1 /* 2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver 3 * 4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. 5 * Copyright (C) 2010 ST-Ericsson SA 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/device.h> 16 #include <linux/interrupt.h> 17 #include <linux/kernel.h> 18 #include <linux/slab.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/highmem.h> 22 #include <linux/log2.h> 23 #include <linux/mmc/pm.h> 24 #include <linux/mmc/host.h> 25 #include <linux/mmc/card.h> 26 #include <linux/amba/bus.h> 27 #include <linux/clk.h> 28 #include <linux/scatterlist.h> 29 #include <linux/gpio.h> 30 #include <linux/of_gpio.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/dmaengine.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/amba/mmci.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/types.h> 37 #include <linux/pinctrl/consumer.h> 38 39 #include <asm/div64.h> 40 #include <asm/io.h> 41 #include <asm/sizes.h> 42 43 #include "mmci.h" 44 45 #define DRIVER_NAME "mmci-pl18x" 46 47 static unsigned int fmax = 515633; 48 49 /** 50 * struct variant_data - MMCI variant-specific quirks 51 * @clkreg: default value for MCICLOCK register 52 * @clkreg_enable: enable value for MMCICLOCK register 53 * @datalength_bits: number of bits in the MMCIDATALENGTH register 54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY 55 * is asserted (likewise for RX) 56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY 57 * is asserted (likewise for RX) 58 * @sdio: variant supports SDIO 59 * @st_clkdiv: true if using a ST-specific clock divider algorithm 60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register 61 * @pwrreg_powerup: power up value for MMCIPOWER register 62 * @signal_direction: input/out direction of bus signals can be indicated 63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock 64 * @busy_detect: true if busy detection on dat0 is supported 65 */ 66 struct variant_data { 67 unsigned int clkreg; 68 unsigned int clkreg_enable; 69 unsigned int datalength_bits; 70 unsigned int fifosize; 71 unsigned int fifohalfsize; 72 bool sdio; 73 bool st_clkdiv; 74 bool blksz_datactrl16; 75 u32 pwrreg_powerup; 76 bool signal_direction; 77 bool pwrreg_clkgate; 78 bool busy_detect; 79 }; 80 81 static struct variant_data variant_arm = { 82 .fifosize = 16 * 4, 83 .fifohalfsize = 8 * 4, 84 .datalength_bits = 16, 85 .pwrreg_powerup = MCI_PWR_UP, 86 }; 87 88 static struct variant_data variant_arm_extended_fifo = { 89 .fifosize = 128 * 4, 90 .fifohalfsize = 64 * 4, 91 .datalength_bits = 16, 92 .pwrreg_powerup = MCI_PWR_UP, 93 }; 94 95 static struct variant_data variant_arm_extended_fifo_hwfc = { 96 .fifosize = 128 * 4, 97 .fifohalfsize = 64 * 4, 98 .clkreg_enable = MCI_ARM_HWFCEN, 99 .datalength_bits = 16, 100 .pwrreg_powerup = MCI_PWR_UP, 101 }; 102 103 static struct variant_data variant_u300 = { 104 .fifosize = 16 * 4, 105 .fifohalfsize = 8 * 4, 106 .clkreg_enable = MCI_ST_U300_HWFCEN, 107 .datalength_bits = 16, 108 .sdio = true, 109 .pwrreg_powerup = MCI_PWR_ON, 110 .signal_direction = true, 111 .pwrreg_clkgate = true, 112 }; 113 114 static struct variant_data variant_nomadik = { 115 .fifosize = 16 * 4, 116 .fifohalfsize = 8 * 4, 117 .clkreg = MCI_CLK_ENABLE, 118 .datalength_bits = 24, 119 .sdio = true, 120 .st_clkdiv = true, 121 .pwrreg_powerup = MCI_PWR_ON, 122 .signal_direction = true, 123 .pwrreg_clkgate = true, 124 }; 125 126 static struct variant_data variant_ux500 = { 127 .fifosize = 30 * 4, 128 .fifohalfsize = 8 * 4, 129 .clkreg = MCI_CLK_ENABLE, 130 .clkreg_enable = MCI_ST_UX500_HWFCEN, 131 .datalength_bits = 24, 132 .sdio = true, 133 .st_clkdiv = true, 134 .pwrreg_powerup = MCI_PWR_ON, 135 .signal_direction = true, 136 .pwrreg_clkgate = true, 137 .busy_detect = true, 138 }; 139 140 static struct variant_data variant_ux500v2 = { 141 .fifosize = 30 * 4, 142 .fifohalfsize = 8 * 4, 143 .clkreg = MCI_CLK_ENABLE, 144 .clkreg_enable = MCI_ST_UX500_HWFCEN, 145 .datalength_bits = 24, 146 .sdio = true, 147 .st_clkdiv = true, 148 .blksz_datactrl16 = true, 149 .pwrreg_powerup = MCI_PWR_ON, 150 .signal_direction = true, 151 .pwrreg_clkgate = true, 152 .busy_detect = true, 153 }; 154 155 static int mmci_card_busy(struct mmc_host *mmc) 156 { 157 struct mmci_host *host = mmc_priv(mmc); 158 unsigned long flags; 159 int busy = 0; 160 161 pm_runtime_get_sync(mmc_dev(mmc)); 162 163 spin_lock_irqsave(&host->lock, flags); 164 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY) 165 busy = 1; 166 spin_unlock_irqrestore(&host->lock, flags); 167 168 pm_runtime_mark_last_busy(mmc_dev(mmc)); 169 pm_runtime_put_autosuspend(mmc_dev(mmc)); 170 171 return busy; 172 } 173 174 /* 175 * Validate mmc prerequisites 176 */ 177 static int mmci_validate_data(struct mmci_host *host, 178 struct mmc_data *data) 179 { 180 if (!data) 181 return 0; 182 183 if (!is_power_of_2(data->blksz)) { 184 dev_err(mmc_dev(host->mmc), 185 "unsupported block size (%d bytes)\n", data->blksz); 186 return -EINVAL; 187 } 188 189 return 0; 190 } 191 192 /* 193 * This must be called with host->lock held 194 */ 195 static void mmci_write_clkreg(struct mmci_host *host, u32 clk) 196 { 197 if (host->clk_reg != clk) { 198 host->clk_reg = clk; 199 writel(clk, host->base + MMCICLOCK); 200 } 201 } 202 203 /* 204 * This must be called with host->lock held 205 */ 206 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) 207 { 208 if (host->pwr_reg != pwr) { 209 host->pwr_reg = pwr; 210 writel(pwr, host->base + MMCIPOWER); 211 } 212 } 213 214 /* 215 * This must be called with host->lock held 216 */ 217 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) 218 { 219 /* Keep ST Micro busy mode if enabled */ 220 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE; 221 222 if (host->datactrl_reg != datactrl) { 223 host->datactrl_reg = datactrl; 224 writel(datactrl, host->base + MMCIDATACTRL); 225 } 226 } 227 228 /* 229 * This must be called with host->lock held 230 */ 231 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) 232 { 233 struct variant_data *variant = host->variant; 234 u32 clk = variant->clkreg; 235 236 /* Make sure cclk reflects the current calculated clock */ 237 host->cclk = 0; 238 239 if (desired) { 240 if (desired >= host->mclk) { 241 clk = MCI_CLK_BYPASS; 242 if (variant->st_clkdiv) 243 clk |= MCI_ST_UX500_NEG_EDGE; 244 host->cclk = host->mclk; 245 } else if (variant->st_clkdiv) { 246 /* 247 * DB8500 TRM says f = mclk / (clkdiv + 2) 248 * => clkdiv = (mclk / f) - 2 249 * Round the divider up so we don't exceed the max 250 * frequency 251 */ 252 clk = DIV_ROUND_UP(host->mclk, desired) - 2; 253 if (clk >= 256) 254 clk = 255; 255 host->cclk = host->mclk / (clk + 2); 256 } else { 257 /* 258 * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) 259 * => clkdiv = mclk / (2 * f) - 1 260 */ 261 clk = host->mclk / (2 * desired) - 1; 262 if (clk >= 256) 263 clk = 255; 264 host->cclk = host->mclk / (2 * (clk + 1)); 265 } 266 267 clk |= variant->clkreg_enable; 268 clk |= MCI_CLK_ENABLE; 269 /* This hasn't proven to be worthwhile */ 270 /* clk |= MCI_CLK_PWRSAVE; */ 271 } 272 273 /* Set actual clock for debug */ 274 host->mmc->actual_clock = host->cclk; 275 276 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 277 clk |= MCI_4BIT_BUS; 278 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 279 clk |= MCI_ST_8BIT_BUS; 280 281 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) 282 clk |= MCI_ST_UX500_NEG_EDGE; 283 284 mmci_write_clkreg(host, clk); 285 } 286 287 static void 288 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) 289 { 290 writel(0, host->base + MMCICOMMAND); 291 292 BUG_ON(host->data); 293 294 host->mrq = NULL; 295 host->cmd = NULL; 296 297 mmc_request_done(host->mmc, mrq); 298 299 pm_runtime_mark_last_busy(mmc_dev(host->mmc)); 300 pm_runtime_put_autosuspend(mmc_dev(host->mmc)); 301 } 302 303 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) 304 { 305 void __iomem *base = host->base; 306 307 if (host->singleirq) { 308 unsigned int mask0 = readl(base + MMCIMASK0); 309 310 mask0 &= ~MCI_IRQ1MASK; 311 mask0 |= mask; 312 313 writel(mask0, base + MMCIMASK0); 314 } 315 316 writel(mask, base + MMCIMASK1); 317 } 318 319 static void mmci_stop_data(struct mmci_host *host) 320 { 321 mmci_write_datactrlreg(host, 0); 322 mmci_set_mask1(host, 0); 323 host->data = NULL; 324 } 325 326 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) 327 { 328 unsigned int flags = SG_MITER_ATOMIC; 329 330 if (data->flags & MMC_DATA_READ) 331 flags |= SG_MITER_TO_SG; 332 else 333 flags |= SG_MITER_FROM_SG; 334 335 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 336 } 337 338 /* 339 * All the DMA operation mode stuff goes inside this ifdef. 340 * This assumes that you have a generic DMA device interface, 341 * no custom DMA interfaces are supported. 342 */ 343 #ifdef CONFIG_DMA_ENGINE 344 static void mmci_dma_setup(struct mmci_host *host) 345 { 346 struct mmci_platform_data *plat = host->plat; 347 const char *rxname, *txname; 348 dma_cap_mask_t mask; 349 350 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx"); 351 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx"); 352 353 /* initialize pre request cookie */ 354 host->next_data.cookie = 1; 355 356 /* Try to acquire a generic DMA engine slave channel */ 357 dma_cap_zero(mask); 358 dma_cap_set(DMA_SLAVE, mask); 359 360 if (plat && plat->dma_filter) { 361 if (!host->dma_rx_channel && plat->dma_rx_param) { 362 host->dma_rx_channel = dma_request_channel(mask, 363 plat->dma_filter, 364 plat->dma_rx_param); 365 /* E.g if no DMA hardware is present */ 366 if (!host->dma_rx_channel) 367 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n"); 368 } 369 370 if (!host->dma_tx_channel && plat->dma_tx_param) { 371 host->dma_tx_channel = dma_request_channel(mask, 372 plat->dma_filter, 373 plat->dma_tx_param); 374 if (!host->dma_tx_channel) 375 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n"); 376 } 377 } 378 379 /* 380 * If only an RX channel is specified, the driver will 381 * attempt to use it bidirectionally, however if it is 382 * is specified but cannot be located, DMA will be disabled. 383 */ 384 if (host->dma_rx_channel && !host->dma_tx_channel) 385 host->dma_tx_channel = host->dma_rx_channel; 386 387 if (host->dma_rx_channel) 388 rxname = dma_chan_name(host->dma_rx_channel); 389 else 390 rxname = "none"; 391 392 if (host->dma_tx_channel) 393 txname = dma_chan_name(host->dma_tx_channel); 394 else 395 txname = "none"; 396 397 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", 398 rxname, txname); 399 400 /* 401 * Limit the maximum segment size in any SG entry according to 402 * the parameters of the DMA engine device. 403 */ 404 if (host->dma_tx_channel) { 405 struct device *dev = host->dma_tx_channel->device->dev; 406 unsigned int max_seg_size = dma_get_max_seg_size(dev); 407 408 if (max_seg_size < host->mmc->max_seg_size) 409 host->mmc->max_seg_size = max_seg_size; 410 } 411 if (host->dma_rx_channel) { 412 struct device *dev = host->dma_rx_channel->device->dev; 413 unsigned int max_seg_size = dma_get_max_seg_size(dev); 414 415 if (max_seg_size < host->mmc->max_seg_size) 416 host->mmc->max_seg_size = max_seg_size; 417 } 418 } 419 420 /* 421 * This is used in or so inline it 422 * so it can be discarded. 423 */ 424 static inline void mmci_dma_release(struct mmci_host *host) 425 { 426 struct mmci_platform_data *plat = host->plat; 427 428 if (host->dma_rx_channel) 429 dma_release_channel(host->dma_rx_channel); 430 if (host->dma_tx_channel && plat->dma_tx_param) 431 dma_release_channel(host->dma_tx_channel); 432 host->dma_rx_channel = host->dma_tx_channel = NULL; 433 } 434 435 static void mmci_dma_data_error(struct mmci_host *host) 436 { 437 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); 438 dmaengine_terminate_all(host->dma_current); 439 host->dma_current = NULL; 440 host->dma_desc_current = NULL; 441 host->data->host_cookie = 0; 442 } 443 444 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 445 { 446 struct dma_chan *chan; 447 enum dma_data_direction dir; 448 449 if (data->flags & MMC_DATA_READ) { 450 dir = DMA_FROM_DEVICE; 451 chan = host->dma_rx_channel; 452 } else { 453 dir = DMA_TO_DEVICE; 454 chan = host->dma_tx_channel; 455 } 456 457 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); 458 } 459 460 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) 461 { 462 u32 status; 463 int i; 464 465 /* Wait up to 1ms for the DMA to complete */ 466 for (i = 0; ; i++) { 467 status = readl(host->base + MMCISTATUS); 468 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) 469 break; 470 udelay(10); 471 } 472 473 /* 474 * Check to see whether we still have some data left in the FIFO - 475 * this catches DMA controllers which are unable to monitor the 476 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- 477 * contiguous buffers. On TX, we'll get a FIFO underrun error. 478 */ 479 if (status & MCI_RXDATAAVLBLMASK) { 480 mmci_dma_data_error(host); 481 if (!data->error) 482 data->error = -EIO; 483 } 484 485 if (!data->host_cookie) 486 mmci_dma_unmap(host, data); 487 488 /* 489 * Use of DMA with scatter-gather is impossible. 490 * Give up with DMA and switch back to PIO mode. 491 */ 492 if (status & MCI_RXDATAAVLBLMASK) { 493 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); 494 mmci_dma_release(host); 495 } 496 497 host->dma_current = NULL; 498 host->dma_desc_current = NULL; 499 } 500 501 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ 502 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, 503 struct dma_chan **dma_chan, 504 struct dma_async_tx_descriptor **dma_desc) 505 { 506 struct variant_data *variant = host->variant; 507 struct dma_slave_config conf = { 508 .src_addr = host->phybase + MMCIFIFO, 509 .dst_addr = host->phybase + MMCIFIFO, 510 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 511 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 512 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ 513 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ 514 .device_fc = false, 515 }; 516 struct dma_chan *chan; 517 struct dma_device *device; 518 struct dma_async_tx_descriptor *desc; 519 enum dma_data_direction buffer_dirn; 520 int nr_sg; 521 522 if (data->flags & MMC_DATA_READ) { 523 conf.direction = DMA_DEV_TO_MEM; 524 buffer_dirn = DMA_FROM_DEVICE; 525 chan = host->dma_rx_channel; 526 } else { 527 conf.direction = DMA_MEM_TO_DEV; 528 buffer_dirn = DMA_TO_DEVICE; 529 chan = host->dma_tx_channel; 530 } 531 532 /* If there's no DMA channel, fall back to PIO */ 533 if (!chan) 534 return -EINVAL; 535 536 /* If less than or equal to the fifo size, don't bother with DMA */ 537 if (data->blksz * data->blocks <= variant->fifosize) 538 return -EINVAL; 539 540 device = chan->device; 541 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn); 542 if (nr_sg == 0) 543 return -EINVAL; 544 545 dmaengine_slave_config(chan, &conf); 546 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, 547 conf.direction, DMA_CTRL_ACK); 548 if (!desc) 549 goto unmap_exit; 550 551 *dma_chan = chan; 552 *dma_desc = desc; 553 554 return 0; 555 556 unmap_exit: 557 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn); 558 return -ENOMEM; 559 } 560 561 static inline int mmci_dma_prep_data(struct mmci_host *host, 562 struct mmc_data *data) 563 { 564 /* Check if next job is already prepared. */ 565 if (host->dma_current && host->dma_desc_current) 566 return 0; 567 568 /* No job were prepared thus do it now. */ 569 return __mmci_dma_prep_data(host, data, &host->dma_current, 570 &host->dma_desc_current); 571 } 572 573 static inline int mmci_dma_prep_next(struct mmci_host *host, 574 struct mmc_data *data) 575 { 576 struct mmci_host_next *nd = &host->next_data; 577 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc); 578 } 579 580 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 581 { 582 int ret; 583 struct mmc_data *data = host->data; 584 585 ret = mmci_dma_prep_data(host, host->data); 586 if (ret) 587 return ret; 588 589 /* Okay, go for it. */ 590 dev_vdbg(mmc_dev(host->mmc), 591 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", 592 data->sg_len, data->blksz, data->blocks, data->flags); 593 dmaengine_submit(host->dma_desc_current); 594 dma_async_issue_pending(host->dma_current); 595 596 datactrl |= MCI_DPSM_DMAENABLE; 597 598 /* Trigger the DMA transfer */ 599 mmci_write_datactrlreg(host, datactrl); 600 601 /* 602 * Let the MMCI say when the data is ended and it's time 603 * to fire next DMA request. When that happens, MMCI will 604 * call mmci_data_end() 605 */ 606 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, 607 host->base + MMCIMASK0); 608 return 0; 609 } 610 611 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 612 { 613 struct mmci_host_next *next = &host->next_data; 614 615 WARN_ON(data->host_cookie && data->host_cookie != next->cookie); 616 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan)); 617 618 host->dma_desc_current = next->dma_desc; 619 host->dma_current = next->dma_chan; 620 next->dma_desc = NULL; 621 next->dma_chan = NULL; 622 } 623 624 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq, 625 bool is_first_req) 626 { 627 struct mmci_host *host = mmc_priv(mmc); 628 struct mmc_data *data = mrq->data; 629 struct mmci_host_next *nd = &host->next_data; 630 631 if (!data) 632 return; 633 634 BUG_ON(data->host_cookie); 635 636 if (mmci_validate_data(host, data)) 637 return; 638 639 if (!mmci_dma_prep_next(host, data)) 640 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; 641 } 642 643 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, 644 int err) 645 { 646 struct mmci_host *host = mmc_priv(mmc); 647 struct mmc_data *data = mrq->data; 648 649 if (!data || !data->host_cookie) 650 return; 651 652 mmci_dma_unmap(host, data); 653 654 if (err) { 655 struct mmci_host_next *next = &host->next_data; 656 struct dma_chan *chan; 657 if (data->flags & MMC_DATA_READ) 658 chan = host->dma_rx_channel; 659 else 660 chan = host->dma_tx_channel; 661 dmaengine_terminate_all(chan); 662 663 next->dma_desc = NULL; 664 next->dma_chan = NULL; 665 } 666 } 667 668 #else 669 /* Blank functions if the DMA engine is not available */ 670 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 671 { 672 } 673 static inline void mmci_dma_setup(struct mmci_host *host) 674 { 675 } 676 677 static inline void mmci_dma_release(struct mmci_host *host) 678 { 679 } 680 681 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 682 { 683 } 684 685 static inline void mmci_dma_finalize(struct mmci_host *host, 686 struct mmc_data *data) 687 { 688 } 689 690 static inline void mmci_dma_data_error(struct mmci_host *host) 691 { 692 } 693 694 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 695 { 696 return -ENOSYS; 697 } 698 699 #define mmci_pre_request NULL 700 #define mmci_post_request NULL 701 702 #endif 703 704 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) 705 { 706 struct variant_data *variant = host->variant; 707 unsigned int datactrl, timeout, irqmask; 708 unsigned long long clks; 709 void __iomem *base; 710 int blksz_bits; 711 712 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", 713 data->blksz, data->blocks, data->flags); 714 715 host->data = data; 716 host->size = data->blksz * data->blocks; 717 data->bytes_xfered = 0; 718 719 clks = (unsigned long long)data->timeout_ns * host->cclk; 720 do_div(clks, 1000000000UL); 721 722 timeout = data->timeout_clks + (unsigned int)clks; 723 724 base = host->base; 725 writel(timeout, base + MMCIDATATIMER); 726 writel(host->size, base + MMCIDATALENGTH); 727 728 blksz_bits = ffs(data->blksz) - 1; 729 BUG_ON(1 << blksz_bits != data->blksz); 730 731 if (variant->blksz_datactrl16) 732 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); 733 else 734 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; 735 736 if (data->flags & MMC_DATA_READ) 737 datactrl |= MCI_DPSM_DIRECTION; 738 739 /* The ST Micro variants has a special bit to enable SDIO */ 740 if (variant->sdio && host->mmc->card) 741 if (mmc_card_sdio(host->mmc->card)) { 742 /* 743 * The ST Micro variants has a special bit 744 * to enable SDIO. 745 */ 746 u32 clk; 747 748 datactrl |= MCI_ST_DPSM_SDIOEN; 749 750 /* 751 * The ST Micro variant for SDIO small write transfers 752 * needs to have clock H/W flow control disabled, 753 * otherwise the transfer will not start. The threshold 754 * depends on the rate of MCLK. 755 */ 756 if (data->flags & MMC_DATA_WRITE && 757 (host->size < 8 || 758 (host->size <= 8 && host->mclk > 50000000))) 759 clk = host->clk_reg & ~variant->clkreg_enable; 760 else 761 clk = host->clk_reg | variant->clkreg_enable; 762 763 mmci_write_clkreg(host, clk); 764 } 765 766 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) 767 datactrl |= MCI_ST_DPSM_DDRMODE; 768 769 /* 770 * Attempt to use DMA operation mode, if this 771 * should fail, fall back to PIO mode 772 */ 773 if (!mmci_dma_start_data(host, datactrl)) 774 return; 775 776 /* IRQ mode, map the SG list for CPU reading/writing */ 777 mmci_init_sg(host, data); 778 779 if (data->flags & MMC_DATA_READ) { 780 irqmask = MCI_RXFIFOHALFFULLMASK; 781 782 /* 783 * If we have less than the fifo 'half-full' threshold to 784 * transfer, trigger a PIO interrupt as soon as any data 785 * is available. 786 */ 787 if (host->size < variant->fifohalfsize) 788 irqmask |= MCI_RXDATAAVLBLMASK; 789 } else { 790 /* 791 * We don't actually need to include "FIFO empty" here 792 * since its implicit in "FIFO half empty". 793 */ 794 irqmask = MCI_TXFIFOHALFEMPTYMASK; 795 } 796 797 mmci_write_datactrlreg(host, datactrl); 798 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); 799 mmci_set_mask1(host, irqmask); 800 } 801 802 static void 803 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) 804 { 805 void __iomem *base = host->base; 806 807 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", 808 cmd->opcode, cmd->arg, cmd->flags); 809 810 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { 811 writel(0, base + MMCICOMMAND); 812 udelay(1); 813 } 814 815 c |= cmd->opcode | MCI_CPSM_ENABLE; 816 if (cmd->flags & MMC_RSP_PRESENT) { 817 if (cmd->flags & MMC_RSP_136) 818 c |= MCI_CPSM_LONGRSP; 819 c |= MCI_CPSM_RESPONSE; 820 } 821 if (/*interrupt*/0) 822 c |= MCI_CPSM_INTERRUPT; 823 824 host->cmd = cmd; 825 826 writel(cmd->arg, base + MMCIARGUMENT); 827 writel(c, base + MMCICOMMAND); 828 } 829 830 static void 831 mmci_data_irq(struct mmci_host *host, struct mmc_data *data, 832 unsigned int status) 833 { 834 /* First check for errors */ 835 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| 836 MCI_TXUNDERRUN|MCI_RXOVERRUN)) { 837 u32 remain, success; 838 839 /* Terminate the DMA transfer */ 840 if (dma_inprogress(host)) { 841 mmci_dma_data_error(host); 842 mmci_dma_unmap(host, data); 843 } 844 845 /* 846 * Calculate how far we are into the transfer. Note that 847 * the data counter gives the number of bytes transferred 848 * on the MMC bus, not on the host side. On reads, this 849 * can be as much as a FIFO-worth of data ahead. This 850 * matters for FIFO overruns only. 851 */ 852 remain = readl(host->base + MMCIDATACNT); 853 success = data->blksz * data->blocks - remain; 854 855 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", 856 status, success); 857 if (status & MCI_DATACRCFAIL) { 858 /* Last block was not successful */ 859 success -= 1; 860 data->error = -EILSEQ; 861 } else if (status & MCI_DATATIMEOUT) { 862 data->error = -ETIMEDOUT; 863 } else if (status & MCI_STARTBITERR) { 864 data->error = -ECOMM; 865 } else if (status & MCI_TXUNDERRUN) { 866 data->error = -EIO; 867 } else if (status & MCI_RXOVERRUN) { 868 if (success > host->variant->fifosize) 869 success -= host->variant->fifosize; 870 else 871 success = 0; 872 data->error = -EIO; 873 } 874 data->bytes_xfered = round_down(success, data->blksz); 875 } 876 877 if (status & MCI_DATABLOCKEND) 878 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); 879 880 if (status & MCI_DATAEND || data->error) { 881 if (dma_inprogress(host)) 882 mmci_dma_finalize(host, data); 883 mmci_stop_data(host); 884 885 if (!data->error) 886 /* The error clause is handled above, success! */ 887 data->bytes_xfered = data->blksz * data->blocks; 888 889 if (!data->stop || host->mrq->sbc) { 890 mmci_request_end(host, data->mrq); 891 } else { 892 mmci_start_command(host, data->stop, 0); 893 } 894 } 895 } 896 897 static void 898 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, 899 unsigned int status) 900 { 901 void __iomem *base = host->base; 902 bool sbc = (cmd == host->mrq->sbc); 903 904 host->cmd = NULL; 905 906 if (status & MCI_CMDTIMEOUT) { 907 cmd->error = -ETIMEDOUT; 908 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { 909 cmd->error = -EILSEQ; 910 } else { 911 cmd->resp[0] = readl(base + MMCIRESPONSE0); 912 cmd->resp[1] = readl(base + MMCIRESPONSE1); 913 cmd->resp[2] = readl(base + MMCIRESPONSE2); 914 cmd->resp[3] = readl(base + MMCIRESPONSE3); 915 } 916 917 if ((!sbc && !cmd->data) || cmd->error) { 918 if (host->data) { 919 /* Terminate the DMA transfer */ 920 if (dma_inprogress(host)) { 921 mmci_dma_data_error(host); 922 mmci_dma_unmap(host, host->data); 923 } 924 mmci_stop_data(host); 925 } 926 mmci_request_end(host, host->mrq); 927 } else if (sbc) { 928 mmci_start_command(host, host->mrq->cmd, 0); 929 } else if (!(cmd->data->flags & MMC_DATA_READ)) { 930 mmci_start_data(host, cmd->data); 931 } 932 } 933 934 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) 935 { 936 void __iomem *base = host->base; 937 char *ptr = buffer; 938 u32 status; 939 int host_remain = host->size; 940 941 do { 942 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2); 943 944 if (count > remain) 945 count = remain; 946 947 if (count <= 0) 948 break; 949 950 /* 951 * SDIO especially may want to send something that is 952 * not divisible by 4 (as opposed to card sectors 953 * etc). Therefore make sure to always read the last bytes 954 * while only doing full 32-bit reads towards the FIFO. 955 */ 956 if (unlikely(count & 0x3)) { 957 if (count < 4) { 958 unsigned char buf[4]; 959 ioread32_rep(base + MMCIFIFO, buf, 1); 960 memcpy(ptr, buf, count); 961 } else { 962 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 963 count &= ~0x3; 964 } 965 } else { 966 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 967 } 968 969 ptr += count; 970 remain -= count; 971 host_remain -= count; 972 973 if (remain == 0) 974 break; 975 976 status = readl(base + MMCISTATUS); 977 } while (status & MCI_RXDATAAVLBL); 978 979 return ptr - buffer; 980 } 981 982 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) 983 { 984 struct variant_data *variant = host->variant; 985 void __iomem *base = host->base; 986 char *ptr = buffer; 987 988 do { 989 unsigned int count, maxcnt; 990 991 maxcnt = status & MCI_TXFIFOEMPTY ? 992 variant->fifosize : variant->fifohalfsize; 993 count = min(remain, maxcnt); 994 995 /* 996 * SDIO especially may want to send something that is 997 * not divisible by 4 (as opposed to card sectors 998 * etc), and the FIFO only accept full 32-bit writes. 999 * So compensate by adding +3 on the count, a single 1000 * byte become a 32bit write, 7 bytes will be two 1001 * 32bit writes etc. 1002 */ 1003 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); 1004 1005 ptr += count; 1006 remain -= count; 1007 1008 if (remain == 0) 1009 break; 1010 1011 status = readl(base + MMCISTATUS); 1012 } while (status & MCI_TXFIFOHALFEMPTY); 1013 1014 return ptr - buffer; 1015 } 1016 1017 /* 1018 * PIO data transfer IRQ handler. 1019 */ 1020 static irqreturn_t mmci_pio_irq(int irq, void *dev_id) 1021 { 1022 struct mmci_host *host = dev_id; 1023 struct sg_mapping_iter *sg_miter = &host->sg_miter; 1024 struct variant_data *variant = host->variant; 1025 void __iomem *base = host->base; 1026 unsigned long flags; 1027 u32 status; 1028 1029 status = readl(base + MMCISTATUS); 1030 1031 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); 1032 1033 local_irq_save(flags); 1034 1035 do { 1036 unsigned int remain, len; 1037 char *buffer; 1038 1039 /* 1040 * For write, we only need to test the half-empty flag 1041 * here - if the FIFO is completely empty, then by 1042 * definition it is more than half empty. 1043 * 1044 * For read, check for data available. 1045 */ 1046 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) 1047 break; 1048 1049 if (!sg_miter_next(sg_miter)) 1050 break; 1051 1052 buffer = sg_miter->addr; 1053 remain = sg_miter->length; 1054 1055 len = 0; 1056 if (status & MCI_RXACTIVE) 1057 len = mmci_pio_read(host, buffer, remain); 1058 if (status & MCI_TXACTIVE) 1059 len = mmci_pio_write(host, buffer, remain, status); 1060 1061 sg_miter->consumed = len; 1062 1063 host->size -= len; 1064 remain -= len; 1065 1066 if (remain) 1067 break; 1068 1069 status = readl(base + MMCISTATUS); 1070 } while (1); 1071 1072 sg_miter_stop(sg_miter); 1073 1074 local_irq_restore(flags); 1075 1076 /* 1077 * If we have less than the fifo 'half-full' threshold to transfer, 1078 * trigger a PIO interrupt as soon as any data is available. 1079 */ 1080 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) 1081 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); 1082 1083 /* 1084 * If we run out of data, disable the data IRQs; this 1085 * prevents a race where the FIFO becomes empty before 1086 * the chip itself has disabled the data path, and 1087 * stops us racing with our data end IRQ. 1088 */ 1089 if (host->size == 0) { 1090 mmci_set_mask1(host, 0); 1091 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); 1092 } 1093 1094 return IRQ_HANDLED; 1095 } 1096 1097 /* 1098 * Handle completion of command and data transfers. 1099 */ 1100 static irqreturn_t mmci_irq(int irq, void *dev_id) 1101 { 1102 struct mmci_host *host = dev_id; 1103 u32 status; 1104 int ret = 0; 1105 1106 spin_lock(&host->lock); 1107 1108 do { 1109 struct mmc_command *cmd; 1110 struct mmc_data *data; 1111 1112 status = readl(host->base + MMCISTATUS); 1113 1114 if (host->singleirq) { 1115 if (status & readl(host->base + MMCIMASK1)) 1116 mmci_pio_irq(irq, dev_id); 1117 1118 status &= ~MCI_IRQ1MASK; 1119 } 1120 1121 status &= readl(host->base + MMCIMASK0); 1122 writel(status, host->base + MMCICLEAR); 1123 1124 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); 1125 1126 data = host->data; 1127 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| 1128 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND| 1129 MCI_DATABLOCKEND) && data) 1130 mmci_data_irq(host, data, status); 1131 1132 cmd = host->cmd; 1133 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd) 1134 mmci_cmd_irq(host, cmd, status); 1135 1136 ret = 1; 1137 } while (status); 1138 1139 spin_unlock(&host->lock); 1140 1141 return IRQ_RETVAL(ret); 1142 } 1143 1144 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1145 { 1146 struct mmci_host *host = mmc_priv(mmc); 1147 unsigned long flags; 1148 1149 WARN_ON(host->mrq != NULL); 1150 1151 mrq->cmd->error = mmci_validate_data(host, mrq->data); 1152 if (mrq->cmd->error) { 1153 mmc_request_done(mmc, mrq); 1154 return; 1155 } 1156 1157 pm_runtime_get_sync(mmc_dev(mmc)); 1158 1159 spin_lock_irqsave(&host->lock, flags); 1160 1161 host->mrq = mrq; 1162 1163 if (mrq->data) 1164 mmci_get_next_data(host, mrq->data); 1165 1166 if (mrq->data && mrq->data->flags & MMC_DATA_READ) 1167 mmci_start_data(host, mrq->data); 1168 1169 if (mrq->sbc) 1170 mmci_start_command(host, mrq->sbc, 0); 1171 else 1172 mmci_start_command(host, mrq->cmd, 0); 1173 1174 spin_unlock_irqrestore(&host->lock, flags); 1175 } 1176 1177 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1178 { 1179 struct mmci_host *host = mmc_priv(mmc); 1180 struct variant_data *variant = host->variant; 1181 u32 pwr = 0; 1182 unsigned long flags; 1183 int ret; 1184 1185 pm_runtime_get_sync(mmc_dev(mmc)); 1186 1187 if (host->plat->ios_handler && 1188 host->plat->ios_handler(mmc_dev(mmc), ios)) 1189 dev_err(mmc_dev(mmc), "platform ios_handler failed\n"); 1190 1191 switch (ios->power_mode) { 1192 case MMC_POWER_OFF: 1193 if (!IS_ERR(mmc->supply.vmmc)) 1194 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1195 1196 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 1197 regulator_disable(mmc->supply.vqmmc); 1198 host->vqmmc_enabled = false; 1199 } 1200 1201 break; 1202 case MMC_POWER_UP: 1203 if (!IS_ERR(mmc->supply.vmmc)) 1204 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1205 1206 /* 1207 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP 1208 * and instead uses MCI_PWR_ON so apply whatever value is 1209 * configured in the variant data. 1210 */ 1211 pwr |= variant->pwrreg_powerup; 1212 1213 break; 1214 case MMC_POWER_ON: 1215 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 1216 ret = regulator_enable(mmc->supply.vqmmc); 1217 if (ret < 0) 1218 dev_err(mmc_dev(mmc), 1219 "failed to enable vqmmc regulator\n"); 1220 else 1221 host->vqmmc_enabled = true; 1222 } 1223 1224 pwr |= MCI_PWR_ON; 1225 break; 1226 } 1227 1228 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { 1229 /* 1230 * The ST Micro variant has some additional bits 1231 * indicating signal direction for the signals in 1232 * the SD/MMC bus and feedback-clock usage. 1233 */ 1234 pwr |= host->plat->sigdir; 1235 1236 if (ios->bus_width == MMC_BUS_WIDTH_4) 1237 pwr &= ~MCI_ST_DATA74DIREN; 1238 else if (ios->bus_width == MMC_BUS_WIDTH_1) 1239 pwr &= (~MCI_ST_DATA74DIREN & 1240 ~MCI_ST_DATA31DIREN & 1241 ~MCI_ST_DATA2DIREN); 1242 } 1243 1244 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { 1245 if (host->hw_designer != AMBA_VENDOR_ST) 1246 pwr |= MCI_ROD; 1247 else { 1248 /* 1249 * The ST Micro variant use the ROD bit for something 1250 * else and only has OD (Open Drain). 1251 */ 1252 pwr |= MCI_OD; 1253 } 1254 } 1255 1256 /* 1257 * If clock = 0 and the variant requires the MMCIPOWER to be used for 1258 * gating the clock, the MCI_PWR_ON bit is cleared. 1259 */ 1260 if (!ios->clock && variant->pwrreg_clkgate) 1261 pwr &= ~MCI_PWR_ON; 1262 1263 spin_lock_irqsave(&host->lock, flags); 1264 1265 mmci_set_clkreg(host, ios->clock); 1266 mmci_write_pwrreg(host, pwr); 1267 1268 spin_unlock_irqrestore(&host->lock, flags); 1269 1270 pm_runtime_mark_last_busy(mmc_dev(mmc)); 1271 pm_runtime_put_autosuspend(mmc_dev(mmc)); 1272 } 1273 1274 static int mmci_get_ro(struct mmc_host *mmc) 1275 { 1276 struct mmci_host *host = mmc_priv(mmc); 1277 1278 if (host->gpio_wp == -ENOSYS) 1279 return -ENOSYS; 1280 1281 return gpio_get_value_cansleep(host->gpio_wp); 1282 } 1283 1284 static int mmci_get_cd(struct mmc_host *mmc) 1285 { 1286 struct mmci_host *host = mmc_priv(mmc); 1287 struct mmci_platform_data *plat = host->plat; 1288 unsigned int status; 1289 1290 if (host->gpio_cd == -ENOSYS) { 1291 if (!plat->status) 1292 return 1; /* Assume always present */ 1293 1294 status = plat->status(mmc_dev(host->mmc)); 1295 } else 1296 status = !!gpio_get_value_cansleep(host->gpio_cd) 1297 ^ plat->cd_invert; 1298 1299 /* 1300 * Use positive logic throughout - status is zero for no card, 1301 * non-zero for card inserted. 1302 */ 1303 return status; 1304 } 1305 1306 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 1307 { 1308 int ret = 0; 1309 1310 if (!IS_ERR(mmc->supply.vqmmc)) { 1311 1312 pm_runtime_get_sync(mmc_dev(mmc)); 1313 1314 switch (ios->signal_voltage) { 1315 case MMC_SIGNAL_VOLTAGE_330: 1316 ret = regulator_set_voltage(mmc->supply.vqmmc, 1317 2700000, 3600000); 1318 break; 1319 case MMC_SIGNAL_VOLTAGE_180: 1320 ret = regulator_set_voltage(mmc->supply.vqmmc, 1321 1700000, 1950000); 1322 break; 1323 case MMC_SIGNAL_VOLTAGE_120: 1324 ret = regulator_set_voltage(mmc->supply.vqmmc, 1325 1100000, 1300000); 1326 break; 1327 } 1328 1329 if (ret) 1330 dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); 1331 1332 pm_runtime_mark_last_busy(mmc_dev(mmc)); 1333 pm_runtime_put_autosuspend(mmc_dev(mmc)); 1334 } 1335 1336 return ret; 1337 } 1338 1339 static irqreturn_t mmci_cd_irq(int irq, void *dev_id) 1340 { 1341 struct mmci_host *host = dev_id; 1342 1343 mmc_detect_change(host->mmc, msecs_to_jiffies(500)); 1344 1345 return IRQ_HANDLED; 1346 } 1347 1348 static struct mmc_host_ops mmci_ops = { 1349 .request = mmci_request, 1350 .pre_req = mmci_pre_request, 1351 .post_req = mmci_post_request, 1352 .set_ios = mmci_set_ios, 1353 .get_ro = mmci_get_ro, 1354 .get_cd = mmci_get_cd, 1355 .start_signal_voltage_switch = mmci_sig_volt_switch, 1356 }; 1357 1358 #ifdef CONFIG_OF 1359 static void mmci_dt_populate_generic_pdata(struct device_node *np, 1360 struct mmci_platform_data *pdata) 1361 { 1362 int bus_width = 0; 1363 1364 pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0); 1365 pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0); 1366 1367 if (of_get_property(np, "cd-inverted", NULL)) 1368 pdata->cd_invert = true; 1369 else 1370 pdata->cd_invert = false; 1371 1372 of_property_read_u32(np, "max-frequency", &pdata->f_max); 1373 if (!pdata->f_max) 1374 pr_warn("%s has no 'max-frequency' property\n", np->full_name); 1375 1376 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) 1377 pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED; 1378 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) 1379 pdata->capabilities |= MMC_CAP_SD_HIGHSPEED; 1380 1381 of_property_read_u32(np, "bus-width", &bus_width); 1382 switch (bus_width) { 1383 case 0 : 1384 /* No bus-width supplied. */ 1385 break; 1386 case 4 : 1387 pdata->capabilities |= MMC_CAP_4_BIT_DATA; 1388 break; 1389 case 8 : 1390 pdata->capabilities |= MMC_CAP_8_BIT_DATA; 1391 break; 1392 default : 1393 pr_warn("%s: Unsupported bus width\n", np->full_name); 1394 } 1395 } 1396 #else 1397 static void mmci_dt_populate_generic_pdata(struct device_node *np, 1398 struct mmci_platform_data *pdata) 1399 { 1400 return; 1401 } 1402 #endif 1403 1404 static int mmci_probe(struct amba_device *dev, 1405 const struct amba_id *id) 1406 { 1407 struct mmci_platform_data *plat = dev->dev.platform_data; 1408 struct device_node *np = dev->dev.of_node; 1409 struct variant_data *variant = id->data; 1410 struct mmci_host *host; 1411 struct mmc_host *mmc; 1412 int ret; 1413 1414 /* Must have platform data or Device Tree. */ 1415 if (!plat && !np) { 1416 dev_err(&dev->dev, "No plat data or DT found\n"); 1417 return -EINVAL; 1418 } 1419 1420 if (!plat) { 1421 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); 1422 if (!plat) 1423 return -ENOMEM; 1424 } 1425 1426 if (np) 1427 mmci_dt_populate_generic_pdata(np, plat); 1428 1429 ret = amba_request_regions(dev, DRIVER_NAME); 1430 if (ret) 1431 goto out; 1432 1433 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); 1434 if (!mmc) { 1435 ret = -ENOMEM; 1436 goto rel_regions; 1437 } 1438 1439 host = mmc_priv(mmc); 1440 host->mmc = mmc; 1441 1442 host->gpio_wp = -ENOSYS; 1443 host->gpio_cd = -ENOSYS; 1444 host->gpio_cd_irq = -1; 1445 1446 host->hw_designer = amba_manf(dev); 1447 host->hw_revision = amba_rev(dev); 1448 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); 1449 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); 1450 1451 host->clk = devm_clk_get(&dev->dev, NULL); 1452 if (IS_ERR(host->clk)) { 1453 ret = PTR_ERR(host->clk); 1454 goto host_free; 1455 } 1456 1457 ret = clk_prepare_enable(host->clk); 1458 if (ret) 1459 goto host_free; 1460 1461 host->plat = plat; 1462 host->variant = variant; 1463 host->mclk = clk_get_rate(host->clk); 1464 /* 1465 * According to the spec, mclk is max 100 MHz, 1466 * so we try to adjust the clock down to this, 1467 * (if possible). 1468 */ 1469 if (host->mclk > 100000000) { 1470 ret = clk_set_rate(host->clk, 100000000); 1471 if (ret < 0) 1472 goto clk_disable; 1473 host->mclk = clk_get_rate(host->clk); 1474 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", 1475 host->mclk); 1476 } 1477 host->phybase = dev->res.start; 1478 host->base = ioremap(dev->res.start, resource_size(&dev->res)); 1479 if (!host->base) { 1480 ret = -ENOMEM; 1481 goto clk_disable; 1482 } 1483 1484 if (variant->busy_detect) { 1485 mmci_ops.card_busy = mmci_card_busy; 1486 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE); 1487 } 1488 1489 mmc->ops = &mmci_ops; 1490 /* 1491 * The ARM and ST versions of the block have slightly different 1492 * clock divider equations which means that the minimum divider 1493 * differs too. 1494 */ 1495 if (variant->st_clkdiv) 1496 mmc->f_min = DIV_ROUND_UP(host->mclk, 257); 1497 else 1498 mmc->f_min = DIV_ROUND_UP(host->mclk, 512); 1499 /* 1500 * If the platform data supplies a maximum operating 1501 * frequency, this takes precedence. Else, we fall back 1502 * to using the module parameter, which has a (low) 1503 * default value in case it is not specified. Either 1504 * value must not exceed the clock rate into the block, 1505 * of course. 1506 */ 1507 if (plat->f_max) 1508 mmc->f_max = min(host->mclk, plat->f_max); 1509 else 1510 mmc->f_max = min(host->mclk, fmax); 1511 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); 1512 1513 host->pinctrl = devm_pinctrl_get(&dev->dev); 1514 if (IS_ERR(host->pinctrl)) { 1515 ret = PTR_ERR(host->pinctrl); 1516 goto clk_disable; 1517 } 1518 1519 host->pins_default = pinctrl_lookup_state(host->pinctrl, 1520 PINCTRL_STATE_DEFAULT); 1521 1522 /* enable pins to be muxed in and configured */ 1523 if (!IS_ERR(host->pins_default)) { 1524 ret = pinctrl_select_state(host->pinctrl, host->pins_default); 1525 if (ret) 1526 dev_warn(&dev->dev, "could not set default pins\n"); 1527 } else 1528 dev_warn(&dev->dev, "could not get default pinstate\n"); 1529 1530 /* Get regulators and the supported OCR mask */ 1531 mmc_regulator_get_supply(mmc); 1532 if (!mmc->ocr_avail) 1533 mmc->ocr_avail = plat->ocr_mask; 1534 else if (plat->ocr_mask) 1535 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1536 1537 mmc->caps = plat->capabilities; 1538 mmc->caps2 = plat->capabilities2; 1539 1540 /* We support these PM capabilities. */ 1541 mmc->pm_caps = MMC_PM_KEEP_POWER; 1542 1543 /* 1544 * We can do SGIO 1545 */ 1546 mmc->max_segs = NR_SG; 1547 1548 /* 1549 * Since only a certain number of bits are valid in the data length 1550 * register, we must ensure that we don't exceed 2^num-1 bytes in a 1551 * single request. 1552 */ 1553 mmc->max_req_size = (1 << variant->datalength_bits) - 1; 1554 1555 /* 1556 * Set the maximum segment size. Since we aren't doing DMA 1557 * (yet) we are only limited by the data length register. 1558 */ 1559 mmc->max_seg_size = mmc->max_req_size; 1560 1561 /* 1562 * Block size can be up to 2048 bytes, but must be a power of two. 1563 */ 1564 mmc->max_blk_size = 1 << 11; 1565 1566 /* 1567 * Limit the number of blocks transferred so that we don't overflow 1568 * the maximum request size. 1569 */ 1570 mmc->max_blk_count = mmc->max_req_size >> 11; 1571 1572 spin_lock_init(&host->lock); 1573 1574 writel(0, host->base + MMCIMASK0); 1575 writel(0, host->base + MMCIMASK1); 1576 writel(0xfff, host->base + MMCICLEAR); 1577 1578 if (plat->gpio_cd == -EPROBE_DEFER) { 1579 ret = -EPROBE_DEFER; 1580 goto err_gpio_cd; 1581 } 1582 if (gpio_is_valid(plat->gpio_cd)) { 1583 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)"); 1584 if (ret == 0) 1585 ret = gpio_direction_input(plat->gpio_cd); 1586 if (ret == 0) 1587 host->gpio_cd = plat->gpio_cd; 1588 else if (ret != -ENOSYS) 1589 goto err_gpio_cd; 1590 1591 /* 1592 * A gpio pin that will detect cards when inserted and removed 1593 * will most likely want to trigger on the edges if it is 1594 * 0 when ejected and 1 when inserted (or mutatis mutandis 1595 * for the inverted case) so we request triggers on both 1596 * edges. 1597 */ 1598 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd), 1599 mmci_cd_irq, 1600 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, 1601 DRIVER_NAME " (cd)", host); 1602 if (ret >= 0) 1603 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd); 1604 } 1605 if (plat->gpio_wp == -EPROBE_DEFER) { 1606 ret = -EPROBE_DEFER; 1607 goto err_gpio_wp; 1608 } 1609 if (gpio_is_valid(plat->gpio_wp)) { 1610 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)"); 1611 if (ret == 0) 1612 ret = gpio_direction_input(plat->gpio_wp); 1613 if (ret == 0) 1614 host->gpio_wp = plat->gpio_wp; 1615 else if (ret != -ENOSYS) 1616 goto err_gpio_wp; 1617 } 1618 1619 if ((host->plat->status || host->gpio_cd != -ENOSYS) 1620 && host->gpio_cd_irq < 0) 1621 mmc->caps |= MMC_CAP_NEEDS_POLL; 1622 1623 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host); 1624 if (ret) 1625 goto unmap; 1626 1627 if (!dev->irq[1]) 1628 host->singleirq = true; 1629 else { 1630 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED, 1631 DRIVER_NAME " (pio)", host); 1632 if (ret) 1633 goto irq0_free; 1634 } 1635 1636 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1637 1638 amba_set_drvdata(dev, mmc); 1639 1640 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", 1641 mmc_hostname(mmc), amba_part(dev), amba_manf(dev), 1642 amba_rev(dev), (unsigned long long)dev->res.start, 1643 dev->irq[0], dev->irq[1]); 1644 1645 mmci_dma_setup(host); 1646 1647 pm_runtime_set_autosuspend_delay(&dev->dev, 50); 1648 pm_runtime_use_autosuspend(&dev->dev); 1649 pm_runtime_put(&dev->dev); 1650 1651 mmc_add_host(mmc); 1652 1653 return 0; 1654 1655 irq0_free: 1656 free_irq(dev->irq[0], host); 1657 unmap: 1658 if (host->gpio_wp != -ENOSYS) 1659 gpio_free(host->gpio_wp); 1660 err_gpio_wp: 1661 if (host->gpio_cd_irq >= 0) 1662 free_irq(host->gpio_cd_irq, host); 1663 if (host->gpio_cd != -ENOSYS) 1664 gpio_free(host->gpio_cd); 1665 err_gpio_cd: 1666 iounmap(host->base); 1667 clk_disable: 1668 clk_disable_unprepare(host->clk); 1669 host_free: 1670 mmc_free_host(mmc); 1671 rel_regions: 1672 amba_release_regions(dev); 1673 out: 1674 return ret; 1675 } 1676 1677 static int mmci_remove(struct amba_device *dev) 1678 { 1679 struct mmc_host *mmc = amba_get_drvdata(dev); 1680 1681 amba_set_drvdata(dev, NULL); 1682 1683 if (mmc) { 1684 struct mmci_host *host = mmc_priv(mmc); 1685 1686 /* 1687 * Undo pm_runtime_put() in probe. We use the _sync 1688 * version here so that we can access the primecell. 1689 */ 1690 pm_runtime_get_sync(&dev->dev); 1691 1692 mmc_remove_host(mmc); 1693 1694 writel(0, host->base + MMCIMASK0); 1695 writel(0, host->base + MMCIMASK1); 1696 1697 writel(0, host->base + MMCICOMMAND); 1698 writel(0, host->base + MMCIDATACTRL); 1699 1700 mmci_dma_release(host); 1701 free_irq(dev->irq[0], host); 1702 if (!host->singleirq) 1703 free_irq(dev->irq[1], host); 1704 1705 if (host->gpio_wp != -ENOSYS) 1706 gpio_free(host->gpio_wp); 1707 if (host->gpio_cd_irq >= 0) 1708 free_irq(host->gpio_cd_irq, host); 1709 if (host->gpio_cd != -ENOSYS) 1710 gpio_free(host->gpio_cd); 1711 1712 iounmap(host->base); 1713 clk_disable_unprepare(host->clk); 1714 1715 mmc_free_host(mmc); 1716 1717 amba_release_regions(dev); 1718 } 1719 1720 return 0; 1721 } 1722 1723 #ifdef CONFIG_SUSPEND 1724 static int mmci_suspend(struct device *dev) 1725 { 1726 struct amba_device *adev = to_amba_device(dev); 1727 struct mmc_host *mmc = amba_get_drvdata(adev); 1728 int ret = 0; 1729 1730 if (mmc) { 1731 struct mmci_host *host = mmc_priv(mmc); 1732 1733 ret = mmc_suspend_host(mmc); 1734 if (ret == 0) { 1735 pm_runtime_get_sync(dev); 1736 writel(0, host->base + MMCIMASK0); 1737 } 1738 } 1739 1740 return ret; 1741 } 1742 1743 static int mmci_resume(struct device *dev) 1744 { 1745 struct amba_device *adev = to_amba_device(dev); 1746 struct mmc_host *mmc = amba_get_drvdata(adev); 1747 int ret = 0; 1748 1749 if (mmc) { 1750 struct mmci_host *host = mmc_priv(mmc); 1751 1752 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1753 pm_runtime_put(dev); 1754 1755 ret = mmc_resume_host(mmc); 1756 } 1757 1758 return ret; 1759 } 1760 #endif 1761 1762 #ifdef CONFIG_PM_RUNTIME 1763 static int mmci_runtime_suspend(struct device *dev) 1764 { 1765 struct amba_device *adev = to_amba_device(dev); 1766 struct mmc_host *mmc = amba_get_drvdata(adev); 1767 1768 if (mmc) { 1769 struct mmci_host *host = mmc_priv(mmc); 1770 clk_disable_unprepare(host->clk); 1771 } 1772 1773 return 0; 1774 } 1775 1776 static int mmci_runtime_resume(struct device *dev) 1777 { 1778 struct amba_device *adev = to_amba_device(dev); 1779 struct mmc_host *mmc = amba_get_drvdata(adev); 1780 1781 if (mmc) { 1782 struct mmci_host *host = mmc_priv(mmc); 1783 clk_prepare_enable(host->clk); 1784 } 1785 1786 return 0; 1787 } 1788 #endif 1789 1790 static const struct dev_pm_ops mmci_dev_pm_ops = { 1791 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume) 1792 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) 1793 }; 1794 1795 static struct amba_id mmci_ids[] = { 1796 { 1797 .id = 0x00041180, 1798 .mask = 0xff0fffff, 1799 .data = &variant_arm, 1800 }, 1801 { 1802 .id = 0x01041180, 1803 .mask = 0xff0fffff, 1804 .data = &variant_arm_extended_fifo, 1805 }, 1806 { 1807 .id = 0x02041180, 1808 .mask = 0xff0fffff, 1809 .data = &variant_arm_extended_fifo_hwfc, 1810 }, 1811 { 1812 .id = 0x00041181, 1813 .mask = 0x000fffff, 1814 .data = &variant_arm, 1815 }, 1816 /* ST Micro variants */ 1817 { 1818 .id = 0x00180180, 1819 .mask = 0x00ffffff, 1820 .data = &variant_u300, 1821 }, 1822 { 1823 .id = 0x10180180, 1824 .mask = 0xf0ffffff, 1825 .data = &variant_nomadik, 1826 }, 1827 { 1828 .id = 0x00280180, 1829 .mask = 0x00ffffff, 1830 .data = &variant_u300, 1831 }, 1832 { 1833 .id = 0x00480180, 1834 .mask = 0xf0ffffff, 1835 .data = &variant_ux500, 1836 }, 1837 { 1838 .id = 0x10480180, 1839 .mask = 0xf0ffffff, 1840 .data = &variant_ux500v2, 1841 }, 1842 { 0, 0 }, 1843 }; 1844 1845 MODULE_DEVICE_TABLE(amba, mmci_ids); 1846 1847 static struct amba_driver mmci_driver = { 1848 .drv = { 1849 .name = DRIVER_NAME, 1850 .pm = &mmci_dev_pm_ops, 1851 }, 1852 .probe = mmci_probe, 1853 .remove = mmci_remove, 1854 .id_table = mmci_ids, 1855 }; 1856 1857 module_amba_driver(mmci_driver); 1858 1859 module_param(fmax, uint, 0444); 1860 1861 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); 1862 MODULE_LICENSE("GPL"); 1863