xref: /linux/drivers/mmc/host/mmci.c (revision a11de92523f75a8140cf8eea3ce9b628f7a3cc77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 
44 #include "mmci.h"
45 
46 #define DRIVER_NAME "mmci-pl18x"
47 
48 static void mmci_variant_init(struct mmci_host *host);
49 static void ux500_variant_init(struct mmci_host *host);
50 static void ux500v2_variant_init(struct mmci_host *host);
51 
52 static unsigned int fmax = 515633;
53 
54 static struct variant_data variant_arm = {
55 	.fifosize		= 16 * 4,
56 	.fifohalfsize		= 8 * 4,
57 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
58 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
59 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
60 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
61 	.datalength_bits	= 16,
62 	.datactrl_blocksz	= 11,
63 	.pwrreg_powerup		= MCI_PWR_UP,
64 	.f_max			= 100000000,
65 	.reversed_irq_handling	= true,
66 	.mmcimask1		= true,
67 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
68 	.start_err		= MCI_STARTBITERR,
69 	.opendrain		= MCI_ROD,
70 	.init			= mmci_variant_init,
71 };
72 
73 static struct variant_data variant_arm_extended_fifo = {
74 	.fifosize		= 128 * 4,
75 	.fifohalfsize		= 64 * 4,
76 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
77 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
78 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
79 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
80 	.datalength_bits	= 16,
81 	.datactrl_blocksz	= 11,
82 	.pwrreg_powerup		= MCI_PWR_UP,
83 	.f_max			= 100000000,
84 	.mmcimask1		= true,
85 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
86 	.start_err		= MCI_STARTBITERR,
87 	.opendrain		= MCI_ROD,
88 	.init			= mmci_variant_init,
89 };
90 
91 static struct variant_data variant_arm_extended_fifo_hwfc = {
92 	.fifosize		= 128 * 4,
93 	.fifohalfsize		= 64 * 4,
94 	.clkreg_enable		= MCI_ARM_HWFCEN,
95 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
96 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
97 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
98 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
99 	.datalength_bits	= 16,
100 	.datactrl_blocksz	= 11,
101 	.pwrreg_powerup		= MCI_PWR_UP,
102 	.f_max			= 100000000,
103 	.mmcimask1		= true,
104 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
105 	.start_err		= MCI_STARTBITERR,
106 	.opendrain		= MCI_ROD,
107 	.init			= mmci_variant_init,
108 };
109 
110 static struct variant_data variant_u300 = {
111 	.fifosize		= 16 * 4,
112 	.fifohalfsize		= 8 * 4,
113 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
114 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
115 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
116 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
117 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
118 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
119 	.datalength_bits	= 16,
120 	.datactrl_blocksz	= 11,
121 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
122 	.st_sdio			= true,
123 	.pwrreg_powerup		= MCI_PWR_ON,
124 	.f_max			= 100000000,
125 	.signal_direction	= true,
126 	.pwrreg_clkgate		= true,
127 	.pwrreg_nopower		= true,
128 	.mmcimask1		= true,
129 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
130 	.start_err		= MCI_STARTBITERR,
131 	.opendrain		= MCI_OD,
132 	.init			= mmci_variant_init,
133 };
134 
135 static struct variant_data variant_nomadik = {
136 	.fifosize		= 16 * 4,
137 	.fifohalfsize		= 8 * 4,
138 	.clkreg			= MCI_CLK_ENABLE,
139 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
141 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
142 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
143 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
144 	.datalength_bits	= 24,
145 	.datactrl_blocksz	= 11,
146 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
147 	.st_sdio		= true,
148 	.st_clkdiv		= true,
149 	.pwrreg_powerup		= MCI_PWR_ON,
150 	.f_max			= 100000000,
151 	.signal_direction	= true,
152 	.pwrreg_clkgate		= true,
153 	.pwrreg_nopower		= true,
154 	.mmcimask1		= true,
155 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
156 	.start_err		= MCI_STARTBITERR,
157 	.opendrain		= MCI_OD,
158 	.init			= mmci_variant_init,
159 };
160 
161 static struct variant_data variant_ux500 = {
162 	.fifosize		= 30 * 4,
163 	.fifohalfsize		= 8 * 4,
164 	.clkreg			= MCI_CLK_ENABLE,
165 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
166 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
167 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
168 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
169 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
170 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
171 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
172 	.datalength_bits	= 24,
173 	.datactrl_blocksz	= 11,
174 	.datactrl_any_blocksz	= true,
175 	.dma_power_of_2		= true,
176 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
177 	.st_sdio		= true,
178 	.st_clkdiv		= true,
179 	.pwrreg_powerup		= MCI_PWR_ON,
180 	.f_max			= 100000000,
181 	.signal_direction	= true,
182 	.pwrreg_clkgate		= true,
183 	.busy_detect		= true,
184 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
185 	.busy_detect_flag	= MCI_ST_CARDBUSY,
186 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
187 	.pwrreg_nopower		= true,
188 	.mmcimask1		= true,
189 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
190 	.start_err		= MCI_STARTBITERR,
191 	.opendrain		= MCI_OD,
192 	.init			= ux500_variant_init,
193 };
194 
195 static struct variant_data variant_ux500v2 = {
196 	.fifosize		= 30 * 4,
197 	.fifohalfsize		= 8 * 4,
198 	.clkreg			= MCI_CLK_ENABLE,
199 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
200 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
202 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
203 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
204 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
205 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
206 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
207 	.datalength_bits	= 24,
208 	.datactrl_blocksz	= 11,
209 	.datactrl_any_blocksz	= true,
210 	.dma_power_of_2		= true,
211 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
212 	.st_sdio		= true,
213 	.st_clkdiv		= true,
214 	.pwrreg_powerup		= MCI_PWR_ON,
215 	.f_max			= 100000000,
216 	.signal_direction	= true,
217 	.pwrreg_clkgate		= true,
218 	.busy_detect		= true,
219 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
220 	.busy_detect_flag	= MCI_ST_CARDBUSY,
221 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
222 	.pwrreg_nopower		= true,
223 	.mmcimask1		= true,
224 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
225 	.start_err		= MCI_STARTBITERR,
226 	.opendrain		= MCI_OD,
227 	.init			= ux500v2_variant_init,
228 };
229 
230 static struct variant_data variant_stm32 = {
231 	.fifosize		= 32 * 4,
232 	.fifohalfsize		= 8 * 4,
233 	.clkreg			= MCI_CLK_ENABLE,
234 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
235 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
236 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
237 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
238 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
239 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
240 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
241 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
242 	.datalength_bits	= 24,
243 	.datactrl_blocksz	= 11,
244 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
245 	.st_sdio		= true,
246 	.st_clkdiv		= true,
247 	.pwrreg_powerup		= MCI_PWR_ON,
248 	.f_max			= 48000000,
249 	.pwrreg_clkgate		= true,
250 	.pwrreg_nopower		= true,
251 	.init			= mmci_variant_init,
252 };
253 
254 static struct variant_data variant_stm32_sdmmc = {
255 	.fifosize		= 16 * 4,
256 	.fifohalfsize		= 8 * 4,
257 	.f_max			= 208000000,
258 	.stm32_clkdiv		= true,
259 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
260 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
261 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
262 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
263 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
264 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
265 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
266 	.datactrl_first		= true,
267 	.datacnt_useless	= true,
268 	.datalength_bits	= 25,
269 	.datactrl_blocksz	= 14,
270 	.datactrl_any_blocksz	= true,
271 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
272 	.stm32_idmabsize_mask	= GENMASK(12, 5),
273 	.busy_timeout		= true,
274 	.busy_detect		= true,
275 	.busy_detect_flag	= MCI_STM32_BUSYD0,
276 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
277 	.init			= sdmmc_variant_init,
278 };
279 
280 static struct variant_data variant_stm32_sdmmcv2 = {
281 	.fifosize		= 16 * 4,
282 	.fifohalfsize		= 8 * 4,
283 	.f_max			= 208000000,
284 	.stm32_clkdiv		= true,
285 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
286 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
287 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
288 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
289 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
290 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
291 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
292 	.datactrl_first		= true,
293 	.datacnt_useless	= true,
294 	.datalength_bits	= 25,
295 	.datactrl_blocksz	= 14,
296 	.datactrl_any_blocksz	= true,
297 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
298 	.stm32_idmabsize_mask	= GENMASK(16, 5),
299 	.dma_lli		= true,
300 	.busy_timeout		= true,
301 	.busy_detect		= true,
302 	.busy_detect_flag	= MCI_STM32_BUSYD0,
303 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
304 	.init			= sdmmc_variant_init,
305 };
306 
307 static struct variant_data variant_qcom = {
308 	.fifosize		= 16 * 4,
309 	.fifohalfsize		= 8 * 4,
310 	.clkreg			= MCI_CLK_ENABLE,
311 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
312 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
313 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
314 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
315 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
316 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
317 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
318 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
319 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
320 	.datalength_bits	= 24,
321 	.datactrl_blocksz	= 11,
322 	.datactrl_any_blocksz	= true,
323 	.pwrreg_powerup		= MCI_PWR_UP,
324 	.f_max			= 208000000,
325 	.explicit_mclk_control	= true,
326 	.qcom_fifo		= true,
327 	.qcom_dml		= true,
328 	.mmcimask1		= true,
329 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
330 	.start_err		= MCI_STARTBITERR,
331 	.opendrain		= MCI_ROD,
332 	.init			= qcom_variant_init,
333 };
334 
335 /* Busy detection for the ST Micro variant */
336 static int mmci_card_busy(struct mmc_host *mmc)
337 {
338 	struct mmci_host *host = mmc_priv(mmc);
339 	unsigned long flags;
340 	int busy = 0;
341 
342 	spin_lock_irqsave(&host->lock, flags);
343 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
344 		busy = 1;
345 	spin_unlock_irqrestore(&host->lock, flags);
346 
347 	return busy;
348 }
349 
350 static void mmci_reg_delay(struct mmci_host *host)
351 {
352 	/*
353 	 * According to the spec, at least three feedback clock cycles
354 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
355 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
356 	 * Worst delay time during card init is at 100 kHz => 30 us.
357 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
358 	 */
359 	if (host->cclk < 25000000)
360 		udelay(30);
361 	else
362 		ndelay(120);
363 }
364 
365 /*
366  * This must be called with host->lock held
367  */
368 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
369 {
370 	if (host->clk_reg != clk) {
371 		host->clk_reg = clk;
372 		writel(clk, host->base + MMCICLOCK);
373 	}
374 }
375 
376 /*
377  * This must be called with host->lock held
378  */
379 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
380 {
381 	if (host->pwr_reg != pwr) {
382 		host->pwr_reg = pwr;
383 		writel(pwr, host->base + MMCIPOWER);
384 	}
385 }
386 
387 /*
388  * This must be called with host->lock held
389  */
390 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
391 {
392 	/* Keep busy mode in DPSM if enabled */
393 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
394 
395 	if (host->datactrl_reg != datactrl) {
396 		host->datactrl_reg = datactrl;
397 		writel(datactrl, host->base + MMCIDATACTRL);
398 	}
399 }
400 
401 /*
402  * This must be called with host->lock held
403  */
404 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
405 {
406 	struct variant_data *variant = host->variant;
407 	u32 clk = variant->clkreg;
408 
409 	/* Make sure cclk reflects the current calculated clock */
410 	host->cclk = 0;
411 
412 	if (desired) {
413 		if (variant->explicit_mclk_control) {
414 			host->cclk = host->mclk;
415 		} else if (desired >= host->mclk) {
416 			clk = MCI_CLK_BYPASS;
417 			if (variant->st_clkdiv)
418 				clk |= MCI_ST_UX500_NEG_EDGE;
419 			host->cclk = host->mclk;
420 		} else if (variant->st_clkdiv) {
421 			/*
422 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
423 			 * => clkdiv = (mclk / f) - 2
424 			 * Round the divider up so we don't exceed the max
425 			 * frequency
426 			 */
427 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
428 			if (clk >= 256)
429 				clk = 255;
430 			host->cclk = host->mclk / (clk + 2);
431 		} else {
432 			/*
433 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
434 			 * => clkdiv = mclk / (2 * f) - 1
435 			 */
436 			clk = host->mclk / (2 * desired) - 1;
437 			if (clk >= 256)
438 				clk = 255;
439 			host->cclk = host->mclk / (2 * (clk + 1));
440 		}
441 
442 		clk |= variant->clkreg_enable;
443 		clk |= MCI_CLK_ENABLE;
444 		/* This hasn't proven to be worthwhile */
445 		/* clk |= MCI_CLK_PWRSAVE; */
446 	}
447 
448 	/* Set actual clock for debug */
449 	host->mmc->actual_clock = host->cclk;
450 
451 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
452 		clk |= MCI_4BIT_BUS;
453 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
454 		clk |= variant->clkreg_8bit_bus_enable;
455 
456 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
457 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
458 		clk |= variant->clkreg_neg_edge_enable;
459 
460 	mmci_write_clkreg(host, clk);
461 }
462 
463 static void mmci_dma_release(struct mmci_host *host)
464 {
465 	if (host->ops && host->ops->dma_release)
466 		host->ops->dma_release(host);
467 
468 	host->use_dma = false;
469 }
470 
471 static void mmci_dma_setup(struct mmci_host *host)
472 {
473 	if (!host->ops || !host->ops->dma_setup)
474 		return;
475 
476 	if (host->ops->dma_setup(host))
477 		return;
478 
479 	/* initialize pre request cookie */
480 	host->next_cookie = 1;
481 
482 	host->use_dma = true;
483 }
484 
485 /*
486  * Validate mmc prerequisites
487  */
488 static int mmci_validate_data(struct mmci_host *host,
489 			      struct mmc_data *data)
490 {
491 	struct variant_data *variant = host->variant;
492 
493 	if (!data)
494 		return 0;
495 	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
496 		dev_err(mmc_dev(host->mmc),
497 			"unsupported block size (%d bytes)\n", data->blksz);
498 		return -EINVAL;
499 	}
500 
501 	if (host->ops && host->ops->validate_data)
502 		return host->ops->validate_data(host, data);
503 
504 	return 0;
505 }
506 
507 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
508 {
509 	int err;
510 
511 	if (!host->ops || !host->ops->prep_data)
512 		return 0;
513 
514 	err = host->ops->prep_data(host, data, next);
515 
516 	if (next && !err)
517 		data->host_cookie = ++host->next_cookie < 0 ?
518 			1 : host->next_cookie;
519 
520 	return err;
521 }
522 
523 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
524 		      int err)
525 {
526 	if (host->ops && host->ops->unprep_data)
527 		host->ops->unprep_data(host, data, err);
528 
529 	data->host_cookie = 0;
530 }
531 
532 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
533 {
534 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
535 
536 	if (host->ops && host->ops->get_next_data)
537 		host->ops->get_next_data(host, data);
538 }
539 
540 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
541 {
542 	struct mmc_data *data = host->data;
543 	int ret;
544 
545 	if (!host->use_dma)
546 		return -EINVAL;
547 
548 	ret = mmci_prep_data(host, data, false);
549 	if (ret)
550 		return ret;
551 
552 	if (!host->ops || !host->ops->dma_start)
553 		return -EINVAL;
554 
555 	/* Okay, go for it. */
556 	dev_vdbg(mmc_dev(host->mmc),
557 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
558 		 data->sg_len, data->blksz, data->blocks, data->flags);
559 
560 	ret = host->ops->dma_start(host, &datactrl);
561 	if (ret)
562 		return ret;
563 
564 	/* Trigger the DMA transfer */
565 	mmci_write_datactrlreg(host, datactrl);
566 
567 	/*
568 	 * Let the MMCI say when the data is ended and it's time
569 	 * to fire next DMA request. When that happens, MMCI will
570 	 * call mmci_data_end()
571 	 */
572 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
573 	       host->base + MMCIMASK0);
574 	return 0;
575 }
576 
577 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
578 {
579 	if (!host->use_dma)
580 		return;
581 
582 	if (host->ops && host->ops->dma_finalize)
583 		host->ops->dma_finalize(host, data);
584 }
585 
586 static void mmci_dma_error(struct mmci_host *host)
587 {
588 	if (!host->use_dma)
589 		return;
590 
591 	if (host->ops && host->ops->dma_error)
592 		host->ops->dma_error(host);
593 }
594 
595 static void
596 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
597 {
598 	writel(0, host->base + MMCICOMMAND);
599 
600 	BUG_ON(host->data);
601 
602 	host->mrq = NULL;
603 	host->cmd = NULL;
604 
605 	mmc_request_done(host->mmc, mrq);
606 }
607 
608 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
609 {
610 	void __iomem *base = host->base;
611 	struct variant_data *variant = host->variant;
612 
613 	if (host->singleirq) {
614 		unsigned int mask0 = readl(base + MMCIMASK0);
615 
616 		mask0 &= ~variant->irq_pio_mask;
617 		mask0 |= mask;
618 
619 		writel(mask0, base + MMCIMASK0);
620 	}
621 
622 	if (variant->mmcimask1)
623 		writel(mask, base + MMCIMASK1);
624 
625 	host->mask1_reg = mask;
626 }
627 
628 static void mmci_stop_data(struct mmci_host *host)
629 {
630 	mmci_write_datactrlreg(host, 0);
631 	mmci_set_mask1(host, 0);
632 	host->data = NULL;
633 }
634 
635 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
636 {
637 	unsigned int flags = SG_MITER_ATOMIC;
638 
639 	if (data->flags & MMC_DATA_READ)
640 		flags |= SG_MITER_TO_SG;
641 	else
642 		flags |= SG_MITER_FROM_SG;
643 
644 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
645 }
646 
647 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
648 {
649 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
650 }
651 
652 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
653 {
654 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
655 }
656 
657 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
658 {
659 	void __iomem *base = host->base;
660 
661 	/*
662 	 * Before unmasking for the busy end IRQ, confirm that the
663 	 * command was sent successfully. To keep track of having a
664 	 * command in-progress, waiting for busy signaling to end,
665 	 * store the status in host->busy_status.
666 	 *
667 	 * Note that, the card may need a couple of clock cycles before
668 	 * it starts signaling busy on DAT0, hence re-read the
669 	 * MMCISTATUS register here, to allow the busy bit to be set.
670 	 * Potentially we may even need to poll the register for a
671 	 * while, to allow it to be set, but tests indicates that it
672 	 * isn't needed.
673 	 */
674 	if (!host->busy_status && !(status & err_msk) &&
675 	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
676 		writel(readl(base + MMCIMASK0) |
677 		       host->variant->busy_detect_mask,
678 		       base + MMCIMASK0);
679 
680 		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
681 		return false;
682 	}
683 
684 	/*
685 	 * If there is a command in-progress that has been successfully
686 	 * sent, then bail out if busy status is set and wait for the
687 	 * busy end IRQ.
688 	 *
689 	 * Note that, the HW triggers an IRQ on both edges while
690 	 * monitoring DAT0 for busy completion, but there is only one
691 	 * status bit in MMCISTATUS for the busy state. Therefore
692 	 * both the start and the end interrupts needs to be cleared,
693 	 * one after the other. So, clear the busy start IRQ here.
694 	 */
695 	if (host->busy_status &&
696 	    (status & host->variant->busy_detect_flag)) {
697 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
698 		return false;
699 	}
700 
701 	/*
702 	 * If there is a command in-progress that has been successfully
703 	 * sent and the busy bit isn't set, it means we have received
704 	 * the busy end IRQ. Clear and mask the IRQ, then continue to
705 	 * process the command.
706 	 */
707 	if (host->busy_status) {
708 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
709 
710 		writel(readl(base + MMCIMASK0) &
711 		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
712 		host->busy_status = 0;
713 	}
714 
715 	return true;
716 }
717 
718 /*
719  * All the DMA operation mode stuff goes inside this ifdef.
720  * This assumes that you have a generic DMA device interface,
721  * no custom DMA interfaces are supported.
722  */
723 #ifdef CONFIG_DMA_ENGINE
724 struct mmci_dmae_next {
725 	struct dma_async_tx_descriptor *desc;
726 	struct dma_chan	*chan;
727 };
728 
729 struct mmci_dmae_priv {
730 	struct dma_chan	*cur;
731 	struct dma_chan	*rx_channel;
732 	struct dma_chan	*tx_channel;
733 	struct dma_async_tx_descriptor	*desc_current;
734 	struct mmci_dmae_next next_data;
735 };
736 
737 int mmci_dmae_setup(struct mmci_host *host)
738 {
739 	const char *rxname, *txname;
740 	struct mmci_dmae_priv *dmae;
741 
742 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
743 	if (!dmae)
744 		return -ENOMEM;
745 
746 	host->dma_priv = dmae;
747 
748 	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
749 	if (IS_ERR(dmae->rx_channel)) {
750 		int ret = PTR_ERR(dmae->rx_channel);
751 		dmae->rx_channel = NULL;
752 		return ret;
753 	}
754 
755 	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
756 	if (IS_ERR(dmae->tx_channel)) {
757 		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
758 			dev_warn(mmc_dev(host->mmc),
759 				 "Deferred probe for TX channel ignored\n");
760 		dmae->tx_channel = NULL;
761 	}
762 
763 	/*
764 	 * If only an RX channel is specified, the driver will
765 	 * attempt to use it bidirectionally, however if it is
766 	 * is specified but cannot be located, DMA will be disabled.
767 	 */
768 	if (dmae->rx_channel && !dmae->tx_channel)
769 		dmae->tx_channel = dmae->rx_channel;
770 
771 	if (dmae->rx_channel)
772 		rxname = dma_chan_name(dmae->rx_channel);
773 	else
774 		rxname = "none";
775 
776 	if (dmae->tx_channel)
777 		txname = dma_chan_name(dmae->tx_channel);
778 	else
779 		txname = "none";
780 
781 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
782 		 rxname, txname);
783 
784 	/*
785 	 * Limit the maximum segment size in any SG entry according to
786 	 * the parameters of the DMA engine device.
787 	 */
788 	if (dmae->tx_channel) {
789 		struct device *dev = dmae->tx_channel->device->dev;
790 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
791 
792 		if (max_seg_size < host->mmc->max_seg_size)
793 			host->mmc->max_seg_size = max_seg_size;
794 	}
795 	if (dmae->rx_channel) {
796 		struct device *dev = dmae->rx_channel->device->dev;
797 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
798 
799 		if (max_seg_size < host->mmc->max_seg_size)
800 			host->mmc->max_seg_size = max_seg_size;
801 	}
802 
803 	if (!dmae->tx_channel || !dmae->rx_channel) {
804 		mmci_dmae_release(host);
805 		return -EINVAL;
806 	}
807 
808 	return 0;
809 }
810 
811 /*
812  * This is used in or so inline it
813  * so it can be discarded.
814  */
815 void mmci_dmae_release(struct mmci_host *host)
816 {
817 	struct mmci_dmae_priv *dmae = host->dma_priv;
818 
819 	if (dmae->rx_channel)
820 		dma_release_channel(dmae->rx_channel);
821 	if (dmae->tx_channel)
822 		dma_release_channel(dmae->tx_channel);
823 	dmae->rx_channel = dmae->tx_channel = NULL;
824 }
825 
826 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
827 {
828 	struct mmci_dmae_priv *dmae = host->dma_priv;
829 	struct dma_chan *chan;
830 
831 	if (data->flags & MMC_DATA_READ)
832 		chan = dmae->rx_channel;
833 	else
834 		chan = dmae->tx_channel;
835 
836 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
837 		     mmc_get_dma_dir(data));
838 }
839 
840 void mmci_dmae_error(struct mmci_host *host)
841 {
842 	struct mmci_dmae_priv *dmae = host->dma_priv;
843 
844 	if (!dma_inprogress(host))
845 		return;
846 
847 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
848 	dmaengine_terminate_all(dmae->cur);
849 	host->dma_in_progress = false;
850 	dmae->cur = NULL;
851 	dmae->desc_current = NULL;
852 	host->data->host_cookie = 0;
853 
854 	mmci_dma_unmap(host, host->data);
855 }
856 
857 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
858 {
859 	struct mmci_dmae_priv *dmae = host->dma_priv;
860 	u32 status;
861 	int i;
862 
863 	if (!dma_inprogress(host))
864 		return;
865 
866 	/* Wait up to 1ms for the DMA to complete */
867 	for (i = 0; ; i++) {
868 		status = readl(host->base + MMCISTATUS);
869 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
870 			break;
871 		udelay(10);
872 	}
873 
874 	/*
875 	 * Check to see whether we still have some data left in the FIFO -
876 	 * this catches DMA controllers which are unable to monitor the
877 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
878 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
879 	 */
880 	if (status & MCI_RXDATAAVLBLMASK) {
881 		mmci_dma_error(host);
882 		if (!data->error)
883 			data->error = -EIO;
884 	} else if (!data->host_cookie) {
885 		mmci_dma_unmap(host, data);
886 	}
887 
888 	/*
889 	 * Use of DMA with scatter-gather is impossible.
890 	 * Give up with DMA and switch back to PIO mode.
891 	 */
892 	if (status & MCI_RXDATAAVLBLMASK) {
893 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
894 		mmci_dma_release(host);
895 	}
896 
897 	host->dma_in_progress = false;
898 	dmae->cur = NULL;
899 	dmae->desc_current = NULL;
900 }
901 
902 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
903 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
904 				struct dma_chan **dma_chan,
905 				struct dma_async_tx_descriptor **dma_desc)
906 {
907 	struct mmci_dmae_priv *dmae = host->dma_priv;
908 	struct variant_data *variant = host->variant;
909 	struct dma_slave_config conf = {
910 		.src_addr = host->phybase + MMCIFIFO,
911 		.dst_addr = host->phybase + MMCIFIFO,
912 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
914 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
915 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
916 		.device_fc = false,
917 	};
918 	struct dma_chan *chan;
919 	struct dma_device *device;
920 	struct dma_async_tx_descriptor *desc;
921 	int nr_sg;
922 	unsigned long flags = DMA_CTRL_ACK;
923 
924 	if (data->flags & MMC_DATA_READ) {
925 		conf.direction = DMA_DEV_TO_MEM;
926 		chan = dmae->rx_channel;
927 	} else {
928 		conf.direction = DMA_MEM_TO_DEV;
929 		chan = dmae->tx_channel;
930 	}
931 
932 	/* If there's no DMA channel, fall back to PIO */
933 	if (!chan)
934 		return -EINVAL;
935 
936 	/* If less than or equal to the fifo size, don't bother with DMA */
937 	if (data->blksz * data->blocks <= variant->fifosize)
938 		return -EINVAL;
939 
940 	/*
941 	 * This is necessary to get SDIO working on the Ux500. We do not yet
942 	 * know if this is a bug in:
943 	 * - The Ux500 DMA controller (DMA40)
944 	 * - The MMCI DMA interface on the Ux500
945 	 * some power of two blocks (such as 64 bytes) are sent regularly
946 	 * during SDIO traffic and those work fine so for these we enable DMA
947 	 * transfers.
948 	 */
949 	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
950 		return -EINVAL;
951 
952 	device = chan->device;
953 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
954 			   mmc_get_dma_dir(data));
955 	if (nr_sg == 0)
956 		return -EINVAL;
957 
958 	if (host->variant->qcom_dml)
959 		flags |= DMA_PREP_INTERRUPT;
960 
961 	dmaengine_slave_config(chan, &conf);
962 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
963 					    conf.direction, flags);
964 	if (!desc)
965 		goto unmap_exit;
966 
967 	*dma_chan = chan;
968 	*dma_desc = desc;
969 
970 	return 0;
971 
972  unmap_exit:
973 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
974 		     mmc_get_dma_dir(data));
975 	return -ENOMEM;
976 }
977 
978 int mmci_dmae_prep_data(struct mmci_host *host,
979 			struct mmc_data *data,
980 			bool next)
981 {
982 	struct mmci_dmae_priv *dmae = host->dma_priv;
983 	struct mmci_dmae_next *nd = &dmae->next_data;
984 
985 	if (!host->use_dma)
986 		return -EINVAL;
987 
988 	if (next)
989 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
990 	/* Check if next job is already prepared. */
991 	if (dmae->cur && dmae->desc_current)
992 		return 0;
993 
994 	/* No job were prepared thus do it now. */
995 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
996 				    &dmae->desc_current);
997 }
998 
999 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1000 {
1001 	struct mmci_dmae_priv *dmae = host->dma_priv;
1002 	int ret;
1003 
1004 	host->dma_in_progress = true;
1005 	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1006 	if (ret < 0) {
1007 		host->dma_in_progress = false;
1008 		return ret;
1009 	}
1010 	dma_async_issue_pending(dmae->cur);
1011 
1012 	*datactrl |= MCI_DPSM_DMAENABLE;
1013 
1014 	return 0;
1015 }
1016 
1017 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1018 {
1019 	struct mmci_dmae_priv *dmae = host->dma_priv;
1020 	struct mmci_dmae_next *next = &dmae->next_data;
1021 
1022 	if (!host->use_dma)
1023 		return;
1024 
1025 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1026 
1027 	dmae->desc_current = next->desc;
1028 	dmae->cur = next->chan;
1029 	next->desc = NULL;
1030 	next->chan = NULL;
1031 }
1032 
1033 void mmci_dmae_unprep_data(struct mmci_host *host,
1034 			   struct mmc_data *data, int err)
1035 
1036 {
1037 	struct mmci_dmae_priv *dmae = host->dma_priv;
1038 
1039 	if (!host->use_dma)
1040 		return;
1041 
1042 	mmci_dma_unmap(host, data);
1043 
1044 	if (err) {
1045 		struct mmci_dmae_next *next = &dmae->next_data;
1046 		struct dma_chan *chan;
1047 		if (data->flags & MMC_DATA_READ)
1048 			chan = dmae->rx_channel;
1049 		else
1050 			chan = dmae->tx_channel;
1051 		dmaengine_terminate_all(chan);
1052 
1053 		if (dmae->desc_current == next->desc)
1054 			dmae->desc_current = NULL;
1055 
1056 		if (dmae->cur == next->chan) {
1057 			host->dma_in_progress = false;
1058 			dmae->cur = NULL;
1059 		}
1060 
1061 		next->desc = NULL;
1062 		next->chan = NULL;
1063 	}
1064 }
1065 
1066 static struct mmci_host_ops mmci_variant_ops = {
1067 	.prep_data = mmci_dmae_prep_data,
1068 	.unprep_data = mmci_dmae_unprep_data,
1069 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1070 	.get_next_data = mmci_dmae_get_next_data,
1071 	.dma_setup = mmci_dmae_setup,
1072 	.dma_release = mmci_dmae_release,
1073 	.dma_start = mmci_dmae_start,
1074 	.dma_finalize = mmci_dmae_finalize,
1075 	.dma_error = mmci_dmae_error,
1076 };
1077 #else
1078 static struct mmci_host_ops mmci_variant_ops = {
1079 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1080 };
1081 #endif
1082 
1083 static void mmci_variant_init(struct mmci_host *host)
1084 {
1085 	host->ops = &mmci_variant_ops;
1086 }
1087 
1088 static void ux500_variant_init(struct mmci_host *host)
1089 {
1090 	host->ops = &mmci_variant_ops;
1091 	host->ops->busy_complete = ux500_busy_complete;
1092 }
1093 
1094 static void ux500v2_variant_init(struct mmci_host *host)
1095 {
1096 	host->ops = &mmci_variant_ops;
1097 	host->ops->busy_complete = ux500_busy_complete;
1098 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1099 }
1100 
1101 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1102 {
1103 	struct mmci_host *host = mmc_priv(mmc);
1104 	struct mmc_data *data = mrq->data;
1105 
1106 	if (!data)
1107 		return;
1108 
1109 	WARN_ON(data->host_cookie);
1110 
1111 	if (mmci_validate_data(host, data))
1112 		return;
1113 
1114 	mmci_prep_data(host, data, true);
1115 }
1116 
1117 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1118 			      int err)
1119 {
1120 	struct mmci_host *host = mmc_priv(mmc);
1121 	struct mmc_data *data = mrq->data;
1122 
1123 	if (!data || !data->host_cookie)
1124 		return;
1125 
1126 	mmci_unprep_data(host, data, err);
1127 }
1128 
1129 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1130 {
1131 	struct variant_data *variant = host->variant;
1132 	unsigned int datactrl, timeout, irqmask;
1133 	unsigned long long clks;
1134 	void __iomem *base;
1135 
1136 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1137 		data->blksz, data->blocks, data->flags);
1138 
1139 	host->data = data;
1140 	host->size = data->blksz * data->blocks;
1141 	data->bytes_xfered = 0;
1142 
1143 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1144 	do_div(clks, NSEC_PER_SEC);
1145 
1146 	timeout = data->timeout_clks + (unsigned int)clks;
1147 
1148 	base = host->base;
1149 	writel(timeout, base + MMCIDATATIMER);
1150 	writel(host->size, base + MMCIDATALENGTH);
1151 
1152 	datactrl = host->ops->get_datactrl_cfg(host);
1153 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1154 
1155 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1156 		u32 clk;
1157 
1158 		datactrl |= variant->datactrl_mask_sdio;
1159 
1160 		/*
1161 		 * The ST Micro variant for SDIO small write transfers
1162 		 * needs to have clock H/W flow control disabled,
1163 		 * otherwise the transfer will not start. The threshold
1164 		 * depends on the rate of MCLK.
1165 		 */
1166 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1167 		    (host->size < 8 ||
1168 		     (host->size <= 8 && host->mclk > 50000000)))
1169 			clk = host->clk_reg & ~variant->clkreg_enable;
1170 		else
1171 			clk = host->clk_reg | variant->clkreg_enable;
1172 
1173 		mmci_write_clkreg(host, clk);
1174 	}
1175 
1176 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1177 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1178 		datactrl |= variant->datactrl_mask_ddrmode;
1179 
1180 	/*
1181 	 * Attempt to use DMA operation mode, if this
1182 	 * should fail, fall back to PIO mode
1183 	 */
1184 	if (!mmci_dma_start(host, datactrl))
1185 		return;
1186 
1187 	/* IRQ mode, map the SG list for CPU reading/writing */
1188 	mmci_init_sg(host, data);
1189 
1190 	if (data->flags & MMC_DATA_READ) {
1191 		irqmask = MCI_RXFIFOHALFFULLMASK;
1192 
1193 		/*
1194 		 * If we have less than the fifo 'half-full' threshold to
1195 		 * transfer, trigger a PIO interrupt as soon as any data
1196 		 * is available.
1197 		 */
1198 		if (host->size < variant->fifohalfsize)
1199 			irqmask |= MCI_RXDATAAVLBLMASK;
1200 	} else {
1201 		/*
1202 		 * We don't actually need to include "FIFO empty" here
1203 		 * since its implicit in "FIFO half empty".
1204 		 */
1205 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1206 	}
1207 
1208 	mmci_write_datactrlreg(host, datactrl);
1209 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1210 	mmci_set_mask1(host, irqmask);
1211 }
1212 
1213 static void
1214 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1215 {
1216 	void __iomem *base = host->base;
1217 	unsigned long long clks;
1218 
1219 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1220 	    cmd->opcode, cmd->arg, cmd->flags);
1221 
1222 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1223 		writel(0, base + MMCICOMMAND);
1224 		mmci_reg_delay(host);
1225 	}
1226 
1227 	if (host->variant->cmdreg_stop &&
1228 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1229 		c |= host->variant->cmdreg_stop;
1230 
1231 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1232 	if (cmd->flags & MMC_RSP_PRESENT) {
1233 		if (cmd->flags & MMC_RSP_136)
1234 			c |= host->variant->cmdreg_lrsp_crc;
1235 		else if (cmd->flags & MMC_RSP_CRC)
1236 			c |= host->variant->cmdreg_srsp_crc;
1237 		else
1238 			c |= host->variant->cmdreg_srsp;
1239 	}
1240 
1241 	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1242 		if (!cmd->busy_timeout)
1243 			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1244 
1245 		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1246 			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1247 		else
1248 			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1249 
1250 		do_div(clks, MSEC_PER_SEC);
1251 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1252 	}
1253 
1254 	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1255 		host->ops->pre_sig_volt_switch(host);
1256 
1257 	if (/*interrupt*/0)
1258 		c |= MCI_CPSM_INTERRUPT;
1259 
1260 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1261 		c |= host->variant->data_cmd_enable;
1262 
1263 	host->cmd = cmd;
1264 
1265 	writel(cmd->arg, base + MMCIARGUMENT);
1266 	writel(c, base + MMCICOMMAND);
1267 }
1268 
1269 static void mmci_stop_command(struct mmci_host *host)
1270 {
1271 	host->stop_abort.error = 0;
1272 	mmci_start_command(host, &host->stop_abort, 0);
1273 }
1274 
1275 static void
1276 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1277 	      unsigned int status)
1278 {
1279 	unsigned int status_err;
1280 
1281 	/* Make sure we have data to handle */
1282 	if (!data)
1283 		return;
1284 
1285 	/* First check for errors */
1286 	status_err = status & (host->variant->start_err |
1287 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1288 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1289 
1290 	if (status_err) {
1291 		u32 remain, success;
1292 
1293 		/* Terminate the DMA transfer */
1294 		mmci_dma_error(host);
1295 
1296 		/*
1297 		 * Calculate how far we are into the transfer.  Note that
1298 		 * the data counter gives the number of bytes transferred
1299 		 * on the MMC bus, not on the host side.  On reads, this
1300 		 * can be as much as a FIFO-worth of data ahead.  This
1301 		 * matters for FIFO overruns only.
1302 		 */
1303 		if (!host->variant->datacnt_useless) {
1304 			remain = readl(host->base + MMCIDATACNT);
1305 			success = data->blksz * data->blocks - remain;
1306 		} else {
1307 			success = 0;
1308 		}
1309 
1310 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1311 			status_err, success);
1312 		if (status_err & MCI_DATACRCFAIL) {
1313 			/* Last block was not successful */
1314 			success -= 1;
1315 			data->error = -EILSEQ;
1316 		} else if (status_err & MCI_DATATIMEOUT) {
1317 			data->error = -ETIMEDOUT;
1318 		} else if (status_err & MCI_STARTBITERR) {
1319 			data->error = -ECOMM;
1320 		} else if (status_err & MCI_TXUNDERRUN) {
1321 			data->error = -EIO;
1322 		} else if (status_err & MCI_RXOVERRUN) {
1323 			if (success > host->variant->fifosize)
1324 				success -= host->variant->fifosize;
1325 			else
1326 				success = 0;
1327 			data->error = -EIO;
1328 		}
1329 		data->bytes_xfered = round_down(success, data->blksz);
1330 	}
1331 
1332 	if (status & MCI_DATABLOCKEND)
1333 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1334 
1335 	if (status & MCI_DATAEND || data->error) {
1336 		mmci_dma_finalize(host, data);
1337 
1338 		mmci_stop_data(host);
1339 
1340 		if (!data->error)
1341 			/* The error clause is handled above, success! */
1342 			data->bytes_xfered = data->blksz * data->blocks;
1343 
1344 		if (!data->stop) {
1345 			if (host->variant->cmdreg_stop && data->error)
1346 				mmci_stop_command(host);
1347 			else
1348 				mmci_request_end(host, data->mrq);
1349 		} else if (host->mrq->sbc && !data->error) {
1350 			mmci_request_end(host, data->mrq);
1351 		} else {
1352 			mmci_start_command(host, data->stop, 0);
1353 		}
1354 	}
1355 }
1356 
1357 static void
1358 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1359 	     unsigned int status)
1360 {
1361 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1362 	void __iomem *base = host->base;
1363 	bool sbc, busy_resp;
1364 
1365 	if (!cmd)
1366 		return;
1367 
1368 	sbc = (cmd == host->mrq->sbc);
1369 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1370 
1371 	/*
1372 	 * We need to be one of these interrupts to be considered worth
1373 	 * handling. Note that we tag on any latent IRQs postponed
1374 	 * due to waiting for busy status.
1375 	 */
1376 	if (host->variant->busy_timeout && busy_resp)
1377 		err_msk |= MCI_DATATIMEOUT;
1378 
1379 	if (!((status | host->busy_status) &
1380 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1381 		return;
1382 
1383 	/* Handle busy detection on DAT0 if the variant supports it. */
1384 	if (busy_resp && host->variant->busy_detect)
1385 		if (!host->ops->busy_complete(host, status, err_msk))
1386 			return;
1387 
1388 	host->cmd = NULL;
1389 
1390 	if (status & MCI_CMDTIMEOUT) {
1391 		cmd->error = -ETIMEDOUT;
1392 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1393 		cmd->error = -EILSEQ;
1394 	} else if (host->variant->busy_timeout && busy_resp &&
1395 		   status & MCI_DATATIMEOUT) {
1396 		cmd->error = -ETIMEDOUT;
1397 		host->irq_action = IRQ_WAKE_THREAD;
1398 	} else {
1399 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1400 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1401 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1402 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1403 	}
1404 
1405 	if ((!sbc && !cmd->data) || cmd->error) {
1406 		if (host->data) {
1407 			/* Terminate the DMA transfer */
1408 			mmci_dma_error(host);
1409 
1410 			mmci_stop_data(host);
1411 			if (host->variant->cmdreg_stop && cmd->error) {
1412 				mmci_stop_command(host);
1413 				return;
1414 			}
1415 		}
1416 
1417 		if (host->irq_action != IRQ_WAKE_THREAD)
1418 			mmci_request_end(host, host->mrq);
1419 
1420 	} else if (sbc) {
1421 		mmci_start_command(host, host->mrq->cmd, 0);
1422 	} else if (!host->variant->datactrl_first &&
1423 		   !(cmd->data->flags & MMC_DATA_READ)) {
1424 		mmci_start_data(host, cmd->data);
1425 	}
1426 }
1427 
1428 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1429 {
1430 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1431 }
1432 
1433 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1434 {
1435 	/*
1436 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1437 	 * from the fifo range should be used
1438 	 */
1439 	if (status & MCI_RXFIFOHALFFULL)
1440 		return host->variant->fifohalfsize;
1441 	else if (status & MCI_RXDATAAVLBL)
1442 		return 4;
1443 
1444 	return 0;
1445 }
1446 
1447 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1448 {
1449 	void __iomem *base = host->base;
1450 	char *ptr = buffer;
1451 	u32 status = readl(host->base + MMCISTATUS);
1452 	int host_remain = host->size;
1453 
1454 	do {
1455 		int count = host->get_rx_fifocnt(host, status, host_remain);
1456 
1457 		if (count > remain)
1458 			count = remain;
1459 
1460 		if (count <= 0)
1461 			break;
1462 
1463 		/*
1464 		 * SDIO especially may want to send something that is
1465 		 * not divisible by 4 (as opposed to card sectors
1466 		 * etc). Therefore make sure to always read the last bytes
1467 		 * while only doing full 32-bit reads towards the FIFO.
1468 		 */
1469 		if (unlikely(count & 0x3)) {
1470 			if (count < 4) {
1471 				unsigned char buf[4];
1472 				ioread32_rep(base + MMCIFIFO, buf, 1);
1473 				memcpy(ptr, buf, count);
1474 			} else {
1475 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1476 				count &= ~0x3;
1477 			}
1478 		} else {
1479 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1480 		}
1481 
1482 		ptr += count;
1483 		remain -= count;
1484 		host_remain -= count;
1485 
1486 		if (remain == 0)
1487 			break;
1488 
1489 		status = readl(base + MMCISTATUS);
1490 	} while (status & MCI_RXDATAAVLBL);
1491 
1492 	return ptr - buffer;
1493 }
1494 
1495 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1496 {
1497 	struct variant_data *variant = host->variant;
1498 	void __iomem *base = host->base;
1499 	char *ptr = buffer;
1500 
1501 	do {
1502 		unsigned int count, maxcnt;
1503 
1504 		maxcnt = status & MCI_TXFIFOEMPTY ?
1505 			 variant->fifosize : variant->fifohalfsize;
1506 		count = min(remain, maxcnt);
1507 
1508 		/*
1509 		 * SDIO especially may want to send something that is
1510 		 * not divisible by 4 (as opposed to card sectors
1511 		 * etc), and the FIFO only accept full 32-bit writes.
1512 		 * So compensate by adding +3 on the count, a single
1513 		 * byte become a 32bit write, 7 bytes will be two
1514 		 * 32bit writes etc.
1515 		 */
1516 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1517 
1518 		ptr += count;
1519 		remain -= count;
1520 
1521 		if (remain == 0)
1522 			break;
1523 
1524 		status = readl(base + MMCISTATUS);
1525 	} while (status & MCI_TXFIFOHALFEMPTY);
1526 
1527 	return ptr - buffer;
1528 }
1529 
1530 /*
1531  * PIO data transfer IRQ handler.
1532  */
1533 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1534 {
1535 	struct mmci_host *host = dev_id;
1536 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1537 	struct variant_data *variant = host->variant;
1538 	void __iomem *base = host->base;
1539 	u32 status;
1540 
1541 	status = readl(base + MMCISTATUS);
1542 
1543 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1544 
1545 	do {
1546 		unsigned int remain, len;
1547 		char *buffer;
1548 
1549 		/*
1550 		 * For write, we only need to test the half-empty flag
1551 		 * here - if the FIFO is completely empty, then by
1552 		 * definition it is more than half empty.
1553 		 *
1554 		 * For read, check for data available.
1555 		 */
1556 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1557 			break;
1558 
1559 		if (!sg_miter_next(sg_miter))
1560 			break;
1561 
1562 		buffer = sg_miter->addr;
1563 		remain = sg_miter->length;
1564 
1565 		len = 0;
1566 		if (status & MCI_RXACTIVE)
1567 			len = mmci_pio_read(host, buffer, remain);
1568 		if (status & MCI_TXACTIVE)
1569 			len = mmci_pio_write(host, buffer, remain, status);
1570 
1571 		sg_miter->consumed = len;
1572 
1573 		host->size -= len;
1574 		remain -= len;
1575 
1576 		if (remain)
1577 			break;
1578 
1579 		status = readl(base + MMCISTATUS);
1580 	} while (1);
1581 
1582 	sg_miter_stop(sg_miter);
1583 
1584 	/*
1585 	 * If we have less than the fifo 'half-full' threshold to transfer,
1586 	 * trigger a PIO interrupt as soon as any data is available.
1587 	 */
1588 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1589 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1590 
1591 	/*
1592 	 * If we run out of data, disable the data IRQs; this
1593 	 * prevents a race where the FIFO becomes empty before
1594 	 * the chip itself has disabled the data path, and
1595 	 * stops us racing with our data end IRQ.
1596 	 */
1597 	if (host->size == 0) {
1598 		mmci_set_mask1(host, 0);
1599 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1600 	}
1601 
1602 	return IRQ_HANDLED;
1603 }
1604 
1605 /*
1606  * Handle completion of command and data transfers.
1607  */
1608 static irqreturn_t mmci_irq(int irq, void *dev_id)
1609 {
1610 	struct mmci_host *host = dev_id;
1611 	u32 status;
1612 
1613 	spin_lock(&host->lock);
1614 	host->irq_action = IRQ_HANDLED;
1615 
1616 	do {
1617 		status = readl(host->base + MMCISTATUS);
1618 
1619 		if (host->singleirq) {
1620 			if (status & host->mask1_reg)
1621 				mmci_pio_irq(irq, dev_id);
1622 
1623 			status &= ~host->variant->irq_pio_mask;
1624 		}
1625 
1626 		/*
1627 		 * Busy detection is managed by mmci_cmd_irq(), including to
1628 		 * clear the corresponding IRQ.
1629 		 */
1630 		status &= readl(host->base + MMCIMASK0);
1631 		if (host->variant->busy_detect)
1632 			writel(status & ~host->variant->busy_detect_mask,
1633 			       host->base + MMCICLEAR);
1634 		else
1635 			writel(status, host->base + MMCICLEAR);
1636 
1637 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1638 
1639 		if (host->variant->reversed_irq_handling) {
1640 			mmci_data_irq(host, host->data, status);
1641 			mmci_cmd_irq(host, host->cmd, status);
1642 		} else {
1643 			mmci_cmd_irq(host, host->cmd, status);
1644 			mmci_data_irq(host, host->data, status);
1645 		}
1646 
1647 		/*
1648 		 * Busy detection has been handled by mmci_cmd_irq() above.
1649 		 * Clear the status bit to prevent polling in IRQ context.
1650 		 */
1651 		if (host->variant->busy_detect_flag)
1652 			status &= ~host->variant->busy_detect_flag;
1653 
1654 	} while (status);
1655 
1656 	spin_unlock(&host->lock);
1657 
1658 	return host->irq_action;
1659 }
1660 
1661 /*
1662  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1663  *
1664  * A reset is needed for some variants, where a datatimeout for a R1B request
1665  * causes the DPSM to stay busy (non-functional).
1666  */
1667 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1668 {
1669 	struct mmci_host *host = dev_id;
1670 	unsigned long flags;
1671 
1672 	if (host->rst) {
1673 		reset_control_assert(host->rst);
1674 		udelay(2);
1675 		reset_control_deassert(host->rst);
1676 	}
1677 
1678 	spin_lock_irqsave(&host->lock, flags);
1679 	writel(host->clk_reg, host->base + MMCICLOCK);
1680 	writel(host->pwr_reg, host->base + MMCIPOWER);
1681 	writel(MCI_IRQENABLE | host->variant->start_err,
1682 	       host->base + MMCIMASK0);
1683 
1684 	host->irq_action = IRQ_HANDLED;
1685 	mmci_request_end(host, host->mrq);
1686 	spin_unlock_irqrestore(&host->lock, flags);
1687 
1688 	return host->irq_action;
1689 }
1690 
1691 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1692 {
1693 	struct mmci_host *host = mmc_priv(mmc);
1694 	unsigned long flags;
1695 
1696 	WARN_ON(host->mrq != NULL);
1697 
1698 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1699 	if (mrq->cmd->error) {
1700 		mmc_request_done(mmc, mrq);
1701 		return;
1702 	}
1703 
1704 	spin_lock_irqsave(&host->lock, flags);
1705 
1706 	host->mrq = mrq;
1707 
1708 	if (mrq->data)
1709 		mmci_get_next_data(host, mrq->data);
1710 
1711 	if (mrq->data &&
1712 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1713 		mmci_start_data(host, mrq->data);
1714 
1715 	if (mrq->sbc)
1716 		mmci_start_command(host, mrq->sbc, 0);
1717 	else
1718 		mmci_start_command(host, mrq->cmd, 0);
1719 
1720 	spin_unlock_irqrestore(&host->lock, flags);
1721 }
1722 
1723 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1724 {
1725 	struct mmci_host *host = mmc_priv(mmc);
1726 	u32 max_busy_timeout = 0;
1727 
1728 	if (!host->variant->busy_detect)
1729 		return;
1730 
1731 	if (host->variant->busy_timeout && mmc->actual_clock)
1732 		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1733 
1734 	mmc->max_busy_timeout = max_busy_timeout;
1735 }
1736 
1737 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1738 {
1739 	struct mmci_host *host = mmc_priv(mmc);
1740 	struct variant_data *variant = host->variant;
1741 	u32 pwr = 0;
1742 	unsigned long flags;
1743 	int ret;
1744 
1745 	if (host->plat->ios_handler &&
1746 		host->plat->ios_handler(mmc_dev(mmc), ios))
1747 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1748 
1749 	switch (ios->power_mode) {
1750 	case MMC_POWER_OFF:
1751 		if (!IS_ERR(mmc->supply.vmmc))
1752 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1753 
1754 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1755 			regulator_disable(mmc->supply.vqmmc);
1756 			host->vqmmc_enabled = false;
1757 		}
1758 
1759 		break;
1760 	case MMC_POWER_UP:
1761 		if (!IS_ERR(mmc->supply.vmmc))
1762 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1763 
1764 		/*
1765 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1766 		 * and instead uses MCI_PWR_ON so apply whatever value is
1767 		 * configured in the variant data.
1768 		 */
1769 		pwr |= variant->pwrreg_powerup;
1770 
1771 		break;
1772 	case MMC_POWER_ON:
1773 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1774 			ret = regulator_enable(mmc->supply.vqmmc);
1775 			if (ret < 0)
1776 				dev_err(mmc_dev(mmc),
1777 					"failed to enable vqmmc regulator\n");
1778 			else
1779 				host->vqmmc_enabled = true;
1780 		}
1781 
1782 		pwr |= MCI_PWR_ON;
1783 		break;
1784 	}
1785 
1786 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1787 		/*
1788 		 * The ST Micro variant has some additional bits
1789 		 * indicating signal direction for the signals in
1790 		 * the SD/MMC bus and feedback-clock usage.
1791 		 */
1792 		pwr |= host->pwr_reg_add;
1793 
1794 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1795 			pwr &= ~MCI_ST_DATA74DIREN;
1796 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1797 			pwr &= (~MCI_ST_DATA74DIREN &
1798 				~MCI_ST_DATA31DIREN &
1799 				~MCI_ST_DATA2DIREN);
1800 	}
1801 
1802 	if (variant->opendrain) {
1803 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1804 			pwr |= variant->opendrain;
1805 	} else {
1806 		/*
1807 		 * If the variant cannot configure the pads by its own, then we
1808 		 * expect the pinctrl to be able to do that for us
1809 		 */
1810 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1811 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1812 		else
1813 			pinctrl_select_default_state(mmc_dev(mmc));
1814 	}
1815 
1816 	/*
1817 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1818 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1819 	 */
1820 	if (!ios->clock && variant->pwrreg_clkgate)
1821 		pwr &= ~MCI_PWR_ON;
1822 
1823 	if (host->variant->explicit_mclk_control &&
1824 	    ios->clock != host->clock_cache) {
1825 		ret = clk_set_rate(host->clk, ios->clock);
1826 		if (ret < 0)
1827 			dev_err(mmc_dev(host->mmc),
1828 				"Error setting clock rate (%d)\n", ret);
1829 		else
1830 			host->mclk = clk_get_rate(host->clk);
1831 	}
1832 	host->clock_cache = ios->clock;
1833 
1834 	spin_lock_irqsave(&host->lock, flags);
1835 
1836 	if (host->ops && host->ops->set_clkreg)
1837 		host->ops->set_clkreg(host, ios->clock);
1838 	else
1839 		mmci_set_clkreg(host, ios->clock);
1840 
1841 	mmci_set_max_busy_timeout(mmc);
1842 
1843 	if (host->ops && host->ops->set_pwrreg)
1844 		host->ops->set_pwrreg(host, pwr);
1845 	else
1846 		mmci_write_pwrreg(host, pwr);
1847 
1848 	mmci_reg_delay(host);
1849 
1850 	spin_unlock_irqrestore(&host->lock, flags);
1851 }
1852 
1853 static int mmci_get_cd(struct mmc_host *mmc)
1854 {
1855 	struct mmci_host *host = mmc_priv(mmc);
1856 	struct mmci_platform_data *plat = host->plat;
1857 	unsigned int status = mmc_gpio_get_cd(mmc);
1858 
1859 	if (status == -ENOSYS) {
1860 		if (!plat->status)
1861 			return 1; /* Assume always present */
1862 
1863 		status = plat->status(mmc_dev(host->mmc));
1864 	}
1865 	return status;
1866 }
1867 
1868 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1869 {
1870 	struct mmci_host *host = mmc_priv(mmc);
1871 	int ret;
1872 
1873 	ret = mmc_regulator_set_vqmmc(mmc, ios);
1874 
1875 	if (!ret && host->ops && host->ops->post_sig_volt_switch)
1876 		ret = host->ops->post_sig_volt_switch(host, ios);
1877 	else if (ret)
1878 		ret = 0;
1879 
1880 	if (ret < 0)
1881 		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1882 
1883 	return ret;
1884 }
1885 
1886 static struct mmc_host_ops mmci_ops = {
1887 	.request	= mmci_request,
1888 	.pre_req	= mmci_pre_request,
1889 	.post_req	= mmci_post_request,
1890 	.set_ios	= mmci_set_ios,
1891 	.get_ro		= mmc_gpio_get_ro,
1892 	.get_cd		= mmci_get_cd,
1893 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1894 };
1895 
1896 static void mmci_probe_level_translator(struct mmc_host *mmc)
1897 {
1898 	struct device *dev = mmc_dev(mmc);
1899 	struct mmci_host *host = mmc_priv(mmc);
1900 	struct gpio_desc *cmd_gpio;
1901 	struct gpio_desc *ck_gpio;
1902 	struct gpio_desc *ckin_gpio;
1903 	int clk_hi, clk_lo;
1904 
1905 	/*
1906 	 * Assume the level translator is present if st,use-ckin is set.
1907 	 * This is to cater for DTs which do not implement this test.
1908 	 */
1909 	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1910 
1911 	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
1912 	if (IS_ERR(cmd_gpio))
1913 		goto exit_cmd;
1914 
1915 	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
1916 	if (IS_ERR(ck_gpio))
1917 		goto exit_ck;
1918 
1919 	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
1920 	if (IS_ERR(ckin_gpio))
1921 		goto exit_ckin;
1922 
1923 	/* All GPIOs are valid, test whether level translator works */
1924 
1925 	/* Sample CKIN */
1926 	clk_hi = !!gpiod_get_value(ckin_gpio);
1927 
1928 	/* Set CK low */
1929 	gpiod_set_value(ck_gpio, 0);
1930 
1931 	/* Sample CKIN */
1932 	clk_lo = !!gpiod_get_value(ckin_gpio);
1933 
1934 	/* Tristate all */
1935 	gpiod_direction_input(cmd_gpio);
1936 	gpiod_direction_input(ck_gpio);
1937 
1938 	/* Level translator is present if CK signal is propagated to CKIN */
1939 	if (!clk_hi || clk_lo) {
1940 		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
1941 		dev_warn(dev,
1942 			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
1943 	}
1944 
1945 	gpiod_put(ckin_gpio);
1946 
1947 exit_ckin:
1948 	gpiod_put(ck_gpio);
1949 exit_ck:
1950 	gpiod_put(cmd_gpio);
1951 exit_cmd:
1952 	pinctrl_select_default_state(dev);
1953 }
1954 
1955 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1956 {
1957 	struct mmci_host *host = mmc_priv(mmc);
1958 	int ret = mmc_of_parse(mmc);
1959 
1960 	if (ret)
1961 		return ret;
1962 
1963 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1964 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1965 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1966 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1967 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1968 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1969 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1970 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1971 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1972 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1973 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1974 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1975 	if (of_get_property(np, "st,sig-dir", NULL))
1976 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1977 	if (of_get_property(np, "st,neg-edge", NULL))
1978 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1979 	if (of_get_property(np, "st,use-ckin", NULL))
1980 		mmci_probe_level_translator(mmc);
1981 
1982 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1983 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1984 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1985 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1986 
1987 	return 0;
1988 }
1989 
1990 static int mmci_probe(struct amba_device *dev,
1991 	const struct amba_id *id)
1992 {
1993 	struct mmci_platform_data *plat = dev->dev.platform_data;
1994 	struct device_node *np = dev->dev.of_node;
1995 	struct variant_data *variant = id->data;
1996 	struct mmci_host *host;
1997 	struct mmc_host *mmc;
1998 	int ret;
1999 
2000 	/* Must have platform data or Device Tree. */
2001 	if (!plat && !np) {
2002 		dev_err(&dev->dev, "No plat data or DT found\n");
2003 		return -EINVAL;
2004 	}
2005 
2006 	if (!plat) {
2007 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2008 		if (!plat)
2009 			return -ENOMEM;
2010 	}
2011 
2012 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2013 	if (!mmc)
2014 		return -ENOMEM;
2015 
2016 	host = mmc_priv(mmc);
2017 	host->mmc = mmc;
2018 	host->mmc_ops = &mmci_ops;
2019 	mmc->ops = &mmci_ops;
2020 
2021 	ret = mmci_of_parse(np, mmc);
2022 	if (ret)
2023 		goto host_free;
2024 
2025 	/*
2026 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2027 	 * pins can be set accordingly using pinctrl
2028 	 */
2029 	if (!variant->opendrain) {
2030 		host->pinctrl = devm_pinctrl_get(&dev->dev);
2031 		if (IS_ERR(host->pinctrl)) {
2032 			dev_err(&dev->dev, "failed to get pinctrl");
2033 			ret = PTR_ERR(host->pinctrl);
2034 			goto host_free;
2035 		}
2036 
2037 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2038 							    MMCI_PINCTRL_STATE_OPENDRAIN);
2039 		if (IS_ERR(host->pins_opendrain)) {
2040 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2041 			ret = PTR_ERR(host->pins_opendrain);
2042 			goto host_free;
2043 		}
2044 	}
2045 
2046 	host->hw_designer = amba_manf(dev);
2047 	host->hw_revision = amba_rev(dev);
2048 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2049 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2050 
2051 	host->clk = devm_clk_get(&dev->dev, NULL);
2052 	if (IS_ERR(host->clk)) {
2053 		ret = PTR_ERR(host->clk);
2054 		goto host_free;
2055 	}
2056 
2057 	ret = clk_prepare_enable(host->clk);
2058 	if (ret)
2059 		goto host_free;
2060 
2061 	if (variant->qcom_fifo)
2062 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2063 	else
2064 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2065 
2066 	host->plat = plat;
2067 	host->variant = variant;
2068 	host->mclk = clk_get_rate(host->clk);
2069 	/*
2070 	 * According to the spec, mclk is max 100 MHz,
2071 	 * so we try to adjust the clock down to this,
2072 	 * (if possible).
2073 	 */
2074 	if (host->mclk > variant->f_max) {
2075 		ret = clk_set_rate(host->clk, variant->f_max);
2076 		if (ret < 0)
2077 			goto clk_disable;
2078 		host->mclk = clk_get_rate(host->clk);
2079 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2080 			host->mclk);
2081 	}
2082 
2083 	host->phybase = dev->res.start;
2084 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2085 	if (IS_ERR(host->base)) {
2086 		ret = PTR_ERR(host->base);
2087 		goto clk_disable;
2088 	}
2089 
2090 	if (variant->init)
2091 		variant->init(host);
2092 
2093 	/*
2094 	 * The ARM and ST versions of the block have slightly different
2095 	 * clock divider equations which means that the minimum divider
2096 	 * differs too.
2097 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2098 	 */
2099 	if (variant->st_clkdiv)
2100 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2101 	else if (variant->stm32_clkdiv)
2102 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2103 	else if (variant->explicit_mclk_control)
2104 		mmc->f_min = clk_round_rate(host->clk, 100000);
2105 	else
2106 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2107 	/*
2108 	 * If no maximum operating frequency is supplied, fall back to use
2109 	 * the module parameter, which has a (low) default value in case it
2110 	 * is not specified. Either value must not exceed the clock rate into
2111 	 * the block, of course.
2112 	 */
2113 	if (mmc->f_max)
2114 		mmc->f_max = variant->explicit_mclk_control ?
2115 				min(variant->f_max, mmc->f_max) :
2116 				min(host->mclk, mmc->f_max);
2117 	else
2118 		mmc->f_max = variant->explicit_mclk_control ?
2119 				fmax : min(host->mclk, fmax);
2120 
2121 
2122 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2123 
2124 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2125 	if (IS_ERR(host->rst)) {
2126 		ret = PTR_ERR(host->rst);
2127 		goto clk_disable;
2128 	}
2129 	ret = reset_control_deassert(host->rst);
2130 	if (ret)
2131 		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2132 
2133 	/* Get regulators and the supported OCR mask */
2134 	ret = mmc_regulator_get_supply(mmc);
2135 	if (ret)
2136 		goto clk_disable;
2137 
2138 	if (!mmc->ocr_avail)
2139 		mmc->ocr_avail = plat->ocr_mask;
2140 	else if (plat->ocr_mask)
2141 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2142 
2143 	/* We support these capabilities. */
2144 	mmc->caps |= MMC_CAP_CMD23;
2145 
2146 	/*
2147 	 * Enable busy detection.
2148 	 */
2149 	if (variant->busy_detect) {
2150 		mmci_ops.card_busy = mmci_card_busy;
2151 		/*
2152 		 * Not all variants have a flag to enable busy detection
2153 		 * in the DPSM, but if they do, set it here.
2154 		 */
2155 		if (variant->busy_dpsm_flag)
2156 			mmci_write_datactrlreg(host,
2157 					       host->variant->busy_dpsm_flag);
2158 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2159 	}
2160 
2161 	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2162 	if (variant->busy_timeout)
2163 		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2164 
2165 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2166 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2167 	host->stop_abort.arg = 0;
2168 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2169 
2170 	/* We support these PM capabilities. */
2171 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2172 
2173 	/*
2174 	 * We can do SGIO
2175 	 */
2176 	mmc->max_segs = NR_SG;
2177 
2178 	/*
2179 	 * Since only a certain number of bits are valid in the data length
2180 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2181 	 * single request.
2182 	 */
2183 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2184 
2185 	/*
2186 	 * Set the maximum segment size.  Since we aren't doing DMA
2187 	 * (yet) we are only limited by the data length register.
2188 	 */
2189 	mmc->max_seg_size = mmc->max_req_size;
2190 
2191 	/*
2192 	 * Block size can be up to 2048 bytes, but must be a power of two.
2193 	 */
2194 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2195 
2196 	/*
2197 	 * Limit the number of blocks transferred so that we don't overflow
2198 	 * the maximum request size.
2199 	 */
2200 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2201 
2202 	spin_lock_init(&host->lock);
2203 
2204 	writel(0, host->base + MMCIMASK0);
2205 
2206 	if (variant->mmcimask1)
2207 		writel(0, host->base + MMCIMASK1);
2208 
2209 	writel(0xfff, host->base + MMCICLEAR);
2210 
2211 	/*
2212 	 * If:
2213 	 * - not using DT but using a descriptor table, or
2214 	 * - using a table of descriptors ALONGSIDE DT, or
2215 	 * look up these descriptors named "cd" and "wp" right here, fail
2216 	 * silently of these do not exist
2217 	 */
2218 	if (!np) {
2219 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2220 		if (ret == -EPROBE_DEFER)
2221 			goto clk_disable;
2222 
2223 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2224 		if (ret == -EPROBE_DEFER)
2225 			goto clk_disable;
2226 	}
2227 
2228 	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2229 					mmci_irq_thread, IRQF_SHARED,
2230 					DRIVER_NAME " (cmd)", host);
2231 	if (ret)
2232 		goto clk_disable;
2233 
2234 	if (!dev->irq[1])
2235 		host->singleirq = true;
2236 	else {
2237 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2238 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2239 		if (ret)
2240 			goto clk_disable;
2241 	}
2242 
2243 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2244 
2245 	amba_set_drvdata(dev, mmc);
2246 
2247 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2248 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2249 		 amba_rev(dev), (unsigned long long)dev->res.start,
2250 		 dev->irq[0], dev->irq[1]);
2251 
2252 	mmci_dma_setup(host);
2253 
2254 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2255 	pm_runtime_use_autosuspend(&dev->dev);
2256 
2257 	mmc_add_host(mmc);
2258 
2259 	pm_runtime_put(&dev->dev);
2260 	return 0;
2261 
2262  clk_disable:
2263 	clk_disable_unprepare(host->clk);
2264  host_free:
2265 	mmc_free_host(mmc);
2266 	return ret;
2267 }
2268 
2269 static void mmci_remove(struct amba_device *dev)
2270 {
2271 	struct mmc_host *mmc = amba_get_drvdata(dev);
2272 
2273 	if (mmc) {
2274 		struct mmci_host *host = mmc_priv(mmc);
2275 		struct variant_data *variant = host->variant;
2276 
2277 		/*
2278 		 * Undo pm_runtime_put() in probe.  We use the _sync
2279 		 * version here so that we can access the primecell.
2280 		 */
2281 		pm_runtime_get_sync(&dev->dev);
2282 
2283 		mmc_remove_host(mmc);
2284 
2285 		writel(0, host->base + MMCIMASK0);
2286 
2287 		if (variant->mmcimask1)
2288 			writel(0, host->base + MMCIMASK1);
2289 
2290 		writel(0, host->base + MMCICOMMAND);
2291 		writel(0, host->base + MMCIDATACTRL);
2292 
2293 		mmci_dma_release(host);
2294 		clk_disable_unprepare(host->clk);
2295 		mmc_free_host(mmc);
2296 	}
2297 }
2298 
2299 #ifdef CONFIG_PM
2300 static void mmci_save(struct mmci_host *host)
2301 {
2302 	unsigned long flags;
2303 
2304 	spin_lock_irqsave(&host->lock, flags);
2305 
2306 	writel(0, host->base + MMCIMASK0);
2307 	if (host->variant->pwrreg_nopower) {
2308 		writel(0, host->base + MMCIDATACTRL);
2309 		writel(0, host->base + MMCIPOWER);
2310 		writel(0, host->base + MMCICLOCK);
2311 	}
2312 	mmci_reg_delay(host);
2313 
2314 	spin_unlock_irqrestore(&host->lock, flags);
2315 }
2316 
2317 static void mmci_restore(struct mmci_host *host)
2318 {
2319 	unsigned long flags;
2320 
2321 	spin_lock_irqsave(&host->lock, flags);
2322 
2323 	if (host->variant->pwrreg_nopower) {
2324 		writel(host->clk_reg, host->base + MMCICLOCK);
2325 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2326 		writel(host->pwr_reg, host->base + MMCIPOWER);
2327 	}
2328 	writel(MCI_IRQENABLE | host->variant->start_err,
2329 	       host->base + MMCIMASK0);
2330 	mmci_reg_delay(host);
2331 
2332 	spin_unlock_irqrestore(&host->lock, flags);
2333 }
2334 
2335 static int mmci_runtime_suspend(struct device *dev)
2336 {
2337 	struct amba_device *adev = to_amba_device(dev);
2338 	struct mmc_host *mmc = amba_get_drvdata(adev);
2339 
2340 	if (mmc) {
2341 		struct mmci_host *host = mmc_priv(mmc);
2342 		pinctrl_pm_select_sleep_state(dev);
2343 		mmci_save(host);
2344 		clk_disable_unprepare(host->clk);
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 static int mmci_runtime_resume(struct device *dev)
2351 {
2352 	struct amba_device *adev = to_amba_device(dev);
2353 	struct mmc_host *mmc = amba_get_drvdata(adev);
2354 
2355 	if (mmc) {
2356 		struct mmci_host *host = mmc_priv(mmc);
2357 		clk_prepare_enable(host->clk);
2358 		mmci_restore(host);
2359 		pinctrl_select_default_state(dev);
2360 	}
2361 
2362 	return 0;
2363 }
2364 #endif
2365 
2366 static const struct dev_pm_ops mmci_dev_pm_ops = {
2367 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2368 				pm_runtime_force_resume)
2369 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2370 };
2371 
2372 static const struct amba_id mmci_ids[] = {
2373 	{
2374 		.id	= 0x00041180,
2375 		.mask	= 0xff0fffff,
2376 		.data	= &variant_arm,
2377 	},
2378 	{
2379 		.id	= 0x01041180,
2380 		.mask	= 0xff0fffff,
2381 		.data	= &variant_arm_extended_fifo,
2382 	},
2383 	{
2384 		.id	= 0x02041180,
2385 		.mask	= 0xff0fffff,
2386 		.data	= &variant_arm_extended_fifo_hwfc,
2387 	},
2388 	{
2389 		.id	= 0x00041181,
2390 		.mask	= 0x000fffff,
2391 		.data	= &variant_arm,
2392 	},
2393 	/* ST Micro variants */
2394 	{
2395 		.id     = 0x00180180,
2396 		.mask   = 0x00ffffff,
2397 		.data	= &variant_u300,
2398 	},
2399 	{
2400 		.id     = 0x10180180,
2401 		.mask   = 0xf0ffffff,
2402 		.data	= &variant_nomadik,
2403 	},
2404 	{
2405 		.id     = 0x00280180,
2406 		.mask   = 0x00ffffff,
2407 		.data	= &variant_nomadik,
2408 	},
2409 	{
2410 		.id     = 0x00480180,
2411 		.mask   = 0xf0ffffff,
2412 		.data	= &variant_ux500,
2413 	},
2414 	{
2415 		.id     = 0x10480180,
2416 		.mask   = 0xf0ffffff,
2417 		.data	= &variant_ux500v2,
2418 	},
2419 	{
2420 		.id     = 0x00880180,
2421 		.mask   = 0x00ffffff,
2422 		.data	= &variant_stm32,
2423 	},
2424 	{
2425 		.id     = 0x10153180,
2426 		.mask	= 0xf0ffffff,
2427 		.data	= &variant_stm32_sdmmc,
2428 	},
2429 	{
2430 		.id     = 0x00253180,
2431 		.mask	= 0xf0ffffff,
2432 		.data	= &variant_stm32_sdmmcv2,
2433 	},
2434 	/* Qualcomm variants */
2435 	{
2436 		.id     = 0x00051180,
2437 		.mask	= 0x000fffff,
2438 		.data	= &variant_qcom,
2439 	},
2440 	{ 0, 0 },
2441 };
2442 
2443 MODULE_DEVICE_TABLE(amba, mmci_ids);
2444 
2445 static struct amba_driver mmci_driver = {
2446 	.drv		= {
2447 		.name	= DRIVER_NAME,
2448 		.pm	= &mmci_dev_pm_ops,
2449 	},
2450 	.probe		= mmci_probe,
2451 	.remove		= mmci_remove,
2452 	.id_table	= mmci_ids,
2453 };
2454 
2455 module_amba_driver(mmci_driver);
2456 
2457 module_param(fmax, uint, 0444);
2458 
2459 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2460 MODULE_LICENSE("GPL");
2461