1 /* 2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver 3 * 4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. 5 * Copyright (C) 2010 ST-Ericsson SA 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/device.h> 16 #include <linux/interrupt.h> 17 #include <linux/kernel.h> 18 #include <linux/delay.h> 19 #include <linux/err.h> 20 #include <linux/highmem.h> 21 #include <linux/log2.h> 22 #include <linux/mmc/host.h> 23 #include <linux/mmc/card.h> 24 #include <linux/amba/bus.h> 25 #include <linux/clk.h> 26 #include <linux/scatterlist.h> 27 #include <linux/gpio.h> 28 #include <linux/regulator/consumer.h> 29 #include <linux/dmaengine.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/amba/mmci.h> 32 #include <linux/pm_runtime.h> 33 34 #include <asm/div64.h> 35 #include <asm/io.h> 36 #include <asm/sizes.h> 37 38 #include "mmci.h" 39 40 #define DRIVER_NAME "mmci-pl18x" 41 42 static unsigned int fmax = 515633; 43 44 /** 45 * struct variant_data - MMCI variant-specific quirks 46 * @clkreg: default value for MCICLOCK register 47 * @clkreg_enable: enable value for MMCICLOCK register 48 * @datalength_bits: number of bits in the MMCIDATALENGTH register 49 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY 50 * is asserted (likewise for RX) 51 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY 52 * is asserted (likewise for RX) 53 * @sdio: variant supports SDIO 54 * @st_clkdiv: true if using a ST-specific clock divider algorithm 55 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register 56 */ 57 struct variant_data { 58 unsigned int clkreg; 59 unsigned int clkreg_enable; 60 unsigned int datalength_bits; 61 unsigned int fifosize; 62 unsigned int fifohalfsize; 63 bool sdio; 64 bool st_clkdiv; 65 bool blksz_datactrl16; 66 }; 67 68 static struct variant_data variant_arm = { 69 .fifosize = 16 * 4, 70 .fifohalfsize = 8 * 4, 71 .datalength_bits = 16, 72 }; 73 74 static struct variant_data variant_arm_extended_fifo = { 75 .fifosize = 128 * 4, 76 .fifohalfsize = 64 * 4, 77 .datalength_bits = 16, 78 }; 79 80 static struct variant_data variant_u300 = { 81 .fifosize = 16 * 4, 82 .fifohalfsize = 8 * 4, 83 .clkreg_enable = MCI_ST_U300_HWFCEN, 84 .datalength_bits = 16, 85 .sdio = true, 86 }; 87 88 static struct variant_data variant_ux500 = { 89 .fifosize = 30 * 4, 90 .fifohalfsize = 8 * 4, 91 .clkreg = MCI_CLK_ENABLE, 92 .clkreg_enable = MCI_ST_UX500_HWFCEN, 93 .datalength_bits = 24, 94 .sdio = true, 95 .st_clkdiv = true, 96 }; 97 98 static struct variant_data variant_ux500v2 = { 99 .fifosize = 30 * 4, 100 .fifohalfsize = 8 * 4, 101 .clkreg = MCI_CLK_ENABLE, 102 .clkreg_enable = MCI_ST_UX500_HWFCEN, 103 .datalength_bits = 24, 104 .sdio = true, 105 .st_clkdiv = true, 106 .blksz_datactrl16 = true, 107 }; 108 109 /* 110 * This must be called with host->lock held 111 */ 112 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) 113 { 114 struct variant_data *variant = host->variant; 115 u32 clk = variant->clkreg; 116 117 if (desired) { 118 if (desired >= host->mclk) { 119 clk = MCI_CLK_BYPASS; 120 if (variant->st_clkdiv) 121 clk |= MCI_ST_UX500_NEG_EDGE; 122 host->cclk = host->mclk; 123 } else if (variant->st_clkdiv) { 124 /* 125 * DB8500 TRM says f = mclk / (clkdiv + 2) 126 * => clkdiv = (mclk / f) - 2 127 * Round the divider up so we don't exceed the max 128 * frequency 129 */ 130 clk = DIV_ROUND_UP(host->mclk, desired) - 2; 131 if (clk >= 256) 132 clk = 255; 133 host->cclk = host->mclk / (clk + 2); 134 } else { 135 /* 136 * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) 137 * => clkdiv = mclk / (2 * f) - 1 138 */ 139 clk = host->mclk / (2 * desired) - 1; 140 if (clk >= 256) 141 clk = 255; 142 host->cclk = host->mclk / (2 * (clk + 1)); 143 } 144 145 clk |= variant->clkreg_enable; 146 clk |= MCI_CLK_ENABLE; 147 /* This hasn't proven to be worthwhile */ 148 /* clk |= MCI_CLK_PWRSAVE; */ 149 } 150 151 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 152 clk |= MCI_4BIT_BUS; 153 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 154 clk |= MCI_ST_8BIT_BUS; 155 156 writel(clk, host->base + MMCICLOCK); 157 } 158 159 static void 160 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) 161 { 162 writel(0, host->base + MMCICOMMAND); 163 164 BUG_ON(host->data); 165 166 host->mrq = NULL; 167 host->cmd = NULL; 168 169 /* 170 * Need to drop the host lock here; mmc_request_done may call 171 * back into the driver... 172 */ 173 spin_unlock(&host->lock); 174 pm_runtime_put(mmc_dev(host->mmc)); 175 mmc_request_done(host->mmc, mrq); 176 spin_lock(&host->lock); 177 } 178 179 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) 180 { 181 void __iomem *base = host->base; 182 183 if (host->singleirq) { 184 unsigned int mask0 = readl(base + MMCIMASK0); 185 186 mask0 &= ~MCI_IRQ1MASK; 187 mask0 |= mask; 188 189 writel(mask0, base + MMCIMASK0); 190 } 191 192 writel(mask, base + MMCIMASK1); 193 } 194 195 static void mmci_stop_data(struct mmci_host *host) 196 { 197 writel(0, host->base + MMCIDATACTRL); 198 mmci_set_mask1(host, 0); 199 host->data = NULL; 200 } 201 202 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) 203 { 204 unsigned int flags = SG_MITER_ATOMIC; 205 206 if (data->flags & MMC_DATA_READ) 207 flags |= SG_MITER_TO_SG; 208 else 209 flags |= SG_MITER_FROM_SG; 210 211 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 212 } 213 214 /* 215 * All the DMA operation mode stuff goes inside this ifdef. 216 * This assumes that you have a generic DMA device interface, 217 * no custom DMA interfaces are supported. 218 */ 219 #ifdef CONFIG_DMA_ENGINE 220 static void __devinit mmci_dma_setup(struct mmci_host *host) 221 { 222 struct mmci_platform_data *plat = host->plat; 223 const char *rxname, *txname; 224 dma_cap_mask_t mask; 225 226 if (!plat || !plat->dma_filter) { 227 dev_info(mmc_dev(host->mmc), "no DMA platform data\n"); 228 return; 229 } 230 231 /* initialize pre request cookie */ 232 host->next_data.cookie = 1; 233 234 /* Try to acquire a generic DMA engine slave channel */ 235 dma_cap_zero(mask); 236 dma_cap_set(DMA_SLAVE, mask); 237 238 /* 239 * If only an RX channel is specified, the driver will 240 * attempt to use it bidirectionally, however if it is 241 * is specified but cannot be located, DMA will be disabled. 242 */ 243 if (plat->dma_rx_param) { 244 host->dma_rx_channel = dma_request_channel(mask, 245 plat->dma_filter, 246 plat->dma_rx_param); 247 /* E.g if no DMA hardware is present */ 248 if (!host->dma_rx_channel) 249 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n"); 250 } 251 252 if (plat->dma_tx_param) { 253 host->dma_tx_channel = dma_request_channel(mask, 254 plat->dma_filter, 255 plat->dma_tx_param); 256 if (!host->dma_tx_channel) 257 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n"); 258 } else { 259 host->dma_tx_channel = host->dma_rx_channel; 260 } 261 262 if (host->dma_rx_channel) 263 rxname = dma_chan_name(host->dma_rx_channel); 264 else 265 rxname = "none"; 266 267 if (host->dma_tx_channel) 268 txname = dma_chan_name(host->dma_tx_channel); 269 else 270 txname = "none"; 271 272 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", 273 rxname, txname); 274 275 /* 276 * Limit the maximum segment size in any SG entry according to 277 * the parameters of the DMA engine device. 278 */ 279 if (host->dma_tx_channel) { 280 struct device *dev = host->dma_tx_channel->device->dev; 281 unsigned int max_seg_size = dma_get_max_seg_size(dev); 282 283 if (max_seg_size < host->mmc->max_seg_size) 284 host->mmc->max_seg_size = max_seg_size; 285 } 286 if (host->dma_rx_channel) { 287 struct device *dev = host->dma_rx_channel->device->dev; 288 unsigned int max_seg_size = dma_get_max_seg_size(dev); 289 290 if (max_seg_size < host->mmc->max_seg_size) 291 host->mmc->max_seg_size = max_seg_size; 292 } 293 } 294 295 /* 296 * This is used in __devinit or __devexit so inline it 297 * so it can be discarded. 298 */ 299 static inline void mmci_dma_release(struct mmci_host *host) 300 { 301 struct mmci_platform_data *plat = host->plat; 302 303 if (host->dma_rx_channel) 304 dma_release_channel(host->dma_rx_channel); 305 if (host->dma_tx_channel && plat->dma_tx_param) 306 dma_release_channel(host->dma_tx_channel); 307 host->dma_rx_channel = host->dma_tx_channel = NULL; 308 } 309 310 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 311 { 312 struct dma_chan *chan = host->dma_current; 313 enum dma_data_direction dir; 314 u32 status; 315 int i; 316 317 /* Wait up to 1ms for the DMA to complete */ 318 for (i = 0; ; i++) { 319 status = readl(host->base + MMCISTATUS); 320 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) 321 break; 322 udelay(10); 323 } 324 325 /* 326 * Check to see whether we still have some data left in the FIFO - 327 * this catches DMA controllers which are unable to monitor the 328 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- 329 * contiguous buffers. On TX, we'll get a FIFO underrun error. 330 */ 331 if (status & MCI_RXDATAAVLBLMASK) { 332 dmaengine_terminate_all(chan); 333 if (!data->error) 334 data->error = -EIO; 335 } 336 337 if (data->flags & MMC_DATA_WRITE) { 338 dir = DMA_TO_DEVICE; 339 } else { 340 dir = DMA_FROM_DEVICE; 341 } 342 343 if (!data->host_cookie) 344 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); 345 346 /* 347 * Use of DMA with scatter-gather is impossible. 348 * Give up with DMA and switch back to PIO mode. 349 */ 350 if (status & MCI_RXDATAAVLBLMASK) { 351 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); 352 mmci_dma_release(host); 353 } 354 } 355 356 static void mmci_dma_data_error(struct mmci_host *host) 357 { 358 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); 359 dmaengine_terminate_all(host->dma_current); 360 } 361 362 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, 363 struct mmci_host_next *next) 364 { 365 struct variant_data *variant = host->variant; 366 struct dma_slave_config conf = { 367 .src_addr = host->phybase + MMCIFIFO, 368 .dst_addr = host->phybase + MMCIFIFO, 369 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 370 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 371 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ 372 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ 373 }; 374 struct dma_chan *chan; 375 struct dma_device *device; 376 struct dma_async_tx_descriptor *desc; 377 enum dma_data_direction buffer_dirn; 378 int nr_sg; 379 380 /* Check if next job is already prepared */ 381 if (data->host_cookie && !next && 382 host->dma_current && host->dma_desc_current) 383 return 0; 384 385 if (!next) { 386 host->dma_current = NULL; 387 host->dma_desc_current = NULL; 388 } 389 390 if (data->flags & MMC_DATA_READ) { 391 conf.direction = DMA_DEV_TO_MEM; 392 buffer_dirn = DMA_FROM_DEVICE; 393 chan = host->dma_rx_channel; 394 } else { 395 conf.direction = DMA_MEM_TO_DEV; 396 buffer_dirn = DMA_TO_DEVICE; 397 chan = host->dma_tx_channel; 398 } 399 400 /* If there's no DMA channel, fall back to PIO */ 401 if (!chan) 402 return -EINVAL; 403 404 /* If less than or equal to the fifo size, don't bother with DMA */ 405 if (data->blksz * data->blocks <= variant->fifosize) 406 return -EINVAL; 407 408 device = chan->device; 409 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn); 410 if (nr_sg == 0) 411 return -EINVAL; 412 413 dmaengine_slave_config(chan, &conf); 414 desc = device->device_prep_slave_sg(chan, data->sg, nr_sg, 415 conf.direction, DMA_CTRL_ACK); 416 if (!desc) 417 goto unmap_exit; 418 419 if (next) { 420 next->dma_chan = chan; 421 next->dma_desc = desc; 422 } else { 423 host->dma_current = chan; 424 host->dma_desc_current = desc; 425 } 426 427 return 0; 428 429 unmap_exit: 430 if (!next) 431 dmaengine_terminate_all(chan); 432 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn); 433 return -ENOMEM; 434 } 435 436 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 437 { 438 int ret; 439 struct mmc_data *data = host->data; 440 441 ret = mmci_dma_prep_data(host, host->data, NULL); 442 if (ret) 443 return ret; 444 445 /* Okay, go for it. */ 446 dev_vdbg(mmc_dev(host->mmc), 447 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", 448 data->sg_len, data->blksz, data->blocks, data->flags); 449 dmaengine_submit(host->dma_desc_current); 450 dma_async_issue_pending(host->dma_current); 451 452 datactrl |= MCI_DPSM_DMAENABLE; 453 454 /* Trigger the DMA transfer */ 455 writel(datactrl, host->base + MMCIDATACTRL); 456 457 /* 458 * Let the MMCI say when the data is ended and it's time 459 * to fire next DMA request. When that happens, MMCI will 460 * call mmci_data_end() 461 */ 462 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, 463 host->base + MMCIMASK0); 464 return 0; 465 } 466 467 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 468 { 469 struct mmci_host_next *next = &host->next_data; 470 471 if (data->host_cookie && data->host_cookie != next->cookie) { 472 pr_warning("[%s] invalid cookie: data->host_cookie %d" 473 " host->next_data.cookie %d\n", 474 __func__, data->host_cookie, host->next_data.cookie); 475 data->host_cookie = 0; 476 } 477 478 if (!data->host_cookie) 479 return; 480 481 host->dma_desc_current = next->dma_desc; 482 host->dma_current = next->dma_chan; 483 484 next->dma_desc = NULL; 485 next->dma_chan = NULL; 486 } 487 488 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq, 489 bool is_first_req) 490 { 491 struct mmci_host *host = mmc_priv(mmc); 492 struct mmc_data *data = mrq->data; 493 struct mmci_host_next *nd = &host->next_data; 494 495 if (!data) 496 return; 497 498 if (data->host_cookie) { 499 data->host_cookie = 0; 500 return; 501 } 502 503 /* if config for dma */ 504 if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) || 505 ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) { 506 if (mmci_dma_prep_data(host, data, nd)) 507 data->host_cookie = 0; 508 else 509 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; 510 } 511 } 512 513 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, 514 int err) 515 { 516 struct mmci_host *host = mmc_priv(mmc); 517 struct mmc_data *data = mrq->data; 518 struct dma_chan *chan; 519 enum dma_data_direction dir; 520 521 if (!data) 522 return; 523 524 if (data->flags & MMC_DATA_READ) { 525 dir = DMA_FROM_DEVICE; 526 chan = host->dma_rx_channel; 527 } else { 528 dir = DMA_TO_DEVICE; 529 chan = host->dma_tx_channel; 530 } 531 532 533 /* if config for dma */ 534 if (chan) { 535 if (err) 536 dmaengine_terminate_all(chan); 537 if (data->host_cookie) 538 dma_unmap_sg(mmc_dev(host->mmc), data->sg, 539 data->sg_len, dir); 540 mrq->data->host_cookie = 0; 541 } 542 } 543 544 #else 545 /* Blank functions if the DMA engine is not available */ 546 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 547 { 548 } 549 static inline void mmci_dma_setup(struct mmci_host *host) 550 { 551 } 552 553 static inline void mmci_dma_release(struct mmci_host *host) 554 { 555 } 556 557 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 558 { 559 } 560 561 static inline void mmci_dma_data_error(struct mmci_host *host) 562 { 563 } 564 565 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 566 { 567 return -ENOSYS; 568 } 569 570 #define mmci_pre_request NULL 571 #define mmci_post_request NULL 572 573 #endif 574 575 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) 576 { 577 struct variant_data *variant = host->variant; 578 unsigned int datactrl, timeout, irqmask; 579 unsigned long long clks; 580 void __iomem *base; 581 int blksz_bits; 582 583 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", 584 data->blksz, data->blocks, data->flags); 585 586 host->data = data; 587 host->size = data->blksz * data->blocks; 588 data->bytes_xfered = 0; 589 590 clks = (unsigned long long)data->timeout_ns * host->cclk; 591 do_div(clks, 1000000000UL); 592 593 timeout = data->timeout_clks + (unsigned int)clks; 594 595 base = host->base; 596 writel(timeout, base + MMCIDATATIMER); 597 writel(host->size, base + MMCIDATALENGTH); 598 599 blksz_bits = ffs(data->blksz) - 1; 600 BUG_ON(1 << blksz_bits != data->blksz); 601 602 if (variant->blksz_datactrl16) 603 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); 604 else 605 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; 606 607 if (data->flags & MMC_DATA_READ) 608 datactrl |= MCI_DPSM_DIRECTION; 609 610 /* 611 * Attempt to use DMA operation mode, if this 612 * should fail, fall back to PIO mode 613 */ 614 if (!mmci_dma_start_data(host, datactrl)) 615 return; 616 617 /* IRQ mode, map the SG list for CPU reading/writing */ 618 mmci_init_sg(host, data); 619 620 if (data->flags & MMC_DATA_READ) { 621 irqmask = MCI_RXFIFOHALFFULLMASK; 622 623 /* 624 * If we have less than the fifo 'half-full' threshold to 625 * transfer, trigger a PIO interrupt as soon as any data 626 * is available. 627 */ 628 if (host->size < variant->fifohalfsize) 629 irqmask |= MCI_RXDATAAVLBLMASK; 630 } else { 631 /* 632 * We don't actually need to include "FIFO empty" here 633 * since its implicit in "FIFO half empty". 634 */ 635 irqmask = MCI_TXFIFOHALFEMPTYMASK; 636 } 637 638 /* The ST Micro variants has a special bit to enable SDIO */ 639 if (variant->sdio && host->mmc->card) 640 if (mmc_card_sdio(host->mmc->card)) 641 datactrl |= MCI_ST_DPSM_SDIOEN; 642 643 writel(datactrl, base + MMCIDATACTRL); 644 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); 645 mmci_set_mask1(host, irqmask); 646 } 647 648 static void 649 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) 650 { 651 void __iomem *base = host->base; 652 653 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", 654 cmd->opcode, cmd->arg, cmd->flags); 655 656 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { 657 writel(0, base + MMCICOMMAND); 658 udelay(1); 659 } 660 661 c |= cmd->opcode | MCI_CPSM_ENABLE; 662 if (cmd->flags & MMC_RSP_PRESENT) { 663 if (cmd->flags & MMC_RSP_136) 664 c |= MCI_CPSM_LONGRSP; 665 c |= MCI_CPSM_RESPONSE; 666 } 667 if (/*interrupt*/0) 668 c |= MCI_CPSM_INTERRUPT; 669 670 host->cmd = cmd; 671 672 writel(cmd->arg, base + MMCIARGUMENT); 673 writel(c, base + MMCICOMMAND); 674 } 675 676 static void 677 mmci_data_irq(struct mmci_host *host, struct mmc_data *data, 678 unsigned int status) 679 { 680 /* First check for errors */ 681 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| 682 MCI_TXUNDERRUN|MCI_RXOVERRUN)) { 683 u32 remain, success; 684 685 /* Terminate the DMA transfer */ 686 if (dma_inprogress(host)) 687 mmci_dma_data_error(host); 688 689 /* 690 * Calculate how far we are into the transfer. Note that 691 * the data counter gives the number of bytes transferred 692 * on the MMC bus, not on the host side. On reads, this 693 * can be as much as a FIFO-worth of data ahead. This 694 * matters for FIFO overruns only. 695 */ 696 remain = readl(host->base + MMCIDATACNT); 697 success = data->blksz * data->blocks - remain; 698 699 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", 700 status, success); 701 if (status & MCI_DATACRCFAIL) { 702 /* Last block was not successful */ 703 success -= 1; 704 data->error = -EILSEQ; 705 } else if (status & MCI_DATATIMEOUT) { 706 data->error = -ETIMEDOUT; 707 } else if (status & MCI_STARTBITERR) { 708 data->error = -ECOMM; 709 } else if (status & MCI_TXUNDERRUN) { 710 data->error = -EIO; 711 } else if (status & MCI_RXOVERRUN) { 712 if (success > host->variant->fifosize) 713 success -= host->variant->fifosize; 714 else 715 success = 0; 716 data->error = -EIO; 717 } 718 data->bytes_xfered = round_down(success, data->blksz); 719 } 720 721 if (status & MCI_DATABLOCKEND) 722 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); 723 724 if (status & MCI_DATAEND || data->error) { 725 if (dma_inprogress(host)) 726 mmci_dma_unmap(host, data); 727 mmci_stop_data(host); 728 729 if (!data->error) 730 /* The error clause is handled above, success! */ 731 data->bytes_xfered = data->blksz * data->blocks; 732 733 if (!data->stop) { 734 mmci_request_end(host, data->mrq); 735 } else { 736 mmci_start_command(host, data->stop, 0); 737 } 738 } 739 } 740 741 static void 742 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, 743 unsigned int status) 744 { 745 void __iomem *base = host->base; 746 747 host->cmd = NULL; 748 749 if (status & MCI_CMDTIMEOUT) { 750 cmd->error = -ETIMEDOUT; 751 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { 752 cmd->error = -EILSEQ; 753 } else { 754 cmd->resp[0] = readl(base + MMCIRESPONSE0); 755 cmd->resp[1] = readl(base + MMCIRESPONSE1); 756 cmd->resp[2] = readl(base + MMCIRESPONSE2); 757 cmd->resp[3] = readl(base + MMCIRESPONSE3); 758 } 759 760 if (!cmd->data || cmd->error) { 761 if (host->data) { 762 /* Terminate the DMA transfer */ 763 if (dma_inprogress(host)) 764 mmci_dma_data_error(host); 765 mmci_stop_data(host); 766 } 767 mmci_request_end(host, cmd->mrq); 768 } else if (!(cmd->data->flags & MMC_DATA_READ)) { 769 mmci_start_data(host, cmd->data); 770 } 771 } 772 773 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) 774 { 775 void __iomem *base = host->base; 776 char *ptr = buffer; 777 u32 status; 778 int host_remain = host->size; 779 780 do { 781 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2); 782 783 if (count > remain) 784 count = remain; 785 786 if (count <= 0) 787 break; 788 789 readsl(base + MMCIFIFO, ptr, count >> 2); 790 791 ptr += count; 792 remain -= count; 793 host_remain -= count; 794 795 if (remain == 0) 796 break; 797 798 status = readl(base + MMCISTATUS); 799 } while (status & MCI_RXDATAAVLBL); 800 801 return ptr - buffer; 802 } 803 804 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) 805 { 806 struct variant_data *variant = host->variant; 807 void __iomem *base = host->base; 808 char *ptr = buffer; 809 810 do { 811 unsigned int count, maxcnt; 812 813 maxcnt = status & MCI_TXFIFOEMPTY ? 814 variant->fifosize : variant->fifohalfsize; 815 count = min(remain, maxcnt); 816 817 /* 818 * The ST Micro variant for SDIO transfer sizes 819 * less then 8 bytes should have clock H/W flow 820 * control disabled. 821 */ 822 if (variant->sdio && 823 mmc_card_sdio(host->mmc->card)) { 824 if (count < 8) 825 writel(readl(host->base + MMCICLOCK) & 826 ~variant->clkreg_enable, 827 host->base + MMCICLOCK); 828 else 829 writel(readl(host->base + MMCICLOCK) | 830 variant->clkreg_enable, 831 host->base + MMCICLOCK); 832 } 833 834 /* 835 * SDIO especially may want to send something that is 836 * not divisible by 4 (as opposed to card sectors 837 * etc), and the FIFO only accept full 32-bit writes. 838 * So compensate by adding +3 on the count, a single 839 * byte become a 32bit write, 7 bytes will be two 840 * 32bit writes etc. 841 */ 842 writesl(base + MMCIFIFO, ptr, (count + 3) >> 2); 843 844 ptr += count; 845 remain -= count; 846 847 if (remain == 0) 848 break; 849 850 status = readl(base + MMCISTATUS); 851 } while (status & MCI_TXFIFOHALFEMPTY); 852 853 return ptr - buffer; 854 } 855 856 /* 857 * PIO data transfer IRQ handler. 858 */ 859 static irqreturn_t mmci_pio_irq(int irq, void *dev_id) 860 { 861 struct mmci_host *host = dev_id; 862 struct sg_mapping_iter *sg_miter = &host->sg_miter; 863 struct variant_data *variant = host->variant; 864 void __iomem *base = host->base; 865 unsigned long flags; 866 u32 status; 867 868 status = readl(base + MMCISTATUS); 869 870 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); 871 872 local_irq_save(flags); 873 874 do { 875 unsigned int remain, len; 876 char *buffer; 877 878 /* 879 * For write, we only need to test the half-empty flag 880 * here - if the FIFO is completely empty, then by 881 * definition it is more than half empty. 882 * 883 * For read, check for data available. 884 */ 885 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) 886 break; 887 888 if (!sg_miter_next(sg_miter)) 889 break; 890 891 buffer = sg_miter->addr; 892 remain = sg_miter->length; 893 894 len = 0; 895 if (status & MCI_RXACTIVE) 896 len = mmci_pio_read(host, buffer, remain); 897 if (status & MCI_TXACTIVE) 898 len = mmci_pio_write(host, buffer, remain, status); 899 900 sg_miter->consumed = len; 901 902 host->size -= len; 903 remain -= len; 904 905 if (remain) 906 break; 907 908 status = readl(base + MMCISTATUS); 909 } while (1); 910 911 sg_miter_stop(sg_miter); 912 913 local_irq_restore(flags); 914 915 /* 916 * If we have less than the fifo 'half-full' threshold to transfer, 917 * trigger a PIO interrupt as soon as any data is available. 918 */ 919 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) 920 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); 921 922 /* 923 * If we run out of data, disable the data IRQs; this 924 * prevents a race where the FIFO becomes empty before 925 * the chip itself has disabled the data path, and 926 * stops us racing with our data end IRQ. 927 */ 928 if (host->size == 0) { 929 mmci_set_mask1(host, 0); 930 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); 931 } 932 933 return IRQ_HANDLED; 934 } 935 936 /* 937 * Handle completion of command and data transfers. 938 */ 939 static irqreturn_t mmci_irq(int irq, void *dev_id) 940 { 941 struct mmci_host *host = dev_id; 942 u32 status; 943 int ret = 0; 944 945 spin_lock(&host->lock); 946 947 do { 948 struct mmc_command *cmd; 949 struct mmc_data *data; 950 951 status = readl(host->base + MMCISTATUS); 952 953 if (host->singleirq) { 954 if (status & readl(host->base + MMCIMASK1)) 955 mmci_pio_irq(irq, dev_id); 956 957 status &= ~MCI_IRQ1MASK; 958 } 959 960 status &= readl(host->base + MMCIMASK0); 961 writel(status, host->base + MMCICLEAR); 962 963 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); 964 965 data = host->data; 966 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| 967 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND| 968 MCI_DATABLOCKEND) && data) 969 mmci_data_irq(host, data, status); 970 971 cmd = host->cmd; 972 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd) 973 mmci_cmd_irq(host, cmd, status); 974 975 ret = 1; 976 } while (status); 977 978 spin_unlock(&host->lock); 979 980 return IRQ_RETVAL(ret); 981 } 982 983 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 984 { 985 struct mmci_host *host = mmc_priv(mmc); 986 unsigned long flags; 987 988 WARN_ON(host->mrq != NULL); 989 990 if (mrq->data && !is_power_of_2(mrq->data->blksz)) { 991 dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n", 992 mrq->data->blksz); 993 mrq->cmd->error = -EINVAL; 994 mmc_request_done(mmc, mrq); 995 return; 996 } 997 998 pm_runtime_get_sync(mmc_dev(mmc)); 999 1000 spin_lock_irqsave(&host->lock, flags); 1001 1002 host->mrq = mrq; 1003 1004 if (mrq->data) 1005 mmci_get_next_data(host, mrq->data); 1006 1007 if (mrq->data && mrq->data->flags & MMC_DATA_READ) 1008 mmci_start_data(host, mrq->data); 1009 1010 mmci_start_command(host, mrq->cmd, 0); 1011 1012 spin_unlock_irqrestore(&host->lock, flags); 1013 } 1014 1015 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1016 { 1017 struct mmci_host *host = mmc_priv(mmc); 1018 u32 pwr = 0; 1019 unsigned long flags; 1020 int ret; 1021 1022 switch (ios->power_mode) { 1023 case MMC_POWER_OFF: 1024 if (host->vcc) 1025 ret = mmc_regulator_set_ocr(mmc, host->vcc, 0); 1026 break; 1027 case MMC_POWER_UP: 1028 if (host->vcc) { 1029 ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd); 1030 if (ret) { 1031 dev_err(mmc_dev(mmc), "unable to set OCR\n"); 1032 /* 1033 * The .set_ios() function in the mmc_host_ops 1034 * struct return void, and failing to set the 1035 * power should be rare so we print an error 1036 * and return here. 1037 */ 1038 return; 1039 } 1040 } 1041 if (host->plat->vdd_handler) 1042 pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd, 1043 ios->power_mode); 1044 /* The ST version does not have this, fall through to POWER_ON */ 1045 if (host->hw_designer != AMBA_VENDOR_ST) { 1046 pwr |= MCI_PWR_UP; 1047 break; 1048 } 1049 case MMC_POWER_ON: 1050 pwr |= MCI_PWR_ON; 1051 break; 1052 } 1053 1054 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { 1055 if (host->hw_designer != AMBA_VENDOR_ST) 1056 pwr |= MCI_ROD; 1057 else { 1058 /* 1059 * The ST Micro variant use the ROD bit for something 1060 * else and only has OD (Open Drain). 1061 */ 1062 pwr |= MCI_OD; 1063 } 1064 } 1065 1066 spin_lock_irqsave(&host->lock, flags); 1067 1068 mmci_set_clkreg(host, ios->clock); 1069 1070 if (host->pwr != pwr) { 1071 host->pwr = pwr; 1072 writel(pwr, host->base + MMCIPOWER); 1073 } 1074 1075 spin_unlock_irqrestore(&host->lock, flags); 1076 } 1077 1078 static int mmci_get_ro(struct mmc_host *mmc) 1079 { 1080 struct mmci_host *host = mmc_priv(mmc); 1081 1082 if (host->gpio_wp == -ENOSYS) 1083 return -ENOSYS; 1084 1085 return gpio_get_value_cansleep(host->gpio_wp); 1086 } 1087 1088 static int mmci_get_cd(struct mmc_host *mmc) 1089 { 1090 struct mmci_host *host = mmc_priv(mmc); 1091 struct mmci_platform_data *plat = host->plat; 1092 unsigned int status; 1093 1094 if (host->gpio_cd == -ENOSYS) { 1095 if (!plat->status) 1096 return 1; /* Assume always present */ 1097 1098 status = plat->status(mmc_dev(host->mmc)); 1099 } else 1100 status = !!gpio_get_value_cansleep(host->gpio_cd) 1101 ^ plat->cd_invert; 1102 1103 /* 1104 * Use positive logic throughout - status is zero for no card, 1105 * non-zero for card inserted. 1106 */ 1107 return status; 1108 } 1109 1110 static irqreturn_t mmci_cd_irq(int irq, void *dev_id) 1111 { 1112 struct mmci_host *host = dev_id; 1113 1114 mmc_detect_change(host->mmc, msecs_to_jiffies(500)); 1115 1116 return IRQ_HANDLED; 1117 } 1118 1119 static const struct mmc_host_ops mmci_ops = { 1120 .request = mmci_request, 1121 .pre_req = mmci_pre_request, 1122 .post_req = mmci_post_request, 1123 .set_ios = mmci_set_ios, 1124 .get_ro = mmci_get_ro, 1125 .get_cd = mmci_get_cd, 1126 }; 1127 1128 static int __devinit mmci_probe(struct amba_device *dev, 1129 const struct amba_id *id) 1130 { 1131 struct mmci_platform_data *plat = dev->dev.platform_data; 1132 struct variant_data *variant = id->data; 1133 struct mmci_host *host; 1134 struct mmc_host *mmc; 1135 int ret; 1136 1137 /* must have platform data */ 1138 if (!plat) { 1139 ret = -EINVAL; 1140 goto out; 1141 } 1142 1143 ret = amba_request_regions(dev, DRIVER_NAME); 1144 if (ret) 1145 goto out; 1146 1147 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); 1148 if (!mmc) { 1149 ret = -ENOMEM; 1150 goto rel_regions; 1151 } 1152 1153 host = mmc_priv(mmc); 1154 host->mmc = mmc; 1155 1156 host->gpio_wp = -ENOSYS; 1157 host->gpio_cd = -ENOSYS; 1158 host->gpio_cd_irq = -1; 1159 1160 host->hw_designer = amba_manf(dev); 1161 host->hw_revision = amba_rev(dev); 1162 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); 1163 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); 1164 1165 host->clk = clk_get(&dev->dev, NULL); 1166 if (IS_ERR(host->clk)) { 1167 ret = PTR_ERR(host->clk); 1168 host->clk = NULL; 1169 goto host_free; 1170 } 1171 1172 ret = clk_prepare(host->clk); 1173 if (ret) 1174 goto clk_free; 1175 1176 ret = clk_enable(host->clk); 1177 if (ret) 1178 goto clk_unprep; 1179 1180 host->plat = plat; 1181 host->variant = variant; 1182 host->mclk = clk_get_rate(host->clk); 1183 /* 1184 * According to the spec, mclk is max 100 MHz, 1185 * so we try to adjust the clock down to this, 1186 * (if possible). 1187 */ 1188 if (host->mclk > 100000000) { 1189 ret = clk_set_rate(host->clk, 100000000); 1190 if (ret < 0) 1191 goto clk_disable; 1192 host->mclk = clk_get_rate(host->clk); 1193 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", 1194 host->mclk); 1195 } 1196 host->phybase = dev->res.start; 1197 host->base = ioremap(dev->res.start, resource_size(&dev->res)); 1198 if (!host->base) { 1199 ret = -ENOMEM; 1200 goto clk_disable; 1201 } 1202 1203 mmc->ops = &mmci_ops; 1204 /* 1205 * The ARM and ST versions of the block have slightly different 1206 * clock divider equations which means that the minimum divider 1207 * differs too. 1208 */ 1209 if (variant->st_clkdiv) 1210 mmc->f_min = DIV_ROUND_UP(host->mclk, 257); 1211 else 1212 mmc->f_min = DIV_ROUND_UP(host->mclk, 512); 1213 /* 1214 * If the platform data supplies a maximum operating 1215 * frequency, this takes precedence. Else, we fall back 1216 * to using the module parameter, which has a (low) 1217 * default value in case it is not specified. Either 1218 * value must not exceed the clock rate into the block, 1219 * of course. 1220 */ 1221 if (plat->f_max) 1222 mmc->f_max = min(host->mclk, plat->f_max); 1223 else 1224 mmc->f_max = min(host->mclk, fmax); 1225 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); 1226 1227 #ifdef CONFIG_REGULATOR 1228 /* If we're using the regulator framework, try to fetch a regulator */ 1229 host->vcc = regulator_get(&dev->dev, "vmmc"); 1230 if (IS_ERR(host->vcc)) 1231 host->vcc = NULL; 1232 else { 1233 int mask = mmc_regulator_get_ocrmask(host->vcc); 1234 1235 if (mask < 0) 1236 dev_err(&dev->dev, "error getting OCR mask (%d)\n", 1237 mask); 1238 else { 1239 host->mmc->ocr_avail = (u32) mask; 1240 if (plat->ocr_mask) 1241 dev_warn(&dev->dev, 1242 "Provided ocr_mask/setpower will not be used " 1243 "(using regulator instead)\n"); 1244 } 1245 } 1246 #endif 1247 /* Fall back to platform data if no regulator is found */ 1248 if (host->vcc == NULL) 1249 mmc->ocr_avail = plat->ocr_mask; 1250 mmc->caps = plat->capabilities; 1251 mmc->caps2 = plat->capabilities2; 1252 1253 /* 1254 * We can do SGIO 1255 */ 1256 mmc->max_segs = NR_SG; 1257 1258 /* 1259 * Since only a certain number of bits are valid in the data length 1260 * register, we must ensure that we don't exceed 2^num-1 bytes in a 1261 * single request. 1262 */ 1263 mmc->max_req_size = (1 << variant->datalength_bits) - 1; 1264 1265 /* 1266 * Set the maximum segment size. Since we aren't doing DMA 1267 * (yet) we are only limited by the data length register. 1268 */ 1269 mmc->max_seg_size = mmc->max_req_size; 1270 1271 /* 1272 * Block size can be up to 2048 bytes, but must be a power of two. 1273 */ 1274 mmc->max_blk_size = 2048; 1275 1276 /* 1277 * No limit on the number of blocks transferred. 1278 */ 1279 mmc->max_blk_count = mmc->max_req_size; 1280 1281 spin_lock_init(&host->lock); 1282 1283 writel(0, host->base + MMCIMASK0); 1284 writel(0, host->base + MMCIMASK1); 1285 writel(0xfff, host->base + MMCICLEAR); 1286 1287 if (gpio_is_valid(plat->gpio_cd)) { 1288 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)"); 1289 if (ret == 0) 1290 ret = gpio_direction_input(plat->gpio_cd); 1291 if (ret == 0) 1292 host->gpio_cd = plat->gpio_cd; 1293 else if (ret != -ENOSYS) 1294 goto err_gpio_cd; 1295 1296 /* 1297 * A gpio pin that will detect cards when inserted and removed 1298 * will most likely want to trigger on the edges if it is 1299 * 0 when ejected and 1 when inserted (or mutatis mutandis 1300 * for the inverted case) so we request triggers on both 1301 * edges. 1302 */ 1303 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd), 1304 mmci_cd_irq, 1305 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, 1306 DRIVER_NAME " (cd)", host); 1307 if (ret >= 0) 1308 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd); 1309 } 1310 if (gpio_is_valid(plat->gpio_wp)) { 1311 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)"); 1312 if (ret == 0) 1313 ret = gpio_direction_input(plat->gpio_wp); 1314 if (ret == 0) 1315 host->gpio_wp = plat->gpio_wp; 1316 else if (ret != -ENOSYS) 1317 goto err_gpio_wp; 1318 } 1319 1320 if ((host->plat->status || host->gpio_cd != -ENOSYS) 1321 && host->gpio_cd_irq < 0) 1322 mmc->caps |= MMC_CAP_NEEDS_POLL; 1323 1324 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host); 1325 if (ret) 1326 goto unmap; 1327 1328 if (dev->irq[1] == NO_IRQ) 1329 host->singleirq = true; 1330 else { 1331 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED, 1332 DRIVER_NAME " (pio)", host); 1333 if (ret) 1334 goto irq0_free; 1335 } 1336 1337 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1338 1339 amba_set_drvdata(dev, mmc); 1340 1341 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", 1342 mmc_hostname(mmc), amba_part(dev), amba_manf(dev), 1343 amba_rev(dev), (unsigned long long)dev->res.start, 1344 dev->irq[0], dev->irq[1]); 1345 1346 mmci_dma_setup(host); 1347 1348 pm_runtime_put(&dev->dev); 1349 1350 mmc_add_host(mmc); 1351 1352 return 0; 1353 1354 irq0_free: 1355 free_irq(dev->irq[0], host); 1356 unmap: 1357 if (host->gpio_wp != -ENOSYS) 1358 gpio_free(host->gpio_wp); 1359 err_gpio_wp: 1360 if (host->gpio_cd_irq >= 0) 1361 free_irq(host->gpio_cd_irq, host); 1362 if (host->gpio_cd != -ENOSYS) 1363 gpio_free(host->gpio_cd); 1364 err_gpio_cd: 1365 iounmap(host->base); 1366 clk_disable: 1367 clk_disable(host->clk); 1368 clk_unprep: 1369 clk_unprepare(host->clk); 1370 clk_free: 1371 clk_put(host->clk); 1372 host_free: 1373 mmc_free_host(mmc); 1374 rel_regions: 1375 amba_release_regions(dev); 1376 out: 1377 return ret; 1378 } 1379 1380 static int __devexit mmci_remove(struct amba_device *dev) 1381 { 1382 struct mmc_host *mmc = amba_get_drvdata(dev); 1383 1384 amba_set_drvdata(dev, NULL); 1385 1386 if (mmc) { 1387 struct mmci_host *host = mmc_priv(mmc); 1388 1389 /* 1390 * Undo pm_runtime_put() in probe. We use the _sync 1391 * version here so that we can access the primecell. 1392 */ 1393 pm_runtime_get_sync(&dev->dev); 1394 1395 mmc_remove_host(mmc); 1396 1397 writel(0, host->base + MMCIMASK0); 1398 writel(0, host->base + MMCIMASK1); 1399 1400 writel(0, host->base + MMCICOMMAND); 1401 writel(0, host->base + MMCIDATACTRL); 1402 1403 mmci_dma_release(host); 1404 free_irq(dev->irq[0], host); 1405 if (!host->singleirq) 1406 free_irq(dev->irq[1], host); 1407 1408 if (host->gpio_wp != -ENOSYS) 1409 gpio_free(host->gpio_wp); 1410 if (host->gpio_cd_irq >= 0) 1411 free_irq(host->gpio_cd_irq, host); 1412 if (host->gpio_cd != -ENOSYS) 1413 gpio_free(host->gpio_cd); 1414 1415 iounmap(host->base); 1416 clk_disable(host->clk); 1417 clk_unprepare(host->clk); 1418 clk_put(host->clk); 1419 1420 if (host->vcc) 1421 mmc_regulator_set_ocr(mmc, host->vcc, 0); 1422 regulator_put(host->vcc); 1423 1424 mmc_free_host(mmc); 1425 1426 amba_release_regions(dev); 1427 } 1428 1429 return 0; 1430 } 1431 1432 #ifdef CONFIG_PM 1433 static int mmci_suspend(struct amba_device *dev, pm_message_t state) 1434 { 1435 struct mmc_host *mmc = amba_get_drvdata(dev); 1436 int ret = 0; 1437 1438 if (mmc) { 1439 struct mmci_host *host = mmc_priv(mmc); 1440 1441 ret = mmc_suspend_host(mmc); 1442 if (ret == 0) 1443 writel(0, host->base + MMCIMASK0); 1444 } 1445 1446 return ret; 1447 } 1448 1449 static int mmci_resume(struct amba_device *dev) 1450 { 1451 struct mmc_host *mmc = amba_get_drvdata(dev); 1452 int ret = 0; 1453 1454 if (mmc) { 1455 struct mmci_host *host = mmc_priv(mmc); 1456 1457 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1458 1459 ret = mmc_resume_host(mmc); 1460 } 1461 1462 return ret; 1463 } 1464 #else 1465 #define mmci_suspend NULL 1466 #define mmci_resume NULL 1467 #endif 1468 1469 static struct amba_id mmci_ids[] = { 1470 { 1471 .id = 0x00041180, 1472 .mask = 0xff0fffff, 1473 .data = &variant_arm, 1474 }, 1475 { 1476 .id = 0x01041180, 1477 .mask = 0xff0fffff, 1478 .data = &variant_arm_extended_fifo, 1479 }, 1480 { 1481 .id = 0x00041181, 1482 .mask = 0x000fffff, 1483 .data = &variant_arm, 1484 }, 1485 /* ST Micro variants */ 1486 { 1487 .id = 0x00180180, 1488 .mask = 0x00ffffff, 1489 .data = &variant_u300, 1490 }, 1491 { 1492 .id = 0x00280180, 1493 .mask = 0x00ffffff, 1494 .data = &variant_u300, 1495 }, 1496 { 1497 .id = 0x00480180, 1498 .mask = 0xf0ffffff, 1499 .data = &variant_ux500, 1500 }, 1501 { 1502 .id = 0x10480180, 1503 .mask = 0xf0ffffff, 1504 .data = &variant_ux500v2, 1505 }, 1506 { 0, 0 }, 1507 }; 1508 1509 MODULE_DEVICE_TABLE(amba, mmci_ids); 1510 1511 static struct amba_driver mmci_driver = { 1512 .drv = { 1513 .name = DRIVER_NAME, 1514 }, 1515 .probe = mmci_probe, 1516 .remove = __devexit_p(mmci_remove), 1517 .suspend = mmci_suspend, 1518 .resume = mmci_resume, 1519 .id_table = mmci_ids, 1520 }; 1521 1522 static int __init mmci_init(void) 1523 { 1524 return amba_driver_register(&mmci_driver); 1525 } 1526 1527 static void __exit mmci_exit(void) 1528 { 1529 amba_driver_unregister(&mmci_driver); 1530 } 1531 1532 module_init(mmci_init); 1533 module_exit(mmci_exit); 1534 module_param(fmax, uint, 0444); 1535 1536 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); 1537 MODULE_LICENSE("GPL"); 1538