xref: /linux/drivers/mmc/host/mmci.c (revision 8795a739e5c72abeec51caf36b6df2b37e5720c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/slot-gpio.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/of.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/amba/mmci.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/types.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/reset.h>
38 
39 #include <asm/div64.h>
40 #include <asm/io.h>
41 
42 #include "mmci.h"
43 
44 #define DRIVER_NAME "mmci-pl18x"
45 
46 static void mmci_variant_init(struct mmci_host *host);
47 static void ux500v2_variant_init(struct mmci_host *host);
48 
49 static unsigned int fmax = 515633;
50 
51 static struct variant_data variant_arm = {
52 	.fifosize		= 16 * 4,
53 	.fifohalfsize		= 8 * 4,
54 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
55 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
56 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
57 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
58 	.datalength_bits	= 16,
59 	.datactrl_blocksz	= 11,
60 	.pwrreg_powerup		= MCI_PWR_UP,
61 	.f_max			= 100000000,
62 	.reversed_irq_handling	= true,
63 	.mmcimask1		= true,
64 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
65 	.start_err		= MCI_STARTBITERR,
66 	.opendrain		= MCI_ROD,
67 	.init			= mmci_variant_init,
68 };
69 
70 static struct variant_data variant_arm_extended_fifo = {
71 	.fifosize		= 128 * 4,
72 	.fifohalfsize		= 64 * 4,
73 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
74 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
75 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
76 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
77 	.datalength_bits	= 16,
78 	.datactrl_blocksz	= 11,
79 	.pwrreg_powerup		= MCI_PWR_UP,
80 	.f_max			= 100000000,
81 	.mmcimask1		= true,
82 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
83 	.start_err		= MCI_STARTBITERR,
84 	.opendrain		= MCI_ROD,
85 	.init			= mmci_variant_init,
86 };
87 
88 static struct variant_data variant_arm_extended_fifo_hwfc = {
89 	.fifosize		= 128 * 4,
90 	.fifohalfsize		= 64 * 4,
91 	.clkreg_enable		= MCI_ARM_HWFCEN,
92 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
93 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
94 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
95 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
96 	.datalength_bits	= 16,
97 	.datactrl_blocksz	= 11,
98 	.pwrreg_powerup		= MCI_PWR_UP,
99 	.f_max			= 100000000,
100 	.mmcimask1		= true,
101 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
102 	.start_err		= MCI_STARTBITERR,
103 	.opendrain		= MCI_ROD,
104 	.init			= mmci_variant_init,
105 };
106 
107 static struct variant_data variant_u300 = {
108 	.fifosize		= 16 * 4,
109 	.fifohalfsize		= 8 * 4,
110 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
111 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
112 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
113 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
114 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
115 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
116 	.datalength_bits	= 16,
117 	.datactrl_blocksz	= 11,
118 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
119 	.st_sdio			= true,
120 	.pwrreg_powerup		= MCI_PWR_ON,
121 	.f_max			= 100000000,
122 	.signal_direction	= true,
123 	.pwrreg_clkgate		= true,
124 	.pwrreg_nopower		= true,
125 	.mmcimask1		= true,
126 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
127 	.start_err		= MCI_STARTBITERR,
128 	.opendrain		= MCI_OD,
129 	.init			= mmci_variant_init,
130 };
131 
132 static struct variant_data variant_nomadik = {
133 	.fifosize		= 16 * 4,
134 	.fifohalfsize		= 8 * 4,
135 	.clkreg			= MCI_CLK_ENABLE,
136 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
137 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
138 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
139 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
140 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
141 	.datalength_bits	= 24,
142 	.datactrl_blocksz	= 11,
143 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
144 	.st_sdio		= true,
145 	.st_clkdiv		= true,
146 	.pwrreg_powerup		= MCI_PWR_ON,
147 	.f_max			= 100000000,
148 	.signal_direction	= true,
149 	.pwrreg_clkgate		= true,
150 	.pwrreg_nopower		= true,
151 	.mmcimask1		= true,
152 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
153 	.start_err		= MCI_STARTBITERR,
154 	.opendrain		= MCI_OD,
155 	.init			= mmci_variant_init,
156 };
157 
158 static struct variant_data variant_ux500 = {
159 	.fifosize		= 30 * 4,
160 	.fifohalfsize		= 8 * 4,
161 	.clkreg			= MCI_CLK_ENABLE,
162 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
163 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
164 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
165 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
166 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
167 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
168 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
169 	.datalength_bits	= 24,
170 	.datactrl_blocksz	= 11,
171 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
172 	.st_sdio		= true,
173 	.st_clkdiv		= true,
174 	.pwrreg_powerup		= MCI_PWR_ON,
175 	.f_max			= 100000000,
176 	.signal_direction	= true,
177 	.pwrreg_clkgate		= true,
178 	.busy_detect		= true,
179 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
180 	.busy_detect_flag	= MCI_ST_CARDBUSY,
181 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
182 	.pwrreg_nopower		= true,
183 	.mmcimask1		= true,
184 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
185 	.start_err		= MCI_STARTBITERR,
186 	.opendrain		= MCI_OD,
187 	.init			= mmci_variant_init,
188 };
189 
190 static struct variant_data variant_ux500v2 = {
191 	.fifosize		= 30 * 4,
192 	.fifohalfsize		= 8 * 4,
193 	.clkreg			= MCI_CLK_ENABLE,
194 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
195 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
196 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
197 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
198 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
199 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
200 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
201 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
202 	.datalength_bits	= 24,
203 	.datactrl_blocksz	= 11,
204 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
205 	.st_sdio		= true,
206 	.st_clkdiv		= true,
207 	.pwrreg_powerup		= MCI_PWR_ON,
208 	.f_max			= 100000000,
209 	.signal_direction	= true,
210 	.pwrreg_clkgate		= true,
211 	.busy_detect		= true,
212 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
213 	.busy_detect_flag	= MCI_ST_CARDBUSY,
214 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
215 	.pwrreg_nopower		= true,
216 	.mmcimask1		= true,
217 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
218 	.start_err		= MCI_STARTBITERR,
219 	.opendrain		= MCI_OD,
220 	.init			= ux500v2_variant_init,
221 };
222 
223 static struct variant_data variant_stm32 = {
224 	.fifosize		= 32 * 4,
225 	.fifohalfsize		= 8 * 4,
226 	.clkreg			= MCI_CLK_ENABLE,
227 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
228 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
229 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
230 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
231 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
232 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
233 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
234 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
235 	.datalength_bits	= 24,
236 	.datactrl_blocksz	= 11,
237 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
238 	.st_sdio		= true,
239 	.st_clkdiv		= true,
240 	.pwrreg_powerup		= MCI_PWR_ON,
241 	.f_max			= 48000000,
242 	.pwrreg_clkgate		= true,
243 	.pwrreg_nopower		= true,
244 	.init			= mmci_variant_init,
245 };
246 
247 static struct variant_data variant_stm32_sdmmc = {
248 	.fifosize		= 16 * 4,
249 	.fifohalfsize		= 8 * 4,
250 	.f_max			= 208000000,
251 	.stm32_clkdiv		= true,
252 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
253 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
254 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
255 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
256 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
257 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
258 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
259 	.datactrl_first		= true,
260 	.datacnt_useless	= true,
261 	.datalength_bits	= 25,
262 	.datactrl_blocksz	= 14,
263 	.stm32_idmabsize_mask	= GENMASK(12, 5),
264 	.init			= sdmmc_variant_init,
265 };
266 
267 static struct variant_data variant_qcom = {
268 	.fifosize		= 16 * 4,
269 	.fifohalfsize		= 8 * 4,
270 	.clkreg			= MCI_CLK_ENABLE,
271 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
272 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
273 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
274 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
275 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
276 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
277 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
278 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
279 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
280 	.datalength_bits	= 24,
281 	.datactrl_blocksz	= 11,
282 	.pwrreg_powerup		= MCI_PWR_UP,
283 	.f_max			= 208000000,
284 	.explicit_mclk_control	= true,
285 	.qcom_fifo		= true,
286 	.qcom_dml		= true,
287 	.mmcimask1		= true,
288 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
289 	.start_err		= MCI_STARTBITERR,
290 	.opendrain		= MCI_ROD,
291 	.init			= qcom_variant_init,
292 };
293 
294 /* Busy detection for the ST Micro variant */
295 static int mmci_card_busy(struct mmc_host *mmc)
296 {
297 	struct mmci_host *host = mmc_priv(mmc);
298 	unsigned long flags;
299 	int busy = 0;
300 
301 	spin_lock_irqsave(&host->lock, flags);
302 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
303 		busy = 1;
304 	spin_unlock_irqrestore(&host->lock, flags);
305 
306 	return busy;
307 }
308 
309 static void mmci_reg_delay(struct mmci_host *host)
310 {
311 	/*
312 	 * According to the spec, at least three feedback clock cycles
313 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
314 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
315 	 * Worst delay time during card init is at 100 kHz => 30 us.
316 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
317 	 */
318 	if (host->cclk < 25000000)
319 		udelay(30);
320 	else
321 		ndelay(120);
322 }
323 
324 /*
325  * This must be called with host->lock held
326  */
327 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
328 {
329 	if (host->clk_reg != clk) {
330 		host->clk_reg = clk;
331 		writel(clk, host->base + MMCICLOCK);
332 	}
333 }
334 
335 /*
336  * This must be called with host->lock held
337  */
338 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
339 {
340 	if (host->pwr_reg != pwr) {
341 		host->pwr_reg = pwr;
342 		writel(pwr, host->base + MMCIPOWER);
343 	}
344 }
345 
346 /*
347  * This must be called with host->lock held
348  */
349 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
350 {
351 	/* Keep busy mode in DPSM if enabled */
352 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
353 
354 	if (host->datactrl_reg != datactrl) {
355 		host->datactrl_reg = datactrl;
356 		writel(datactrl, host->base + MMCIDATACTRL);
357 	}
358 }
359 
360 /*
361  * This must be called with host->lock held
362  */
363 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
364 {
365 	struct variant_data *variant = host->variant;
366 	u32 clk = variant->clkreg;
367 
368 	/* Make sure cclk reflects the current calculated clock */
369 	host->cclk = 0;
370 
371 	if (desired) {
372 		if (variant->explicit_mclk_control) {
373 			host->cclk = host->mclk;
374 		} else if (desired >= host->mclk) {
375 			clk = MCI_CLK_BYPASS;
376 			if (variant->st_clkdiv)
377 				clk |= MCI_ST_UX500_NEG_EDGE;
378 			host->cclk = host->mclk;
379 		} else if (variant->st_clkdiv) {
380 			/*
381 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
382 			 * => clkdiv = (mclk / f) - 2
383 			 * Round the divider up so we don't exceed the max
384 			 * frequency
385 			 */
386 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
387 			if (clk >= 256)
388 				clk = 255;
389 			host->cclk = host->mclk / (clk + 2);
390 		} else {
391 			/*
392 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
393 			 * => clkdiv = mclk / (2 * f) - 1
394 			 */
395 			clk = host->mclk / (2 * desired) - 1;
396 			if (clk >= 256)
397 				clk = 255;
398 			host->cclk = host->mclk / (2 * (clk + 1));
399 		}
400 
401 		clk |= variant->clkreg_enable;
402 		clk |= MCI_CLK_ENABLE;
403 		/* This hasn't proven to be worthwhile */
404 		/* clk |= MCI_CLK_PWRSAVE; */
405 	}
406 
407 	/* Set actual clock for debug */
408 	host->mmc->actual_clock = host->cclk;
409 
410 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
411 		clk |= MCI_4BIT_BUS;
412 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
413 		clk |= variant->clkreg_8bit_bus_enable;
414 
415 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
416 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
417 		clk |= variant->clkreg_neg_edge_enable;
418 
419 	mmci_write_clkreg(host, clk);
420 }
421 
422 void mmci_dma_release(struct mmci_host *host)
423 {
424 	if (host->ops && host->ops->dma_release)
425 		host->ops->dma_release(host);
426 
427 	host->use_dma = false;
428 }
429 
430 void mmci_dma_setup(struct mmci_host *host)
431 {
432 	if (!host->ops || !host->ops->dma_setup)
433 		return;
434 
435 	if (host->ops->dma_setup(host))
436 		return;
437 
438 	/* initialize pre request cookie */
439 	host->next_cookie = 1;
440 
441 	host->use_dma = true;
442 }
443 
444 /*
445  * Validate mmc prerequisites
446  */
447 static int mmci_validate_data(struct mmci_host *host,
448 			      struct mmc_data *data)
449 {
450 	if (!data)
451 		return 0;
452 
453 	if (!is_power_of_2(data->blksz)) {
454 		dev_err(mmc_dev(host->mmc),
455 			"unsupported block size (%d bytes)\n", data->blksz);
456 		return -EINVAL;
457 	}
458 
459 	if (host->ops && host->ops->validate_data)
460 		return host->ops->validate_data(host, data);
461 
462 	return 0;
463 }
464 
465 int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
466 {
467 	int err;
468 
469 	if (!host->ops || !host->ops->prep_data)
470 		return 0;
471 
472 	err = host->ops->prep_data(host, data, next);
473 
474 	if (next && !err)
475 		data->host_cookie = ++host->next_cookie < 0 ?
476 			1 : host->next_cookie;
477 
478 	return err;
479 }
480 
481 void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
482 		      int err)
483 {
484 	if (host->ops && host->ops->unprep_data)
485 		host->ops->unprep_data(host, data, err);
486 
487 	data->host_cookie = 0;
488 }
489 
490 void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
491 {
492 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
493 
494 	if (host->ops && host->ops->get_next_data)
495 		host->ops->get_next_data(host, data);
496 }
497 
498 int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
499 {
500 	struct mmc_data *data = host->data;
501 	int ret;
502 
503 	if (!host->use_dma)
504 		return -EINVAL;
505 
506 	ret = mmci_prep_data(host, data, false);
507 	if (ret)
508 		return ret;
509 
510 	if (!host->ops || !host->ops->dma_start)
511 		return -EINVAL;
512 
513 	/* Okay, go for it. */
514 	dev_vdbg(mmc_dev(host->mmc),
515 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
516 		 data->sg_len, data->blksz, data->blocks, data->flags);
517 
518 	host->ops->dma_start(host, &datactrl);
519 
520 	/* Trigger the DMA transfer */
521 	mmci_write_datactrlreg(host, datactrl);
522 
523 	/*
524 	 * Let the MMCI say when the data is ended and it's time
525 	 * to fire next DMA request. When that happens, MMCI will
526 	 * call mmci_data_end()
527 	 */
528 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
529 	       host->base + MMCIMASK0);
530 	return 0;
531 }
532 
533 void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
534 {
535 	if (!host->use_dma)
536 		return;
537 
538 	if (host->ops && host->ops->dma_finalize)
539 		host->ops->dma_finalize(host, data);
540 }
541 
542 void mmci_dma_error(struct mmci_host *host)
543 {
544 	if (!host->use_dma)
545 		return;
546 
547 	if (host->ops && host->ops->dma_error)
548 		host->ops->dma_error(host);
549 }
550 
551 static void
552 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
553 {
554 	writel(0, host->base + MMCICOMMAND);
555 
556 	BUG_ON(host->data);
557 
558 	host->mrq = NULL;
559 	host->cmd = NULL;
560 
561 	mmc_request_done(host->mmc, mrq);
562 }
563 
564 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
565 {
566 	void __iomem *base = host->base;
567 	struct variant_data *variant = host->variant;
568 
569 	if (host->singleirq) {
570 		unsigned int mask0 = readl(base + MMCIMASK0);
571 
572 		mask0 &= ~variant->irq_pio_mask;
573 		mask0 |= mask;
574 
575 		writel(mask0, base + MMCIMASK0);
576 	}
577 
578 	if (variant->mmcimask1)
579 		writel(mask, base + MMCIMASK1);
580 
581 	host->mask1_reg = mask;
582 }
583 
584 static void mmci_stop_data(struct mmci_host *host)
585 {
586 	mmci_write_datactrlreg(host, 0);
587 	mmci_set_mask1(host, 0);
588 	host->data = NULL;
589 }
590 
591 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
592 {
593 	unsigned int flags = SG_MITER_ATOMIC;
594 
595 	if (data->flags & MMC_DATA_READ)
596 		flags |= SG_MITER_TO_SG;
597 	else
598 		flags |= SG_MITER_FROM_SG;
599 
600 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
601 }
602 
603 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
604 {
605 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
606 }
607 
608 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
609 {
610 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
611 }
612 
613 /*
614  * All the DMA operation mode stuff goes inside this ifdef.
615  * This assumes that you have a generic DMA device interface,
616  * no custom DMA interfaces are supported.
617  */
618 #ifdef CONFIG_DMA_ENGINE
619 struct mmci_dmae_next {
620 	struct dma_async_tx_descriptor *desc;
621 	struct dma_chan	*chan;
622 };
623 
624 struct mmci_dmae_priv {
625 	struct dma_chan	*cur;
626 	struct dma_chan	*rx_channel;
627 	struct dma_chan	*tx_channel;
628 	struct dma_async_tx_descriptor	*desc_current;
629 	struct mmci_dmae_next next_data;
630 };
631 
632 int mmci_dmae_setup(struct mmci_host *host)
633 {
634 	const char *rxname, *txname;
635 	struct mmci_dmae_priv *dmae;
636 
637 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
638 	if (!dmae)
639 		return -ENOMEM;
640 
641 	host->dma_priv = dmae;
642 
643 	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
644 						     "rx");
645 	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
646 						     "tx");
647 
648 	/*
649 	 * If only an RX channel is specified, the driver will
650 	 * attempt to use it bidirectionally, however if it is
651 	 * is specified but cannot be located, DMA will be disabled.
652 	 */
653 	if (dmae->rx_channel && !dmae->tx_channel)
654 		dmae->tx_channel = dmae->rx_channel;
655 
656 	if (dmae->rx_channel)
657 		rxname = dma_chan_name(dmae->rx_channel);
658 	else
659 		rxname = "none";
660 
661 	if (dmae->tx_channel)
662 		txname = dma_chan_name(dmae->tx_channel);
663 	else
664 		txname = "none";
665 
666 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
667 		 rxname, txname);
668 
669 	/*
670 	 * Limit the maximum segment size in any SG entry according to
671 	 * the parameters of the DMA engine device.
672 	 */
673 	if (dmae->tx_channel) {
674 		struct device *dev = dmae->tx_channel->device->dev;
675 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
676 
677 		if (max_seg_size < host->mmc->max_seg_size)
678 			host->mmc->max_seg_size = max_seg_size;
679 	}
680 	if (dmae->rx_channel) {
681 		struct device *dev = dmae->rx_channel->device->dev;
682 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
683 
684 		if (max_seg_size < host->mmc->max_seg_size)
685 			host->mmc->max_seg_size = max_seg_size;
686 	}
687 
688 	if (!dmae->tx_channel || !dmae->rx_channel) {
689 		mmci_dmae_release(host);
690 		return -EINVAL;
691 	}
692 
693 	return 0;
694 }
695 
696 /*
697  * This is used in or so inline it
698  * so it can be discarded.
699  */
700 void mmci_dmae_release(struct mmci_host *host)
701 {
702 	struct mmci_dmae_priv *dmae = host->dma_priv;
703 
704 	if (dmae->rx_channel)
705 		dma_release_channel(dmae->rx_channel);
706 	if (dmae->tx_channel)
707 		dma_release_channel(dmae->tx_channel);
708 	dmae->rx_channel = dmae->tx_channel = NULL;
709 }
710 
711 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
712 {
713 	struct mmci_dmae_priv *dmae = host->dma_priv;
714 	struct dma_chan *chan;
715 
716 	if (data->flags & MMC_DATA_READ)
717 		chan = dmae->rx_channel;
718 	else
719 		chan = dmae->tx_channel;
720 
721 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
722 		     mmc_get_dma_dir(data));
723 }
724 
725 void mmci_dmae_error(struct mmci_host *host)
726 {
727 	struct mmci_dmae_priv *dmae = host->dma_priv;
728 
729 	if (!dma_inprogress(host))
730 		return;
731 
732 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
733 	dmaengine_terminate_all(dmae->cur);
734 	host->dma_in_progress = false;
735 	dmae->cur = NULL;
736 	dmae->desc_current = NULL;
737 	host->data->host_cookie = 0;
738 
739 	mmci_dma_unmap(host, host->data);
740 }
741 
742 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
743 {
744 	struct mmci_dmae_priv *dmae = host->dma_priv;
745 	u32 status;
746 	int i;
747 
748 	if (!dma_inprogress(host))
749 		return;
750 
751 	/* Wait up to 1ms for the DMA to complete */
752 	for (i = 0; ; i++) {
753 		status = readl(host->base + MMCISTATUS);
754 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
755 			break;
756 		udelay(10);
757 	}
758 
759 	/*
760 	 * Check to see whether we still have some data left in the FIFO -
761 	 * this catches DMA controllers which are unable to monitor the
762 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
763 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
764 	 */
765 	if (status & MCI_RXDATAAVLBLMASK) {
766 		mmci_dma_error(host);
767 		if (!data->error)
768 			data->error = -EIO;
769 	} else if (!data->host_cookie) {
770 		mmci_dma_unmap(host, data);
771 	}
772 
773 	/*
774 	 * Use of DMA with scatter-gather is impossible.
775 	 * Give up with DMA and switch back to PIO mode.
776 	 */
777 	if (status & MCI_RXDATAAVLBLMASK) {
778 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
779 		mmci_dma_release(host);
780 	}
781 
782 	host->dma_in_progress = false;
783 	dmae->cur = NULL;
784 	dmae->desc_current = NULL;
785 }
786 
787 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
788 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
789 				struct dma_chan **dma_chan,
790 				struct dma_async_tx_descriptor **dma_desc)
791 {
792 	struct mmci_dmae_priv *dmae = host->dma_priv;
793 	struct variant_data *variant = host->variant;
794 	struct dma_slave_config conf = {
795 		.src_addr = host->phybase + MMCIFIFO,
796 		.dst_addr = host->phybase + MMCIFIFO,
797 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
798 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
799 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
800 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
801 		.device_fc = false,
802 	};
803 	struct dma_chan *chan;
804 	struct dma_device *device;
805 	struct dma_async_tx_descriptor *desc;
806 	int nr_sg;
807 	unsigned long flags = DMA_CTRL_ACK;
808 
809 	if (data->flags & MMC_DATA_READ) {
810 		conf.direction = DMA_DEV_TO_MEM;
811 		chan = dmae->rx_channel;
812 	} else {
813 		conf.direction = DMA_MEM_TO_DEV;
814 		chan = dmae->tx_channel;
815 	}
816 
817 	/* If there's no DMA channel, fall back to PIO */
818 	if (!chan)
819 		return -EINVAL;
820 
821 	/* If less than or equal to the fifo size, don't bother with DMA */
822 	if (data->blksz * data->blocks <= variant->fifosize)
823 		return -EINVAL;
824 
825 	device = chan->device;
826 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
827 			   mmc_get_dma_dir(data));
828 	if (nr_sg == 0)
829 		return -EINVAL;
830 
831 	if (host->variant->qcom_dml)
832 		flags |= DMA_PREP_INTERRUPT;
833 
834 	dmaengine_slave_config(chan, &conf);
835 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
836 					    conf.direction, flags);
837 	if (!desc)
838 		goto unmap_exit;
839 
840 	*dma_chan = chan;
841 	*dma_desc = desc;
842 
843 	return 0;
844 
845  unmap_exit:
846 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
847 		     mmc_get_dma_dir(data));
848 	return -ENOMEM;
849 }
850 
851 int mmci_dmae_prep_data(struct mmci_host *host,
852 			struct mmc_data *data,
853 			bool next)
854 {
855 	struct mmci_dmae_priv *dmae = host->dma_priv;
856 	struct mmci_dmae_next *nd = &dmae->next_data;
857 
858 	if (!host->use_dma)
859 		return -EINVAL;
860 
861 	if (next)
862 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
863 	/* Check if next job is already prepared. */
864 	if (dmae->cur && dmae->desc_current)
865 		return 0;
866 
867 	/* No job were prepared thus do it now. */
868 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
869 				    &dmae->desc_current);
870 }
871 
872 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
873 {
874 	struct mmci_dmae_priv *dmae = host->dma_priv;
875 
876 	host->dma_in_progress = true;
877 	dmaengine_submit(dmae->desc_current);
878 	dma_async_issue_pending(dmae->cur);
879 
880 	*datactrl |= MCI_DPSM_DMAENABLE;
881 
882 	return 0;
883 }
884 
885 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
886 {
887 	struct mmci_dmae_priv *dmae = host->dma_priv;
888 	struct mmci_dmae_next *next = &dmae->next_data;
889 
890 	if (!host->use_dma)
891 		return;
892 
893 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
894 
895 	dmae->desc_current = next->desc;
896 	dmae->cur = next->chan;
897 	next->desc = NULL;
898 	next->chan = NULL;
899 }
900 
901 void mmci_dmae_unprep_data(struct mmci_host *host,
902 			   struct mmc_data *data, int err)
903 
904 {
905 	struct mmci_dmae_priv *dmae = host->dma_priv;
906 
907 	if (!host->use_dma)
908 		return;
909 
910 	mmci_dma_unmap(host, data);
911 
912 	if (err) {
913 		struct mmci_dmae_next *next = &dmae->next_data;
914 		struct dma_chan *chan;
915 		if (data->flags & MMC_DATA_READ)
916 			chan = dmae->rx_channel;
917 		else
918 			chan = dmae->tx_channel;
919 		dmaengine_terminate_all(chan);
920 
921 		if (dmae->desc_current == next->desc)
922 			dmae->desc_current = NULL;
923 
924 		if (dmae->cur == next->chan) {
925 			host->dma_in_progress = false;
926 			dmae->cur = NULL;
927 		}
928 
929 		next->desc = NULL;
930 		next->chan = NULL;
931 	}
932 }
933 
934 static struct mmci_host_ops mmci_variant_ops = {
935 	.prep_data = mmci_dmae_prep_data,
936 	.unprep_data = mmci_dmae_unprep_data,
937 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
938 	.get_next_data = mmci_dmae_get_next_data,
939 	.dma_setup = mmci_dmae_setup,
940 	.dma_release = mmci_dmae_release,
941 	.dma_start = mmci_dmae_start,
942 	.dma_finalize = mmci_dmae_finalize,
943 	.dma_error = mmci_dmae_error,
944 };
945 #else
946 static struct mmci_host_ops mmci_variant_ops = {
947 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
948 };
949 #endif
950 
951 void mmci_variant_init(struct mmci_host *host)
952 {
953 	host->ops = &mmci_variant_ops;
954 }
955 
956 void ux500v2_variant_init(struct mmci_host *host)
957 {
958 	host->ops = &mmci_variant_ops;
959 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
960 }
961 
962 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
963 {
964 	struct mmci_host *host = mmc_priv(mmc);
965 	struct mmc_data *data = mrq->data;
966 
967 	if (!data)
968 		return;
969 
970 	WARN_ON(data->host_cookie);
971 
972 	if (mmci_validate_data(host, data))
973 		return;
974 
975 	mmci_prep_data(host, data, true);
976 }
977 
978 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
979 			      int err)
980 {
981 	struct mmci_host *host = mmc_priv(mmc);
982 	struct mmc_data *data = mrq->data;
983 
984 	if (!data || !data->host_cookie)
985 		return;
986 
987 	mmci_unprep_data(host, data, err);
988 }
989 
990 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
991 {
992 	struct variant_data *variant = host->variant;
993 	unsigned int datactrl, timeout, irqmask;
994 	unsigned long long clks;
995 	void __iomem *base;
996 
997 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
998 		data->blksz, data->blocks, data->flags);
999 
1000 	host->data = data;
1001 	host->size = data->blksz * data->blocks;
1002 	data->bytes_xfered = 0;
1003 
1004 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1005 	do_div(clks, NSEC_PER_SEC);
1006 
1007 	timeout = data->timeout_clks + (unsigned int)clks;
1008 
1009 	base = host->base;
1010 	writel(timeout, base + MMCIDATATIMER);
1011 	writel(host->size, base + MMCIDATALENGTH);
1012 
1013 	datactrl = host->ops->get_datactrl_cfg(host);
1014 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015 
1016 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017 		u32 clk;
1018 
1019 		datactrl |= variant->datactrl_mask_sdio;
1020 
1021 		/*
1022 		 * The ST Micro variant for SDIO small write transfers
1023 		 * needs to have clock H/W flow control disabled,
1024 		 * otherwise the transfer will not start. The threshold
1025 		 * depends on the rate of MCLK.
1026 		 */
1027 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028 		    (host->size < 8 ||
1029 		     (host->size <= 8 && host->mclk > 50000000)))
1030 			clk = host->clk_reg & ~variant->clkreg_enable;
1031 		else
1032 			clk = host->clk_reg | variant->clkreg_enable;
1033 
1034 		mmci_write_clkreg(host, clk);
1035 	}
1036 
1037 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039 		datactrl |= variant->datactrl_mask_ddrmode;
1040 
1041 	/*
1042 	 * Attempt to use DMA operation mode, if this
1043 	 * should fail, fall back to PIO mode
1044 	 */
1045 	if (!mmci_dma_start(host, datactrl))
1046 		return;
1047 
1048 	/* IRQ mode, map the SG list for CPU reading/writing */
1049 	mmci_init_sg(host, data);
1050 
1051 	if (data->flags & MMC_DATA_READ) {
1052 		irqmask = MCI_RXFIFOHALFFULLMASK;
1053 
1054 		/*
1055 		 * If we have less than the fifo 'half-full' threshold to
1056 		 * transfer, trigger a PIO interrupt as soon as any data
1057 		 * is available.
1058 		 */
1059 		if (host->size < variant->fifohalfsize)
1060 			irqmask |= MCI_RXDATAAVLBLMASK;
1061 	} else {
1062 		/*
1063 		 * We don't actually need to include "FIFO empty" here
1064 		 * since its implicit in "FIFO half empty".
1065 		 */
1066 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067 	}
1068 
1069 	mmci_write_datactrlreg(host, datactrl);
1070 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071 	mmci_set_mask1(host, irqmask);
1072 }
1073 
1074 static void
1075 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076 {
1077 	void __iomem *base = host->base;
1078 
1079 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080 	    cmd->opcode, cmd->arg, cmd->flags);
1081 
1082 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083 		writel(0, base + MMCICOMMAND);
1084 		mmci_reg_delay(host);
1085 	}
1086 
1087 	if (host->variant->cmdreg_stop &&
1088 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1089 		c |= host->variant->cmdreg_stop;
1090 
1091 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092 	if (cmd->flags & MMC_RSP_PRESENT) {
1093 		if (cmd->flags & MMC_RSP_136)
1094 			c |= host->variant->cmdreg_lrsp_crc;
1095 		else if (cmd->flags & MMC_RSP_CRC)
1096 			c |= host->variant->cmdreg_srsp_crc;
1097 		else
1098 			c |= host->variant->cmdreg_srsp;
1099 	}
1100 	if (/*interrupt*/0)
1101 		c |= MCI_CPSM_INTERRUPT;
1102 
1103 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104 		c |= host->variant->data_cmd_enable;
1105 
1106 	host->cmd = cmd;
1107 
1108 	writel(cmd->arg, base + MMCIARGUMENT);
1109 	writel(c, base + MMCICOMMAND);
1110 }
1111 
1112 static void mmci_stop_command(struct mmci_host *host)
1113 {
1114 	host->stop_abort.error = 0;
1115 	mmci_start_command(host, &host->stop_abort, 0);
1116 }
1117 
1118 static void
1119 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120 	      unsigned int status)
1121 {
1122 	unsigned int status_err;
1123 
1124 	/* Make sure we have data to handle */
1125 	if (!data)
1126 		return;
1127 
1128 	/* First check for errors */
1129 	status_err = status & (host->variant->start_err |
1130 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132 
1133 	if (status_err) {
1134 		u32 remain, success;
1135 
1136 		/* Terminate the DMA transfer */
1137 		mmci_dma_error(host);
1138 
1139 		/*
1140 		 * Calculate how far we are into the transfer.  Note that
1141 		 * the data counter gives the number of bytes transferred
1142 		 * on the MMC bus, not on the host side.  On reads, this
1143 		 * can be as much as a FIFO-worth of data ahead.  This
1144 		 * matters for FIFO overruns only.
1145 		 */
1146 		if (!host->variant->datacnt_useless) {
1147 			remain = readl(host->base + MMCIDATACNT);
1148 			success = data->blksz * data->blocks - remain;
1149 		} else {
1150 			success = 0;
1151 		}
1152 
1153 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154 			status_err, success);
1155 		if (status_err & MCI_DATACRCFAIL) {
1156 			/* Last block was not successful */
1157 			success -= 1;
1158 			data->error = -EILSEQ;
1159 		} else if (status_err & MCI_DATATIMEOUT) {
1160 			data->error = -ETIMEDOUT;
1161 		} else if (status_err & MCI_STARTBITERR) {
1162 			data->error = -ECOMM;
1163 		} else if (status_err & MCI_TXUNDERRUN) {
1164 			data->error = -EIO;
1165 		} else if (status_err & MCI_RXOVERRUN) {
1166 			if (success > host->variant->fifosize)
1167 				success -= host->variant->fifosize;
1168 			else
1169 				success = 0;
1170 			data->error = -EIO;
1171 		}
1172 		data->bytes_xfered = round_down(success, data->blksz);
1173 	}
1174 
1175 	if (status & MCI_DATABLOCKEND)
1176 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177 
1178 	if (status & MCI_DATAEND || data->error) {
1179 		mmci_dma_finalize(host, data);
1180 
1181 		mmci_stop_data(host);
1182 
1183 		if (!data->error)
1184 			/* The error clause is handled above, success! */
1185 			data->bytes_xfered = data->blksz * data->blocks;
1186 
1187 		if (!data->stop) {
1188 			if (host->variant->cmdreg_stop && data->error)
1189 				mmci_stop_command(host);
1190 			else
1191 				mmci_request_end(host, data->mrq);
1192 		} else if (host->mrq->sbc && !data->error) {
1193 			mmci_request_end(host, data->mrq);
1194 		} else {
1195 			mmci_start_command(host, data->stop, 0);
1196 		}
1197 	}
1198 }
1199 
1200 static void
1201 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202 	     unsigned int status)
1203 {
1204 	void __iomem *base = host->base;
1205 	bool sbc, busy_resp;
1206 
1207 	if (!cmd)
1208 		return;
1209 
1210 	sbc = (cmd == host->mrq->sbc);
1211 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212 
1213 	/*
1214 	 * We need to be one of these interrupts to be considered worth
1215 	 * handling. Note that we tag on any latent IRQs postponed
1216 	 * due to waiting for busy status.
1217 	 */
1218 	if (!((status|host->busy_status) &
1219 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220 		return;
1221 
1222 	/* Handle busy detection on DAT0 if the variant supports it. */
1223 	if (busy_resp && host->variant->busy_detect) {
1224 
1225 		/*
1226 		 * Before unmasking for the busy end IRQ, confirm that the
1227 		 * command was sent successfully. To keep track of having a
1228 		 * command in-progress, waiting for busy signaling to end,
1229 		 * store the status in host->busy_status.
1230 		 *
1231 		 * Note that, the card may need a couple of clock cycles before
1232 		 * it starts signaling busy on DAT0, hence re-read the
1233 		 * MMCISTATUS register here, to allow the busy bit to be set.
1234 		 * Potentially we may even need to poll the register for a
1235 		 * while, to allow it to be set, but tests indicates that it
1236 		 * isn't needed.
1237 		 */
1238 		if (!host->busy_status &&
1239 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241 
1242 			writel(readl(base + MMCIMASK0) |
1243 			       host->variant->busy_detect_mask,
1244 			       base + MMCIMASK0);
1245 
1246 			host->busy_status =
1247 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1248 			return;
1249 		}
1250 
1251 		/*
1252 		 * If there is a command in-progress that has been successfully
1253 		 * sent, then bail out if busy status is set and wait for the
1254 		 * busy end IRQ.
1255 		 *
1256 		 * Note that, the HW triggers an IRQ on both edges while
1257 		 * monitoring DAT0 for busy completion, but there is only one
1258 		 * status bit in MMCISTATUS for the busy state. Therefore
1259 		 * both the start and the end interrupts needs to be cleared,
1260 		 * one after the other. So, clear the busy start IRQ here.
1261 		 */
1262 		if (host->busy_status &&
1263 		    (status & host->variant->busy_detect_flag)) {
1264 			writel(host->variant->busy_detect_mask,
1265 			       host->base + MMCICLEAR);
1266 			return;
1267 		}
1268 
1269 		/*
1270 		 * If there is a command in-progress that has been successfully
1271 		 * sent and the busy bit isn't set, it means we have received
1272 		 * the busy end IRQ. Clear and mask the IRQ, then continue to
1273 		 * process the command.
1274 		 */
1275 		if (host->busy_status) {
1276 
1277 			writel(host->variant->busy_detect_mask,
1278 			       host->base + MMCICLEAR);
1279 
1280 			writel(readl(base + MMCIMASK0) &
1281 			       ~host->variant->busy_detect_mask,
1282 			       base + MMCIMASK0);
1283 			host->busy_status = 0;
1284 		}
1285 	}
1286 
1287 	host->cmd = NULL;
1288 
1289 	if (status & MCI_CMDTIMEOUT) {
1290 		cmd->error = -ETIMEDOUT;
1291 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1292 		cmd->error = -EILSEQ;
1293 	} else {
1294 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1295 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1296 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1297 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1298 	}
1299 
1300 	if ((!sbc && !cmd->data) || cmd->error) {
1301 		if (host->data) {
1302 			/* Terminate the DMA transfer */
1303 			mmci_dma_error(host);
1304 
1305 			mmci_stop_data(host);
1306 			if (host->variant->cmdreg_stop && cmd->error) {
1307 				mmci_stop_command(host);
1308 				return;
1309 			}
1310 		}
1311 		mmci_request_end(host, host->mrq);
1312 	} else if (sbc) {
1313 		mmci_start_command(host, host->mrq->cmd, 0);
1314 	} else if (!host->variant->datactrl_first &&
1315 		   !(cmd->data->flags & MMC_DATA_READ)) {
1316 		mmci_start_data(host, cmd->data);
1317 	}
1318 }
1319 
1320 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1321 {
1322 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1323 }
1324 
1325 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1326 {
1327 	/*
1328 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1329 	 * from the fifo range should be used
1330 	 */
1331 	if (status & MCI_RXFIFOHALFFULL)
1332 		return host->variant->fifohalfsize;
1333 	else if (status & MCI_RXDATAAVLBL)
1334 		return 4;
1335 
1336 	return 0;
1337 }
1338 
1339 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1340 {
1341 	void __iomem *base = host->base;
1342 	char *ptr = buffer;
1343 	u32 status = readl(host->base + MMCISTATUS);
1344 	int host_remain = host->size;
1345 
1346 	do {
1347 		int count = host->get_rx_fifocnt(host, status, host_remain);
1348 
1349 		if (count > remain)
1350 			count = remain;
1351 
1352 		if (count <= 0)
1353 			break;
1354 
1355 		/*
1356 		 * SDIO especially may want to send something that is
1357 		 * not divisible by 4 (as opposed to card sectors
1358 		 * etc). Therefore make sure to always read the last bytes
1359 		 * while only doing full 32-bit reads towards the FIFO.
1360 		 */
1361 		if (unlikely(count & 0x3)) {
1362 			if (count < 4) {
1363 				unsigned char buf[4];
1364 				ioread32_rep(base + MMCIFIFO, buf, 1);
1365 				memcpy(ptr, buf, count);
1366 			} else {
1367 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1368 				count &= ~0x3;
1369 			}
1370 		} else {
1371 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1372 		}
1373 
1374 		ptr += count;
1375 		remain -= count;
1376 		host_remain -= count;
1377 
1378 		if (remain == 0)
1379 			break;
1380 
1381 		status = readl(base + MMCISTATUS);
1382 	} while (status & MCI_RXDATAAVLBL);
1383 
1384 	return ptr - buffer;
1385 }
1386 
1387 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1388 {
1389 	struct variant_data *variant = host->variant;
1390 	void __iomem *base = host->base;
1391 	char *ptr = buffer;
1392 
1393 	do {
1394 		unsigned int count, maxcnt;
1395 
1396 		maxcnt = status & MCI_TXFIFOEMPTY ?
1397 			 variant->fifosize : variant->fifohalfsize;
1398 		count = min(remain, maxcnt);
1399 
1400 		/*
1401 		 * SDIO especially may want to send something that is
1402 		 * not divisible by 4 (as opposed to card sectors
1403 		 * etc), and the FIFO only accept full 32-bit writes.
1404 		 * So compensate by adding +3 on the count, a single
1405 		 * byte become a 32bit write, 7 bytes will be two
1406 		 * 32bit writes etc.
1407 		 */
1408 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1409 
1410 		ptr += count;
1411 		remain -= count;
1412 
1413 		if (remain == 0)
1414 			break;
1415 
1416 		status = readl(base + MMCISTATUS);
1417 	} while (status & MCI_TXFIFOHALFEMPTY);
1418 
1419 	return ptr - buffer;
1420 }
1421 
1422 /*
1423  * PIO data transfer IRQ handler.
1424  */
1425 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1426 {
1427 	struct mmci_host *host = dev_id;
1428 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1429 	struct variant_data *variant = host->variant;
1430 	void __iomem *base = host->base;
1431 	u32 status;
1432 
1433 	status = readl(base + MMCISTATUS);
1434 
1435 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1436 
1437 	do {
1438 		unsigned int remain, len;
1439 		char *buffer;
1440 
1441 		/*
1442 		 * For write, we only need to test the half-empty flag
1443 		 * here - if the FIFO is completely empty, then by
1444 		 * definition it is more than half empty.
1445 		 *
1446 		 * For read, check for data available.
1447 		 */
1448 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1449 			break;
1450 
1451 		if (!sg_miter_next(sg_miter))
1452 			break;
1453 
1454 		buffer = sg_miter->addr;
1455 		remain = sg_miter->length;
1456 
1457 		len = 0;
1458 		if (status & MCI_RXACTIVE)
1459 			len = mmci_pio_read(host, buffer, remain);
1460 		if (status & MCI_TXACTIVE)
1461 			len = mmci_pio_write(host, buffer, remain, status);
1462 
1463 		sg_miter->consumed = len;
1464 
1465 		host->size -= len;
1466 		remain -= len;
1467 
1468 		if (remain)
1469 			break;
1470 
1471 		status = readl(base + MMCISTATUS);
1472 	} while (1);
1473 
1474 	sg_miter_stop(sg_miter);
1475 
1476 	/*
1477 	 * If we have less than the fifo 'half-full' threshold to transfer,
1478 	 * trigger a PIO interrupt as soon as any data is available.
1479 	 */
1480 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1481 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1482 
1483 	/*
1484 	 * If we run out of data, disable the data IRQs; this
1485 	 * prevents a race where the FIFO becomes empty before
1486 	 * the chip itself has disabled the data path, and
1487 	 * stops us racing with our data end IRQ.
1488 	 */
1489 	if (host->size == 0) {
1490 		mmci_set_mask1(host, 0);
1491 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1492 	}
1493 
1494 	return IRQ_HANDLED;
1495 }
1496 
1497 /*
1498  * Handle completion of command and data transfers.
1499  */
1500 static irqreturn_t mmci_irq(int irq, void *dev_id)
1501 {
1502 	struct mmci_host *host = dev_id;
1503 	u32 status;
1504 	int ret = 0;
1505 
1506 	spin_lock(&host->lock);
1507 
1508 	do {
1509 		status = readl(host->base + MMCISTATUS);
1510 
1511 		if (host->singleirq) {
1512 			if (status & host->mask1_reg)
1513 				mmci_pio_irq(irq, dev_id);
1514 
1515 			status &= ~host->variant->irq_pio_mask;
1516 		}
1517 
1518 		/*
1519 		 * Busy detection is managed by mmci_cmd_irq(), including to
1520 		 * clear the corresponding IRQ.
1521 		 */
1522 		status &= readl(host->base + MMCIMASK0);
1523 		if (host->variant->busy_detect)
1524 			writel(status & ~host->variant->busy_detect_mask,
1525 			       host->base + MMCICLEAR);
1526 		else
1527 			writel(status, host->base + MMCICLEAR);
1528 
1529 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1530 
1531 		if (host->variant->reversed_irq_handling) {
1532 			mmci_data_irq(host, host->data, status);
1533 			mmci_cmd_irq(host, host->cmd, status);
1534 		} else {
1535 			mmci_cmd_irq(host, host->cmd, status);
1536 			mmci_data_irq(host, host->data, status);
1537 		}
1538 
1539 		/*
1540 		 * Busy detection has been handled by mmci_cmd_irq() above.
1541 		 * Clear the status bit to prevent polling in IRQ context.
1542 		 */
1543 		if (host->variant->busy_detect_flag)
1544 			status &= ~host->variant->busy_detect_flag;
1545 
1546 		ret = 1;
1547 	} while (status);
1548 
1549 	spin_unlock(&host->lock);
1550 
1551 	return IRQ_RETVAL(ret);
1552 }
1553 
1554 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1555 {
1556 	struct mmci_host *host = mmc_priv(mmc);
1557 	unsigned long flags;
1558 
1559 	WARN_ON(host->mrq != NULL);
1560 
1561 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1562 	if (mrq->cmd->error) {
1563 		mmc_request_done(mmc, mrq);
1564 		return;
1565 	}
1566 
1567 	spin_lock_irqsave(&host->lock, flags);
1568 
1569 	host->mrq = mrq;
1570 
1571 	if (mrq->data)
1572 		mmci_get_next_data(host, mrq->data);
1573 
1574 	if (mrq->data &&
1575 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1576 		mmci_start_data(host, mrq->data);
1577 
1578 	if (mrq->sbc)
1579 		mmci_start_command(host, mrq->sbc, 0);
1580 	else
1581 		mmci_start_command(host, mrq->cmd, 0);
1582 
1583 	spin_unlock_irqrestore(&host->lock, flags);
1584 }
1585 
1586 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1587 {
1588 	struct mmci_host *host = mmc_priv(mmc);
1589 	struct variant_data *variant = host->variant;
1590 	u32 pwr = 0;
1591 	unsigned long flags;
1592 	int ret;
1593 
1594 	if (host->plat->ios_handler &&
1595 		host->plat->ios_handler(mmc_dev(mmc), ios))
1596 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1597 
1598 	switch (ios->power_mode) {
1599 	case MMC_POWER_OFF:
1600 		if (!IS_ERR(mmc->supply.vmmc))
1601 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1602 
1603 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1604 			regulator_disable(mmc->supply.vqmmc);
1605 			host->vqmmc_enabled = false;
1606 		}
1607 
1608 		break;
1609 	case MMC_POWER_UP:
1610 		if (!IS_ERR(mmc->supply.vmmc))
1611 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1612 
1613 		/*
1614 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1615 		 * and instead uses MCI_PWR_ON so apply whatever value is
1616 		 * configured in the variant data.
1617 		 */
1618 		pwr |= variant->pwrreg_powerup;
1619 
1620 		break;
1621 	case MMC_POWER_ON:
1622 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1623 			ret = regulator_enable(mmc->supply.vqmmc);
1624 			if (ret < 0)
1625 				dev_err(mmc_dev(mmc),
1626 					"failed to enable vqmmc regulator\n");
1627 			else
1628 				host->vqmmc_enabled = true;
1629 		}
1630 
1631 		pwr |= MCI_PWR_ON;
1632 		break;
1633 	}
1634 
1635 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1636 		/*
1637 		 * The ST Micro variant has some additional bits
1638 		 * indicating signal direction for the signals in
1639 		 * the SD/MMC bus and feedback-clock usage.
1640 		 */
1641 		pwr |= host->pwr_reg_add;
1642 
1643 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1644 			pwr &= ~MCI_ST_DATA74DIREN;
1645 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1646 			pwr &= (~MCI_ST_DATA74DIREN &
1647 				~MCI_ST_DATA31DIREN &
1648 				~MCI_ST_DATA2DIREN);
1649 	}
1650 
1651 	if (variant->opendrain) {
1652 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1653 			pwr |= variant->opendrain;
1654 	} else {
1655 		/*
1656 		 * If the variant cannot configure the pads by its own, then we
1657 		 * expect the pinctrl to be able to do that for us
1658 		 */
1659 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1660 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1661 		else
1662 			pinctrl_select_state(host->pinctrl, host->pins_default);
1663 	}
1664 
1665 	/*
1666 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1667 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1668 	 */
1669 	if (!ios->clock && variant->pwrreg_clkgate)
1670 		pwr &= ~MCI_PWR_ON;
1671 
1672 	if (host->variant->explicit_mclk_control &&
1673 	    ios->clock != host->clock_cache) {
1674 		ret = clk_set_rate(host->clk, ios->clock);
1675 		if (ret < 0)
1676 			dev_err(mmc_dev(host->mmc),
1677 				"Error setting clock rate (%d)\n", ret);
1678 		else
1679 			host->mclk = clk_get_rate(host->clk);
1680 	}
1681 	host->clock_cache = ios->clock;
1682 
1683 	spin_lock_irqsave(&host->lock, flags);
1684 
1685 	if (host->ops && host->ops->set_clkreg)
1686 		host->ops->set_clkreg(host, ios->clock);
1687 	else
1688 		mmci_set_clkreg(host, ios->clock);
1689 
1690 	if (host->ops && host->ops->set_pwrreg)
1691 		host->ops->set_pwrreg(host, pwr);
1692 	else
1693 		mmci_write_pwrreg(host, pwr);
1694 
1695 	mmci_reg_delay(host);
1696 
1697 	spin_unlock_irqrestore(&host->lock, flags);
1698 }
1699 
1700 static int mmci_get_cd(struct mmc_host *mmc)
1701 {
1702 	struct mmci_host *host = mmc_priv(mmc);
1703 	struct mmci_platform_data *plat = host->plat;
1704 	unsigned int status = mmc_gpio_get_cd(mmc);
1705 
1706 	if (status == -ENOSYS) {
1707 		if (!plat->status)
1708 			return 1; /* Assume always present */
1709 
1710 		status = plat->status(mmc_dev(host->mmc));
1711 	}
1712 	return status;
1713 }
1714 
1715 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1716 {
1717 	int ret = 0;
1718 
1719 	if (!IS_ERR(mmc->supply.vqmmc)) {
1720 
1721 		switch (ios->signal_voltage) {
1722 		case MMC_SIGNAL_VOLTAGE_330:
1723 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1724 						2700000, 3600000);
1725 			break;
1726 		case MMC_SIGNAL_VOLTAGE_180:
1727 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1728 						1700000, 1950000);
1729 			break;
1730 		case MMC_SIGNAL_VOLTAGE_120:
1731 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1732 						1100000, 1300000);
1733 			break;
1734 		}
1735 
1736 		if (ret)
1737 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1738 	}
1739 
1740 	return ret;
1741 }
1742 
1743 static struct mmc_host_ops mmci_ops = {
1744 	.request	= mmci_request,
1745 	.pre_req	= mmci_pre_request,
1746 	.post_req	= mmci_post_request,
1747 	.set_ios	= mmci_set_ios,
1748 	.get_ro		= mmc_gpio_get_ro,
1749 	.get_cd		= mmci_get_cd,
1750 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1751 };
1752 
1753 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1754 {
1755 	struct mmci_host *host = mmc_priv(mmc);
1756 	int ret = mmc_of_parse(mmc);
1757 
1758 	if (ret)
1759 		return ret;
1760 
1761 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1762 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1763 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1764 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1765 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1766 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1767 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1768 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1769 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1770 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1771 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1772 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1773 	if (of_get_property(np, "st,sig-dir", NULL))
1774 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1775 	if (of_get_property(np, "st,neg-edge", NULL))
1776 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1777 	if (of_get_property(np, "st,use-ckin", NULL))
1778 		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1779 
1780 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1781 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1782 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1783 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1784 
1785 	return 0;
1786 }
1787 
1788 static int mmci_probe(struct amba_device *dev,
1789 	const struct amba_id *id)
1790 {
1791 	struct mmci_platform_data *plat = dev->dev.platform_data;
1792 	struct device_node *np = dev->dev.of_node;
1793 	struct variant_data *variant = id->data;
1794 	struct mmci_host *host;
1795 	struct mmc_host *mmc;
1796 	int ret;
1797 
1798 	/* Must have platform data or Device Tree. */
1799 	if (!plat && !np) {
1800 		dev_err(&dev->dev, "No plat data or DT found\n");
1801 		return -EINVAL;
1802 	}
1803 
1804 	if (!plat) {
1805 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1806 		if (!plat)
1807 			return -ENOMEM;
1808 	}
1809 
1810 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1811 	if (!mmc)
1812 		return -ENOMEM;
1813 
1814 	ret = mmci_of_parse(np, mmc);
1815 	if (ret)
1816 		goto host_free;
1817 
1818 	host = mmc_priv(mmc);
1819 	host->mmc = mmc;
1820 
1821 	/*
1822 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1823 	 * pins can be set accordingly using pinctrl
1824 	 */
1825 	if (!variant->opendrain) {
1826 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1827 		if (IS_ERR(host->pinctrl)) {
1828 			dev_err(&dev->dev, "failed to get pinctrl");
1829 			ret = PTR_ERR(host->pinctrl);
1830 			goto host_free;
1831 		}
1832 
1833 		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1834 							  PINCTRL_STATE_DEFAULT);
1835 		if (IS_ERR(host->pins_default)) {
1836 			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1837 			ret = PTR_ERR(host->pins_default);
1838 			goto host_free;
1839 		}
1840 
1841 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1842 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1843 		if (IS_ERR(host->pins_opendrain)) {
1844 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1845 			ret = PTR_ERR(host->pins_opendrain);
1846 			goto host_free;
1847 		}
1848 	}
1849 
1850 	host->hw_designer = amba_manf(dev);
1851 	host->hw_revision = amba_rev(dev);
1852 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1853 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1854 
1855 	host->clk = devm_clk_get(&dev->dev, NULL);
1856 	if (IS_ERR(host->clk)) {
1857 		ret = PTR_ERR(host->clk);
1858 		goto host_free;
1859 	}
1860 
1861 	ret = clk_prepare_enable(host->clk);
1862 	if (ret)
1863 		goto host_free;
1864 
1865 	if (variant->qcom_fifo)
1866 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1867 	else
1868 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1869 
1870 	host->plat = plat;
1871 	host->variant = variant;
1872 	host->mclk = clk_get_rate(host->clk);
1873 	/*
1874 	 * According to the spec, mclk is max 100 MHz,
1875 	 * so we try to adjust the clock down to this,
1876 	 * (if possible).
1877 	 */
1878 	if (host->mclk > variant->f_max) {
1879 		ret = clk_set_rate(host->clk, variant->f_max);
1880 		if (ret < 0)
1881 			goto clk_disable;
1882 		host->mclk = clk_get_rate(host->clk);
1883 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1884 			host->mclk);
1885 	}
1886 
1887 	host->phybase = dev->res.start;
1888 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1889 	if (IS_ERR(host->base)) {
1890 		ret = PTR_ERR(host->base);
1891 		goto clk_disable;
1892 	}
1893 
1894 	if (variant->init)
1895 		variant->init(host);
1896 
1897 	/*
1898 	 * The ARM and ST versions of the block have slightly different
1899 	 * clock divider equations which means that the minimum divider
1900 	 * differs too.
1901 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1902 	 */
1903 	if (variant->st_clkdiv)
1904 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1905 	else if (variant->stm32_clkdiv)
1906 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1907 	else if (variant->explicit_mclk_control)
1908 		mmc->f_min = clk_round_rate(host->clk, 100000);
1909 	else
1910 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1911 	/*
1912 	 * If no maximum operating frequency is supplied, fall back to use
1913 	 * the module parameter, which has a (low) default value in case it
1914 	 * is not specified. Either value must not exceed the clock rate into
1915 	 * the block, of course.
1916 	 */
1917 	if (mmc->f_max)
1918 		mmc->f_max = variant->explicit_mclk_control ?
1919 				min(variant->f_max, mmc->f_max) :
1920 				min(host->mclk, mmc->f_max);
1921 	else
1922 		mmc->f_max = variant->explicit_mclk_control ?
1923 				fmax : min(host->mclk, fmax);
1924 
1925 
1926 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1927 
1928 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1929 	if (IS_ERR(host->rst)) {
1930 		ret = PTR_ERR(host->rst);
1931 		goto clk_disable;
1932 	}
1933 
1934 	/* Get regulators and the supported OCR mask */
1935 	ret = mmc_regulator_get_supply(mmc);
1936 	if (ret)
1937 		goto clk_disable;
1938 
1939 	if (!mmc->ocr_avail)
1940 		mmc->ocr_avail = plat->ocr_mask;
1941 	else if (plat->ocr_mask)
1942 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1943 
1944 	/* We support these capabilities. */
1945 	mmc->caps |= MMC_CAP_CMD23;
1946 
1947 	/*
1948 	 * Enable busy detection.
1949 	 */
1950 	if (variant->busy_detect) {
1951 		mmci_ops.card_busy = mmci_card_busy;
1952 		/*
1953 		 * Not all variants have a flag to enable busy detection
1954 		 * in the DPSM, but if they do, set it here.
1955 		 */
1956 		if (variant->busy_dpsm_flag)
1957 			mmci_write_datactrlreg(host,
1958 					       host->variant->busy_dpsm_flag);
1959 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1960 		mmc->max_busy_timeout = 0;
1961 	}
1962 
1963 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1964 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1965 	host->stop_abort.arg = 0;
1966 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1967 
1968 	mmc->ops = &mmci_ops;
1969 
1970 	/* We support these PM capabilities. */
1971 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1972 
1973 	/*
1974 	 * We can do SGIO
1975 	 */
1976 	mmc->max_segs = NR_SG;
1977 
1978 	/*
1979 	 * Since only a certain number of bits are valid in the data length
1980 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1981 	 * single request.
1982 	 */
1983 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1984 
1985 	/*
1986 	 * Set the maximum segment size.  Since we aren't doing DMA
1987 	 * (yet) we are only limited by the data length register.
1988 	 */
1989 	mmc->max_seg_size = mmc->max_req_size;
1990 
1991 	/*
1992 	 * Block size can be up to 2048 bytes, but must be a power of two.
1993 	 */
1994 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1995 
1996 	/*
1997 	 * Limit the number of blocks transferred so that we don't overflow
1998 	 * the maximum request size.
1999 	 */
2000 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2001 
2002 	spin_lock_init(&host->lock);
2003 
2004 	writel(0, host->base + MMCIMASK0);
2005 
2006 	if (variant->mmcimask1)
2007 		writel(0, host->base + MMCIMASK1);
2008 
2009 	writel(0xfff, host->base + MMCICLEAR);
2010 
2011 	/*
2012 	 * If:
2013 	 * - not using DT but using a descriptor table, or
2014 	 * - using a table of descriptors ALONGSIDE DT, or
2015 	 * look up these descriptors named "cd" and "wp" right here, fail
2016 	 * silently of these do not exist
2017 	 */
2018 	if (!np) {
2019 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2020 		if (ret == -EPROBE_DEFER)
2021 			goto clk_disable;
2022 
2023 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2024 		if (ret == -EPROBE_DEFER)
2025 			goto clk_disable;
2026 	}
2027 
2028 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2029 			DRIVER_NAME " (cmd)", host);
2030 	if (ret)
2031 		goto clk_disable;
2032 
2033 	if (!dev->irq[1])
2034 		host->singleirq = true;
2035 	else {
2036 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2037 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2038 		if (ret)
2039 			goto clk_disable;
2040 	}
2041 
2042 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2043 
2044 	amba_set_drvdata(dev, mmc);
2045 
2046 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2047 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2048 		 amba_rev(dev), (unsigned long long)dev->res.start,
2049 		 dev->irq[0], dev->irq[1]);
2050 
2051 	mmci_dma_setup(host);
2052 
2053 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2054 	pm_runtime_use_autosuspend(&dev->dev);
2055 
2056 	mmc_add_host(mmc);
2057 
2058 	pm_runtime_put(&dev->dev);
2059 	return 0;
2060 
2061  clk_disable:
2062 	clk_disable_unprepare(host->clk);
2063  host_free:
2064 	mmc_free_host(mmc);
2065 	return ret;
2066 }
2067 
2068 static int mmci_remove(struct amba_device *dev)
2069 {
2070 	struct mmc_host *mmc = amba_get_drvdata(dev);
2071 
2072 	if (mmc) {
2073 		struct mmci_host *host = mmc_priv(mmc);
2074 		struct variant_data *variant = host->variant;
2075 
2076 		/*
2077 		 * Undo pm_runtime_put() in probe.  We use the _sync
2078 		 * version here so that we can access the primecell.
2079 		 */
2080 		pm_runtime_get_sync(&dev->dev);
2081 
2082 		mmc_remove_host(mmc);
2083 
2084 		writel(0, host->base + MMCIMASK0);
2085 
2086 		if (variant->mmcimask1)
2087 			writel(0, host->base + MMCIMASK1);
2088 
2089 		writel(0, host->base + MMCICOMMAND);
2090 		writel(0, host->base + MMCIDATACTRL);
2091 
2092 		mmci_dma_release(host);
2093 		clk_disable_unprepare(host->clk);
2094 		mmc_free_host(mmc);
2095 	}
2096 
2097 	return 0;
2098 }
2099 
2100 #ifdef CONFIG_PM
2101 static void mmci_save(struct mmci_host *host)
2102 {
2103 	unsigned long flags;
2104 
2105 	spin_lock_irqsave(&host->lock, flags);
2106 
2107 	writel(0, host->base + MMCIMASK0);
2108 	if (host->variant->pwrreg_nopower) {
2109 		writel(0, host->base + MMCIDATACTRL);
2110 		writel(0, host->base + MMCIPOWER);
2111 		writel(0, host->base + MMCICLOCK);
2112 	}
2113 	mmci_reg_delay(host);
2114 
2115 	spin_unlock_irqrestore(&host->lock, flags);
2116 }
2117 
2118 static void mmci_restore(struct mmci_host *host)
2119 {
2120 	unsigned long flags;
2121 
2122 	spin_lock_irqsave(&host->lock, flags);
2123 
2124 	if (host->variant->pwrreg_nopower) {
2125 		writel(host->clk_reg, host->base + MMCICLOCK);
2126 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2127 		writel(host->pwr_reg, host->base + MMCIPOWER);
2128 	}
2129 	writel(MCI_IRQENABLE | host->variant->start_err,
2130 	       host->base + MMCIMASK0);
2131 	mmci_reg_delay(host);
2132 
2133 	spin_unlock_irqrestore(&host->lock, flags);
2134 }
2135 
2136 static int mmci_runtime_suspend(struct device *dev)
2137 {
2138 	struct amba_device *adev = to_amba_device(dev);
2139 	struct mmc_host *mmc = amba_get_drvdata(adev);
2140 
2141 	if (mmc) {
2142 		struct mmci_host *host = mmc_priv(mmc);
2143 		pinctrl_pm_select_sleep_state(dev);
2144 		mmci_save(host);
2145 		clk_disable_unprepare(host->clk);
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 static int mmci_runtime_resume(struct device *dev)
2152 {
2153 	struct amba_device *adev = to_amba_device(dev);
2154 	struct mmc_host *mmc = amba_get_drvdata(adev);
2155 
2156 	if (mmc) {
2157 		struct mmci_host *host = mmc_priv(mmc);
2158 		clk_prepare_enable(host->clk);
2159 		mmci_restore(host);
2160 		pinctrl_pm_select_default_state(dev);
2161 	}
2162 
2163 	return 0;
2164 }
2165 #endif
2166 
2167 static const struct dev_pm_ops mmci_dev_pm_ops = {
2168 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2169 				pm_runtime_force_resume)
2170 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2171 };
2172 
2173 static const struct amba_id mmci_ids[] = {
2174 	{
2175 		.id	= 0x00041180,
2176 		.mask	= 0xff0fffff,
2177 		.data	= &variant_arm,
2178 	},
2179 	{
2180 		.id	= 0x01041180,
2181 		.mask	= 0xff0fffff,
2182 		.data	= &variant_arm_extended_fifo,
2183 	},
2184 	{
2185 		.id	= 0x02041180,
2186 		.mask	= 0xff0fffff,
2187 		.data	= &variant_arm_extended_fifo_hwfc,
2188 	},
2189 	{
2190 		.id	= 0x00041181,
2191 		.mask	= 0x000fffff,
2192 		.data	= &variant_arm,
2193 	},
2194 	/* ST Micro variants */
2195 	{
2196 		.id     = 0x00180180,
2197 		.mask   = 0x00ffffff,
2198 		.data	= &variant_u300,
2199 	},
2200 	{
2201 		.id     = 0x10180180,
2202 		.mask   = 0xf0ffffff,
2203 		.data	= &variant_nomadik,
2204 	},
2205 	{
2206 		.id     = 0x00280180,
2207 		.mask   = 0x00ffffff,
2208 		.data	= &variant_nomadik,
2209 	},
2210 	{
2211 		.id     = 0x00480180,
2212 		.mask   = 0xf0ffffff,
2213 		.data	= &variant_ux500,
2214 	},
2215 	{
2216 		.id     = 0x10480180,
2217 		.mask   = 0xf0ffffff,
2218 		.data	= &variant_ux500v2,
2219 	},
2220 	{
2221 		.id     = 0x00880180,
2222 		.mask   = 0x00ffffff,
2223 		.data	= &variant_stm32,
2224 	},
2225 	{
2226 		.id     = 0x10153180,
2227 		.mask	= 0xf0ffffff,
2228 		.data	= &variant_stm32_sdmmc,
2229 	},
2230 	/* Qualcomm variants */
2231 	{
2232 		.id     = 0x00051180,
2233 		.mask	= 0x000fffff,
2234 		.data	= &variant_qcom,
2235 	},
2236 	{ 0, 0 },
2237 };
2238 
2239 MODULE_DEVICE_TABLE(amba, mmci_ids);
2240 
2241 static struct amba_driver mmci_driver = {
2242 	.drv		= {
2243 		.name	= DRIVER_NAME,
2244 		.pm	= &mmci_dev_pm_ops,
2245 	},
2246 	.probe		= mmci_probe,
2247 	.remove		= mmci_remove,
2248 	.id_table	= mmci_ids,
2249 };
2250 
2251 module_amba_driver(mmci_driver);
2252 
2253 module_param(fmax, uint, 0444);
2254 
2255 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2256 MODULE_LICENSE("GPL");
2257