1 /* 2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers 3 * 4 * (C) Copyright 2005, Intec Automation, 5 * Mike Lavender (mike@steroidmicros) 6 * (C) Copyright 2006-2007, David Brownell 7 * (C) Copyright 2007, Axis Communications, 8 * Hans-Peter Nilsson (hp@axis.com) 9 * (C) Copyright 2007, ATRON electronic GmbH, 10 * Jan Nikitenko <jan.nikitenko@gmail.com> 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 #include <linux/sched.h> 28 #include <linux/delay.h> 29 #include <linux/bio.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/crc7.h> 32 #include <linux/crc-itu-t.h> 33 #include <linux/scatterlist.h> 34 35 #include <linux/mmc/host.h> 36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 37 38 #include <linux/spi/spi.h> 39 #include <linux/spi/mmc_spi.h> 40 41 #include <asm/unaligned.h> 42 43 44 /* NOTES: 45 * 46 * - For now, we won't try to interoperate with a real mmc/sd/sdio 47 * controller, although some of them do have hardware support for 48 * SPI protocol. The main reason for such configs would be mmc-ish 49 * cards like DataFlash, which don't support that "native" protocol. 50 * 51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 52 * switch between driver stacks, and in any case if "native" mode 53 * is available, it will be faster and hence preferable. 54 * 55 * - MMC depends on a different chipselect management policy than the 56 * SPI interface currently supports for shared bus segments: it needs 57 * to issue multiple spi_message requests with the chipselect active, 58 * using the results of one message to decide the next one to issue. 59 * 60 * Pending updates to the programming interface, this driver expects 61 * that it not share the bus with other drivers (precluding conflicts). 62 * 63 * - We tell the controller to keep the chipselect active from the 64 * beginning of an mmc_host_ops.request until the end. So beware 65 * of SPI controller drivers that mis-handle the cs_change flag! 66 * 67 * However, many cards seem OK with chipselect flapping up/down 68 * during that time ... at least on unshared bus segments. 69 */ 70 71 72 /* 73 * Local protocol constants, internal to data block protocols. 74 */ 75 76 /* Response tokens used to ack each block written: */ 77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 81 82 /* Read and write blocks start with these tokens and end with crc; 83 * on error, read tokens act like a subset of R2_SPI_* values. 84 */ 85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 88 89 #define MMC_SPI_BLOCKSIZE 512 90 91 92 /* These fixed timeouts come from the latest SD specs, which say to ignore 93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the 94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after 95 * reads which takes nowhere near that long. Older cards may be able to use 96 * shorter timeouts ... but why bother? 97 */ 98 #define r1b_timeout (HZ * 3) 99 100 101 /****************************************************************************/ 102 103 /* 104 * Local Data Structures 105 */ 106 107 /* "scratch" is per-{command,block} data exchanged with the card */ 108 struct scratch { 109 u8 status[29]; 110 u8 data_token; 111 __be16 crc_val; 112 }; 113 114 struct mmc_spi_host { 115 struct mmc_host *mmc; 116 struct spi_device *spi; 117 118 unsigned char power_mode; 119 u16 powerup_msecs; 120 121 struct mmc_spi_platform_data *pdata; 122 123 /* for bulk data transfers */ 124 struct spi_transfer token, t, crc, early_status; 125 struct spi_message m; 126 127 /* for status readback */ 128 struct spi_transfer status; 129 struct spi_message readback; 130 131 /* underlying DMA-aware controller, or null */ 132 struct device *dma_dev; 133 134 /* buffer used for commands and for message "overhead" */ 135 struct scratch *data; 136 dma_addr_t data_dma; 137 138 /* Specs say to write ones most of the time, even when the card 139 * has no need to read its input data; and many cards won't care. 140 * This is our source of those ones. 141 */ 142 void *ones; 143 dma_addr_t ones_dma; 144 }; 145 146 147 /****************************************************************************/ 148 149 /* 150 * MMC-over-SPI protocol glue, used by the MMC stack interface 151 */ 152 153 static inline int mmc_cs_off(struct mmc_spi_host *host) 154 { 155 /* chipselect will always be inactive after setup() */ 156 return spi_setup(host->spi); 157 } 158 159 static int 160 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 161 { 162 int status; 163 164 if (len > sizeof(*host->data)) { 165 WARN_ON(1); 166 return -EIO; 167 } 168 169 host->status.len = len; 170 171 if (host->dma_dev) 172 dma_sync_single_for_device(host->dma_dev, 173 host->data_dma, sizeof(*host->data), 174 DMA_FROM_DEVICE); 175 176 status = spi_sync(host->spi, &host->readback); 177 178 if (host->dma_dev) 179 dma_sync_single_for_cpu(host->dma_dev, 180 host->data_dma, sizeof(*host->data), 181 DMA_FROM_DEVICE); 182 183 return status; 184 } 185 186 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 187 unsigned n, u8 byte) 188 { 189 u8 *cp = host->data->status; 190 unsigned long start = jiffies; 191 192 while (1) { 193 int status; 194 unsigned i; 195 196 status = mmc_spi_readbytes(host, n); 197 if (status < 0) 198 return status; 199 200 for (i = 0; i < n; i++) { 201 if (cp[i] != byte) 202 return cp[i]; 203 } 204 205 if (time_is_before_jiffies(start + timeout)) 206 break; 207 208 /* If we need long timeouts, we may release the CPU. 209 * We use jiffies here because we want to have a relation 210 * between elapsed time and the blocking of the scheduler. 211 */ 212 if (time_is_before_jiffies(start+1)) 213 schedule(); 214 } 215 return -ETIMEDOUT; 216 } 217 218 static inline int 219 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 220 { 221 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 222 } 223 224 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 225 { 226 return mmc_spi_skip(host, timeout, 1, 0xff); 227 } 228 229 230 /* 231 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 232 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 233 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 234 * 235 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 236 * newer cards R7 (IF_COND). 237 */ 238 239 static char *maptype(struct mmc_command *cmd) 240 { 241 switch (mmc_spi_resp_type(cmd)) { 242 case MMC_RSP_SPI_R1: return "R1"; 243 case MMC_RSP_SPI_R1B: return "R1B"; 244 case MMC_RSP_SPI_R2: return "R2/R5"; 245 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 246 default: return "?"; 247 } 248 } 249 250 /* return zero, else negative errno after setting cmd->error */ 251 static int mmc_spi_response_get(struct mmc_spi_host *host, 252 struct mmc_command *cmd, int cs_on) 253 { 254 u8 *cp = host->data->status; 255 u8 *end = cp + host->t.len; 256 int value = 0; 257 int bitshift; 258 u8 leftover = 0; 259 unsigned short rotator; 260 int i; 261 char tag[32]; 262 263 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 264 cmd->opcode, maptype(cmd)); 265 266 /* Except for data block reads, the whole response will already 267 * be stored in the scratch buffer. It's somewhere after the 268 * command and the first byte we read after it. We ignore that 269 * first byte. After STOP_TRANSMISSION command it may include 270 * two data bits, but otherwise it's all ones. 271 */ 272 cp += 8; 273 while (cp < end && *cp == 0xff) 274 cp++; 275 276 /* Data block reads (R1 response types) may need more data... */ 277 if (cp == end) { 278 cp = host->data->status; 279 end = cp+1; 280 281 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 282 * status byte ... and we already scanned 2 bytes. 283 * 284 * REVISIT block read paths use nasty byte-at-a-time I/O 285 * so it can always DMA directly into the target buffer. 286 * It'd probably be better to memcpy() the first chunk and 287 * avoid extra i/o calls... 288 * 289 * Note we check for more than 8 bytes, because in practice, 290 * some SD cards are slow... 291 */ 292 for (i = 2; i < 16; i++) { 293 value = mmc_spi_readbytes(host, 1); 294 if (value < 0) 295 goto done; 296 if (*cp != 0xff) 297 goto checkstatus; 298 } 299 value = -ETIMEDOUT; 300 goto done; 301 } 302 303 checkstatus: 304 bitshift = 0; 305 if (*cp & 0x80) { 306 /* Houston, we have an ugly card with a bit-shifted response */ 307 rotator = *cp++ << 8; 308 /* read the next byte */ 309 if (cp == end) { 310 value = mmc_spi_readbytes(host, 1); 311 if (value < 0) 312 goto done; 313 cp = host->data->status; 314 end = cp+1; 315 } 316 rotator |= *cp++; 317 while (rotator & 0x8000) { 318 bitshift++; 319 rotator <<= 1; 320 } 321 cmd->resp[0] = rotator >> 8; 322 leftover = rotator; 323 } else { 324 cmd->resp[0] = *cp++; 325 } 326 cmd->error = 0; 327 328 /* Status byte: the entire seven-bit R1 response. */ 329 if (cmd->resp[0] != 0) { 330 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS 331 | R1_SPI_ILLEGAL_COMMAND) 332 & cmd->resp[0]) 333 value = -EINVAL; 334 else if (R1_SPI_COM_CRC & cmd->resp[0]) 335 value = -EILSEQ; 336 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 337 & cmd->resp[0]) 338 value = -EIO; 339 /* else R1_SPI_IDLE, "it's resetting" */ 340 } 341 342 switch (mmc_spi_resp_type(cmd)) { 343 344 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 345 * and less-common stuff like various erase operations. 346 */ 347 case MMC_RSP_SPI_R1B: 348 /* maybe we read all the busy tokens already */ 349 while (cp < end && *cp == 0) 350 cp++; 351 if (cp == end) 352 mmc_spi_wait_unbusy(host, r1b_timeout); 353 break; 354 355 /* SPI R2 == R1 + second status byte; SEND_STATUS 356 * SPI R5 == R1 + data byte; IO_RW_DIRECT 357 */ 358 case MMC_RSP_SPI_R2: 359 /* read the next byte */ 360 if (cp == end) { 361 value = mmc_spi_readbytes(host, 1); 362 if (value < 0) 363 goto done; 364 cp = host->data->status; 365 end = cp+1; 366 } 367 if (bitshift) { 368 rotator = leftover << 8; 369 rotator |= *cp << bitshift; 370 cmd->resp[0] |= (rotator & 0xFF00); 371 } else { 372 cmd->resp[0] |= *cp << 8; 373 } 374 break; 375 376 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 377 case MMC_RSP_SPI_R3: 378 rotator = leftover << 8; 379 cmd->resp[1] = 0; 380 for (i = 0; i < 4; i++) { 381 cmd->resp[1] <<= 8; 382 /* read the next byte */ 383 if (cp == end) { 384 value = mmc_spi_readbytes(host, 1); 385 if (value < 0) 386 goto done; 387 cp = host->data->status; 388 end = cp+1; 389 } 390 if (bitshift) { 391 rotator |= *cp++ << bitshift; 392 cmd->resp[1] |= (rotator >> 8); 393 rotator <<= 8; 394 } else { 395 cmd->resp[1] |= *cp++; 396 } 397 } 398 break; 399 400 /* SPI R1 == just one status byte */ 401 case MMC_RSP_SPI_R1: 402 break; 403 404 default: 405 dev_dbg(&host->spi->dev, "bad response type %04x\n", 406 mmc_spi_resp_type(cmd)); 407 if (value >= 0) 408 value = -EINVAL; 409 goto done; 410 } 411 412 if (value < 0) 413 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 414 tag, cmd->resp[0], cmd->resp[1]); 415 416 /* disable chipselect on errors and some success cases */ 417 if (value >= 0 && cs_on) 418 return value; 419 done: 420 if (value < 0) 421 cmd->error = value; 422 mmc_cs_off(host); 423 return value; 424 } 425 426 /* Issue command and read its response. 427 * Returns zero on success, negative for error. 428 * 429 * On error, caller must cope with mmc core retry mechanism. That 430 * means immediate low-level resubmit, which affects the bus lock... 431 */ 432 static int 433 mmc_spi_command_send(struct mmc_spi_host *host, 434 struct mmc_request *mrq, 435 struct mmc_command *cmd, int cs_on) 436 { 437 struct scratch *data = host->data; 438 u8 *cp = data->status; 439 u32 arg = cmd->arg; 440 int status; 441 struct spi_transfer *t; 442 443 /* We can handle most commands (except block reads) in one full 444 * duplex I/O operation before either starting the next transfer 445 * (data block or command) or else deselecting the card. 446 * 447 * First, write 7 bytes: 448 * - an all-ones byte to ensure the card is ready 449 * - opcode byte (plus start and transmission bits) 450 * - four bytes of big-endian argument 451 * - crc7 (plus end bit) ... always computed, it's cheap 452 * 453 * We init the whole buffer to all-ones, which is what we need 454 * to write while we're reading (later) response data. 455 */ 456 memset(cp++, 0xff, sizeof(data->status)); 457 458 *cp++ = 0x40 | cmd->opcode; 459 *cp++ = (u8)(arg >> 24); 460 *cp++ = (u8)(arg >> 16); 461 *cp++ = (u8)(arg >> 8); 462 *cp++ = (u8)arg; 463 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; 464 465 /* Then, read up to 13 bytes (while writing all-ones): 466 * - N(CR) (== 1..8) bytes of all-ones 467 * - status byte (for all response types) 468 * - the rest of the response, either: 469 * + nothing, for R1 or R1B responses 470 * + second status byte, for R2 responses 471 * + four data bytes, for R3 and R7 responses 472 * 473 * Finally, read some more bytes ... in the nice cases we know in 474 * advance how many, and reading 1 more is always OK: 475 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 476 * - N(RC) (== 1..N) bytes of all-ones, before next command 477 * - N(WR) (== 1..N) bytes of all-ones, before data write 478 * 479 * So in those cases one full duplex I/O of at most 21 bytes will 480 * handle the whole command, leaving the card ready to receive a 481 * data block or new command. We do that whenever we can, shaving 482 * CPU and IRQ costs (especially when using DMA or FIFOs). 483 * 484 * There are two other cases, where it's not generally practical 485 * to rely on a single I/O: 486 * 487 * - R1B responses need at least N(EC) bytes of all-zeroes. 488 * 489 * In this case we can *try* to fit it into one I/O, then 490 * maybe read more data later. 491 * 492 * - Data block reads are more troublesome, since a variable 493 * number of padding bytes precede the token and data. 494 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 495 * + N(AC) (== 1..many) bytes of all-ones 496 * 497 * In this case we currently only have minimal speedups here: 498 * when N(CR) == 1 we can avoid I/O in response_get(). 499 */ 500 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 501 cp += 2; /* min(N(CR)) + status */ 502 /* R1 */ 503 } else { 504 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 505 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 506 cp++; 507 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 508 cp += 4; 509 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 510 cp = data->status + sizeof(data->status); 511 /* else: R1 (most commands) */ 512 } 513 514 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 515 cmd->opcode, maptype(cmd)); 516 517 /* send command, leaving chipselect active */ 518 spi_message_init(&host->m); 519 520 t = &host->t; 521 memset(t, 0, sizeof(*t)); 522 t->tx_buf = t->rx_buf = data->status; 523 t->tx_dma = t->rx_dma = host->data_dma; 524 t->len = cp - data->status; 525 t->cs_change = 1; 526 spi_message_add_tail(t, &host->m); 527 528 if (host->dma_dev) { 529 host->m.is_dma_mapped = 1; 530 dma_sync_single_for_device(host->dma_dev, 531 host->data_dma, sizeof(*host->data), 532 DMA_BIDIRECTIONAL); 533 } 534 status = spi_sync(host->spi, &host->m); 535 536 if (host->dma_dev) 537 dma_sync_single_for_cpu(host->dma_dev, 538 host->data_dma, sizeof(*host->data), 539 DMA_BIDIRECTIONAL); 540 if (status < 0) { 541 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 542 cmd->error = status; 543 return status; 544 } 545 546 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 547 return mmc_spi_response_get(host, cmd, cs_on); 548 } 549 550 /* Build data message with up to four separate transfers. For TX, we 551 * start by writing the data token. And in most cases, we finish with 552 * a status transfer. 553 * 554 * We always provide TX data for data and CRC. The MMC/SD protocol 555 * requires us to write ones; but Linux defaults to writing zeroes; 556 * so we explicitly initialize it to all ones on RX paths. 557 * 558 * We also handle DMA mapping, so the underlying SPI controller does 559 * not need to (re)do it for each message. 560 */ 561 static void 562 mmc_spi_setup_data_message( 563 struct mmc_spi_host *host, 564 int multiple, 565 enum dma_data_direction direction) 566 { 567 struct spi_transfer *t; 568 struct scratch *scratch = host->data; 569 dma_addr_t dma = host->data_dma; 570 571 spi_message_init(&host->m); 572 if (dma) 573 host->m.is_dma_mapped = 1; 574 575 /* for reads, readblock() skips 0xff bytes before finding 576 * the token; for writes, this transfer issues that token. 577 */ 578 if (direction == DMA_TO_DEVICE) { 579 t = &host->token; 580 memset(t, 0, sizeof(*t)); 581 t->len = 1; 582 if (multiple) 583 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 584 else 585 scratch->data_token = SPI_TOKEN_SINGLE; 586 t->tx_buf = &scratch->data_token; 587 if (dma) 588 t->tx_dma = dma + offsetof(struct scratch, data_token); 589 spi_message_add_tail(t, &host->m); 590 } 591 592 /* Body of transfer is buffer, then CRC ... 593 * either TX-only, or RX with TX-ones. 594 */ 595 t = &host->t; 596 memset(t, 0, sizeof(*t)); 597 t->tx_buf = host->ones; 598 t->tx_dma = host->ones_dma; 599 /* length and actual buffer info are written later */ 600 spi_message_add_tail(t, &host->m); 601 602 t = &host->crc; 603 memset(t, 0, sizeof(*t)); 604 t->len = 2; 605 if (direction == DMA_TO_DEVICE) { 606 /* the actual CRC may get written later */ 607 t->tx_buf = &scratch->crc_val; 608 if (dma) 609 t->tx_dma = dma + offsetof(struct scratch, crc_val); 610 } else { 611 t->tx_buf = host->ones; 612 t->tx_dma = host->ones_dma; 613 t->rx_buf = &scratch->crc_val; 614 if (dma) 615 t->rx_dma = dma + offsetof(struct scratch, crc_val); 616 } 617 spi_message_add_tail(t, &host->m); 618 619 /* 620 * A single block read is followed by N(EC) [0+] all-ones bytes 621 * before deselect ... don't bother. 622 * 623 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 624 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 625 * collect that single byte, so readblock() doesn't need to. 626 * 627 * For a write, the one-byte data response follows immediately, then 628 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 629 * Then single block reads may deselect, and multiblock ones issue 630 * the next token (next data block, or STOP_TRAN). We can try to 631 * minimize I/O ops by using a single read to collect end-of-busy. 632 */ 633 if (multiple || direction == DMA_TO_DEVICE) { 634 t = &host->early_status; 635 memset(t, 0, sizeof(*t)); 636 t->len = (direction == DMA_TO_DEVICE) 637 ? sizeof(scratch->status) 638 : 1; 639 t->tx_buf = host->ones; 640 t->tx_dma = host->ones_dma; 641 t->rx_buf = scratch->status; 642 if (dma) 643 t->rx_dma = dma + offsetof(struct scratch, status); 644 t->cs_change = 1; 645 spi_message_add_tail(t, &host->m); 646 } 647 } 648 649 /* 650 * Write one block: 651 * - caller handled preceding N(WR) [1+] all-ones bytes 652 * - data block 653 * + token 654 * + data bytes 655 * + crc16 656 * - an all-ones byte ... card writes a data-response byte 657 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 658 * 659 * Return negative errno, else success. 660 */ 661 static int 662 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 663 unsigned long timeout) 664 { 665 struct spi_device *spi = host->spi; 666 int status, i; 667 struct scratch *scratch = host->data; 668 u32 pattern; 669 670 if (host->mmc->use_spi_crc) 671 scratch->crc_val = cpu_to_be16( 672 crc_itu_t(0, t->tx_buf, t->len)); 673 if (host->dma_dev) 674 dma_sync_single_for_device(host->dma_dev, 675 host->data_dma, sizeof(*scratch), 676 DMA_BIDIRECTIONAL); 677 678 status = spi_sync(spi, &host->m); 679 680 if (status != 0) { 681 dev_dbg(&spi->dev, "write error (%d)\n", status); 682 return status; 683 } 684 685 if (host->dma_dev) 686 dma_sync_single_for_cpu(host->dma_dev, 687 host->data_dma, sizeof(*scratch), 688 DMA_BIDIRECTIONAL); 689 690 /* 691 * Get the transmission data-response reply. It must follow 692 * immediately after the data block we transferred. This reply 693 * doesn't necessarily tell whether the write operation succeeded; 694 * it just says if the transmission was ok and whether *earlier* 695 * writes succeeded; see the standard. 696 * 697 * In practice, there are (even modern SDHC-)cards which are late 698 * in sending the response, and miss the time frame by a few bits, 699 * so we have to cope with this situation and check the response 700 * bit-by-bit. Arggh!!! 701 */ 702 pattern = scratch->status[0] << 24; 703 pattern |= scratch->status[1] << 16; 704 pattern |= scratch->status[2] << 8; 705 pattern |= scratch->status[3]; 706 707 /* First 3 bit of pattern are undefined */ 708 pattern |= 0xE0000000; 709 710 /* left-adjust to leading 0 bit */ 711 while (pattern & 0x80000000) 712 pattern <<= 1; 713 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 714 pattern >>= 27; 715 716 switch (pattern) { 717 case SPI_RESPONSE_ACCEPTED: 718 status = 0; 719 break; 720 case SPI_RESPONSE_CRC_ERR: 721 /* host shall then issue MMC_STOP_TRANSMISSION */ 722 status = -EILSEQ; 723 break; 724 case SPI_RESPONSE_WRITE_ERR: 725 /* host shall then issue MMC_STOP_TRANSMISSION, 726 * and should MMC_SEND_STATUS to sort it out 727 */ 728 status = -EIO; 729 break; 730 default: 731 status = -EPROTO; 732 break; 733 } 734 if (status != 0) { 735 dev_dbg(&spi->dev, "write error %02x (%d)\n", 736 scratch->status[0], status); 737 return status; 738 } 739 740 t->tx_buf += t->len; 741 if (host->dma_dev) 742 t->tx_dma += t->len; 743 744 /* Return when not busy. If we didn't collect that status yet, 745 * we'll need some more I/O. 746 */ 747 for (i = 4; i < sizeof(scratch->status); i++) { 748 /* card is non-busy if the most recent bit is 1 */ 749 if (scratch->status[i] & 0x01) 750 return 0; 751 } 752 return mmc_spi_wait_unbusy(host, timeout); 753 } 754 755 /* 756 * Read one block: 757 * - skip leading all-ones bytes ... either 758 * + N(AC) [1..f(clock,CSD)] usually, else 759 * + N(CX) [0..8] when reading CSD or CID 760 * - data block 761 * + token ... if error token, no data or crc 762 * + data bytes 763 * + crc16 764 * 765 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 766 * before dropping chipselect. 767 * 768 * For multiblock reads, caller either reads the next block or issues a 769 * STOP_TRANSMISSION command. 770 */ 771 static int 772 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 773 unsigned long timeout) 774 { 775 struct spi_device *spi = host->spi; 776 int status; 777 struct scratch *scratch = host->data; 778 unsigned int bitshift; 779 u8 leftover; 780 781 /* At least one SD card sends an all-zeroes byte when N(CX) 782 * applies, before the all-ones bytes ... just cope with that. 783 */ 784 status = mmc_spi_readbytes(host, 1); 785 if (status < 0) 786 return status; 787 status = scratch->status[0]; 788 if (status == 0xff || status == 0) 789 status = mmc_spi_readtoken(host, timeout); 790 791 if (status < 0) { 792 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 793 return status; 794 } 795 796 /* The token may be bit-shifted... 797 * the first 0-bit precedes the data stream. 798 */ 799 bitshift = 7; 800 while (status & 0x80) { 801 status <<= 1; 802 bitshift--; 803 } 804 leftover = status << 1; 805 806 if (host->dma_dev) { 807 dma_sync_single_for_device(host->dma_dev, 808 host->data_dma, sizeof(*scratch), 809 DMA_BIDIRECTIONAL); 810 dma_sync_single_for_device(host->dma_dev, 811 t->rx_dma, t->len, 812 DMA_FROM_DEVICE); 813 } 814 815 status = spi_sync(spi, &host->m); 816 817 if (host->dma_dev) { 818 dma_sync_single_for_cpu(host->dma_dev, 819 host->data_dma, sizeof(*scratch), 820 DMA_BIDIRECTIONAL); 821 dma_sync_single_for_cpu(host->dma_dev, 822 t->rx_dma, t->len, 823 DMA_FROM_DEVICE); 824 } 825 826 if (bitshift) { 827 /* Walk through the data and the crc and do 828 * all the magic to get byte-aligned data. 829 */ 830 u8 *cp = t->rx_buf; 831 unsigned int len; 832 unsigned int bitright = 8 - bitshift; 833 u8 temp; 834 for (len = t->len; len; len--) { 835 temp = *cp; 836 *cp++ = leftover | (temp >> bitshift); 837 leftover = temp << bitright; 838 } 839 cp = (u8 *) &scratch->crc_val; 840 temp = *cp; 841 *cp++ = leftover | (temp >> bitshift); 842 leftover = temp << bitright; 843 temp = *cp; 844 *cp = leftover | (temp >> bitshift); 845 } 846 847 if (host->mmc->use_spi_crc) { 848 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 849 850 be16_to_cpus(&scratch->crc_val); 851 if (scratch->crc_val != crc) { 852 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " 853 "computed=0x%04x len=%d\n", 854 scratch->crc_val, crc, t->len); 855 return -EILSEQ; 856 } 857 } 858 859 t->rx_buf += t->len; 860 if (host->dma_dev) 861 t->rx_dma += t->len; 862 863 return 0; 864 } 865 866 /* 867 * An MMC/SD data stage includes one or more blocks, optional CRCs, 868 * and inline handshaking. That handhaking makes it unlike most 869 * other SPI protocol stacks. 870 */ 871 static void 872 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 873 struct mmc_data *data, u32 blk_size) 874 { 875 struct spi_device *spi = host->spi; 876 struct device *dma_dev = host->dma_dev; 877 struct spi_transfer *t; 878 enum dma_data_direction direction; 879 struct scatterlist *sg; 880 unsigned n_sg; 881 int multiple = (data->blocks > 1); 882 u32 clock_rate; 883 unsigned long timeout; 884 885 if (data->flags & MMC_DATA_READ) 886 direction = DMA_FROM_DEVICE; 887 else 888 direction = DMA_TO_DEVICE; 889 mmc_spi_setup_data_message(host, multiple, direction); 890 t = &host->t; 891 892 if (t->speed_hz) 893 clock_rate = t->speed_hz; 894 else 895 clock_rate = spi->max_speed_hz; 896 897 timeout = data->timeout_ns + 898 data->timeout_clks * 1000000 / clock_rate; 899 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1; 900 901 /* Handle scatterlist segments one at a time, with synch for 902 * each 512-byte block 903 */ 904 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { 905 int status = 0; 906 dma_addr_t dma_addr = 0; 907 void *kmap_addr; 908 unsigned length = sg->length; 909 enum dma_data_direction dir = direction; 910 911 /* set up dma mapping for controller drivers that might 912 * use DMA ... though they may fall back to PIO 913 */ 914 if (dma_dev) { 915 /* never invalidate whole *shared* pages ... */ 916 if ((sg->offset != 0 || length != PAGE_SIZE) 917 && dir == DMA_FROM_DEVICE) 918 dir = DMA_BIDIRECTIONAL; 919 920 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, 921 PAGE_SIZE, dir); 922 if (direction == DMA_TO_DEVICE) 923 t->tx_dma = dma_addr + sg->offset; 924 else 925 t->rx_dma = dma_addr + sg->offset; 926 } 927 928 /* allow pio too; we don't allow highmem */ 929 kmap_addr = kmap(sg_page(sg)); 930 if (direction == DMA_TO_DEVICE) 931 t->tx_buf = kmap_addr + sg->offset; 932 else 933 t->rx_buf = kmap_addr + sg->offset; 934 935 /* transfer each block, and update request status */ 936 while (length) { 937 t->len = min(length, blk_size); 938 939 dev_dbg(&host->spi->dev, 940 " mmc_spi: %s block, %d bytes\n", 941 (direction == DMA_TO_DEVICE) 942 ? "write" 943 : "read", 944 t->len); 945 946 if (direction == DMA_TO_DEVICE) 947 status = mmc_spi_writeblock(host, t, timeout); 948 else 949 status = mmc_spi_readblock(host, t, timeout); 950 if (status < 0) 951 break; 952 953 data->bytes_xfered += t->len; 954 length -= t->len; 955 956 if (!multiple) 957 break; 958 } 959 960 /* discard mappings */ 961 if (direction == DMA_FROM_DEVICE) 962 flush_kernel_dcache_page(sg_page(sg)); 963 kunmap(sg_page(sg)); 964 if (dma_dev) 965 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 966 967 if (status < 0) { 968 data->error = status; 969 dev_dbg(&spi->dev, "%s status %d\n", 970 (direction == DMA_TO_DEVICE) 971 ? "write" : "read", 972 status); 973 break; 974 } 975 } 976 977 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 978 * can be issued before multiblock writes. Unlike its more widely 979 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 980 * that can affect the STOP_TRAN logic. Complete (and current) 981 * MMC specs should sort that out before Linux starts using CMD23. 982 */ 983 if (direction == DMA_TO_DEVICE && multiple) { 984 struct scratch *scratch = host->data; 985 int tmp; 986 const unsigned statlen = sizeof(scratch->status); 987 988 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 989 990 /* Tweak the per-block message we set up earlier by morphing 991 * it to hold single buffer with the token followed by some 992 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 993 * "not busy any longer" status, and leave chip selected. 994 */ 995 INIT_LIST_HEAD(&host->m.transfers); 996 list_add(&host->early_status.transfer_list, 997 &host->m.transfers); 998 999 memset(scratch->status, 0xff, statlen); 1000 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 1001 1002 host->early_status.tx_buf = host->early_status.rx_buf; 1003 host->early_status.tx_dma = host->early_status.rx_dma; 1004 host->early_status.len = statlen; 1005 1006 if (host->dma_dev) 1007 dma_sync_single_for_device(host->dma_dev, 1008 host->data_dma, sizeof(*scratch), 1009 DMA_BIDIRECTIONAL); 1010 1011 tmp = spi_sync(spi, &host->m); 1012 1013 if (host->dma_dev) 1014 dma_sync_single_for_cpu(host->dma_dev, 1015 host->data_dma, sizeof(*scratch), 1016 DMA_BIDIRECTIONAL); 1017 1018 if (tmp < 0) { 1019 if (!data->error) 1020 data->error = tmp; 1021 return; 1022 } 1023 1024 /* Ideally we collected "not busy" status with one I/O, 1025 * avoiding wasteful byte-at-a-time scanning... but more 1026 * I/O is often needed. 1027 */ 1028 for (tmp = 2; tmp < statlen; tmp++) { 1029 if (scratch->status[tmp] != 0) 1030 return; 1031 } 1032 tmp = mmc_spi_wait_unbusy(host, timeout); 1033 if (tmp < 0 && !data->error) 1034 data->error = tmp; 1035 } 1036 } 1037 1038 /****************************************************************************/ 1039 1040 /* 1041 * MMC driver implementation -- the interface to the MMC stack 1042 */ 1043 1044 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 1045 { 1046 struct mmc_spi_host *host = mmc_priv(mmc); 1047 int status = -EINVAL; 1048 1049 #ifdef DEBUG 1050 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 1051 { 1052 struct mmc_command *cmd; 1053 int invalid = 0; 1054 1055 cmd = mrq->cmd; 1056 if (!mmc_spi_resp_type(cmd)) { 1057 dev_dbg(&host->spi->dev, "bogus command\n"); 1058 cmd->error = -EINVAL; 1059 invalid = 1; 1060 } 1061 1062 cmd = mrq->stop; 1063 if (cmd && !mmc_spi_resp_type(cmd)) { 1064 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 1065 cmd->error = -EINVAL; 1066 invalid = 1; 1067 } 1068 1069 if (invalid) { 1070 dump_stack(); 1071 mmc_request_done(host->mmc, mrq); 1072 return; 1073 } 1074 } 1075 #endif 1076 1077 /* issue command; then optionally data and stop */ 1078 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 1079 if (status == 0 && mrq->data) { 1080 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 1081 if (mrq->stop) 1082 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 1083 else 1084 mmc_cs_off(host); 1085 } 1086 1087 mmc_request_done(host->mmc, mrq); 1088 } 1089 1090 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 1091 * 1092 * NOTE that here we can't know that the card has just been powered up; 1093 * not all MMC/SD sockets support power switching. 1094 * 1095 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 1096 * this doesn't seem to do the right thing at all... 1097 */ 1098 static void mmc_spi_initsequence(struct mmc_spi_host *host) 1099 { 1100 /* Try to be very sure any previous command has completed; 1101 * wait till not-busy, skip debris from any old commands. 1102 */ 1103 mmc_spi_wait_unbusy(host, r1b_timeout); 1104 mmc_spi_readbytes(host, 10); 1105 1106 /* 1107 * Do a burst with chipselect active-high. We need to do this to 1108 * meet the requirement of 74 clock cycles with both chipselect 1109 * and CMD (MOSI) high before CMD0 ... after the card has been 1110 * powered up to Vdd(min), and so is ready to take commands. 1111 * 1112 * Some cards are particularly needy of this (e.g. Viking "SD256") 1113 * while most others don't seem to care. 1114 * 1115 * Note that this is one of the places MMC/SD plays games with the 1116 * SPI protocol. Another is that when chipselect is released while 1117 * the card returns BUSY status, the clock must issue several cycles 1118 * with chipselect high before the card will stop driving its output. 1119 */ 1120 host->spi->mode |= SPI_CS_HIGH; 1121 if (spi_setup(host->spi) != 0) { 1122 /* Just warn; most cards work without it. */ 1123 dev_warn(&host->spi->dev, 1124 "can't change chip-select polarity\n"); 1125 host->spi->mode &= ~SPI_CS_HIGH; 1126 } else { 1127 mmc_spi_readbytes(host, 18); 1128 1129 host->spi->mode &= ~SPI_CS_HIGH; 1130 if (spi_setup(host->spi) != 0) { 1131 /* Wot, we can't get the same setup we had before? */ 1132 dev_err(&host->spi->dev, 1133 "can't restore chip-select polarity\n"); 1134 } 1135 } 1136 } 1137 1138 static char *mmc_powerstring(u8 power_mode) 1139 { 1140 switch (power_mode) { 1141 case MMC_POWER_OFF: return "off"; 1142 case MMC_POWER_UP: return "up"; 1143 case MMC_POWER_ON: return "on"; 1144 } 1145 return "?"; 1146 } 1147 1148 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1149 { 1150 struct mmc_spi_host *host = mmc_priv(mmc); 1151 1152 if (host->power_mode != ios->power_mode) { 1153 int canpower; 1154 1155 canpower = host->pdata && host->pdata->setpower; 1156 1157 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1158 mmc_powerstring(ios->power_mode), 1159 ios->vdd, 1160 canpower ? ", can switch" : ""); 1161 1162 /* switch power on/off if possible, accounting for 1163 * max 250msec powerup time if needed. 1164 */ 1165 if (canpower) { 1166 switch (ios->power_mode) { 1167 case MMC_POWER_OFF: 1168 case MMC_POWER_UP: 1169 host->pdata->setpower(&host->spi->dev, 1170 ios->vdd); 1171 if (ios->power_mode == MMC_POWER_UP) 1172 msleep(host->powerup_msecs); 1173 } 1174 } 1175 1176 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1177 if (ios->power_mode == MMC_POWER_ON) 1178 mmc_spi_initsequence(host); 1179 1180 /* If powering down, ground all card inputs to avoid power 1181 * delivery from data lines! On a shared SPI bus, this 1182 * will probably be temporary; 6.4.2 of the simplified SD 1183 * spec says this must last at least 1msec. 1184 * 1185 * - Clock low means CPOL 0, e.g. mode 0 1186 * - MOSI low comes from writing zero 1187 * - Chipselect is usually active low... 1188 */ 1189 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1190 int mres; 1191 u8 nullbyte = 0; 1192 1193 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1194 mres = spi_setup(host->spi); 1195 if (mres < 0) 1196 dev_dbg(&host->spi->dev, 1197 "switch to SPI mode 0 failed\n"); 1198 1199 if (spi_write(host->spi, &nullbyte, 1) < 0) 1200 dev_dbg(&host->spi->dev, 1201 "put spi signals to low failed\n"); 1202 1203 /* 1204 * Now clock should be low due to spi mode 0; 1205 * MOSI should be low because of written 0x00; 1206 * chipselect should be low (it is active low) 1207 * power supply is off, so now MMC is off too! 1208 * 1209 * FIXME no, chipselect can be high since the 1210 * device is inactive and SPI_CS_HIGH is clear... 1211 */ 1212 msleep(10); 1213 if (mres == 0) { 1214 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1215 mres = spi_setup(host->spi); 1216 if (mres < 0) 1217 dev_dbg(&host->spi->dev, 1218 "switch back to SPI mode 3" 1219 " failed\n"); 1220 } 1221 } 1222 1223 host->power_mode = ios->power_mode; 1224 } 1225 1226 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1227 int status; 1228 1229 host->spi->max_speed_hz = ios->clock; 1230 status = spi_setup(host->spi); 1231 dev_dbg(&host->spi->dev, 1232 "mmc_spi: clock to %d Hz, %d\n", 1233 host->spi->max_speed_hz, status); 1234 } 1235 } 1236 1237 static int mmc_spi_get_ro(struct mmc_host *mmc) 1238 { 1239 struct mmc_spi_host *host = mmc_priv(mmc); 1240 1241 if (host->pdata && host->pdata->get_ro) 1242 return !!host->pdata->get_ro(mmc->parent); 1243 /* 1244 * Board doesn't support read only detection; let the mmc core 1245 * decide what to do. 1246 */ 1247 return -ENOSYS; 1248 } 1249 1250 static int mmc_spi_get_cd(struct mmc_host *mmc) 1251 { 1252 struct mmc_spi_host *host = mmc_priv(mmc); 1253 1254 if (host->pdata && host->pdata->get_cd) 1255 return !!host->pdata->get_cd(mmc->parent); 1256 return -ENOSYS; 1257 } 1258 1259 static const struct mmc_host_ops mmc_spi_ops = { 1260 .request = mmc_spi_request, 1261 .set_ios = mmc_spi_set_ios, 1262 .get_ro = mmc_spi_get_ro, 1263 .get_cd = mmc_spi_get_cd, 1264 }; 1265 1266 1267 /****************************************************************************/ 1268 1269 /* 1270 * SPI driver implementation 1271 */ 1272 1273 static irqreturn_t 1274 mmc_spi_detect_irq(int irq, void *mmc) 1275 { 1276 struct mmc_spi_host *host = mmc_priv(mmc); 1277 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1278 1279 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1280 return IRQ_HANDLED; 1281 } 1282 1283 struct count_children { 1284 unsigned n; 1285 struct bus_type *bus; 1286 }; 1287 1288 static int maybe_count_child(struct device *dev, void *c) 1289 { 1290 struct count_children *ccp = c; 1291 1292 if (dev->bus == ccp->bus) { 1293 if (ccp->n) 1294 return -EBUSY; 1295 ccp->n++; 1296 } 1297 return 0; 1298 } 1299 1300 static int mmc_spi_probe(struct spi_device *spi) 1301 { 1302 void *ones; 1303 struct mmc_host *mmc; 1304 struct mmc_spi_host *host; 1305 int status; 1306 1307 /* MMC and SD specs only seem to care that sampling is on the 1308 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1309 * should be legit. We'll use mode 0 since the steady state is 0, 1310 * which is appropriate for hotplugging, unless the platform data 1311 * specify mode 3 (if hardware is not compatible to mode 0). 1312 */ 1313 if (spi->mode != SPI_MODE_3) 1314 spi->mode = SPI_MODE_0; 1315 spi->bits_per_word = 8; 1316 1317 status = spi_setup(spi); 1318 if (status < 0) { 1319 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1320 spi->mode, spi->max_speed_hz / 1000, 1321 status); 1322 return status; 1323 } 1324 1325 /* We can use the bus safely iff nobody else will interfere with us. 1326 * Most commands consist of one SPI message to issue a command, then 1327 * several more to collect its response, then possibly more for data 1328 * transfer. Clocking access to other devices during that period will 1329 * corrupt the command execution. 1330 * 1331 * Until we have software primitives which guarantee non-interference, 1332 * we'll aim for a hardware-level guarantee. 1333 * 1334 * REVISIT we can't guarantee another device won't be added later... 1335 */ 1336 if (spi->master->num_chipselect > 1) { 1337 struct count_children cc; 1338 1339 cc.n = 0; 1340 cc.bus = spi->dev.bus; 1341 status = device_for_each_child(spi->dev.parent, &cc, 1342 maybe_count_child); 1343 if (status < 0) { 1344 dev_err(&spi->dev, "can't share SPI bus\n"); 1345 return status; 1346 } 1347 1348 dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n"); 1349 } 1350 1351 /* We need a supply of ones to transmit. This is the only time 1352 * the CPU touches these, so cache coherency isn't a concern. 1353 * 1354 * NOTE if many systems use more than one MMC-over-SPI connector 1355 * it'd save some memory to share this. That's evidently rare. 1356 */ 1357 status = -ENOMEM; 1358 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1359 if (!ones) 1360 goto nomem; 1361 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1362 1363 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1364 if (!mmc) 1365 goto nomem; 1366 1367 mmc->ops = &mmc_spi_ops; 1368 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1369 1370 mmc->caps = MMC_CAP_SPI; 1371 1372 /* SPI doesn't need the lowspeed device identification thing for 1373 * MMC or SD cards, since it never comes up in open drain mode. 1374 * That's good; some SPI masters can't handle very low speeds! 1375 * 1376 * However, low speed SDIO cards need not handle over 400 KHz; 1377 * that's the only reason not to use a few MHz for f_min (until 1378 * the upper layer reads the target frequency from the CSD). 1379 */ 1380 mmc->f_min = 400000; 1381 mmc->f_max = spi->max_speed_hz; 1382 1383 host = mmc_priv(mmc); 1384 host->mmc = mmc; 1385 host->spi = spi; 1386 1387 host->ones = ones; 1388 1389 /* Platform data is used to hook up things like card sensing 1390 * and power switching gpios. 1391 */ 1392 host->pdata = mmc_spi_get_pdata(spi); 1393 if (host->pdata) 1394 mmc->ocr_avail = host->pdata->ocr_mask; 1395 if (!mmc->ocr_avail) { 1396 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1397 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1398 } 1399 if (host->pdata && host->pdata->setpower) { 1400 host->powerup_msecs = host->pdata->powerup_msecs; 1401 if (!host->powerup_msecs || host->powerup_msecs > 250) 1402 host->powerup_msecs = 250; 1403 } 1404 1405 dev_set_drvdata(&spi->dev, mmc); 1406 1407 /* preallocate dma buffers */ 1408 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1409 if (!host->data) 1410 goto fail_nobuf1; 1411 1412 if (spi->master->dev.parent->dma_mask) { 1413 struct device *dev = spi->master->dev.parent; 1414 1415 host->dma_dev = dev; 1416 host->ones_dma = dma_map_single(dev, ones, 1417 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1418 host->data_dma = dma_map_single(dev, host->data, 1419 sizeof(*host->data), DMA_BIDIRECTIONAL); 1420 1421 /* REVISIT in theory those map operations can fail... */ 1422 1423 dma_sync_single_for_cpu(host->dma_dev, 1424 host->data_dma, sizeof(*host->data), 1425 DMA_BIDIRECTIONAL); 1426 } 1427 1428 /* setup message for status/busy readback */ 1429 spi_message_init(&host->readback); 1430 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1431 1432 spi_message_add_tail(&host->status, &host->readback); 1433 host->status.tx_buf = host->ones; 1434 host->status.tx_dma = host->ones_dma; 1435 host->status.rx_buf = &host->data->status; 1436 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1437 host->status.cs_change = 1; 1438 1439 /* register card detect irq */ 1440 if (host->pdata && host->pdata->init) { 1441 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1442 if (status != 0) 1443 goto fail_glue_init; 1444 } 1445 1446 /* pass platform capabilities, if any */ 1447 if (host->pdata) 1448 mmc->caps |= host->pdata->caps; 1449 1450 status = mmc_add_host(mmc); 1451 if (status != 0) 1452 goto fail_add_host; 1453 1454 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n", 1455 dev_name(&mmc->class_dev), 1456 host->dma_dev ? "" : ", no DMA", 1457 (host->pdata && host->pdata->get_ro) 1458 ? "" : ", no WP", 1459 (host->pdata && host->pdata->setpower) 1460 ? "" : ", no poweroff", 1461 (mmc->caps & MMC_CAP_NEEDS_POLL) 1462 ? ", cd polling" : ""); 1463 return 0; 1464 1465 fail_add_host: 1466 mmc_remove_host (mmc); 1467 fail_glue_init: 1468 if (host->dma_dev) 1469 dma_unmap_single(host->dma_dev, host->data_dma, 1470 sizeof(*host->data), DMA_BIDIRECTIONAL); 1471 kfree(host->data); 1472 1473 fail_nobuf1: 1474 mmc_free_host(mmc); 1475 mmc_spi_put_pdata(spi); 1476 dev_set_drvdata(&spi->dev, NULL); 1477 1478 nomem: 1479 kfree(ones); 1480 return status; 1481 } 1482 1483 1484 static int __devexit mmc_spi_remove(struct spi_device *spi) 1485 { 1486 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1487 struct mmc_spi_host *host; 1488 1489 if (mmc) { 1490 host = mmc_priv(mmc); 1491 1492 /* prevent new mmc_detect_change() calls */ 1493 if (host->pdata && host->pdata->exit) 1494 host->pdata->exit(&spi->dev, mmc); 1495 1496 mmc_remove_host(mmc); 1497 1498 if (host->dma_dev) { 1499 dma_unmap_single(host->dma_dev, host->ones_dma, 1500 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1501 dma_unmap_single(host->dma_dev, host->data_dma, 1502 sizeof(*host->data), DMA_BIDIRECTIONAL); 1503 } 1504 1505 kfree(host->data); 1506 kfree(host->ones); 1507 1508 spi->max_speed_hz = mmc->f_max; 1509 mmc_free_host(mmc); 1510 mmc_spi_put_pdata(spi); 1511 dev_set_drvdata(&spi->dev, NULL); 1512 } 1513 return 0; 1514 } 1515 1516 1517 static struct spi_driver mmc_spi_driver = { 1518 .driver = { 1519 .name = "mmc_spi", 1520 .bus = &spi_bus_type, 1521 .owner = THIS_MODULE, 1522 }, 1523 .probe = mmc_spi_probe, 1524 .remove = __devexit_p(mmc_spi_remove), 1525 }; 1526 1527 1528 static int __init mmc_spi_init(void) 1529 { 1530 return spi_register_driver(&mmc_spi_driver); 1531 } 1532 module_init(mmc_spi_init); 1533 1534 1535 static void __exit mmc_spi_exit(void) 1536 { 1537 spi_unregister_driver(&mmc_spi_driver); 1538 } 1539 module_exit(mmc_spi_exit); 1540 1541 1542 MODULE_AUTHOR("Mike Lavender, David Brownell, " 1543 "Hans-Peter Nilsson, Jan Nikitenko"); 1544 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1545 MODULE_LICENSE("GPL"); 1546