xref: /linux/drivers/mmc/host/mmci.c (revision 2634682fdffd9ba6e74b76be8aa91cf8b2e05c41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 
40 #include <asm/div64.h>
41 #include <asm/io.h>
42 
43 #include "mmci.h"
44 
45 #define DRIVER_NAME "mmci-pl18x"
46 
47 static void mmci_variant_init(struct mmci_host *host);
48 static void ux500_variant_init(struct mmci_host *host);
49 static void ux500v2_variant_init(struct mmci_host *host);
50 
51 static unsigned int fmax = 515633;
52 
53 static struct variant_data variant_arm = {
54 	.fifosize		= 16 * 4,
55 	.fifohalfsize		= 8 * 4,
56 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
57 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
58 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
59 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
60 	.datalength_bits	= 16,
61 	.datactrl_blocksz	= 11,
62 	.pwrreg_powerup		= MCI_PWR_UP,
63 	.f_max			= 100000000,
64 	.reversed_irq_handling	= true,
65 	.mmcimask1		= true,
66 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
67 	.start_err		= MCI_STARTBITERR,
68 	.opendrain		= MCI_ROD,
69 	.init			= mmci_variant_init,
70 };
71 
72 static struct variant_data variant_arm_extended_fifo = {
73 	.fifosize		= 128 * 4,
74 	.fifohalfsize		= 64 * 4,
75 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
76 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
77 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
78 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
79 	.datalength_bits	= 16,
80 	.datactrl_blocksz	= 11,
81 	.pwrreg_powerup		= MCI_PWR_UP,
82 	.f_max			= 100000000,
83 	.mmcimask1		= true,
84 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
85 	.start_err		= MCI_STARTBITERR,
86 	.opendrain		= MCI_ROD,
87 	.init			= mmci_variant_init,
88 };
89 
90 static struct variant_data variant_arm_extended_fifo_hwfc = {
91 	.fifosize		= 128 * 4,
92 	.fifohalfsize		= 64 * 4,
93 	.clkreg_enable		= MCI_ARM_HWFCEN,
94 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
95 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
96 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
97 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
98 	.datalength_bits	= 16,
99 	.datactrl_blocksz	= 11,
100 	.pwrreg_powerup		= MCI_PWR_UP,
101 	.f_max			= 100000000,
102 	.mmcimask1		= true,
103 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
104 	.start_err		= MCI_STARTBITERR,
105 	.opendrain		= MCI_ROD,
106 	.init			= mmci_variant_init,
107 };
108 
109 static struct variant_data variant_u300 = {
110 	.fifosize		= 16 * 4,
111 	.fifohalfsize		= 8 * 4,
112 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
113 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
114 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
115 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
116 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
117 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
118 	.datalength_bits	= 16,
119 	.datactrl_blocksz	= 11,
120 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
121 	.st_sdio			= true,
122 	.pwrreg_powerup		= MCI_PWR_ON,
123 	.f_max			= 100000000,
124 	.signal_direction	= true,
125 	.pwrreg_clkgate		= true,
126 	.pwrreg_nopower		= true,
127 	.mmcimask1		= true,
128 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
129 	.start_err		= MCI_STARTBITERR,
130 	.opendrain		= MCI_OD,
131 	.init			= mmci_variant_init,
132 };
133 
134 static struct variant_data variant_nomadik = {
135 	.fifosize		= 16 * 4,
136 	.fifohalfsize		= 8 * 4,
137 	.clkreg			= MCI_CLK_ENABLE,
138 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
140 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
141 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
142 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
143 	.datalength_bits	= 24,
144 	.datactrl_blocksz	= 11,
145 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
146 	.st_sdio		= true,
147 	.st_clkdiv		= true,
148 	.pwrreg_powerup		= MCI_PWR_ON,
149 	.f_max			= 100000000,
150 	.signal_direction	= true,
151 	.pwrreg_clkgate		= true,
152 	.pwrreg_nopower		= true,
153 	.mmcimask1		= true,
154 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
155 	.start_err		= MCI_STARTBITERR,
156 	.opendrain		= MCI_OD,
157 	.init			= mmci_variant_init,
158 };
159 
160 static struct variant_data variant_ux500 = {
161 	.fifosize		= 30 * 4,
162 	.fifohalfsize		= 8 * 4,
163 	.clkreg			= MCI_CLK_ENABLE,
164 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
165 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
166 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
167 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
168 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
169 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
170 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
171 	.datalength_bits	= 24,
172 	.datactrl_blocksz	= 11,
173 	.datactrl_any_blocksz	= true,
174 	.dma_power_of_2		= true,
175 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
176 	.st_sdio		= true,
177 	.st_clkdiv		= true,
178 	.pwrreg_powerup		= MCI_PWR_ON,
179 	.f_max			= 100000000,
180 	.signal_direction	= true,
181 	.pwrreg_clkgate		= true,
182 	.busy_detect		= true,
183 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
184 	.busy_detect_flag	= MCI_ST_CARDBUSY,
185 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
186 	.pwrreg_nopower		= true,
187 	.mmcimask1		= true,
188 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
189 	.start_err		= MCI_STARTBITERR,
190 	.opendrain		= MCI_OD,
191 	.init			= ux500_variant_init,
192 };
193 
194 static struct variant_data variant_ux500v2 = {
195 	.fifosize		= 30 * 4,
196 	.fifohalfsize		= 8 * 4,
197 	.clkreg			= MCI_CLK_ENABLE,
198 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
199 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
200 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
201 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
202 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
203 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
204 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
205 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
206 	.datalength_bits	= 24,
207 	.datactrl_blocksz	= 11,
208 	.datactrl_any_blocksz	= true,
209 	.dma_power_of_2		= true,
210 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
211 	.st_sdio		= true,
212 	.st_clkdiv		= true,
213 	.pwrreg_powerup		= MCI_PWR_ON,
214 	.f_max			= 100000000,
215 	.signal_direction	= true,
216 	.pwrreg_clkgate		= true,
217 	.busy_detect		= true,
218 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
219 	.busy_detect_flag	= MCI_ST_CARDBUSY,
220 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
221 	.pwrreg_nopower		= true,
222 	.mmcimask1		= true,
223 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
224 	.start_err		= MCI_STARTBITERR,
225 	.opendrain		= MCI_OD,
226 	.init			= ux500v2_variant_init,
227 };
228 
229 static struct variant_data variant_stm32 = {
230 	.fifosize		= 32 * 4,
231 	.fifohalfsize		= 8 * 4,
232 	.clkreg			= MCI_CLK_ENABLE,
233 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
234 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
235 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
236 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
237 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
238 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
239 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
240 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
241 	.datalength_bits	= 24,
242 	.datactrl_blocksz	= 11,
243 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
244 	.st_sdio		= true,
245 	.st_clkdiv		= true,
246 	.pwrreg_powerup		= MCI_PWR_ON,
247 	.f_max			= 48000000,
248 	.pwrreg_clkgate		= true,
249 	.pwrreg_nopower		= true,
250 	.init			= mmci_variant_init,
251 };
252 
253 static struct variant_data variant_stm32_sdmmc = {
254 	.fifosize		= 16 * 4,
255 	.fifohalfsize		= 8 * 4,
256 	.f_max			= 208000000,
257 	.stm32_clkdiv		= true,
258 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
259 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
260 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
261 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
262 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
263 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
264 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
265 	.datactrl_first		= true,
266 	.datacnt_useless	= true,
267 	.datalength_bits	= 25,
268 	.datactrl_blocksz	= 14,
269 	.datactrl_any_blocksz	= true,
270 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
271 	.stm32_idmabsize_mask	= GENMASK(12, 5),
272 	.busy_timeout		= true,
273 	.busy_detect		= true,
274 	.busy_detect_flag	= MCI_STM32_BUSYD0,
275 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
276 	.init			= sdmmc_variant_init,
277 };
278 
279 static struct variant_data variant_stm32_sdmmcv2 = {
280 	.fifosize		= 16 * 4,
281 	.fifohalfsize		= 8 * 4,
282 	.f_max			= 208000000,
283 	.stm32_clkdiv		= true,
284 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
285 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
286 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
287 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
288 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
289 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
290 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
291 	.datactrl_first		= true,
292 	.datacnt_useless	= true,
293 	.datalength_bits	= 25,
294 	.datactrl_blocksz	= 14,
295 	.datactrl_any_blocksz	= true,
296 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
297 	.stm32_idmabsize_mask	= GENMASK(16, 5),
298 	.dma_lli		= true,
299 	.busy_timeout		= true,
300 	.busy_detect		= true,
301 	.busy_detect_flag	= MCI_STM32_BUSYD0,
302 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
303 	.init			= sdmmc_variant_init,
304 };
305 
306 static struct variant_data variant_qcom = {
307 	.fifosize		= 16 * 4,
308 	.fifohalfsize		= 8 * 4,
309 	.clkreg			= MCI_CLK_ENABLE,
310 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
311 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
312 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
313 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
314 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
315 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
316 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
317 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
318 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
319 	.datalength_bits	= 24,
320 	.datactrl_blocksz	= 11,
321 	.datactrl_any_blocksz	= true,
322 	.pwrreg_powerup		= MCI_PWR_UP,
323 	.f_max			= 208000000,
324 	.explicit_mclk_control	= true,
325 	.qcom_fifo		= true,
326 	.qcom_dml		= true,
327 	.mmcimask1		= true,
328 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
329 	.start_err		= MCI_STARTBITERR,
330 	.opendrain		= MCI_ROD,
331 	.init			= qcom_variant_init,
332 };
333 
334 /* Busy detection for the ST Micro variant */
335 static int mmci_card_busy(struct mmc_host *mmc)
336 {
337 	struct mmci_host *host = mmc_priv(mmc);
338 	unsigned long flags;
339 	int busy = 0;
340 
341 	spin_lock_irqsave(&host->lock, flags);
342 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
343 		busy = 1;
344 	spin_unlock_irqrestore(&host->lock, flags);
345 
346 	return busy;
347 }
348 
349 static void mmci_reg_delay(struct mmci_host *host)
350 {
351 	/*
352 	 * According to the spec, at least three feedback clock cycles
353 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
354 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
355 	 * Worst delay time during card init is at 100 kHz => 30 us.
356 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
357 	 */
358 	if (host->cclk < 25000000)
359 		udelay(30);
360 	else
361 		ndelay(120);
362 }
363 
364 /*
365  * This must be called with host->lock held
366  */
367 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
368 {
369 	if (host->clk_reg != clk) {
370 		host->clk_reg = clk;
371 		writel(clk, host->base + MMCICLOCK);
372 	}
373 }
374 
375 /*
376  * This must be called with host->lock held
377  */
378 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
379 {
380 	if (host->pwr_reg != pwr) {
381 		host->pwr_reg = pwr;
382 		writel(pwr, host->base + MMCIPOWER);
383 	}
384 }
385 
386 /*
387  * This must be called with host->lock held
388  */
389 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
390 {
391 	/* Keep busy mode in DPSM if enabled */
392 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
393 
394 	if (host->datactrl_reg != datactrl) {
395 		host->datactrl_reg = datactrl;
396 		writel(datactrl, host->base + MMCIDATACTRL);
397 	}
398 }
399 
400 /*
401  * This must be called with host->lock held
402  */
403 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
404 {
405 	struct variant_data *variant = host->variant;
406 	u32 clk = variant->clkreg;
407 
408 	/* Make sure cclk reflects the current calculated clock */
409 	host->cclk = 0;
410 
411 	if (desired) {
412 		if (variant->explicit_mclk_control) {
413 			host->cclk = host->mclk;
414 		} else if (desired >= host->mclk) {
415 			clk = MCI_CLK_BYPASS;
416 			if (variant->st_clkdiv)
417 				clk |= MCI_ST_UX500_NEG_EDGE;
418 			host->cclk = host->mclk;
419 		} else if (variant->st_clkdiv) {
420 			/*
421 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
422 			 * => clkdiv = (mclk / f) - 2
423 			 * Round the divider up so we don't exceed the max
424 			 * frequency
425 			 */
426 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
427 			if (clk >= 256)
428 				clk = 255;
429 			host->cclk = host->mclk / (clk + 2);
430 		} else {
431 			/*
432 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
433 			 * => clkdiv = mclk / (2 * f) - 1
434 			 */
435 			clk = host->mclk / (2 * desired) - 1;
436 			if (clk >= 256)
437 				clk = 255;
438 			host->cclk = host->mclk / (2 * (clk + 1));
439 		}
440 
441 		clk |= variant->clkreg_enable;
442 		clk |= MCI_CLK_ENABLE;
443 		/* This hasn't proven to be worthwhile */
444 		/* clk |= MCI_CLK_PWRSAVE; */
445 	}
446 
447 	/* Set actual clock for debug */
448 	host->mmc->actual_clock = host->cclk;
449 
450 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
451 		clk |= MCI_4BIT_BUS;
452 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
453 		clk |= variant->clkreg_8bit_bus_enable;
454 
455 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
456 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
457 		clk |= variant->clkreg_neg_edge_enable;
458 
459 	mmci_write_clkreg(host, clk);
460 }
461 
462 static void mmci_dma_release(struct mmci_host *host)
463 {
464 	if (host->ops && host->ops->dma_release)
465 		host->ops->dma_release(host);
466 
467 	host->use_dma = false;
468 }
469 
470 static void mmci_dma_setup(struct mmci_host *host)
471 {
472 	if (!host->ops || !host->ops->dma_setup)
473 		return;
474 
475 	if (host->ops->dma_setup(host))
476 		return;
477 
478 	/* initialize pre request cookie */
479 	host->next_cookie = 1;
480 
481 	host->use_dma = true;
482 }
483 
484 /*
485  * Validate mmc prerequisites
486  */
487 static int mmci_validate_data(struct mmci_host *host,
488 			      struct mmc_data *data)
489 {
490 	struct variant_data *variant = host->variant;
491 
492 	if (!data)
493 		return 0;
494 	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
495 		dev_err(mmc_dev(host->mmc),
496 			"unsupported block size (%d bytes)\n", data->blksz);
497 		return -EINVAL;
498 	}
499 
500 	if (host->ops && host->ops->validate_data)
501 		return host->ops->validate_data(host, data);
502 
503 	return 0;
504 }
505 
506 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
507 {
508 	int err;
509 
510 	if (!host->ops || !host->ops->prep_data)
511 		return 0;
512 
513 	err = host->ops->prep_data(host, data, next);
514 
515 	if (next && !err)
516 		data->host_cookie = ++host->next_cookie < 0 ?
517 			1 : host->next_cookie;
518 
519 	return err;
520 }
521 
522 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
523 		      int err)
524 {
525 	if (host->ops && host->ops->unprep_data)
526 		host->ops->unprep_data(host, data, err);
527 
528 	data->host_cookie = 0;
529 }
530 
531 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
532 {
533 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
534 
535 	if (host->ops && host->ops->get_next_data)
536 		host->ops->get_next_data(host, data);
537 }
538 
539 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
540 {
541 	struct mmc_data *data = host->data;
542 	int ret;
543 
544 	if (!host->use_dma)
545 		return -EINVAL;
546 
547 	ret = mmci_prep_data(host, data, false);
548 	if (ret)
549 		return ret;
550 
551 	if (!host->ops || !host->ops->dma_start)
552 		return -EINVAL;
553 
554 	/* Okay, go for it. */
555 	dev_vdbg(mmc_dev(host->mmc),
556 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
557 		 data->sg_len, data->blksz, data->blocks, data->flags);
558 
559 	ret = host->ops->dma_start(host, &datactrl);
560 	if (ret)
561 		return ret;
562 
563 	/* Trigger the DMA transfer */
564 	mmci_write_datactrlreg(host, datactrl);
565 
566 	/*
567 	 * Let the MMCI say when the data is ended and it's time
568 	 * to fire next DMA request. When that happens, MMCI will
569 	 * call mmci_data_end()
570 	 */
571 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
572 	       host->base + MMCIMASK0);
573 	return 0;
574 }
575 
576 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
577 {
578 	if (!host->use_dma)
579 		return;
580 
581 	if (host->ops && host->ops->dma_finalize)
582 		host->ops->dma_finalize(host, data);
583 }
584 
585 static void mmci_dma_error(struct mmci_host *host)
586 {
587 	if (!host->use_dma)
588 		return;
589 
590 	if (host->ops && host->ops->dma_error)
591 		host->ops->dma_error(host);
592 }
593 
594 static void
595 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
596 {
597 	writel(0, host->base + MMCICOMMAND);
598 
599 	BUG_ON(host->data);
600 
601 	host->mrq = NULL;
602 	host->cmd = NULL;
603 
604 	mmc_request_done(host->mmc, mrq);
605 }
606 
607 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
608 {
609 	void __iomem *base = host->base;
610 	struct variant_data *variant = host->variant;
611 
612 	if (host->singleirq) {
613 		unsigned int mask0 = readl(base + MMCIMASK0);
614 
615 		mask0 &= ~variant->irq_pio_mask;
616 		mask0 |= mask;
617 
618 		writel(mask0, base + MMCIMASK0);
619 	}
620 
621 	if (variant->mmcimask1)
622 		writel(mask, base + MMCIMASK1);
623 
624 	host->mask1_reg = mask;
625 }
626 
627 static void mmci_stop_data(struct mmci_host *host)
628 {
629 	mmci_write_datactrlreg(host, 0);
630 	mmci_set_mask1(host, 0);
631 	host->data = NULL;
632 }
633 
634 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
635 {
636 	unsigned int flags = SG_MITER_ATOMIC;
637 
638 	if (data->flags & MMC_DATA_READ)
639 		flags |= SG_MITER_TO_SG;
640 	else
641 		flags |= SG_MITER_FROM_SG;
642 
643 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
644 }
645 
646 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
647 {
648 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
649 }
650 
651 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
652 {
653 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
654 }
655 
656 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
657 {
658 	void __iomem *base = host->base;
659 
660 	/*
661 	 * Before unmasking for the busy end IRQ, confirm that the
662 	 * command was sent successfully. To keep track of having a
663 	 * command in-progress, waiting for busy signaling to end,
664 	 * store the status in host->busy_status.
665 	 *
666 	 * Note that, the card may need a couple of clock cycles before
667 	 * it starts signaling busy on DAT0, hence re-read the
668 	 * MMCISTATUS register here, to allow the busy bit to be set.
669 	 * Potentially we may even need to poll the register for a
670 	 * while, to allow it to be set, but tests indicates that it
671 	 * isn't needed.
672 	 */
673 	if (!host->busy_status && !(status & err_msk) &&
674 	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
675 		writel(readl(base + MMCIMASK0) |
676 		       host->variant->busy_detect_mask,
677 		       base + MMCIMASK0);
678 
679 		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
680 		return false;
681 	}
682 
683 	/*
684 	 * If there is a command in-progress that has been successfully
685 	 * sent, then bail out if busy status is set and wait for the
686 	 * busy end IRQ.
687 	 *
688 	 * Note that, the HW triggers an IRQ on both edges while
689 	 * monitoring DAT0 for busy completion, but there is only one
690 	 * status bit in MMCISTATUS for the busy state. Therefore
691 	 * both the start and the end interrupts needs to be cleared,
692 	 * one after the other. So, clear the busy start IRQ here.
693 	 */
694 	if (host->busy_status &&
695 	    (status & host->variant->busy_detect_flag)) {
696 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
697 		return false;
698 	}
699 
700 	/*
701 	 * If there is a command in-progress that has been successfully
702 	 * sent and the busy bit isn't set, it means we have received
703 	 * the busy end IRQ. Clear and mask the IRQ, then continue to
704 	 * process the command.
705 	 */
706 	if (host->busy_status) {
707 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
708 
709 		writel(readl(base + MMCIMASK0) &
710 		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
711 		host->busy_status = 0;
712 	}
713 
714 	return true;
715 }
716 
717 /*
718  * All the DMA operation mode stuff goes inside this ifdef.
719  * This assumes that you have a generic DMA device interface,
720  * no custom DMA interfaces are supported.
721  */
722 #ifdef CONFIG_DMA_ENGINE
723 struct mmci_dmae_next {
724 	struct dma_async_tx_descriptor *desc;
725 	struct dma_chan	*chan;
726 };
727 
728 struct mmci_dmae_priv {
729 	struct dma_chan	*cur;
730 	struct dma_chan	*rx_channel;
731 	struct dma_chan	*tx_channel;
732 	struct dma_async_tx_descriptor	*desc_current;
733 	struct mmci_dmae_next next_data;
734 };
735 
736 int mmci_dmae_setup(struct mmci_host *host)
737 {
738 	const char *rxname, *txname;
739 	struct mmci_dmae_priv *dmae;
740 
741 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
742 	if (!dmae)
743 		return -ENOMEM;
744 
745 	host->dma_priv = dmae;
746 
747 	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
748 	if (IS_ERR(dmae->rx_channel)) {
749 		int ret = PTR_ERR(dmae->rx_channel);
750 		dmae->rx_channel = NULL;
751 		return ret;
752 	}
753 
754 	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
755 	if (IS_ERR(dmae->tx_channel)) {
756 		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
757 			dev_warn(mmc_dev(host->mmc),
758 				 "Deferred probe for TX channel ignored\n");
759 		dmae->tx_channel = NULL;
760 	}
761 
762 	/*
763 	 * If only an RX channel is specified, the driver will
764 	 * attempt to use it bidirectionally, however if it is
765 	 * is specified but cannot be located, DMA will be disabled.
766 	 */
767 	if (dmae->rx_channel && !dmae->tx_channel)
768 		dmae->tx_channel = dmae->rx_channel;
769 
770 	if (dmae->rx_channel)
771 		rxname = dma_chan_name(dmae->rx_channel);
772 	else
773 		rxname = "none";
774 
775 	if (dmae->tx_channel)
776 		txname = dma_chan_name(dmae->tx_channel);
777 	else
778 		txname = "none";
779 
780 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
781 		 rxname, txname);
782 
783 	/*
784 	 * Limit the maximum segment size in any SG entry according to
785 	 * the parameters of the DMA engine device.
786 	 */
787 	if (dmae->tx_channel) {
788 		struct device *dev = dmae->tx_channel->device->dev;
789 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
790 
791 		if (max_seg_size < host->mmc->max_seg_size)
792 			host->mmc->max_seg_size = max_seg_size;
793 	}
794 	if (dmae->rx_channel) {
795 		struct device *dev = dmae->rx_channel->device->dev;
796 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
797 
798 		if (max_seg_size < host->mmc->max_seg_size)
799 			host->mmc->max_seg_size = max_seg_size;
800 	}
801 
802 	if (!dmae->tx_channel || !dmae->rx_channel) {
803 		mmci_dmae_release(host);
804 		return -EINVAL;
805 	}
806 
807 	return 0;
808 }
809 
810 /*
811  * This is used in or so inline it
812  * so it can be discarded.
813  */
814 void mmci_dmae_release(struct mmci_host *host)
815 {
816 	struct mmci_dmae_priv *dmae = host->dma_priv;
817 
818 	if (dmae->rx_channel)
819 		dma_release_channel(dmae->rx_channel);
820 	if (dmae->tx_channel)
821 		dma_release_channel(dmae->tx_channel);
822 	dmae->rx_channel = dmae->tx_channel = NULL;
823 }
824 
825 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
826 {
827 	struct mmci_dmae_priv *dmae = host->dma_priv;
828 	struct dma_chan *chan;
829 
830 	if (data->flags & MMC_DATA_READ)
831 		chan = dmae->rx_channel;
832 	else
833 		chan = dmae->tx_channel;
834 
835 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
836 		     mmc_get_dma_dir(data));
837 }
838 
839 void mmci_dmae_error(struct mmci_host *host)
840 {
841 	struct mmci_dmae_priv *dmae = host->dma_priv;
842 
843 	if (!dma_inprogress(host))
844 		return;
845 
846 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
847 	dmaengine_terminate_all(dmae->cur);
848 	host->dma_in_progress = false;
849 	dmae->cur = NULL;
850 	dmae->desc_current = NULL;
851 	host->data->host_cookie = 0;
852 
853 	mmci_dma_unmap(host, host->data);
854 }
855 
856 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
857 {
858 	struct mmci_dmae_priv *dmae = host->dma_priv;
859 	u32 status;
860 	int i;
861 
862 	if (!dma_inprogress(host))
863 		return;
864 
865 	/* Wait up to 1ms for the DMA to complete */
866 	for (i = 0; ; i++) {
867 		status = readl(host->base + MMCISTATUS);
868 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
869 			break;
870 		udelay(10);
871 	}
872 
873 	/*
874 	 * Check to see whether we still have some data left in the FIFO -
875 	 * this catches DMA controllers which are unable to monitor the
876 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
877 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
878 	 */
879 	if (status & MCI_RXDATAAVLBLMASK) {
880 		mmci_dma_error(host);
881 		if (!data->error)
882 			data->error = -EIO;
883 	} else if (!data->host_cookie) {
884 		mmci_dma_unmap(host, data);
885 	}
886 
887 	/*
888 	 * Use of DMA with scatter-gather is impossible.
889 	 * Give up with DMA and switch back to PIO mode.
890 	 */
891 	if (status & MCI_RXDATAAVLBLMASK) {
892 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
893 		mmci_dma_release(host);
894 	}
895 
896 	host->dma_in_progress = false;
897 	dmae->cur = NULL;
898 	dmae->desc_current = NULL;
899 }
900 
901 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
902 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
903 				struct dma_chan **dma_chan,
904 				struct dma_async_tx_descriptor **dma_desc)
905 {
906 	struct mmci_dmae_priv *dmae = host->dma_priv;
907 	struct variant_data *variant = host->variant;
908 	struct dma_slave_config conf = {
909 		.src_addr = host->phybase + MMCIFIFO,
910 		.dst_addr = host->phybase + MMCIFIFO,
911 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
912 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
914 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
915 		.device_fc = false,
916 	};
917 	struct dma_chan *chan;
918 	struct dma_device *device;
919 	struct dma_async_tx_descriptor *desc;
920 	int nr_sg;
921 	unsigned long flags = DMA_CTRL_ACK;
922 
923 	if (data->flags & MMC_DATA_READ) {
924 		conf.direction = DMA_DEV_TO_MEM;
925 		chan = dmae->rx_channel;
926 	} else {
927 		conf.direction = DMA_MEM_TO_DEV;
928 		chan = dmae->tx_channel;
929 	}
930 
931 	/* If there's no DMA channel, fall back to PIO */
932 	if (!chan)
933 		return -EINVAL;
934 
935 	/* If less than or equal to the fifo size, don't bother with DMA */
936 	if (data->blksz * data->blocks <= variant->fifosize)
937 		return -EINVAL;
938 
939 	/*
940 	 * This is necessary to get SDIO working on the Ux500. We do not yet
941 	 * know if this is a bug in:
942 	 * - The Ux500 DMA controller (DMA40)
943 	 * - The MMCI DMA interface on the Ux500
944 	 * some power of two blocks (such as 64 bytes) are sent regularly
945 	 * during SDIO traffic and those work fine so for these we enable DMA
946 	 * transfers.
947 	 */
948 	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
949 		return -EINVAL;
950 
951 	device = chan->device;
952 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
953 			   mmc_get_dma_dir(data));
954 	if (nr_sg == 0)
955 		return -EINVAL;
956 
957 	if (host->variant->qcom_dml)
958 		flags |= DMA_PREP_INTERRUPT;
959 
960 	dmaengine_slave_config(chan, &conf);
961 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
962 					    conf.direction, flags);
963 	if (!desc)
964 		goto unmap_exit;
965 
966 	*dma_chan = chan;
967 	*dma_desc = desc;
968 
969 	return 0;
970 
971  unmap_exit:
972 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
973 		     mmc_get_dma_dir(data));
974 	return -ENOMEM;
975 }
976 
977 int mmci_dmae_prep_data(struct mmci_host *host,
978 			struct mmc_data *data,
979 			bool next)
980 {
981 	struct mmci_dmae_priv *dmae = host->dma_priv;
982 	struct mmci_dmae_next *nd = &dmae->next_data;
983 
984 	if (!host->use_dma)
985 		return -EINVAL;
986 
987 	if (next)
988 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
989 	/* Check if next job is already prepared. */
990 	if (dmae->cur && dmae->desc_current)
991 		return 0;
992 
993 	/* No job were prepared thus do it now. */
994 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
995 				    &dmae->desc_current);
996 }
997 
998 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
999 {
1000 	struct mmci_dmae_priv *dmae = host->dma_priv;
1001 	int ret;
1002 
1003 	host->dma_in_progress = true;
1004 	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1005 	if (ret < 0) {
1006 		host->dma_in_progress = false;
1007 		return ret;
1008 	}
1009 	dma_async_issue_pending(dmae->cur);
1010 
1011 	*datactrl |= MCI_DPSM_DMAENABLE;
1012 
1013 	return 0;
1014 }
1015 
1016 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1017 {
1018 	struct mmci_dmae_priv *dmae = host->dma_priv;
1019 	struct mmci_dmae_next *next = &dmae->next_data;
1020 
1021 	if (!host->use_dma)
1022 		return;
1023 
1024 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1025 
1026 	dmae->desc_current = next->desc;
1027 	dmae->cur = next->chan;
1028 	next->desc = NULL;
1029 	next->chan = NULL;
1030 }
1031 
1032 void mmci_dmae_unprep_data(struct mmci_host *host,
1033 			   struct mmc_data *data, int err)
1034 
1035 {
1036 	struct mmci_dmae_priv *dmae = host->dma_priv;
1037 
1038 	if (!host->use_dma)
1039 		return;
1040 
1041 	mmci_dma_unmap(host, data);
1042 
1043 	if (err) {
1044 		struct mmci_dmae_next *next = &dmae->next_data;
1045 		struct dma_chan *chan;
1046 		if (data->flags & MMC_DATA_READ)
1047 			chan = dmae->rx_channel;
1048 		else
1049 			chan = dmae->tx_channel;
1050 		dmaengine_terminate_all(chan);
1051 
1052 		if (dmae->desc_current == next->desc)
1053 			dmae->desc_current = NULL;
1054 
1055 		if (dmae->cur == next->chan) {
1056 			host->dma_in_progress = false;
1057 			dmae->cur = NULL;
1058 		}
1059 
1060 		next->desc = NULL;
1061 		next->chan = NULL;
1062 	}
1063 }
1064 
1065 static struct mmci_host_ops mmci_variant_ops = {
1066 	.prep_data = mmci_dmae_prep_data,
1067 	.unprep_data = mmci_dmae_unprep_data,
1068 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1069 	.get_next_data = mmci_dmae_get_next_data,
1070 	.dma_setup = mmci_dmae_setup,
1071 	.dma_release = mmci_dmae_release,
1072 	.dma_start = mmci_dmae_start,
1073 	.dma_finalize = mmci_dmae_finalize,
1074 	.dma_error = mmci_dmae_error,
1075 };
1076 #else
1077 static struct mmci_host_ops mmci_variant_ops = {
1078 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1079 };
1080 #endif
1081 
1082 static void mmci_variant_init(struct mmci_host *host)
1083 {
1084 	host->ops = &mmci_variant_ops;
1085 }
1086 
1087 static void ux500_variant_init(struct mmci_host *host)
1088 {
1089 	host->ops = &mmci_variant_ops;
1090 	host->ops->busy_complete = ux500_busy_complete;
1091 }
1092 
1093 static void ux500v2_variant_init(struct mmci_host *host)
1094 {
1095 	host->ops = &mmci_variant_ops;
1096 	host->ops->busy_complete = ux500_busy_complete;
1097 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1098 }
1099 
1100 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1101 {
1102 	struct mmci_host *host = mmc_priv(mmc);
1103 	struct mmc_data *data = mrq->data;
1104 
1105 	if (!data)
1106 		return;
1107 
1108 	WARN_ON(data->host_cookie);
1109 
1110 	if (mmci_validate_data(host, data))
1111 		return;
1112 
1113 	mmci_prep_data(host, data, true);
1114 }
1115 
1116 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1117 			      int err)
1118 {
1119 	struct mmci_host *host = mmc_priv(mmc);
1120 	struct mmc_data *data = mrq->data;
1121 
1122 	if (!data || !data->host_cookie)
1123 		return;
1124 
1125 	mmci_unprep_data(host, data, err);
1126 }
1127 
1128 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1129 {
1130 	struct variant_data *variant = host->variant;
1131 	unsigned int datactrl, timeout, irqmask;
1132 	unsigned long long clks;
1133 	void __iomem *base;
1134 
1135 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1136 		data->blksz, data->blocks, data->flags);
1137 
1138 	host->data = data;
1139 	host->size = data->blksz * data->blocks;
1140 	data->bytes_xfered = 0;
1141 
1142 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1143 	do_div(clks, NSEC_PER_SEC);
1144 
1145 	timeout = data->timeout_clks + (unsigned int)clks;
1146 
1147 	base = host->base;
1148 	writel(timeout, base + MMCIDATATIMER);
1149 	writel(host->size, base + MMCIDATALENGTH);
1150 
1151 	datactrl = host->ops->get_datactrl_cfg(host);
1152 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1153 
1154 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1155 		u32 clk;
1156 
1157 		datactrl |= variant->datactrl_mask_sdio;
1158 
1159 		/*
1160 		 * The ST Micro variant for SDIO small write transfers
1161 		 * needs to have clock H/W flow control disabled,
1162 		 * otherwise the transfer will not start. The threshold
1163 		 * depends on the rate of MCLK.
1164 		 */
1165 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1166 		    (host->size < 8 ||
1167 		     (host->size <= 8 && host->mclk > 50000000)))
1168 			clk = host->clk_reg & ~variant->clkreg_enable;
1169 		else
1170 			clk = host->clk_reg | variant->clkreg_enable;
1171 
1172 		mmci_write_clkreg(host, clk);
1173 	}
1174 
1175 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1176 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1177 		datactrl |= variant->datactrl_mask_ddrmode;
1178 
1179 	/*
1180 	 * Attempt to use DMA operation mode, if this
1181 	 * should fail, fall back to PIO mode
1182 	 */
1183 	if (!mmci_dma_start(host, datactrl))
1184 		return;
1185 
1186 	/* IRQ mode, map the SG list for CPU reading/writing */
1187 	mmci_init_sg(host, data);
1188 
1189 	if (data->flags & MMC_DATA_READ) {
1190 		irqmask = MCI_RXFIFOHALFFULLMASK;
1191 
1192 		/*
1193 		 * If we have less than the fifo 'half-full' threshold to
1194 		 * transfer, trigger a PIO interrupt as soon as any data
1195 		 * is available.
1196 		 */
1197 		if (host->size < variant->fifohalfsize)
1198 			irqmask |= MCI_RXDATAAVLBLMASK;
1199 	} else {
1200 		/*
1201 		 * We don't actually need to include "FIFO empty" here
1202 		 * since its implicit in "FIFO half empty".
1203 		 */
1204 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1205 	}
1206 
1207 	mmci_write_datactrlreg(host, datactrl);
1208 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1209 	mmci_set_mask1(host, irqmask);
1210 }
1211 
1212 static void
1213 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1214 {
1215 	void __iomem *base = host->base;
1216 	unsigned long long clks;
1217 
1218 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1219 	    cmd->opcode, cmd->arg, cmd->flags);
1220 
1221 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1222 		writel(0, base + MMCICOMMAND);
1223 		mmci_reg_delay(host);
1224 	}
1225 
1226 	if (host->variant->cmdreg_stop &&
1227 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1228 		c |= host->variant->cmdreg_stop;
1229 
1230 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1231 	if (cmd->flags & MMC_RSP_PRESENT) {
1232 		if (cmd->flags & MMC_RSP_136)
1233 			c |= host->variant->cmdreg_lrsp_crc;
1234 		else if (cmd->flags & MMC_RSP_CRC)
1235 			c |= host->variant->cmdreg_srsp_crc;
1236 		else
1237 			c |= host->variant->cmdreg_srsp;
1238 	}
1239 
1240 	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1241 		if (!cmd->busy_timeout)
1242 			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1243 
1244 		clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1245 		do_div(clks, MSEC_PER_SEC);
1246 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1247 	}
1248 
1249 	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1250 		host->ops->pre_sig_volt_switch(host);
1251 
1252 	if (/*interrupt*/0)
1253 		c |= MCI_CPSM_INTERRUPT;
1254 
1255 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1256 		c |= host->variant->data_cmd_enable;
1257 
1258 	host->cmd = cmd;
1259 
1260 	writel(cmd->arg, base + MMCIARGUMENT);
1261 	writel(c, base + MMCICOMMAND);
1262 }
1263 
1264 static void mmci_stop_command(struct mmci_host *host)
1265 {
1266 	host->stop_abort.error = 0;
1267 	mmci_start_command(host, &host->stop_abort, 0);
1268 }
1269 
1270 static void
1271 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1272 	      unsigned int status)
1273 {
1274 	unsigned int status_err;
1275 
1276 	/* Make sure we have data to handle */
1277 	if (!data)
1278 		return;
1279 
1280 	/* First check for errors */
1281 	status_err = status & (host->variant->start_err |
1282 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1283 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1284 
1285 	if (status_err) {
1286 		u32 remain, success;
1287 
1288 		/* Terminate the DMA transfer */
1289 		mmci_dma_error(host);
1290 
1291 		/*
1292 		 * Calculate how far we are into the transfer.  Note that
1293 		 * the data counter gives the number of bytes transferred
1294 		 * on the MMC bus, not on the host side.  On reads, this
1295 		 * can be as much as a FIFO-worth of data ahead.  This
1296 		 * matters for FIFO overruns only.
1297 		 */
1298 		if (!host->variant->datacnt_useless) {
1299 			remain = readl(host->base + MMCIDATACNT);
1300 			success = data->blksz * data->blocks - remain;
1301 		} else {
1302 			success = 0;
1303 		}
1304 
1305 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1306 			status_err, success);
1307 		if (status_err & MCI_DATACRCFAIL) {
1308 			/* Last block was not successful */
1309 			success -= 1;
1310 			data->error = -EILSEQ;
1311 		} else if (status_err & MCI_DATATIMEOUT) {
1312 			data->error = -ETIMEDOUT;
1313 		} else if (status_err & MCI_STARTBITERR) {
1314 			data->error = -ECOMM;
1315 		} else if (status_err & MCI_TXUNDERRUN) {
1316 			data->error = -EIO;
1317 		} else if (status_err & MCI_RXOVERRUN) {
1318 			if (success > host->variant->fifosize)
1319 				success -= host->variant->fifosize;
1320 			else
1321 				success = 0;
1322 			data->error = -EIO;
1323 		}
1324 		data->bytes_xfered = round_down(success, data->blksz);
1325 	}
1326 
1327 	if (status & MCI_DATABLOCKEND)
1328 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1329 
1330 	if (status & MCI_DATAEND || data->error) {
1331 		mmci_dma_finalize(host, data);
1332 
1333 		mmci_stop_data(host);
1334 
1335 		if (!data->error)
1336 			/* The error clause is handled above, success! */
1337 			data->bytes_xfered = data->blksz * data->blocks;
1338 
1339 		if (!data->stop) {
1340 			if (host->variant->cmdreg_stop && data->error)
1341 				mmci_stop_command(host);
1342 			else
1343 				mmci_request_end(host, data->mrq);
1344 		} else if (host->mrq->sbc && !data->error) {
1345 			mmci_request_end(host, data->mrq);
1346 		} else {
1347 			mmci_start_command(host, data->stop, 0);
1348 		}
1349 	}
1350 }
1351 
1352 static void
1353 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1354 	     unsigned int status)
1355 {
1356 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1357 	void __iomem *base = host->base;
1358 	bool sbc, busy_resp;
1359 
1360 	if (!cmd)
1361 		return;
1362 
1363 	sbc = (cmd == host->mrq->sbc);
1364 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1365 
1366 	/*
1367 	 * We need to be one of these interrupts to be considered worth
1368 	 * handling. Note that we tag on any latent IRQs postponed
1369 	 * due to waiting for busy status.
1370 	 */
1371 	if (host->variant->busy_timeout && busy_resp)
1372 		err_msk |= MCI_DATATIMEOUT;
1373 
1374 	if (!((status | host->busy_status) &
1375 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1376 		return;
1377 
1378 	/* Handle busy detection on DAT0 if the variant supports it. */
1379 	if (busy_resp && host->variant->busy_detect)
1380 		if (!host->ops->busy_complete(host, status, err_msk))
1381 			return;
1382 
1383 	host->cmd = NULL;
1384 
1385 	if (status & MCI_CMDTIMEOUT) {
1386 		cmd->error = -ETIMEDOUT;
1387 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1388 		cmd->error = -EILSEQ;
1389 	} else if (host->variant->busy_timeout && busy_resp &&
1390 		   status & MCI_DATATIMEOUT) {
1391 		cmd->error = -ETIMEDOUT;
1392 		host->irq_action = IRQ_WAKE_THREAD;
1393 	} else {
1394 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1395 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1396 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1397 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1398 	}
1399 
1400 	if ((!sbc && !cmd->data) || cmd->error) {
1401 		if (host->data) {
1402 			/* Terminate the DMA transfer */
1403 			mmci_dma_error(host);
1404 
1405 			mmci_stop_data(host);
1406 			if (host->variant->cmdreg_stop && cmd->error) {
1407 				mmci_stop_command(host);
1408 				return;
1409 			}
1410 		}
1411 
1412 		if (host->irq_action != IRQ_WAKE_THREAD)
1413 			mmci_request_end(host, host->mrq);
1414 
1415 	} else if (sbc) {
1416 		mmci_start_command(host, host->mrq->cmd, 0);
1417 	} else if (!host->variant->datactrl_first &&
1418 		   !(cmd->data->flags & MMC_DATA_READ)) {
1419 		mmci_start_data(host, cmd->data);
1420 	}
1421 }
1422 
1423 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1424 {
1425 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1426 }
1427 
1428 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1429 {
1430 	/*
1431 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1432 	 * from the fifo range should be used
1433 	 */
1434 	if (status & MCI_RXFIFOHALFFULL)
1435 		return host->variant->fifohalfsize;
1436 	else if (status & MCI_RXDATAAVLBL)
1437 		return 4;
1438 
1439 	return 0;
1440 }
1441 
1442 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1443 {
1444 	void __iomem *base = host->base;
1445 	char *ptr = buffer;
1446 	u32 status = readl(host->base + MMCISTATUS);
1447 	int host_remain = host->size;
1448 
1449 	do {
1450 		int count = host->get_rx_fifocnt(host, status, host_remain);
1451 
1452 		if (count > remain)
1453 			count = remain;
1454 
1455 		if (count <= 0)
1456 			break;
1457 
1458 		/*
1459 		 * SDIO especially may want to send something that is
1460 		 * not divisible by 4 (as opposed to card sectors
1461 		 * etc). Therefore make sure to always read the last bytes
1462 		 * while only doing full 32-bit reads towards the FIFO.
1463 		 */
1464 		if (unlikely(count & 0x3)) {
1465 			if (count < 4) {
1466 				unsigned char buf[4];
1467 				ioread32_rep(base + MMCIFIFO, buf, 1);
1468 				memcpy(ptr, buf, count);
1469 			} else {
1470 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1471 				count &= ~0x3;
1472 			}
1473 		} else {
1474 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1475 		}
1476 
1477 		ptr += count;
1478 		remain -= count;
1479 		host_remain -= count;
1480 
1481 		if (remain == 0)
1482 			break;
1483 
1484 		status = readl(base + MMCISTATUS);
1485 	} while (status & MCI_RXDATAAVLBL);
1486 
1487 	return ptr - buffer;
1488 }
1489 
1490 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1491 {
1492 	struct variant_data *variant = host->variant;
1493 	void __iomem *base = host->base;
1494 	char *ptr = buffer;
1495 
1496 	do {
1497 		unsigned int count, maxcnt;
1498 
1499 		maxcnt = status & MCI_TXFIFOEMPTY ?
1500 			 variant->fifosize : variant->fifohalfsize;
1501 		count = min(remain, maxcnt);
1502 
1503 		/*
1504 		 * SDIO especially may want to send something that is
1505 		 * not divisible by 4 (as opposed to card sectors
1506 		 * etc), and the FIFO only accept full 32-bit writes.
1507 		 * So compensate by adding +3 on the count, a single
1508 		 * byte become a 32bit write, 7 bytes will be two
1509 		 * 32bit writes etc.
1510 		 */
1511 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1512 
1513 		ptr += count;
1514 		remain -= count;
1515 
1516 		if (remain == 0)
1517 			break;
1518 
1519 		status = readl(base + MMCISTATUS);
1520 	} while (status & MCI_TXFIFOHALFEMPTY);
1521 
1522 	return ptr - buffer;
1523 }
1524 
1525 /*
1526  * PIO data transfer IRQ handler.
1527  */
1528 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1529 {
1530 	struct mmci_host *host = dev_id;
1531 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1532 	struct variant_data *variant = host->variant;
1533 	void __iomem *base = host->base;
1534 	u32 status;
1535 
1536 	status = readl(base + MMCISTATUS);
1537 
1538 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1539 
1540 	do {
1541 		unsigned int remain, len;
1542 		char *buffer;
1543 
1544 		/*
1545 		 * For write, we only need to test the half-empty flag
1546 		 * here - if the FIFO is completely empty, then by
1547 		 * definition it is more than half empty.
1548 		 *
1549 		 * For read, check for data available.
1550 		 */
1551 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1552 			break;
1553 
1554 		if (!sg_miter_next(sg_miter))
1555 			break;
1556 
1557 		buffer = sg_miter->addr;
1558 		remain = sg_miter->length;
1559 
1560 		len = 0;
1561 		if (status & MCI_RXACTIVE)
1562 			len = mmci_pio_read(host, buffer, remain);
1563 		if (status & MCI_TXACTIVE)
1564 			len = mmci_pio_write(host, buffer, remain, status);
1565 
1566 		sg_miter->consumed = len;
1567 
1568 		host->size -= len;
1569 		remain -= len;
1570 
1571 		if (remain)
1572 			break;
1573 
1574 		status = readl(base + MMCISTATUS);
1575 	} while (1);
1576 
1577 	sg_miter_stop(sg_miter);
1578 
1579 	/*
1580 	 * If we have less than the fifo 'half-full' threshold to transfer,
1581 	 * trigger a PIO interrupt as soon as any data is available.
1582 	 */
1583 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1584 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1585 
1586 	/*
1587 	 * If we run out of data, disable the data IRQs; this
1588 	 * prevents a race where the FIFO becomes empty before
1589 	 * the chip itself has disabled the data path, and
1590 	 * stops us racing with our data end IRQ.
1591 	 */
1592 	if (host->size == 0) {
1593 		mmci_set_mask1(host, 0);
1594 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1595 	}
1596 
1597 	return IRQ_HANDLED;
1598 }
1599 
1600 /*
1601  * Handle completion of command and data transfers.
1602  */
1603 static irqreturn_t mmci_irq(int irq, void *dev_id)
1604 {
1605 	struct mmci_host *host = dev_id;
1606 	u32 status;
1607 
1608 	spin_lock(&host->lock);
1609 	host->irq_action = IRQ_HANDLED;
1610 
1611 	do {
1612 		status = readl(host->base + MMCISTATUS);
1613 
1614 		if (host->singleirq) {
1615 			if (status & host->mask1_reg)
1616 				mmci_pio_irq(irq, dev_id);
1617 
1618 			status &= ~host->variant->irq_pio_mask;
1619 		}
1620 
1621 		/*
1622 		 * Busy detection is managed by mmci_cmd_irq(), including to
1623 		 * clear the corresponding IRQ.
1624 		 */
1625 		status &= readl(host->base + MMCIMASK0);
1626 		if (host->variant->busy_detect)
1627 			writel(status & ~host->variant->busy_detect_mask,
1628 			       host->base + MMCICLEAR);
1629 		else
1630 			writel(status, host->base + MMCICLEAR);
1631 
1632 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1633 
1634 		if (host->variant->reversed_irq_handling) {
1635 			mmci_data_irq(host, host->data, status);
1636 			mmci_cmd_irq(host, host->cmd, status);
1637 		} else {
1638 			mmci_cmd_irq(host, host->cmd, status);
1639 			mmci_data_irq(host, host->data, status);
1640 		}
1641 
1642 		/*
1643 		 * Busy detection has been handled by mmci_cmd_irq() above.
1644 		 * Clear the status bit to prevent polling in IRQ context.
1645 		 */
1646 		if (host->variant->busy_detect_flag)
1647 			status &= ~host->variant->busy_detect_flag;
1648 
1649 	} while (status);
1650 
1651 	spin_unlock(&host->lock);
1652 
1653 	return host->irq_action;
1654 }
1655 
1656 /*
1657  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1658  *
1659  * A reset is needed for some variants, where a datatimeout for a R1B request
1660  * causes the DPSM to stay busy (non-functional).
1661  */
1662 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1663 {
1664 	struct mmci_host *host = dev_id;
1665 	unsigned long flags;
1666 
1667 	if (host->rst) {
1668 		reset_control_assert(host->rst);
1669 		udelay(2);
1670 		reset_control_deassert(host->rst);
1671 	}
1672 
1673 	spin_lock_irqsave(&host->lock, flags);
1674 	writel(host->clk_reg, host->base + MMCICLOCK);
1675 	writel(host->pwr_reg, host->base + MMCIPOWER);
1676 	writel(MCI_IRQENABLE | host->variant->start_err,
1677 	       host->base + MMCIMASK0);
1678 
1679 	host->irq_action = IRQ_HANDLED;
1680 	mmci_request_end(host, host->mrq);
1681 	spin_unlock_irqrestore(&host->lock, flags);
1682 
1683 	return host->irq_action;
1684 }
1685 
1686 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1687 {
1688 	struct mmci_host *host = mmc_priv(mmc);
1689 	unsigned long flags;
1690 
1691 	WARN_ON(host->mrq != NULL);
1692 
1693 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1694 	if (mrq->cmd->error) {
1695 		mmc_request_done(mmc, mrq);
1696 		return;
1697 	}
1698 
1699 	spin_lock_irqsave(&host->lock, flags);
1700 
1701 	host->mrq = mrq;
1702 
1703 	if (mrq->data)
1704 		mmci_get_next_data(host, mrq->data);
1705 
1706 	if (mrq->data &&
1707 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1708 		mmci_start_data(host, mrq->data);
1709 
1710 	if (mrq->sbc)
1711 		mmci_start_command(host, mrq->sbc, 0);
1712 	else
1713 		mmci_start_command(host, mrq->cmd, 0);
1714 
1715 	spin_unlock_irqrestore(&host->lock, flags);
1716 }
1717 
1718 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1719 {
1720 	struct mmci_host *host = mmc_priv(mmc);
1721 	u32 max_busy_timeout = 0;
1722 
1723 	if (!host->variant->busy_detect)
1724 		return;
1725 
1726 	if (host->variant->busy_timeout && mmc->actual_clock)
1727 		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1728 
1729 	mmc->max_busy_timeout = max_busy_timeout;
1730 }
1731 
1732 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1733 {
1734 	struct mmci_host *host = mmc_priv(mmc);
1735 	struct variant_data *variant = host->variant;
1736 	u32 pwr = 0;
1737 	unsigned long flags;
1738 	int ret;
1739 
1740 	if (host->plat->ios_handler &&
1741 		host->plat->ios_handler(mmc_dev(mmc), ios))
1742 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1743 
1744 	switch (ios->power_mode) {
1745 	case MMC_POWER_OFF:
1746 		if (!IS_ERR(mmc->supply.vmmc))
1747 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1748 
1749 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1750 			regulator_disable(mmc->supply.vqmmc);
1751 			host->vqmmc_enabled = false;
1752 		}
1753 
1754 		break;
1755 	case MMC_POWER_UP:
1756 		if (!IS_ERR(mmc->supply.vmmc))
1757 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1758 
1759 		/*
1760 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1761 		 * and instead uses MCI_PWR_ON so apply whatever value is
1762 		 * configured in the variant data.
1763 		 */
1764 		pwr |= variant->pwrreg_powerup;
1765 
1766 		break;
1767 	case MMC_POWER_ON:
1768 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1769 			ret = regulator_enable(mmc->supply.vqmmc);
1770 			if (ret < 0)
1771 				dev_err(mmc_dev(mmc),
1772 					"failed to enable vqmmc regulator\n");
1773 			else
1774 				host->vqmmc_enabled = true;
1775 		}
1776 
1777 		pwr |= MCI_PWR_ON;
1778 		break;
1779 	}
1780 
1781 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1782 		/*
1783 		 * The ST Micro variant has some additional bits
1784 		 * indicating signal direction for the signals in
1785 		 * the SD/MMC bus and feedback-clock usage.
1786 		 */
1787 		pwr |= host->pwr_reg_add;
1788 
1789 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1790 			pwr &= ~MCI_ST_DATA74DIREN;
1791 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1792 			pwr &= (~MCI_ST_DATA74DIREN &
1793 				~MCI_ST_DATA31DIREN &
1794 				~MCI_ST_DATA2DIREN);
1795 	}
1796 
1797 	if (variant->opendrain) {
1798 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1799 			pwr |= variant->opendrain;
1800 	} else {
1801 		/*
1802 		 * If the variant cannot configure the pads by its own, then we
1803 		 * expect the pinctrl to be able to do that for us
1804 		 */
1805 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1807 		else
1808 			pinctrl_select_default_state(mmc_dev(mmc));
1809 	}
1810 
1811 	/*
1812 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1813 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1814 	 */
1815 	if (!ios->clock && variant->pwrreg_clkgate)
1816 		pwr &= ~MCI_PWR_ON;
1817 
1818 	if (host->variant->explicit_mclk_control &&
1819 	    ios->clock != host->clock_cache) {
1820 		ret = clk_set_rate(host->clk, ios->clock);
1821 		if (ret < 0)
1822 			dev_err(mmc_dev(host->mmc),
1823 				"Error setting clock rate (%d)\n", ret);
1824 		else
1825 			host->mclk = clk_get_rate(host->clk);
1826 	}
1827 	host->clock_cache = ios->clock;
1828 
1829 	spin_lock_irqsave(&host->lock, flags);
1830 
1831 	if (host->ops && host->ops->set_clkreg)
1832 		host->ops->set_clkreg(host, ios->clock);
1833 	else
1834 		mmci_set_clkreg(host, ios->clock);
1835 
1836 	mmci_set_max_busy_timeout(mmc);
1837 
1838 	if (host->ops && host->ops->set_pwrreg)
1839 		host->ops->set_pwrreg(host, pwr);
1840 	else
1841 		mmci_write_pwrreg(host, pwr);
1842 
1843 	mmci_reg_delay(host);
1844 
1845 	spin_unlock_irqrestore(&host->lock, flags);
1846 }
1847 
1848 static int mmci_get_cd(struct mmc_host *mmc)
1849 {
1850 	struct mmci_host *host = mmc_priv(mmc);
1851 	struct mmci_platform_data *plat = host->plat;
1852 	unsigned int status = mmc_gpio_get_cd(mmc);
1853 
1854 	if (status == -ENOSYS) {
1855 		if (!plat->status)
1856 			return 1; /* Assume always present */
1857 
1858 		status = plat->status(mmc_dev(host->mmc));
1859 	}
1860 	return status;
1861 }
1862 
1863 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1864 {
1865 	struct mmci_host *host = mmc_priv(mmc);
1866 	int ret;
1867 
1868 	ret = mmc_regulator_set_vqmmc(mmc, ios);
1869 
1870 	if (!ret && host->ops && host->ops->post_sig_volt_switch)
1871 		ret = host->ops->post_sig_volt_switch(host, ios);
1872 	else if (ret)
1873 		ret = 0;
1874 
1875 	if (ret < 0)
1876 		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1877 
1878 	return ret;
1879 }
1880 
1881 static struct mmc_host_ops mmci_ops = {
1882 	.request	= mmci_request,
1883 	.pre_req	= mmci_pre_request,
1884 	.post_req	= mmci_post_request,
1885 	.set_ios	= mmci_set_ios,
1886 	.get_ro		= mmc_gpio_get_ro,
1887 	.get_cd		= mmci_get_cd,
1888 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1889 };
1890 
1891 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1892 {
1893 	struct mmci_host *host = mmc_priv(mmc);
1894 	int ret = mmc_of_parse(mmc);
1895 
1896 	if (ret)
1897 		return ret;
1898 
1899 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1900 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1901 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1902 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1903 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1904 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1905 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1906 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1907 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1908 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1909 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1910 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1911 	if (of_get_property(np, "st,sig-dir", NULL))
1912 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1913 	if (of_get_property(np, "st,neg-edge", NULL))
1914 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1915 	if (of_get_property(np, "st,use-ckin", NULL))
1916 		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1917 
1918 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1919 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1920 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1921 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1922 
1923 	return 0;
1924 }
1925 
1926 static int mmci_probe(struct amba_device *dev,
1927 	const struct amba_id *id)
1928 {
1929 	struct mmci_platform_data *plat = dev->dev.platform_data;
1930 	struct device_node *np = dev->dev.of_node;
1931 	struct variant_data *variant = id->data;
1932 	struct mmci_host *host;
1933 	struct mmc_host *mmc;
1934 	int ret;
1935 
1936 	/* Must have platform data or Device Tree. */
1937 	if (!plat && !np) {
1938 		dev_err(&dev->dev, "No plat data or DT found\n");
1939 		return -EINVAL;
1940 	}
1941 
1942 	if (!plat) {
1943 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1944 		if (!plat)
1945 			return -ENOMEM;
1946 	}
1947 
1948 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1949 	if (!mmc)
1950 		return -ENOMEM;
1951 
1952 	ret = mmci_of_parse(np, mmc);
1953 	if (ret)
1954 		goto host_free;
1955 
1956 	host = mmc_priv(mmc);
1957 	host->mmc = mmc;
1958 	host->mmc_ops = &mmci_ops;
1959 	mmc->ops = &mmci_ops;
1960 
1961 	/*
1962 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1963 	 * pins can be set accordingly using pinctrl
1964 	 */
1965 	if (!variant->opendrain) {
1966 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1967 		if (IS_ERR(host->pinctrl)) {
1968 			dev_err(&dev->dev, "failed to get pinctrl");
1969 			ret = PTR_ERR(host->pinctrl);
1970 			goto host_free;
1971 		}
1972 
1973 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1974 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1975 		if (IS_ERR(host->pins_opendrain)) {
1976 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1977 			ret = PTR_ERR(host->pins_opendrain);
1978 			goto host_free;
1979 		}
1980 	}
1981 
1982 	host->hw_designer = amba_manf(dev);
1983 	host->hw_revision = amba_rev(dev);
1984 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1985 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1986 
1987 	host->clk = devm_clk_get(&dev->dev, NULL);
1988 	if (IS_ERR(host->clk)) {
1989 		ret = PTR_ERR(host->clk);
1990 		goto host_free;
1991 	}
1992 
1993 	ret = clk_prepare_enable(host->clk);
1994 	if (ret)
1995 		goto host_free;
1996 
1997 	if (variant->qcom_fifo)
1998 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1999 	else
2000 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2001 
2002 	host->plat = plat;
2003 	host->variant = variant;
2004 	host->mclk = clk_get_rate(host->clk);
2005 	/*
2006 	 * According to the spec, mclk is max 100 MHz,
2007 	 * so we try to adjust the clock down to this,
2008 	 * (if possible).
2009 	 */
2010 	if (host->mclk > variant->f_max) {
2011 		ret = clk_set_rate(host->clk, variant->f_max);
2012 		if (ret < 0)
2013 			goto clk_disable;
2014 		host->mclk = clk_get_rate(host->clk);
2015 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2016 			host->mclk);
2017 	}
2018 
2019 	host->phybase = dev->res.start;
2020 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2021 	if (IS_ERR(host->base)) {
2022 		ret = PTR_ERR(host->base);
2023 		goto clk_disable;
2024 	}
2025 
2026 	if (variant->init)
2027 		variant->init(host);
2028 
2029 	/*
2030 	 * The ARM and ST versions of the block have slightly different
2031 	 * clock divider equations which means that the minimum divider
2032 	 * differs too.
2033 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2034 	 */
2035 	if (variant->st_clkdiv)
2036 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2037 	else if (variant->stm32_clkdiv)
2038 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2039 	else if (variant->explicit_mclk_control)
2040 		mmc->f_min = clk_round_rate(host->clk, 100000);
2041 	else
2042 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2043 	/*
2044 	 * If no maximum operating frequency is supplied, fall back to use
2045 	 * the module parameter, which has a (low) default value in case it
2046 	 * is not specified. Either value must not exceed the clock rate into
2047 	 * the block, of course.
2048 	 */
2049 	if (mmc->f_max)
2050 		mmc->f_max = variant->explicit_mclk_control ?
2051 				min(variant->f_max, mmc->f_max) :
2052 				min(host->mclk, mmc->f_max);
2053 	else
2054 		mmc->f_max = variant->explicit_mclk_control ?
2055 				fmax : min(host->mclk, fmax);
2056 
2057 
2058 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2059 
2060 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2061 	if (IS_ERR(host->rst)) {
2062 		ret = PTR_ERR(host->rst);
2063 		goto clk_disable;
2064 	}
2065 
2066 	/* Get regulators and the supported OCR mask */
2067 	ret = mmc_regulator_get_supply(mmc);
2068 	if (ret)
2069 		goto clk_disable;
2070 
2071 	if (!mmc->ocr_avail)
2072 		mmc->ocr_avail = plat->ocr_mask;
2073 	else if (plat->ocr_mask)
2074 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2075 
2076 	/* We support these capabilities. */
2077 	mmc->caps |= MMC_CAP_CMD23;
2078 
2079 	/*
2080 	 * Enable busy detection.
2081 	 */
2082 	if (variant->busy_detect) {
2083 		mmci_ops.card_busy = mmci_card_busy;
2084 		/*
2085 		 * Not all variants have a flag to enable busy detection
2086 		 * in the DPSM, but if they do, set it here.
2087 		 */
2088 		if (variant->busy_dpsm_flag)
2089 			mmci_write_datactrlreg(host,
2090 					       host->variant->busy_dpsm_flag);
2091 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2092 	}
2093 
2094 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2095 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2096 	host->stop_abort.arg = 0;
2097 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2098 
2099 	/* We support these PM capabilities. */
2100 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2101 
2102 	/*
2103 	 * We can do SGIO
2104 	 */
2105 	mmc->max_segs = NR_SG;
2106 
2107 	/*
2108 	 * Since only a certain number of bits are valid in the data length
2109 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2110 	 * single request.
2111 	 */
2112 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2113 
2114 	/*
2115 	 * Set the maximum segment size.  Since we aren't doing DMA
2116 	 * (yet) we are only limited by the data length register.
2117 	 */
2118 	mmc->max_seg_size = mmc->max_req_size;
2119 
2120 	/*
2121 	 * Block size can be up to 2048 bytes, but must be a power of two.
2122 	 */
2123 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2124 
2125 	/*
2126 	 * Limit the number of blocks transferred so that we don't overflow
2127 	 * the maximum request size.
2128 	 */
2129 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2130 
2131 	spin_lock_init(&host->lock);
2132 
2133 	writel(0, host->base + MMCIMASK0);
2134 
2135 	if (variant->mmcimask1)
2136 		writel(0, host->base + MMCIMASK1);
2137 
2138 	writel(0xfff, host->base + MMCICLEAR);
2139 
2140 	/*
2141 	 * If:
2142 	 * - not using DT but using a descriptor table, or
2143 	 * - using a table of descriptors ALONGSIDE DT, or
2144 	 * look up these descriptors named "cd" and "wp" right here, fail
2145 	 * silently of these do not exist
2146 	 */
2147 	if (!np) {
2148 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2149 		if (ret == -EPROBE_DEFER)
2150 			goto clk_disable;
2151 
2152 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2153 		if (ret == -EPROBE_DEFER)
2154 			goto clk_disable;
2155 	}
2156 
2157 	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2158 					mmci_irq_thread, IRQF_SHARED,
2159 					DRIVER_NAME " (cmd)", host);
2160 	if (ret)
2161 		goto clk_disable;
2162 
2163 	if (!dev->irq[1])
2164 		host->singleirq = true;
2165 	else {
2166 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2167 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2168 		if (ret)
2169 			goto clk_disable;
2170 	}
2171 
2172 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2173 
2174 	amba_set_drvdata(dev, mmc);
2175 
2176 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2177 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2178 		 amba_rev(dev), (unsigned long long)dev->res.start,
2179 		 dev->irq[0], dev->irq[1]);
2180 
2181 	mmci_dma_setup(host);
2182 
2183 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2184 	pm_runtime_use_autosuspend(&dev->dev);
2185 
2186 	mmc_add_host(mmc);
2187 
2188 	pm_runtime_put(&dev->dev);
2189 	return 0;
2190 
2191  clk_disable:
2192 	clk_disable_unprepare(host->clk);
2193  host_free:
2194 	mmc_free_host(mmc);
2195 	return ret;
2196 }
2197 
2198 static int mmci_remove(struct amba_device *dev)
2199 {
2200 	struct mmc_host *mmc = amba_get_drvdata(dev);
2201 
2202 	if (mmc) {
2203 		struct mmci_host *host = mmc_priv(mmc);
2204 		struct variant_data *variant = host->variant;
2205 
2206 		/*
2207 		 * Undo pm_runtime_put() in probe.  We use the _sync
2208 		 * version here so that we can access the primecell.
2209 		 */
2210 		pm_runtime_get_sync(&dev->dev);
2211 
2212 		mmc_remove_host(mmc);
2213 
2214 		writel(0, host->base + MMCIMASK0);
2215 
2216 		if (variant->mmcimask1)
2217 			writel(0, host->base + MMCIMASK1);
2218 
2219 		writel(0, host->base + MMCICOMMAND);
2220 		writel(0, host->base + MMCIDATACTRL);
2221 
2222 		mmci_dma_release(host);
2223 		clk_disable_unprepare(host->clk);
2224 		mmc_free_host(mmc);
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 #ifdef CONFIG_PM
2231 static void mmci_save(struct mmci_host *host)
2232 {
2233 	unsigned long flags;
2234 
2235 	spin_lock_irqsave(&host->lock, flags);
2236 
2237 	writel(0, host->base + MMCIMASK0);
2238 	if (host->variant->pwrreg_nopower) {
2239 		writel(0, host->base + MMCIDATACTRL);
2240 		writel(0, host->base + MMCIPOWER);
2241 		writel(0, host->base + MMCICLOCK);
2242 	}
2243 	mmci_reg_delay(host);
2244 
2245 	spin_unlock_irqrestore(&host->lock, flags);
2246 }
2247 
2248 static void mmci_restore(struct mmci_host *host)
2249 {
2250 	unsigned long flags;
2251 
2252 	spin_lock_irqsave(&host->lock, flags);
2253 
2254 	if (host->variant->pwrreg_nopower) {
2255 		writel(host->clk_reg, host->base + MMCICLOCK);
2256 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2257 		writel(host->pwr_reg, host->base + MMCIPOWER);
2258 	}
2259 	writel(MCI_IRQENABLE | host->variant->start_err,
2260 	       host->base + MMCIMASK0);
2261 	mmci_reg_delay(host);
2262 
2263 	spin_unlock_irqrestore(&host->lock, flags);
2264 }
2265 
2266 static int mmci_runtime_suspend(struct device *dev)
2267 {
2268 	struct amba_device *adev = to_amba_device(dev);
2269 	struct mmc_host *mmc = amba_get_drvdata(adev);
2270 
2271 	if (mmc) {
2272 		struct mmci_host *host = mmc_priv(mmc);
2273 		pinctrl_pm_select_sleep_state(dev);
2274 		mmci_save(host);
2275 		clk_disable_unprepare(host->clk);
2276 	}
2277 
2278 	return 0;
2279 }
2280 
2281 static int mmci_runtime_resume(struct device *dev)
2282 {
2283 	struct amba_device *adev = to_amba_device(dev);
2284 	struct mmc_host *mmc = amba_get_drvdata(adev);
2285 
2286 	if (mmc) {
2287 		struct mmci_host *host = mmc_priv(mmc);
2288 		clk_prepare_enable(host->clk);
2289 		mmci_restore(host);
2290 		pinctrl_select_default_state(dev);
2291 	}
2292 
2293 	return 0;
2294 }
2295 #endif
2296 
2297 static const struct dev_pm_ops mmci_dev_pm_ops = {
2298 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2299 				pm_runtime_force_resume)
2300 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2301 };
2302 
2303 static const struct amba_id mmci_ids[] = {
2304 	{
2305 		.id	= 0x00041180,
2306 		.mask	= 0xff0fffff,
2307 		.data	= &variant_arm,
2308 	},
2309 	{
2310 		.id	= 0x01041180,
2311 		.mask	= 0xff0fffff,
2312 		.data	= &variant_arm_extended_fifo,
2313 	},
2314 	{
2315 		.id	= 0x02041180,
2316 		.mask	= 0xff0fffff,
2317 		.data	= &variant_arm_extended_fifo_hwfc,
2318 	},
2319 	{
2320 		.id	= 0x00041181,
2321 		.mask	= 0x000fffff,
2322 		.data	= &variant_arm,
2323 	},
2324 	/* ST Micro variants */
2325 	{
2326 		.id     = 0x00180180,
2327 		.mask   = 0x00ffffff,
2328 		.data	= &variant_u300,
2329 	},
2330 	{
2331 		.id     = 0x10180180,
2332 		.mask   = 0xf0ffffff,
2333 		.data	= &variant_nomadik,
2334 	},
2335 	{
2336 		.id     = 0x00280180,
2337 		.mask   = 0x00ffffff,
2338 		.data	= &variant_nomadik,
2339 	},
2340 	{
2341 		.id     = 0x00480180,
2342 		.mask   = 0xf0ffffff,
2343 		.data	= &variant_ux500,
2344 	},
2345 	{
2346 		.id     = 0x10480180,
2347 		.mask   = 0xf0ffffff,
2348 		.data	= &variant_ux500v2,
2349 	},
2350 	{
2351 		.id     = 0x00880180,
2352 		.mask   = 0x00ffffff,
2353 		.data	= &variant_stm32,
2354 	},
2355 	{
2356 		.id     = 0x10153180,
2357 		.mask	= 0xf0ffffff,
2358 		.data	= &variant_stm32_sdmmc,
2359 	},
2360 	{
2361 		.id     = 0x00253180,
2362 		.mask	= 0xf0ffffff,
2363 		.data	= &variant_stm32_sdmmcv2,
2364 	},
2365 	/* Qualcomm variants */
2366 	{
2367 		.id     = 0x00051180,
2368 		.mask	= 0x000fffff,
2369 		.data	= &variant_qcom,
2370 	},
2371 	{ 0, 0 },
2372 };
2373 
2374 MODULE_DEVICE_TABLE(amba, mmci_ids);
2375 
2376 static struct amba_driver mmci_driver = {
2377 	.drv		= {
2378 		.name	= DRIVER_NAME,
2379 		.pm	= &mmci_dev_pm_ops,
2380 	},
2381 	.probe		= mmci_probe,
2382 	.remove		= mmci_remove,
2383 	.id_table	= mmci_ids,
2384 };
2385 
2386 module_amba_driver(mmci_driver);
2387 
2388 module_param(fmax, uint, 0444);
2389 
2390 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2391 MODULE_LICENSE("GPL");
2392