci_write_datactrlreg(host, datactrl); 677 678 /* 679 * Let the MMCI say when the data is ended and it's time 680 * to fire next DMA request. When that happens, MMCI will 681 * call mmci_data_end() 682 */ 683 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, 684 host->base + MMCIMASK0); 685 return 0; 686 } 687 688 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 689 { 690 struct mmci_host_next *next = &host->next_data; 691 692 WARN_ON(data->host_cookie && data->host_cookie != next->cookie); 693 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan)); 694 695 host->dma_desc_current = next->dma_desc; 696 host->dma_current = next->dma_chan; 697 next->dma_desc = NULL; 698 next->dma_chan = NULL; 699 } 700 701 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq) 702 { 703 struct mmci_host *host = mmc_priv(mmc); 704 struct mmc_data *data = mrq->data; 705 struct mmci_host_next *nd = &host->next_data; 706 707 if (!data) 708 return; 709 710 BUG_ON(data->host_cookie); 711 712 if (mmci_validate_data(host, data)) 713 return; 714 715 if (!mmci_dma_prep_next(host, data)) 716 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; 717 } 718 719 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, 720 int err) 721 { 722 struct mmci_host *host = mmc_priv(mmc); 723 struct mmc_data *data = mrq->data; 724 725 if (!data || !data->host_cookie) 726 return; 727 728 mmci_dma_unmap(host, data); 729 730 if (err) { 731 struct mmci_host_next *next = &host->next_data; 732 struct dma_chan *chan; 733 if (data->flags & MMC_DATA_READ) 734 chan = host->dma_rx_channel; 735 else 736 chan = host->dma_tx_channel; 737 dmaengine_terminate_all(chan); 738 739 if (host->dma_desc_current == next->dma_desc) 740 host->dma_desc_current = NULL; 741 742 if (host->dma_current == next->dma_chan) { 743 host->dma_in_progress = false; 744 host->dma_current = NULL; 745 } 746 747 next->dma_desc = NULL; 748 next->dma_chan = NULL; 749 data->host_cookie = 0; 750 } 751 } 752 753 #else 754 /* Blank functions if the DMA engine is not available */ 755 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 756 { 757 } 758 static inline void mmci_dma_setup(struct mmci_host *host) 759 { 760 } 761 762 static inline void mmci_dma_release(struct mmci_host *host) 763 { 764 } 765 766 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 767 { 768 } 769 770 static inline void mmci_dma_finalize(struct mmci_host *host, 771 struct mmc_data *data) 772 { 773 } 774 775 static inline void mmci_dma_data_error(struct mmci_host *host) 776 { 777 } 778 779 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 780 { 781 return -ENOSYS; 782 } 783 784 #define mmci_pre_request NULL 785 #define mmci_post_request NULL 786 787 #endif 788 789 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) 790 { 791 struct variant_data *variant = host->variant; 792 unsigned int datactrl, timeout, irqmask; 793 unsigned long long clks; 794 void __iomem *base; 795 int blksz_bits; 796 797 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", 798 data->blksz, data->blocks, data->flags); 799 800 host->data = data; 801 host->size = data->blksz * data->blocks; 802 data->bytes_xfered = 0; 803 804 clks = (unsigned long long)data->timeout_ns * host->cclk; 805 do_div(clks, NSEC_PER_SEC); 806 807 timeout = data->timeout_clks + (unsigned int)clks; 808 809 base = host->base; 810 writel(timeout, base + MMCIDATATIMER); 811 writel(host->size, base + MMCIDATALENGTH); 812 813 blksz_bits = ffs(data->blksz) - 1; 814 BUG_ON(1 << blksz_bits != data->blksz); 815 816 if (variant->blksz_datactrl16) 817 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); 818 else if (variant->blksz_datactrl4) 819 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4); 820 else 821 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; 822 823 if (data->flags & MMC_DATA_READ) 824 datactrl |= MCI_DPSM_DIRECTION; 825 826 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { 827 u32 clk; 828 829 datactrl |= variant->datactrl_mask_sdio; 830 831 /* 832 * The ST Micro variant for SDIO small write transfers 833 * needs to have clock H/W flow control disabled, 834 * otherwise the transfer will not start. The threshold 835 * depends on the rate of MCLK. 836 */ 837 if (variant->st_sdio && data->flags & MMC_DATA_WRITE && 838 (host->size < 8 || 839 (host->size <= 8 && host->mclk > 50000000))) 840 clk = host->clk_reg & ~variant->clkreg_enable; 841 else 842 clk = host->clk_reg | variant->clkreg_enable; 843 844 mmci_write_clkreg(host, clk); 845 } 846 847 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 848 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 849 datactrl |= variant->datactrl_mask_ddrmode; 850 851 /* 852 * Attempt to use DMA operation mode, if this 853 * should fail, fall back to PIO mode 854 */ 855 if (!mmci_dma_start_data(host, datactrl)) 856 return; 857 858 /* IRQ mode, map the SG list for CPU reading/writing */ 859 mmci_init_sg(host, data); 860 861 if (data->flags & MMC_DATA_READ) { 862 irqmask = MCI_RXFIFOHALFFULLMASK; 863 864 /* 865 * If we have less than the fifo 'half-full' threshold to 866 * transfer, trigger a PIO interrupt as soon as any data 867 * is available. 868 */ 869 if (host->size < variant->fifohalfsize) 870 irqmask |= MCI_RXDATAAVLBLMASK; 871 } else { 872 /* 873 * We don't actually need to include "FIFO empty" here 874 * since its implicit in "FIFO half empty". 875 */ 876 irqmask = MCI_TXFIFOHALFEMPTYMASK; 877 } 878 879 mmci_write_datactrlreg(host, datactrl); 880 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); 881 mmci_set_mask1(host, irqmask); 882 } 883 884 static void 885 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) 886 { 887 void __iomem *base = host->base; 888 889 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", 890 cmd->opcode, cmd->arg, cmd->flags); 891 892 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { 893 writel(0, base + MMCICOMMAND); 894 mmci_reg_delay(host); 895 } 896 897 c |= cmd->opcode | MCI_CPSM_ENABLE; 898 if (cmd->flags & MMC_RSP_PRESENT) { 899 if (cmd->flags & MMC_RSP_136) 900 c |= MCI_CPSM_LONGRSP; 901 c |= MCI_CPSM_RESPONSE; 902 } 903 if (/*interrupt*/0) 904 c |= MCI_CPSM_INTERRUPT; 905 906 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) 907 c |= host->variant->data_cmd_enable; 908 909 host->cmd = cmd; 910 911 writel(cmd->arg, base + MMCIARGUMENT); 912 writel(c, base + MMCICOMMAND); 913 } 914 915 static void 916 mmci_data_irq(struct mmci_host *host, struct mmc_data *data, 917 unsigned int status) 918 { 919 /* Make sure we have data to handle */ 920 if (!data) 921 return; 922 923 /* First check for errors */ 924 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| 925 MCI_TXUNDERRUN|MCI_RXOVERRUN)) { 926 u32 remain, success; 927 928 /* Terminate the DMA transfer */ 929 if (dma_inprogress(host)) { 930 mmci_dma_data_error(host); 931 mmci_dma_unmap(host, data); 932 } 933 934 /* 935 * Calculate how far we are into the transfer. Note that 936 * the data counter gives the number of bytes transferred 937 * on the MMC bus, not on the host side. On reads, this 938 * can be as much as a FIFO-worth of data ahead. This 939 * matters for FIFO overruns only. 940 */ 941 remain = readl(host->base + MMCIDATACNT); 942 success = data->blksz * data->blocks - remain; 943 944 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", 945 status, success); 946 if (status & MCI_DATACRCFAIL) { 947 /* Last block was not successful */ 948 success -= 1; 949 data->error = -EILSEQ; 950 } else if (status & MCI_DATATIMEOUT) { 951 data->error = -ETIMEDOUT; 952 } else if (status & MCI_STARTBITERR) { 953 data->error = -ECOMM; 954 } else if (status & MCI_TXUNDERRUN) { 955 data->error = -EIO; 956 } else if (status & MCI_RXOVERRUN) { 957 if (success > host->variant->fifosize) 958 success -= host->variant->fifosize; 959 else 960 success = 0; 961 data->error = -EIO; 962 } 963 data->bytes_xfered = round_down(success, data->blksz); 964 } 965 966 if (status & MCI_DATABLOCKEND) 967 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); 968 969 if (status & MCI_DATAEND || data->error) { 970 if (dma_inprogress(host)) 971 mmci_dma_finalize(host, data); 972 mmci_stop_data(host); 973 974 if (!data->error) 975 /* The error clause is handled above, success! */ 976 data->bytes_xfered = data->blksz * data->blocks; 977 978 if (!data->stop || host->mrq->sbc) { 979 mmci_request_end(host, data->mrq); 980 } else { 981 mmci_start_command(host, data->stop, 0); 982 } 983 } 984 } 985 986 static void 987 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, 988 unsigned int status) 989 { 990 void __iomem *base = host->base; 991 bool sbc; 992 993 if (!cmd) 994 return; 995 996 sbc = (cmd == host->mrq->sbc); 997 998 /* 999 * We need to be one of these interrupts to be considered worth 1000 * handling. Note that we tag on any latent IRQs postponed 1001 * due to waiting for busy status. 1002 */ 1003 if (!((status|host->busy_status) & 1004 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND))) 1005 return; 1006 1007 /* 1008 * ST Micro variant: handle busy detection. 1009 */ 1010 if (host->variant->busy_detect) { 1011 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY); 1012 1013 /* We are busy with a command, return */ 1014 if (host->busy_status && 1015 (status & host->variant->busy_detect_flag)) 1016 return; 1017 1018 /* 1019 * We were not busy, but we now got a busy response on 1020 * something that was not an error, and we double-check 1021 * that the special busy status bit is still set before 1022 * proceeding. 1023 */ 1024 if (!host->busy_status && busy_resp && 1025 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) && 1026 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) { 1027 1028 /* Clear the busy start IRQ */ 1029 writel(host->variant->busy_detect_mask, 1030 host->base + MMCICLEAR); 1031 1032 /* Unmask the busy end IRQ */ 1033 writel(readl(base + MMCIMASK0) | 1034 host->variant->busy_detect_mask, 1035 base + MMCIMASK0); 1036 /* 1037 * Now cache the last response status code (until 1038 * the busy bit goes low), and return. 1039 */ 1040 host->busy_status = 1041 status & (MCI_CMDSENT|MCI_CMDRESPEND); 1042 return; 1043 } 1044 1045 /* 1046 * At this point we are not busy with a command, we have 1047 * not received a new busy request, clear and mask the busy 1048 * end IRQ and fall through to process the IRQ. 1049 */ 1050 if (host->busy_status) { 1051 1052 writel(host->variant->busy_detect_mask, 1053 host->base + MMCICLEAR); 1054 1055 writel(readl(base + MMCIMASK0) & 1056 ~host->variant->busy_detect_mask, 1057 base + MMCIMASK0); 1058 host->busy_status = 0; 1059 } 1060 } 1061 1062 host->cmd = NULL; 1063 1064 if (status & MCI_CMDTIMEOUT) { 1065 cmd->error = -ETIMEDOUT; 1066 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { 1067 cmd->error = -EILSEQ; 1068 } else { 1069 cmd->resp[0] = readl(base + MMCIRESPONSE0); 1070 cmd->resp[1] = readl(base + MMCIRESPONSE1); 1071 cmd->resp[2] = readl(base + MMCIRESPONSE2); 1072 cmd->resp[3] = readl(base + MMCIRESPONSE3); 1073 } 1074 1075 if ((!sbc && !cmd->data) || cmd->error) { 1076 if (host->data) { 1077 /* Terminate the DMA transfer */ 1078 if (dma_inprogress(host)) { 1079 mmci_dma_data_error(host); 1080 mmci_dma_unmap(host, host->data); 1081 } 1082 mmci_stop_data(host); 1083 } 1084 mmci_request_end(host, host->mrq); 1085 } else if (sbc) { 1086 mmci_start_command(host, host->mrq->cmd, 0); 1087 } else if (!(cmd->data->flags & MMC_DATA_READ)) { 1088 mmci_start_data(host, cmd->data); 1089 } 1090 } 1091 1092 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain) 1093 { 1094 return remain - (readl(host->base + MMCIFIFOCNT) << 2); 1095 } 1096 1097 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r) 1098 { 1099 /* 1100 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses 1101 * from the fifo range should be used 1102 */ 1103 if (status & MCI_RXFIFOHALFFULL) 1104 return host->variant->fifohalfsize; 1105 else if (status & MCI_RXDATAAVLBL) 1106 return 4; 1107 1108 return 0; 1109 } 1110 1111 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) 1112 { 1113 void __iomem *base = host->base; 1114 char *ptr = buffer; 1115 u32 status = readl(host->base + MMCISTATUS); 1116 int host_remain = host->size; 1117 1118 do { 1119 int count = host->get_rx_fifocnt(host, status, host_remain); 1120 1121 if (count > remain) 1122 count = remain; 1123 1124 if (count <= 0) 1125 break; 1126 1127 /* 1128 * SDIO especially may want to send something that is 1129 * not divisible by 4 (as opposed to card sectors 1130 * etc). Therefore make sure to always read the last bytes 1131 * while only doing full 32-bit reads towards the FIFO. 1132 */ 1133 if (unlikely(count & 0x3)) { 1134 if (count < 4) { 1135 unsigned char buf[4]; 1136 ioread32_rep(base + MMCIFIFO, buf, 1); 1137 memcpy(ptr, buf, count); 1138 } else { 1139 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1140 count &= ~0x3; 1141 } 1142 } else { 1143 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1144 } 1145 1146 ptr += count; 1147 remain -= count; 1148 host_remain -= count; 1149 1150 if (remain == 0) 1151 break; 1152 1153 status = readl(base + MMCISTATUS); 1154 } while (status & MCI_RXDATAAVLBL); 1155 1156 return ptr - buffer; 1157 } 1158 1159 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) 1160 { 1161 struct variant_data *variant = host->variant; 1162 void __iomem *base = host->base; 1163 char *ptr = buffer; 1164 1165 do { 1166 unsigned int count, maxcnt; 1167 1168 maxcnt = status & MCI_TXFIFOEMPTY ? 1169 variant->fifosize : variant->fifohalfsize; 1170 count = min(remain, maxcnt); 1171 1172 /* 1173 * SDIO especially may want to send something that is 1174 * not divisible by 4 (as opposed to card sectors 1175 * etc), and the FIFO only accept full 32-bit writes. 1176 * So compensate by adding +3 on the count, a single 1177 * byte become a 32bit write, 7 bytes will be two 1178 * 32bit writes etc. 1179 */ 1180 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); 1181 1182 ptr += count; 1183 remain -= count; 1184 1185 if (remain == 0) 1186 break; 1187 1188 status = readl(base + MMCISTATUS); 1189 } while (status & MCI_TXFIFOHALFEMPTY); 1190 1191 return ptr - buffer; 1192 } 1193 1194 /* 1195 * PIO data transfer IRQ handler. 1196 */ 1197 static irqreturn_t mmci_pio_irq(int irq, void *dev_id) 1198 { 1199 struct mmci_host *host = dev_id; 1200 struct sg_mapping_iter *sg_miter = &host->sg_miter; 1201 struct variant_data *variant = host->variant; 1202 void __iomem *base = host->base; 1203 unsigned long flags; 1204 u32 status; 1205 1206 status = readl(base + MMCISTATUS); 1207 1208 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); 1209 1210 local_irq_save(flags); 1211 1212 do { 1213 unsigned int remain, len; 1214 char *buffer; 1215 1216 /* 1217 * For write, we only need to test the half-empty flag 1218 * here - if the FIFO is completely empty, then by 1219 * definition it is more than half empty. 1220 * 1221 * For read, check for data available. 1222 */ 1223 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) 1224 break; 1225 1226 if (!sg_miter_next(sg_miter)) 1227 break; 1228 1229 buffer = sg_miter->addr; 1230 remain = sg_miter->length; 1231 1232 len = 0; 1233 if (status & MCI_RXACTIVE) 1234 len = mmci_pio_read(host, buffer, remain); 1235 if (status & MCI_TXACTIVE) 1236 len = mmci_pio_write(host, buffer, remain, status); 1237 1238 sg_miter->consumed = len; 1239 1240 host->size -= len; 1241 remain -= len; 1242 1243 if (remain) 1244 break; 1245 1246 status = readl(base + MMCISTATUS); 1247 } while (1); 1248 1249 sg_miter_stop(sg_miter); 1250 1251 local_irq_restore(flags); 1252 1253 /* 1254 * If we have less than the fifo 'half-full' threshold to transfer, 1255 * trigger a PIO interrupt as soon as any data is available. 1256 */ 1257 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) 1258 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); 1259 1260 /* 1261 * If we run out of data, disable the data IRQs; this 1262 * prevents a race where the FIFO becomes empty before 1263 * the chip itself has disabled the data path, and 1264 * stops us racing with our data end IRQ. 1265 */ 1266 if (host->size == 0) { 1267 mmci_set_mask1(host, 0); 1268 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); 1269 } 1270 1271 return IRQ_HANDLED; 1272 } 1273 1274 /* 1275 * Handle completion of command and data transfers. 1276 */ 1277 static irqreturn_t mmci_irq(int irq, void *dev_id) 1278 { 1279 struct mmci_host *host = dev_id; 1280 u32 status; 1281 int ret = 0; 1282 1283 spin_lock(&host->lock); 1284 1285 do { 1286 status = readl(host->base + MMCISTATUS); 1287 1288 if (host->singleirq) { 1289 if (status & readl(host->base + MMCIMASK1)) 1290 mmci_pio_irq(irq, dev_id); 1291 1292 status &= ~MCI_IRQ1MASK; 1293 } 1294 1295 /* 1296 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's 1297 * enabled) in mmci_cmd_irq() function where ST Micro busy 1298 * detection variant is handled. Considering the HW seems to be 1299 * triggering the IRQ on both edges while monitoring DAT0 for 1300 * busy completion and that same status bit is used to monitor 1301 * start and end of busy detection, special care must be taken 1302 * to make sure that both start and end interrupts are always 1303 * cleared one after the other. 1304 */ 1305 status &= readl(host->base + MMCIMASK0); 1306 if (host->variant->busy_detect) 1307 writel(status & ~host->variant->busy_detect_mask, 1308 host->base + MMCICLEAR); 1309 else 1310 writel(status, host->base + MMCICLEAR); 1311 1312 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); 1313 1314 if (host->variant->reversed_irq_handling) { 1315 mmci_data_irq(host, host->data, status); 1316 mmci_cmd_irq(host, host->cmd, status); 1317 } else { 1318 mmci_cmd_irq(host, host->cmd, status); 1319 mmci_data_irq(host, host->data, status); 1320 } 1321 1322 /* 1323 * Don't poll for busy completion in irq context. 1324 */ 1325 if (host->variant->busy_detect && host->busy_status) 1326 status &= ~host->variant->busy_detect_flag; 1327 1328 ret = 1; 1329 } while (status); 1330 1331 spin_unlock(&host->lock); 1332 1333 return IRQ_RETVAL(ret); 1334 } 1335 1336 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1337 { 1338 struct mmci_host *host = mmc_priv(mmc); 1339 unsigned long flags; 1340 1341 WARN_ON(host->mrq != NULL); 1342 1343 mrq->cmd->error = mmci_validate_data(host, mrq->data); 1344 if (mrq->cmd->error) { 1345 mmc_request_done(mmc, mrq); 1346 return; 1347 } 1348 1349 spin_lock_irqsave(&host->lock, flags); 1350 1351 host->mrq = mrq; 1352 1353 if (mrq->data) 1354 mmci_get_next_data(host, mrq->data); 1355 1356 if (mrq->data && mrq->data->flags & MMC_DATA_READ) 1357 mmci_start_data(host, mrq->data); 1358 1359 if (mrq->sbc) 1360 mmci_start_command(host, mrq->sbc, 0); 1361 else 1362 mmci_start_command(host, mrq->cmd, 0); 1363 1364 spin_unlock_irqrestore(&host->lock, flags); 1365 } 1366 1367 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1368 { 1369 struct mmci_host *host = mmc_priv(mmc); 1370 struct variant_data *variant = host->variant; 1371 u32 pwr = 0; 1372 unsigned long flags; 1373 int ret; 1374 1375 if (host->plat->ios_handler && 1376 host->plat->ios_handler(mmc_dev(mmc), ios)) 1377 dev_err(mmc_dev(mmc), "platform ios_handler failed\n"); 1378 1379 switch (ios->power_mode) { 1380 case MMC_POWER_OFF: 1381 if (!IS_ERR(mmc->supply.vmmc)) 1382 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1383 1384 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 1385 regulator_disable(mmc->supply.vqmmc); 1386 host->vqmmc_enabled = false; 1387 } 1388 1389 break; 1390 case MMC_POWER_UP: 1391 if (!IS_ERR(mmc->supply.vmmc)) 1392 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1393 1394 /* 1395 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP 1396 * and instead uses MCI_PWR_ON so apply whatever value is 1397 * configured in the variant data. 1398 */ 1399 pwr |= variant->pwrreg_powerup; 1400 1401 break; 1402 case MMC_POWER_ON: 1403 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 1404 ret = regulator_enable(mmc->supply.vqmmc); 1405 if (ret < 0) 1406 dev_err(mmc_dev(mmc), 1407 "failed to enable vqmmc regulator\n"); 1408 else 1409 host->vqmmc_enabled = true; 1410 } 1411 1412 pwr |= MCI_PWR_ON; 1413 break; 1414 } 1415 1416 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { 1417 /* 1418 * The ST Micro variant has some additional bits 1419 * indicating signal direction for the signals in 1420 * the SD/MMC bus and feedback-clock usage. 1421 */ 1422 pwr |= host->pwr_reg_add; 1423 1424 if (ios->bus_width == MMC_BUS_WIDTH_4) 1425 pwr &= ~MCI_ST_DATA74DIREN; 1426 else if (ios->bus_width == MMC_BUS_WIDTH_1) 1427 pwr &= (~MCI_ST_DATA74DIREN & 1428 ~MCI_ST_DATA31DIREN & 1429 ~MCI_ST_DATA2DIREN); 1430 } 1431 1432 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { 1433 if (host->hw_designer != AMBA_VENDOR_ST) 1434 pwr |= MCI_ROD; 1435 else { 1436 /* 1437 * The ST Micro variant use the ROD bit for something 1438 * else and only has OD (Open Drain). 1439 */ 1440 pwr |= MCI_OD; 1441 } 1442 } 1443 1444 /* 1445 * If clock = 0 and the variant requires the MMCIPOWER to be used for 1446 * gating the clock, the MCI_PWR_ON bit is cleared. 1447 */ 1448 if (!ios->clock && variant->pwrreg_clkgate) 1449 pwr &= ~MCI_PWR_ON; 1450 1451 if (host->variant->explicit_mclk_control && 1452 ios->clock != host->clock_cache) { 1453 ret = clk_set_rate(host->clk, ios->clock); 1454 if (ret < 0) 1455 dev_err(mmc_dev(host->mmc), 1456 "Error setting clock rate (%d)\n", ret); 1457 else 1458 host->mclk = clk_get_rate(host->clk); 1459 } 1460 host->clock_cache = ios->clock; 1461 1462 spin_lock_irqsave(&host->lock, flags); 1463 1464 mmci_set_clkreg(host, ios->clock); 1465 mmci_write_pwrreg(host, pwr); 1466 mmci_reg_delay(host); 1467 1468 spin_unlock_irqrestore(&host->lock, flags); 1469 } 1470 1471 static int mmci_get_cd(struct mmc_host *mmc) 1472 { 1473 struct mmci_host *host = mmc_priv(mmc); 1474 struct mmci_platform_data *plat = host->plat; 1475 unsigned int status = mmc_gpio_get_cd(mmc); 1476 1477 if (status == -ENOSYS) { 1478 if (!plat->status) 1479 return 1; /* Assume always present */ 1480 1481 status = plat->status(mmc_dev(host->mmc)); 1482 } 1483 return status; 1484 } 1485 1486 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 1487 { 1488 int ret = 0; 1489 1490 if (!IS_ERR(mmc->supply.vqmmc)) { 1491 1492 switch (ios->signal_voltage) { 1493 case MMC_SIGNAL_VOLTAGE_330: 1494 ret = regulator_set_voltage(mmc->supply.vqmmc, 1495 2700000, 3600000); 1496 break; 1497 case MMC_SIGNAL_VOLTAGE_180: 1498 ret = regulator_set_voltage(mmc->supply.vqmmc, 1499 1700000, 1950000); 1500 break; 1501 case MMC_SIGNAL_VOLTAGE_120: 1502 ret = regulator_set_voltage(mmc->supply.vqmmc, 1503 1100000, 1300000); 1504 break; 1505 } 1506 1507 if (ret) 1508 dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); 1509 } 1510 1511 return ret; 1512 } 1513 1514 static struct mmc_host_ops mmci_ops = { 1515 .request = mmci_request, 1516 .pre_req = mmci_pre_request, 1517 .post_req = mmci_post_request, 1518 .set_ios = mmci_set_ios, 1519 .get_ro = mmc_gpio_get_ro, 1520 .get_cd = mmci_get_cd, 1521 .start_signal_voltage_switch = mmci_sig_volt_switch, 1522 }; 1523 1524 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc) 1525 { 1526 struct mmci_host *host = mmc_priv(mmc); 1527 int ret = mmc_of_parse(mmc); 1528 1529 if (ret) 1530 return ret; 1531 1532 if (of_get_property(np, "st,sig-dir-dat0", NULL)) 1533 host->pwr_reg_add |= MCI_ST_DATA0DIREN; 1534 if (of_get_property(np, "st,sig-dir-dat2", NULL)) 1535 host->pwr_reg_add |= MCI_ST_DATA2DIREN; 1536 if (of_get_property(np, "st,sig-dir-dat31", NULL)) 1537 host->pwr_reg_add |= MCI_ST_DATA31DIREN; 1538 if (of_get_property(np, "st,sig-dir-dat74", NULL)) 1539 host->pwr_reg_add |= MCI_ST_DATA74DIREN; 1540 if (of_get_property(np, "st,sig-dir-cmd", NULL)) 1541 host->pwr_reg_add |= MCI_ST_CMDDIREN; 1542 if (of_get_property(np, "st,sig-pin-fbclk", NULL)) 1543 host->pwr_reg_add |= MCI_ST_FBCLKEN; 1544 1545 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) 1546 mmc->caps |= MMC_CAP_MMC_HIGHSPEED; 1547 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) 1548 mmc->caps |= MMC_CAP_SD_HIGHSPEED; 1549 1550 return 0; 1551 } 1552 1553 static int mmci_probe(struct amba_device *dev, 1554 const struct amba_id *id) 1555 { 1556 struct mmci_platform_data *plat = dev->dev.platform_data; 1557 struct device_node *np = dev->dev.of_node; 1558 struct variant_data *variant = id->data; 1559 struct mmci_host *host; 1560 struct mmc_host *mmc; 1561 int ret; 1562 1563 /* Must have platform data or Device Tree. */ 1564 if (!plat && !np) { 1565 dev_err(&dev->dev, "No plat data or DT found\n"); 1566 return -EINVAL; 1567 } 1568 1569 if (!plat) { 1570 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); 1571 if (!plat) 1572 return -ENOMEM; 1573 } 1574 1575 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); 1576 if (!mmc) 1577 return -ENOMEM; 1578 1579 ret = mmci_of_parse(np, mmc); 1580 if (ret) 1581 goto host_free; 1582 1583 host = mmc_priv(mmc); 1584 host->mmc = mmc; 1585 1586 host->hw_designer = amba_manf(dev); 1587 host->hw_revision = amba_rev(dev); 1588 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); 1589 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); 1590 1591 host->clk = devm_clk_get(&dev->dev, NULL); 1592 if (IS_ERR(host->clk)) { 1593 ret = PTR_ERR(host->clk); 1594 goto host_free; 1595 } 1596 1597 ret = clk_prepare_enable(host->clk); 1598 if (ret) 1599 goto host_free; 1600 1601 if (variant->qcom_fifo) 1602 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt; 1603 else 1604 host->get_rx_fifocnt = mmci_get_rx_fifocnt; 1605 1606 host->plat = plat; 1607 host->variant = variant; 1608 host->mclk = clk_get_rate(host->clk); 1609 /* 1610 * According to the spec, mclk is max 100 MHz, 1611 * so we try to adjust the clock down to this, 1612 * (if possible). 1613 */ 1614 if (host->mclk > variant->f_max) { 1615 ret = clk_set_rate(host->clk, variant->f_max); 1616 if (ret < 0) 1617 goto clk_disable; 1618 host->mclk = clk_get_rate(host->clk); 1619 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", 1620 host->mclk); 1621 } 1622 1623 host->phybase = dev->res.start; 1624 host->base = devm_ioremap_resource(&dev->dev, &dev->res); 1625 if (IS_ERR(host->base)) { 1626 ret = PTR_ERR(host->base); 1627 goto clk_disable; 1628 } 1629 1630 /* 1631 * The ARM and ST versions of the block have slightly different 1632 * clock divider equations which means that the minimum divider 1633 * differs too. 1634 * on Qualcomm like controllers get the nearest minimum clock to 100Khz 1635 */ 1636 if (variant->st_clkdiv) 1637 mmc->f_min = DIV_ROUND_UP(host->mclk, 257); 1638 else if (variant->explicit_mclk_control) 1639 mmc->f_min = clk_round_rate(host->clk, 100000); 1640 else 1641 mmc->f_min = DIV_ROUND_UP(host->mclk, 512); 1642 /* 1643 * If no maximum operating frequency is supplied, fall back to use 1644 * the module parameter, which has a (low) default value in case it 1645 * is not specified. Either value must not exceed the clock rate into 1646 * the block, of course. 1647 */ 1648 if (mmc->f_max) 1649 mmc->f_max = variant->explicit_mclk_control ? 1650 min(variant->f_max, mmc->f_max) : 1651 min(host->mclk, mmc->f_max); 1652 else 1653 mmc->f_max = variant->explicit_mclk_control ? 1654 fmax : min(host->mclk, fmax); 1655 1656 1657 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); 1658 1659 /* Get regulators and the supported OCR mask */ 1660 ret = mmc_regulator_get_supply(mmc); 1661 if (ret) 1662 goto clk_disable; 1663 1664 if (!mmc->ocr_avail) 1665 mmc->ocr_avail = plat->ocr_mask; 1666 else if (plat->ocr_mask) 1667 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1668 1669 /* DT takes precedence over platform data. */ 1670 if (!np) { 1671 if (!plat->cd_invert) 1672 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH; 1673 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH; 1674 } 1675 1676 /* We support these capabilities. */ 1677 mmc->caps |= MMC_CAP_CMD23; 1678 1679 /* 1680 * Enable busy detection. 1681 */ 1682 if (variant->busy_detect) { 1683 mmci_ops.card_busy = mmci_card_busy; 1684 /* 1685 * Not all variants have a flag to enable busy detection 1686 * in the DPSM, but if they do, set it here. 1687 */ 1688 if (variant->busy_dpsm_flag) 1689 mmci_write_datactrlreg(host, 1690 host->variant->busy_dpsm_flag); 1691 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; 1692 mmc->max_busy_timeout = 0; 1693 } 1694 1695 mmc->ops = &mmci_ops; 1696 1697 /* We support these PM capabilities. */ 1698 mmc->pm_caps |= MMC_PM_KEEP_POWER; 1699 1700 /* 1701 * We can do SGIO 1702 */ 1703 mmc->max_segs = NR_SG; 1704 1705 /* 1706 * Since only a certain number of bits are valid in the data length 1707 * register, we must ensure that we don't exceed 2^num-1 bytes in a 1708 * single request. 1709 */ 1710 mmc->max_req_size = (1 << variant->datalength_bits) - 1; 1711 1712 /* 1713 * Set the maximum segment size. Since we aren't doing DMA 1714 * (yet) we are only limited by the data length register. 1715 */ 1716 mmc->max_seg_size = mmc->max_req_size; 1717 1718 /* 1719 * Block size can be up to 2048 bytes, but must be a power of two. 1720 */ 1721 mmc->max_blk_size = 1 << 11; 1722 1723 /* 1724 * Limit the number of blocks transferred so that we don't overflow 1725 * the maximum request size. 1726 */ 1727 mmc->max_blk_count = mmc->max_req_size >> 11; 1728 1729 spin_lock_init(&host->lock); 1730 1731 writel(0, host->base + MMCIMASK0); 1732 writel(0, host->base + MMCIMASK1); 1733 writel(0xfff, host->base + MMCICLEAR); 1734 1735 /* 1736 * If: 1737 * - not using DT but using a descriptor table, or 1738 * - using a table of descriptors ALONGSIDE DT, or 1739 * look up these descriptors named "cd" and "wp" right here, fail 1740 * silently of these do not exist and proceed to try platform data 1741 */ 1742 if (!np) { 1743 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL); 1744 if (ret < 0) { 1745 if (ret == -EPROBE_DEFER) 1746 goto clk_disable; 1747 else if (gpio_is_valid(plat->gpio_cd)) { 1748 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0); 1749 if (ret) 1750 goto clk_disable; 1751 } 1752 } 1753 1754 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL); 1755 if (ret < 0) { 1756 if (ret == -EPROBE_DEFER) 1757 goto clk_disable; 1758 else if (gpio_is_valid(plat->gpio_wp)) { 1759 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp); 1760 if (ret) 1761 goto clk_disable; 1762 } 1763 } 1764 } 1765 1766 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED, 1767 DRIVER_NAME " (cmd)", host); 1768 if (ret) 1769 goto clk_disable; 1770 1771 if (!dev->irq[1]) 1772 host->singleirq = true; 1773 else { 1774 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq, 1775 IRQF_SHARED, DRIVER_NAME " (pio)", host); 1776 if (ret) 1777 goto clk_disable; 1778 } 1779 1780 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1781 1782 amba_set_drvdata(dev, mmc); 1783 1784 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", 1785 mmc_hostname(mmc), amba_part(dev), amba_manf(dev), 1786 amba_rev(dev), (unsigned long long)dev->res.start, 1787 dev->irq[0], dev->irq[1]); 1788 1789 mmci_dma_setup(host); 1790 1791 pm_runtime_set_autosuspend_delay(&dev->dev, 50); 1792 pm_runtime_use_autosuspend(&dev->dev); 1793 1794 mmc_add_host(mmc); 1795 1796 pm_runtime_put(&dev->dev); 1797 return 0; 1798 1799 clk_disable: 1800 clk_disable_unprepare(host->clk); 1801 host_free: 1802 mmc_free_host(mmc); 1803 return ret; 1804 } 1805 1806 static int mmci_remove(struct amba_device *dev) 1807 { 1808 struct mmc_host *mmc = amba_get_drvdata(dev); 1809 1810 if (mmc) { 1811 struct mmci_host *host = mmc_priv(mmc); 1812 1813 /* 1814 * Undo pm_runtime_put() in probe. We use the _sync 1815 * version here so that we can access the primecell. 1816 */ 1817 pm_runtime_get_sync(&dev->dev); 1818 1819 mmc_remove_host(mmc); 1820 1821 writel(0, host->base + MMCIMASK0); 1822 writel(0, host->base + MMCIMASK1); 1823 1824 writel(0, host->base + MMCICOMMAND); 1825 writel(0, host->base + MMCIDATACTRL); 1826 1827 mmci_dma_release(host); 1828 clk_disable_unprepare(host->clk); 1829 mmc_free_host(mmc); 1830 } 1831 1832 return 0; 1833 } 1834 1835 #ifdef CONFIG_PM 1836 static void mmci_save(struct mmci_host *host) 1837 { 1838 unsigned long flags; 1839 1840 spin_lock_irqsave(&host->lock, flags); 1841 1842 writel(0, host->base + MMCIMASK0); 1843 if (host->variant->pwrreg_nopower) { 1844 writel(0, host->base + MMCIDATACTRL); 1845 writel(0, host->base + MMCIPOWER); 1846 writel(0, host->base + MMCICLOCK); 1847 } 1848 mmci_reg_delay(host); 1849 1850 spin_unlock_irqrestore(&host->lock, flags); 1851 } 1852 1853 static void mmci_restore(struct mmci_host *host) 1854 { 1855 unsigned long flags; 1856 1857 spin_lock_irqsave(&host->lock, flags); 1858 1859 if (host->variant->pwrreg_nopower) { 1860 writel(host->clk_reg, host->base + MMCICLOCK); 1861 writel(host->datactrl_reg, host->base + MMCIDATACTRL); 1862 writel(host->pwr_reg, host->base + MMCIPOWER); 1863 } 1864 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1865 mmci_reg_delay(host); 1866 1867 spin_unlock_irqrestore(&host->lock, flags); 1868 } 1869 1870 static int mmci_runtime_suspend(struct device *dev) 1871 { 1872 struct amba_device *adev = to_amba_device(dev); 1873 struct mmc_host *mmc = amba_get_drvdata(adev); 1874 1875 if (mmc) { 1876 struct mmci_host *host = mmc_priv(mmc); 1877 pinctrl_pm_select_sleep_state(dev); 1878 mmci_save(host); 1879 clk_disable_unprepare(host->clk); 1880 } 1881 1882 return 0; 1883 } 1884 1885 static int mmci_runtime_resume(struct device *dev) 1886 { 1887 struct amba_device *adev = to_amba_device(dev); 1888 struct mmc_host *mmc = amba_get_drvdata(adev); 1889 1890 if (mmc) { 1891 struct mmci_host *host = mmc_priv(mmc); 1892 clk_prepare_enable(host->clk); 1893 mmci_restore(host); 1894 pinctrl_pm_select_default_state(dev); 1895 } 1896 1897 return 0; 1898 } 1899 #endif 1900 1901 static const struct dev_pm_ops mmci_dev_pm_ops = { 1902 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1903 pm_runtime_force_resume) 1904 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) 1905 }; 1906 1907 static const struct amba_id mmci_ids[] = { 1908 { 1909 .id = 0x00041180, 1910 .mask = 0xff0fffff, 1911 .data = &variant_arm, 1912 }, 1913 { 1914 .id = 0x01041180, 1915 .mask = 0xff0fffff, 1916 .data = &variant_arm_extended_fifo, 1917 }, 1918 { 1919 .id = 0x02041180, 1920 .mask = 0xff0fffff, 1921 .data = &variant_arm_extended_fifo_hwfc, 1922 }, 1923 { 1924 .id = 0x00041181, 1925 .mask = 0x000fffff, 1926 .data = &variant_arm, 1927 }, 1928 /* ST Micro variants */ 1929 { 1930 .id = 0x00180180, 1931 .mask = 0x00ffffff, 1932 .data = &variant_u300, 1933 }, 1934 { 1935 .id = 0x10180180, 1936 .mask = 0xf0ffffff, 1937 .data = &variant_nomadik, 1938 }, 1939 { 1940 .id = 0x00280180, 1941 .mask = 0x00ffffff, 1942 .data = &variant_nomadik, 1943 }, 1944 { 1945 .id = 0x00480180, 1946 .mask = 0xf0ffffff, 1947 .data = &variant_ux500, 1948 }, 1949 { 1950 .id = 0x10480180, 1951 .mask = 0xf0ffffff, 1952 .data = &variant_ux500v2, 1953 }, 1954 /* Qualcomm variants */ 1955 { 1956 .id = 0x00051180, 1957 .mask = 0x000fffff, 1958 .data = &variant_qcom, 1959 }, 1960 { 0, 0 }, 1961 }; 1962 1963 MODULE_DEVICE_TABLE(amba, mmci_ids); 1964 1965 static struct amba_driver mmci_driver = { 1966 .drv = { 1967 .name = DRIVER_NAME, 1968 .pm = &mmci_dev_pm_ops, 1969 }, 1970 .probe = mmci_probe, 1971 .remove = mmci_remove, 1972 .id_table = mmci_ids, 1973 }; 1974 1975 module_amba_driver(mmci_driver); 1976 1977 module_param(fmax, uint, 0444); 1978 1979 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); 1980 MODULE_LICENSE("GPL"); 1981