xref: /linux/drivers/mmc/host/mmc_spi.c (revision cfbf1eecd70db9a7a49c42a0613c00f7a2a86dfb)
1 /*
2  * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3  *
4  * (C) Copyright 2005, Intec Automation,
5  *		Mike Lavender (mike@steroidmicros)
6  * (C) Copyright 2006-2007, David Brownell
7  * (C) Copyright 2007, Axis Communications,
8  *		Hans-Peter Nilsson (hp@axis.com)
9  * (C) Copyright 2007, ATRON electronic GmbH,
10  *		Jan Nikitenko <jan.nikitenko@gmail.com>
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
34 
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
37 
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
40 
41 #include <asm/unaligned.h>
42 
43 
44 /* NOTES:
45  *
46  * - For now, we won't try to interoperate with a real mmc/sd/sdio
47  *   controller, although some of them do have hardware support for
48  *   SPI protocol.  The main reason for such configs would be mmc-ish
49  *   cards like DataFlash, which don't support that "native" protocol.
50  *
51  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52  *   switch between driver stacks, and in any case if "native" mode
53  *   is available, it will be faster and hence preferable.
54  *
55  * - MMC depends on a different chipselect management policy than the
56  *   SPI interface currently supports for shared bus segments:  it needs
57  *   to issue multiple spi_message requests with the chipselect active,
58  *   using the results of one message to decide the next one to issue.
59  *
60  *   Pending updates to the programming interface, this driver expects
61  *   that it not share the bus with other drivers (precluding conflicts).
62  *
63  * - We tell the controller to keep the chipselect active from the
64  *   beginning of an mmc_host_ops.request until the end.  So beware
65  *   of SPI controller drivers that mis-handle the cs_change flag!
66  *
67  *   However, many cards seem OK with chipselect flapping up/down
68  *   during that time ... at least on unshared bus segments.
69  */
70 
71 
72 /*
73  * Local protocol constants, internal to data block protocols.
74  */
75 
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
81 
82 /* Read and write blocks start with these tokens and end with crc;
83  * on error, read tokens act like a subset of R2_SPI_* values.
84  */
85 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
88 
89 #define MMC_SPI_BLOCKSIZE	512
90 
91 
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
94  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95  * reads which takes nowhere near that long.  Older cards may be able to use
96  * shorter timeouts ... but why bother?
97  */
98 #define r1b_timeout		(HZ * 3)
99 
100 
101 /****************************************************************************/
102 
103 /*
104  * Local Data Structures
105  */
106 
107 /* "scratch" is per-{command,block} data exchanged with the card */
108 struct scratch {
109 	u8			status[29];
110 	u8			data_token;
111 	__be16			crc_val;
112 };
113 
114 struct mmc_spi_host {
115 	struct mmc_host		*mmc;
116 	struct spi_device	*spi;
117 
118 	unsigned char		power_mode;
119 	u16			powerup_msecs;
120 
121 	struct mmc_spi_platform_data	*pdata;
122 
123 	/* for bulk data transfers */
124 	struct spi_transfer	token, t, crc, early_status;
125 	struct spi_message	m;
126 
127 	/* for status readback */
128 	struct spi_transfer	status;
129 	struct spi_message	readback;
130 
131 	/* underlying DMA-aware controller, or null */
132 	struct device		*dma_dev;
133 
134 	/* buffer used for commands and for message "overhead" */
135 	struct scratch		*data;
136 	dma_addr_t		data_dma;
137 
138 	/* Specs say to write ones most of the time, even when the card
139 	 * has no need to read its input data; and many cards won't care.
140 	 * This is our source of those ones.
141 	 */
142 	void			*ones;
143 	dma_addr_t		ones_dma;
144 };
145 
146 
147 /****************************************************************************/
148 
149 /*
150  * MMC-over-SPI protocol glue, used by the MMC stack interface
151  */
152 
153 static inline int mmc_cs_off(struct mmc_spi_host *host)
154 {
155 	/* chipselect will always be inactive after setup() */
156 	return spi_setup(host->spi);
157 }
158 
159 static int
160 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
161 {
162 	int status;
163 
164 	if (len > sizeof(*host->data)) {
165 		WARN_ON(1);
166 		return -EIO;
167 	}
168 
169 	host->status.len = len;
170 
171 	if (host->dma_dev)
172 		dma_sync_single_for_device(host->dma_dev,
173 				host->data_dma, sizeof(*host->data),
174 				DMA_FROM_DEVICE);
175 
176 	status = spi_sync(host->spi, &host->readback);
177 
178 	if (host->dma_dev)
179 		dma_sync_single_for_cpu(host->dma_dev,
180 				host->data_dma, sizeof(*host->data),
181 				DMA_FROM_DEVICE);
182 
183 	return status;
184 }
185 
186 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
187 			unsigned n, u8 byte)
188 {
189 	u8		*cp = host->data->status;
190 	unsigned long start = jiffies;
191 
192 	while (1) {
193 		int		status;
194 		unsigned	i;
195 
196 		status = mmc_spi_readbytes(host, n);
197 		if (status < 0)
198 			return status;
199 
200 		for (i = 0; i < n; i++) {
201 			if (cp[i] != byte)
202 				return cp[i];
203 		}
204 
205 		if (time_is_before_jiffies(start + timeout))
206 			break;
207 
208 		/* If we need long timeouts, we may release the CPU.
209 		 * We use jiffies here because we want to have a relation
210 		 * between elapsed time and the blocking of the scheduler.
211 		 */
212 		if (time_is_before_jiffies(start+1))
213 			schedule();
214 	}
215 	return -ETIMEDOUT;
216 }
217 
218 static inline int
219 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
220 {
221 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
222 }
223 
224 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
225 {
226 	return mmc_spi_skip(host, timeout, 1, 0xff);
227 }
228 
229 
230 /*
231  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
232  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
233  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
234  *
235  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
236  * newer cards R7 (IF_COND).
237  */
238 
239 static char *maptype(struct mmc_command *cmd)
240 {
241 	switch (mmc_spi_resp_type(cmd)) {
242 	case MMC_RSP_SPI_R1:	return "R1";
243 	case MMC_RSP_SPI_R1B:	return "R1B";
244 	case MMC_RSP_SPI_R2:	return "R2/R5";
245 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
246 	default:		return "?";
247 	}
248 }
249 
250 /* return zero, else negative errno after setting cmd->error */
251 static int mmc_spi_response_get(struct mmc_spi_host *host,
252 		struct mmc_command *cmd, int cs_on)
253 {
254 	u8	*cp = host->data->status;
255 	u8	*end = cp + host->t.len;
256 	int	value = 0;
257 	int	bitshift;
258 	u8 	leftover = 0;
259 	unsigned short rotator;
260 	int 	i;
261 	char	tag[32];
262 
263 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
264 		cmd->opcode, maptype(cmd));
265 
266 	/* Except for data block reads, the whole response will already
267 	 * be stored in the scratch buffer.  It's somewhere after the
268 	 * command and the first byte we read after it.  We ignore that
269 	 * first byte.  After STOP_TRANSMISSION command it may include
270 	 * two data bits, but otherwise it's all ones.
271 	 */
272 	cp += 8;
273 	while (cp < end && *cp == 0xff)
274 		cp++;
275 
276 	/* Data block reads (R1 response types) may need more data... */
277 	if (cp == end) {
278 		cp = host->data->status;
279 		end = cp+1;
280 
281 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
282 		 * status byte ... and we already scanned 2 bytes.
283 		 *
284 		 * REVISIT block read paths use nasty byte-at-a-time I/O
285 		 * so it can always DMA directly into the target buffer.
286 		 * It'd probably be better to memcpy() the first chunk and
287 		 * avoid extra i/o calls...
288 		 *
289 		 * Note we check for more than 8 bytes, because in practice,
290 		 * some SD cards are slow...
291 		 */
292 		for (i = 2; i < 16; i++) {
293 			value = mmc_spi_readbytes(host, 1);
294 			if (value < 0)
295 				goto done;
296 			if (*cp != 0xff)
297 				goto checkstatus;
298 		}
299 		value = -ETIMEDOUT;
300 		goto done;
301 	}
302 
303 checkstatus:
304 	bitshift = 0;
305 	if (*cp & 0x80)	{
306 		/* Houston, we have an ugly card with a bit-shifted response */
307 		rotator = *cp++ << 8;
308 		/* read the next byte */
309 		if (cp == end) {
310 			value = mmc_spi_readbytes(host, 1);
311 			if (value < 0)
312 				goto done;
313 			cp = host->data->status;
314 			end = cp+1;
315 		}
316 		rotator |= *cp++;
317 		while (rotator & 0x8000) {
318 			bitshift++;
319 			rotator <<= 1;
320 		}
321 		cmd->resp[0] = rotator >> 8;
322 		leftover = rotator;
323 	} else {
324 		cmd->resp[0] = *cp++;
325 	}
326 	cmd->error = 0;
327 
328 	/* Status byte: the entire seven-bit R1 response.  */
329 	if (cmd->resp[0] != 0) {
330 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
331 				      | R1_SPI_ILLEGAL_COMMAND)
332 				& cmd->resp[0])
333 			value = -EINVAL;
334 		else if (R1_SPI_COM_CRC & cmd->resp[0])
335 			value = -EILSEQ;
336 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
337 				& cmd->resp[0])
338 			value = -EIO;
339 		/* else R1_SPI_IDLE, "it's resetting" */
340 	}
341 
342 	switch (mmc_spi_resp_type(cmd)) {
343 
344 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
345 	 * and less-common stuff like various erase operations.
346 	 */
347 	case MMC_RSP_SPI_R1B:
348 		/* maybe we read all the busy tokens already */
349 		while (cp < end && *cp == 0)
350 			cp++;
351 		if (cp == end)
352 			mmc_spi_wait_unbusy(host, r1b_timeout);
353 		break;
354 
355 	/* SPI R2 == R1 + second status byte; SEND_STATUS
356 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
357 	 */
358 	case MMC_RSP_SPI_R2:
359 		/* read the next byte */
360 		if (cp == end) {
361 			value = mmc_spi_readbytes(host, 1);
362 			if (value < 0)
363 				goto done;
364 			cp = host->data->status;
365 			end = cp+1;
366 		}
367 		if (bitshift) {
368 			rotator = leftover << 8;
369 			rotator |= *cp << bitshift;
370 			cmd->resp[0] |= (rotator & 0xFF00);
371 		} else {
372 			cmd->resp[0] |= *cp << 8;
373 		}
374 		break;
375 
376 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
377 	case MMC_RSP_SPI_R3:
378 		rotator = leftover << 8;
379 		cmd->resp[1] = 0;
380 		for (i = 0; i < 4; i++) {
381 			cmd->resp[1] <<= 8;
382 			/* read the next byte */
383 			if (cp == end) {
384 				value = mmc_spi_readbytes(host, 1);
385 				if (value < 0)
386 					goto done;
387 				cp = host->data->status;
388 				end = cp+1;
389 			}
390 			if (bitshift) {
391 				rotator |= *cp++ << bitshift;
392 				cmd->resp[1] |= (rotator >> 8);
393 				rotator <<= 8;
394 			} else {
395 				cmd->resp[1] |= *cp++;
396 			}
397 		}
398 		break;
399 
400 	/* SPI R1 == just one status byte */
401 	case MMC_RSP_SPI_R1:
402 		break;
403 
404 	default:
405 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
406 				mmc_spi_resp_type(cmd));
407 		if (value >= 0)
408 			value = -EINVAL;
409 		goto done;
410 	}
411 
412 	if (value < 0)
413 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
414 			tag, cmd->resp[0], cmd->resp[1]);
415 
416 	/* disable chipselect on errors and some success cases */
417 	if (value >= 0 && cs_on)
418 		return value;
419 done:
420 	if (value < 0)
421 		cmd->error = value;
422 	mmc_cs_off(host);
423 	return value;
424 }
425 
426 /* Issue command and read its response.
427  * Returns zero on success, negative for error.
428  *
429  * On error, caller must cope with mmc core retry mechanism.  That
430  * means immediate low-level resubmit, which affects the bus lock...
431  */
432 static int
433 mmc_spi_command_send(struct mmc_spi_host *host,
434 		struct mmc_request *mrq,
435 		struct mmc_command *cmd, int cs_on)
436 {
437 	struct scratch		*data = host->data;
438 	u8			*cp = data->status;
439 	u32			arg = cmd->arg;
440 	int			status;
441 	struct spi_transfer	*t;
442 
443 	/* We can handle most commands (except block reads) in one full
444 	 * duplex I/O operation before either starting the next transfer
445 	 * (data block or command) or else deselecting the card.
446 	 *
447 	 * First, write 7 bytes:
448 	 *  - an all-ones byte to ensure the card is ready
449 	 *  - opcode byte (plus start and transmission bits)
450 	 *  - four bytes of big-endian argument
451 	 *  - crc7 (plus end bit) ... always computed, it's cheap
452 	 *
453 	 * We init the whole buffer to all-ones, which is what we need
454 	 * to write while we're reading (later) response data.
455 	 */
456 	memset(cp++, 0xff, sizeof(data->status));
457 
458 	*cp++ = 0x40 | cmd->opcode;
459 	*cp++ = (u8)(arg >> 24);
460 	*cp++ = (u8)(arg >> 16);
461 	*cp++ = (u8)(arg >> 8);
462 	*cp++ = (u8)arg;
463 	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
464 
465 	/* Then, read up to 13 bytes (while writing all-ones):
466 	 *  - N(CR) (== 1..8) bytes of all-ones
467 	 *  - status byte (for all response types)
468 	 *  - the rest of the response, either:
469 	 *      + nothing, for R1 or R1B responses
470 	 *	+ second status byte, for R2 responses
471 	 *	+ four data bytes, for R3 and R7 responses
472 	 *
473 	 * Finally, read some more bytes ... in the nice cases we know in
474 	 * advance how many, and reading 1 more is always OK:
475 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
476 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
477 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
478 	 *
479 	 * So in those cases one full duplex I/O of at most 21 bytes will
480 	 * handle the whole command, leaving the card ready to receive a
481 	 * data block or new command.  We do that whenever we can, shaving
482 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
483 	 *
484 	 * There are two other cases, where it's not generally practical
485 	 * to rely on a single I/O:
486 	 *
487 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
488 	 *
489 	 *    In this case we can *try* to fit it into one I/O, then
490 	 *    maybe read more data later.
491 	 *
492 	 *  - Data block reads are more troublesome, since a variable
493 	 *    number of padding bytes precede the token and data.
494 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
495 	 *      + N(AC) (== 1..many) bytes of all-ones
496 	 *
497 	 *    In this case we currently only have minimal speedups here:
498 	 *    when N(CR) == 1 we can avoid I/O in response_get().
499 	 */
500 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
501 		cp += 2;	/* min(N(CR)) + status */
502 		/* R1 */
503 	} else {
504 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
505 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
506 			cp++;
507 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
508 			cp += 4;
509 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
510 			cp = data->status + sizeof(data->status);
511 		/* else:  R1 (most commands) */
512 	}
513 
514 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
515 		cmd->opcode, maptype(cmd));
516 
517 	/* send command, leaving chipselect active */
518 	spi_message_init(&host->m);
519 
520 	t = &host->t;
521 	memset(t, 0, sizeof(*t));
522 	t->tx_buf = t->rx_buf = data->status;
523 	t->tx_dma = t->rx_dma = host->data_dma;
524 	t->len = cp - data->status;
525 	t->cs_change = 1;
526 	spi_message_add_tail(t, &host->m);
527 
528 	if (host->dma_dev) {
529 		host->m.is_dma_mapped = 1;
530 		dma_sync_single_for_device(host->dma_dev,
531 				host->data_dma, sizeof(*host->data),
532 				DMA_BIDIRECTIONAL);
533 	}
534 	status = spi_sync(host->spi, &host->m);
535 
536 	if (host->dma_dev)
537 		dma_sync_single_for_cpu(host->dma_dev,
538 				host->data_dma, sizeof(*host->data),
539 				DMA_BIDIRECTIONAL);
540 	if (status < 0) {
541 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
542 		cmd->error = status;
543 		return status;
544 	}
545 
546 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
547 	return mmc_spi_response_get(host, cmd, cs_on);
548 }
549 
550 /* Build data message with up to four separate transfers.  For TX, we
551  * start by writing the data token.  And in most cases, we finish with
552  * a status transfer.
553  *
554  * We always provide TX data for data and CRC.  The MMC/SD protocol
555  * requires us to write ones; but Linux defaults to writing zeroes;
556  * so we explicitly initialize it to all ones on RX paths.
557  *
558  * We also handle DMA mapping, so the underlying SPI controller does
559  * not need to (re)do it for each message.
560  */
561 static void
562 mmc_spi_setup_data_message(
563 	struct mmc_spi_host	*host,
564 	int			multiple,
565 	enum dma_data_direction	direction)
566 {
567 	struct spi_transfer	*t;
568 	struct scratch		*scratch = host->data;
569 	dma_addr_t		dma = host->data_dma;
570 
571 	spi_message_init(&host->m);
572 	if (dma)
573 		host->m.is_dma_mapped = 1;
574 
575 	/* for reads, readblock() skips 0xff bytes before finding
576 	 * the token; for writes, this transfer issues that token.
577 	 */
578 	if (direction == DMA_TO_DEVICE) {
579 		t = &host->token;
580 		memset(t, 0, sizeof(*t));
581 		t->len = 1;
582 		if (multiple)
583 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
584 		else
585 			scratch->data_token = SPI_TOKEN_SINGLE;
586 		t->tx_buf = &scratch->data_token;
587 		if (dma)
588 			t->tx_dma = dma + offsetof(struct scratch, data_token);
589 		spi_message_add_tail(t, &host->m);
590 	}
591 
592 	/* Body of transfer is buffer, then CRC ...
593 	 * either TX-only, or RX with TX-ones.
594 	 */
595 	t = &host->t;
596 	memset(t, 0, sizeof(*t));
597 	t->tx_buf = host->ones;
598 	t->tx_dma = host->ones_dma;
599 	/* length and actual buffer info are written later */
600 	spi_message_add_tail(t, &host->m);
601 
602 	t = &host->crc;
603 	memset(t, 0, sizeof(*t));
604 	t->len = 2;
605 	if (direction == DMA_TO_DEVICE) {
606 		/* the actual CRC may get written later */
607 		t->tx_buf = &scratch->crc_val;
608 		if (dma)
609 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
610 	} else {
611 		t->tx_buf = host->ones;
612 		t->tx_dma = host->ones_dma;
613 		t->rx_buf = &scratch->crc_val;
614 		if (dma)
615 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
616 	}
617 	spi_message_add_tail(t, &host->m);
618 
619 	/*
620 	 * A single block read is followed by N(EC) [0+] all-ones bytes
621 	 * before deselect ... don't bother.
622 	 *
623 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
624 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
625 	 * collect that single byte, so readblock() doesn't need to.
626 	 *
627 	 * For a write, the one-byte data response follows immediately, then
628 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
629 	 * Then single block reads may deselect, and multiblock ones issue
630 	 * the next token (next data block, or STOP_TRAN).  We can try to
631 	 * minimize I/O ops by using a single read to collect end-of-busy.
632 	 */
633 	if (multiple || direction == DMA_TO_DEVICE) {
634 		t = &host->early_status;
635 		memset(t, 0, sizeof(*t));
636 		t->len = (direction == DMA_TO_DEVICE)
637 				? sizeof(scratch->status)
638 				: 1;
639 		t->tx_buf = host->ones;
640 		t->tx_dma = host->ones_dma;
641 		t->rx_buf = scratch->status;
642 		if (dma)
643 			t->rx_dma = dma + offsetof(struct scratch, status);
644 		t->cs_change = 1;
645 		spi_message_add_tail(t, &host->m);
646 	}
647 }
648 
649 /*
650  * Write one block:
651  *  - caller handled preceding N(WR) [1+] all-ones bytes
652  *  - data block
653  *	+ token
654  *	+ data bytes
655  *	+ crc16
656  *  - an all-ones byte ... card writes a data-response byte
657  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
658  *
659  * Return negative errno, else success.
660  */
661 static int
662 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
663 	unsigned long timeout)
664 {
665 	struct spi_device	*spi = host->spi;
666 	int			status, i;
667 	struct scratch		*scratch = host->data;
668 	u32			pattern;
669 
670 	if (host->mmc->use_spi_crc)
671 		scratch->crc_val = cpu_to_be16(
672 				crc_itu_t(0, t->tx_buf, t->len));
673 	if (host->dma_dev)
674 		dma_sync_single_for_device(host->dma_dev,
675 				host->data_dma, sizeof(*scratch),
676 				DMA_BIDIRECTIONAL);
677 
678 	status = spi_sync(spi, &host->m);
679 
680 	if (status != 0) {
681 		dev_dbg(&spi->dev, "write error (%d)\n", status);
682 		return status;
683 	}
684 
685 	if (host->dma_dev)
686 		dma_sync_single_for_cpu(host->dma_dev,
687 				host->data_dma, sizeof(*scratch),
688 				DMA_BIDIRECTIONAL);
689 
690 	/*
691 	 * Get the transmission data-response reply.  It must follow
692 	 * immediately after the data block we transferred.  This reply
693 	 * doesn't necessarily tell whether the write operation succeeded;
694 	 * it just says if the transmission was ok and whether *earlier*
695 	 * writes succeeded; see the standard.
696 	 *
697 	 * In practice, there are (even modern SDHC-)cards which are late
698 	 * in sending the response, and miss the time frame by a few bits,
699 	 * so we have to cope with this situation and check the response
700 	 * bit-by-bit. Arggh!!!
701 	 */
702 	pattern  = scratch->status[0] << 24;
703 	pattern |= scratch->status[1] << 16;
704 	pattern |= scratch->status[2] << 8;
705 	pattern |= scratch->status[3];
706 
707 	/* First 3 bit of pattern are undefined */
708 	pattern |= 0xE0000000;
709 
710 	/* left-adjust to leading 0 bit */
711 	while (pattern & 0x80000000)
712 		pattern <<= 1;
713 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
714 	pattern >>= 27;
715 
716 	switch (pattern) {
717 	case SPI_RESPONSE_ACCEPTED:
718 		status = 0;
719 		break;
720 	case SPI_RESPONSE_CRC_ERR:
721 		/* host shall then issue MMC_STOP_TRANSMISSION */
722 		status = -EILSEQ;
723 		break;
724 	case SPI_RESPONSE_WRITE_ERR:
725 		/* host shall then issue MMC_STOP_TRANSMISSION,
726 		 * and should MMC_SEND_STATUS to sort it out
727 		 */
728 		status = -EIO;
729 		break;
730 	default:
731 		status = -EPROTO;
732 		break;
733 	}
734 	if (status != 0) {
735 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
736 			scratch->status[0], status);
737 		return status;
738 	}
739 
740 	t->tx_buf += t->len;
741 	if (host->dma_dev)
742 		t->tx_dma += t->len;
743 
744 	/* Return when not busy.  If we didn't collect that status yet,
745 	 * we'll need some more I/O.
746 	 */
747 	for (i = 4; i < sizeof(scratch->status); i++) {
748 		/* card is non-busy if the most recent bit is 1 */
749 		if (scratch->status[i] & 0x01)
750 			return 0;
751 	}
752 	return mmc_spi_wait_unbusy(host, timeout);
753 }
754 
755 /*
756  * Read one block:
757  *  - skip leading all-ones bytes ... either
758  *      + N(AC) [1..f(clock,CSD)] usually, else
759  *      + N(CX) [0..8] when reading CSD or CID
760  *  - data block
761  *	+ token ... if error token, no data or crc
762  *	+ data bytes
763  *	+ crc16
764  *
765  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
766  * before dropping chipselect.
767  *
768  * For multiblock reads, caller either reads the next block or issues a
769  * STOP_TRANSMISSION command.
770  */
771 static int
772 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
773 	unsigned long timeout)
774 {
775 	struct spi_device	*spi = host->spi;
776 	int			status;
777 	struct scratch		*scratch = host->data;
778 	unsigned int 		bitshift;
779 	u8			leftover;
780 
781 	/* At least one SD card sends an all-zeroes byte when N(CX)
782 	 * applies, before the all-ones bytes ... just cope with that.
783 	 */
784 	status = mmc_spi_readbytes(host, 1);
785 	if (status < 0)
786 		return status;
787 	status = scratch->status[0];
788 	if (status == 0xff || status == 0)
789 		status = mmc_spi_readtoken(host, timeout);
790 
791 	if (status < 0) {
792 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
793 		return status;
794 	}
795 
796 	/* The token may be bit-shifted...
797 	 * the first 0-bit precedes the data stream.
798 	 */
799 	bitshift = 7;
800 	while (status & 0x80) {
801 		status <<= 1;
802 		bitshift--;
803 	}
804 	leftover = status << 1;
805 
806 	if (host->dma_dev) {
807 		dma_sync_single_for_device(host->dma_dev,
808 				host->data_dma, sizeof(*scratch),
809 				DMA_BIDIRECTIONAL);
810 		dma_sync_single_for_device(host->dma_dev,
811 				t->rx_dma, t->len,
812 				DMA_FROM_DEVICE);
813 	}
814 
815 	status = spi_sync(spi, &host->m);
816 
817 	if (host->dma_dev) {
818 		dma_sync_single_for_cpu(host->dma_dev,
819 				host->data_dma, sizeof(*scratch),
820 				DMA_BIDIRECTIONAL);
821 		dma_sync_single_for_cpu(host->dma_dev,
822 				t->rx_dma, t->len,
823 				DMA_FROM_DEVICE);
824 	}
825 
826 	if (bitshift) {
827 		/* Walk through the data and the crc and do
828 		 * all the magic to get byte-aligned data.
829 		 */
830 		u8 *cp = t->rx_buf;
831 		unsigned int len;
832 		unsigned int bitright = 8 - bitshift;
833 		u8 temp;
834 		for (len = t->len; len; len--) {
835 			temp = *cp;
836 			*cp++ = leftover | (temp >> bitshift);
837 			leftover = temp << bitright;
838 		}
839 		cp = (u8 *) &scratch->crc_val;
840 		temp = *cp;
841 		*cp++ = leftover | (temp >> bitshift);
842 		leftover = temp << bitright;
843 		temp = *cp;
844 		*cp = leftover | (temp >> bitshift);
845 	}
846 
847 	if (host->mmc->use_spi_crc) {
848 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
849 
850 		be16_to_cpus(&scratch->crc_val);
851 		if (scratch->crc_val != crc) {
852 			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
853 					"computed=0x%04x len=%d\n",
854 					scratch->crc_val, crc, t->len);
855 			return -EILSEQ;
856 		}
857 	}
858 
859 	t->rx_buf += t->len;
860 	if (host->dma_dev)
861 		t->rx_dma += t->len;
862 
863 	return 0;
864 }
865 
866 /*
867  * An MMC/SD data stage includes one or more blocks, optional CRCs,
868  * and inline handshaking.  That handhaking makes it unlike most
869  * other SPI protocol stacks.
870  */
871 static void
872 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
873 		struct mmc_data *data, u32 blk_size)
874 {
875 	struct spi_device	*spi = host->spi;
876 	struct device		*dma_dev = host->dma_dev;
877 	struct spi_transfer	*t;
878 	enum dma_data_direction	direction;
879 	struct scatterlist	*sg;
880 	unsigned		n_sg;
881 	int			multiple = (data->blocks > 1);
882 	u32			clock_rate;
883 	unsigned long		timeout;
884 
885 	if (data->flags & MMC_DATA_READ)
886 		direction = DMA_FROM_DEVICE;
887 	else
888 		direction = DMA_TO_DEVICE;
889 	mmc_spi_setup_data_message(host, multiple, direction);
890 	t = &host->t;
891 
892 	if (t->speed_hz)
893 		clock_rate = t->speed_hz;
894 	else
895 		clock_rate = spi->max_speed_hz;
896 
897 	timeout = data->timeout_ns +
898 		  data->timeout_clks * 1000000 / clock_rate;
899 	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
900 
901 	/* Handle scatterlist segments one at a time, with synch for
902 	 * each 512-byte block
903 	 */
904 	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
905 		int			status = 0;
906 		dma_addr_t		dma_addr = 0;
907 		void			*kmap_addr;
908 		unsigned		length = sg->length;
909 		enum dma_data_direction	dir = direction;
910 
911 		/* set up dma mapping for controller drivers that might
912 		 * use DMA ... though they may fall back to PIO
913 		 */
914 		if (dma_dev) {
915 			/* never invalidate whole *shared* pages ... */
916 			if ((sg->offset != 0 || length != PAGE_SIZE)
917 					&& dir == DMA_FROM_DEVICE)
918 				dir = DMA_BIDIRECTIONAL;
919 
920 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
921 						PAGE_SIZE, dir);
922 			if (direction == DMA_TO_DEVICE)
923 				t->tx_dma = dma_addr + sg->offset;
924 			else
925 				t->rx_dma = dma_addr + sg->offset;
926 		}
927 
928 		/* allow pio too; we don't allow highmem */
929 		kmap_addr = kmap(sg_page(sg));
930 		if (direction == DMA_TO_DEVICE)
931 			t->tx_buf = kmap_addr + sg->offset;
932 		else
933 			t->rx_buf = kmap_addr + sg->offset;
934 
935 		/* transfer each block, and update request status */
936 		while (length) {
937 			t->len = min(length, blk_size);
938 
939 			dev_dbg(&host->spi->dev,
940 				"    mmc_spi: %s block, %d bytes\n",
941 				(direction == DMA_TO_DEVICE)
942 				? "write"
943 				: "read",
944 				t->len);
945 
946 			if (direction == DMA_TO_DEVICE)
947 				status = mmc_spi_writeblock(host, t, timeout);
948 			else
949 				status = mmc_spi_readblock(host, t, timeout);
950 			if (status < 0)
951 				break;
952 
953 			data->bytes_xfered += t->len;
954 			length -= t->len;
955 
956 			if (!multiple)
957 				break;
958 		}
959 
960 		/* discard mappings */
961 		if (direction == DMA_FROM_DEVICE)
962 			flush_kernel_dcache_page(sg_page(sg));
963 		kunmap(sg_page(sg));
964 		if (dma_dev)
965 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
966 
967 		if (status < 0) {
968 			data->error = status;
969 			dev_dbg(&spi->dev, "%s status %d\n",
970 				(direction == DMA_TO_DEVICE)
971 					? "write" : "read",
972 				status);
973 			break;
974 		}
975 	}
976 
977 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
978 	 * can be issued before multiblock writes.  Unlike its more widely
979 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
980 	 * that can affect the STOP_TRAN logic.   Complete (and current)
981 	 * MMC specs should sort that out before Linux starts using CMD23.
982 	 */
983 	if (direction == DMA_TO_DEVICE && multiple) {
984 		struct scratch	*scratch = host->data;
985 		int		tmp;
986 		const unsigned	statlen = sizeof(scratch->status);
987 
988 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
989 
990 		/* Tweak the per-block message we set up earlier by morphing
991 		 * it to hold single buffer with the token followed by some
992 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
993 		 * "not busy any longer" status, and leave chip selected.
994 		 */
995 		INIT_LIST_HEAD(&host->m.transfers);
996 		list_add(&host->early_status.transfer_list,
997 				&host->m.transfers);
998 
999 		memset(scratch->status, 0xff, statlen);
1000 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1001 
1002 		host->early_status.tx_buf = host->early_status.rx_buf;
1003 		host->early_status.tx_dma = host->early_status.rx_dma;
1004 		host->early_status.len = statlen;
1005 
1006 		if (host->dma_dev)
1007 			dma_sync_single_for_device(host->dma_dev,
1008 					host->data_dma, sizeof(*scratch),
1009 					DMA_BIDIRECTIONAL);
1010 
1011 		tmp = spi_sync(spi, &host->m);
1012 
1013 		if (host->dma_dev)
1014 			dma_sync_single_for_cpu(host->dma_dev,
1015 					host->data_dma, sizeof(*scratch),
1016 					DMA_BIDIRECTIONAL);
1017 
1018 		if (tmp < 0) {
1019 			if (!data->error)
1020 				data->error = tmp;
1021 			return;
1022 		}
1023 
1024 		/* Ideally we collected "not busy" status with one I/O,
1025 		 * avoiding wasteful byte-at-a-time scanning... but more
1026 		 * I/O is often needed.
1027 		 */
1028 		for (tmp = 2; tmp < statlen; tmp++) {
1029 			if (scratch->status[tmp] != 0)
1030 				return;
1031 		}
1032 		tmp = mmc_spi_wait_unbusy(host, timeout);
1033 		if (tmp < 0 && !data->error)
1034 			data->error = tmp;
1035 	}
1036 }
1037 
1038 /****************************************************************************/
1039 
1040 /*
1041  * MMC driver implementation -- the interface to the MMC stack
1042  */
1043 
1044 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1045 {
1046 	struct mmc_spi_host	*host = mmc_priv(mmc);
1047 	int			status = -EINVAL;
1048 
1049 #ifdef DEBUG
1050 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1051 	{
1052 		struct mmc_command	*cmd;
1053 		int			invalid = 0;
1054 
1055 		cmd = mrq->cmd;
1056 		if (!mmc_spi_resp_type(cmd)) {
1057 			dev_dbg(&host->spi->dev, "bogus command\n");
1058 			cmd->error = -EINVAL;
1059 			invalid = 1;
1060 		}
1061 
1062 		cmd = mrq->stop;
1063 		if (cmd && !mmc_spi_resp_type(cmd)) {
1064 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1065 			cmd->error = -EINVAL;
1066 			invalid = 1;
1067 		}
1068 
1069 		if (invalid) {
1070 			dump_stack();
1071 			mmc_request_done(host->mmc, mrq);
1072 			return;
1073 		}
1074 	}
1075 #endif
1076 
1077 	/* issue command; then optionally data and stop */
1078 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1079 	if (status == 0 && mrq->data) {
1080 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1081 		if (mrq->stop)
1082 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1083 		else
1084 			mmc_cs_off(host);
1085 	}
1086 
1087 	mmc_request_done(host->mmc, mrq);
1088 }
1089 
1090 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1091  *
1092  * NOTE that here we can't know that the card has just been powered up;
1093  * not all MMC/SD sockets support power switching.
1094  *
1095  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1096  * this doesn't seem to do the right thing at all...
1097  */
1098 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1099 {
1100 	/* Try to be very sure any previous command has completed;
1101 	 * wait till not-busy, skip debris from any old commands.
1102 	 */
1103 	mmc_spi_wait_unbusy(host, r1b_timeout);
1104 	mmc_spi_readbytes(host, 10);
1105 
1106 	/*
1107 	 * Do a burst with chipselect active-high.  We need to do this to
1108 	 * meet the requirement of 74 clock cycles with both chipselect
1109 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1110 	 * powered up to Vdd(min), and so is ready to take commands.
1111 	 *
1112 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1113 	 * while most others don't seem to care.
1114 	 *
1115 	 * Note that this is one of the places MMC/SD plays games with the
1116 	 * SPI protocol.  Another is that when chipselect is released while
1117 	 * the card returns BUSY status, the clock must issue several cycles
1118 	 * with chipselect high before the card will stop driving its output.
1119 	 */
1120 	host->spi->mode |= SPI_CS_HIGH;
1121 	if (spi_setup(host->spi) != 0) {
1122 		/* Just warn; most cards work without it. */
1123 		dev_warn(&host->spi->dev,
1124 				"can't change chip-select polarity\n");
1125 		host->spi->mode &= ~SPI_CS_HIGH;
1126 	} else {
1127 		mmc_spi_readbytes(host, 18);
1128 
1129 		host->spi->mode &= ~SPI_CS_HIGH;
1130 		if (spi_setup(host->spi) != 0) {
1131 			/* Wot, we can't get the same setup we had before? */
1132 			dev_err(&host->spi->dev,
1133 					"can't restore chip-select polarity\n");
1134 		}
1135 	}
1136 }
1137 
1138 static char *mmc_powerstring(u8 power_mode)
1139 {
1140 	switch (power_mode) {
1141 	case MMC_POWER_OFF: return "off";
1142 	case MMC_POWER_UP:  return "up";
1143 	case MMC_POWER_ON:  return "on";
1144 	}
1145 	return "?";
1146 }
1147 
1148 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1149 {
1150 	struct mmc_spi_host *host = mmc_priv(mmc);
1151 
1152 	if (host->power_mode != ios->power_mode) {
1153 		int		canpower;
1154 
1155 		canpower = host->pdata && host->pdata->setpower;
1156 
1157 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1158 				mmc_powerstring(ios->power_mode),
1159 				ios->vdd,
1160 				canpower ? ", can switch" : "");
1161 
1162 		/* switch power on/off if possible, accounting for
1163 		 * max 250msec powerup time if needed.
1164 		 */
1165 		if (canpower) {
1166 			switch (ios->power_mode) {
1167 			case MMC_POWER_OFF:
1168 			case MMC_POWER_UP:
1169 				host->pdata->setpower(&host->spi->dev,
1170 						ios->vdd);
1171 				if (ios->power_mode == MMC_POWER_UP)
1172 					msleep(host->powerup_msecs);
1173 			}
1174 		}
1175 
1176 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1177 		if (ios->power_mode == MMC_POWER_ON)
1178 			mmc_spi_initsequence(host);
1179 
1180 		/* If powering down, ground all card inputs to avoid power
1181 		 * delivery from data lines!  On a shared SPI bus, this
1182 		 * will probably be temporary; 6.4.2 of the simplified SD
1183 		 * spec says this must last at least 1msec.
1184 		 *
1185 		 *   - Clock low means CPOL 0, e.g. mode 0
1186 		 *   - MOSI low comes from writing zero
1187 		 *   - Chipselect is usually active low...
1188 		 */
1189 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1190 			int mres;
1191 			u8 nullbyte = 0;
1192 
1193 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1194 			mres = spi_setup(host->spi);
1195 			if (mres < 0)
1196 				dev_dbg(&host->spi->dev,
1197 					"switch to SPI mode 0 failed\n");
1198 
1199 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1200 				dev_dbg(&host->spi->dev,
1201 					"put spi signals to low failed\n");
1202 
1203 			/*
1204 			 * Now clock should be low due to spi mode 0;
1205 			 * MOSI should be low because of written 0x00;
1206 			 * chipselect should be low (it is active low)
1207 			 * power supply is off, so now MMC is off too!
1208 			 *
1209 			 * FIXME no, chipselect can be high since the
1210 			 * device is inactive and SPI_CS_HIGH is clear...
1211 			 */
1212 			msleep(10);
1213 			if (mres == 0) {
1214 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1215 				mres = spi_setup(host->spi);
1216 				if (mres < 0)
1217 					dev_dbg(&host->spi->dev,
1218 						"switch back to SPI mode 3"
1219 						" failed\n");
1220 			}
1221 		}
1222 
1223 		host->power_mode = ios->power_mode;
1224 	}
1225 
1226 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1227 		int		status;
1228 
1229 		host->spi->max_speed_hz = ios->clock;
1230 		status = spi_setup(host->spi);
1231 		dev_dbg(&host->spi->dev,
1232 			"mmc_spi:  clock to %d Hz, %d\n",
1233 			host->spi->max_speed_hz, status);
1234 	}
1235 }
1236 
1237 static int mmc_spi_get_ro(struct mmc_host *mmc)
1238 {
1239 	struct mmc_spi_host *host = mmc_priv(mmc);
1240 
1241 	if (host->pdata && host->pdata->get_ro)
1242 		return !!host->pdata->get_ro(mmc->parent);
1243 	/*
1244 	 * Board doesn't support read only detection; let the mmc core
1245 	 * decide what to do.
1246 	 */
1247 	return -ENOSYS;
1248 }
1249 
1250 static int mmc_spi_get_cd(struct mmc_host *mmc)
1251 {
1252 	struct mmc_spi_host *host = mmc_priv(mmc);
1253 
1254 	if (host->pdata && host->pdata->get_cd)
1255 		return !!host->pdata->get_cd(mmc->parent);
1256 	return -ENOSYS;
1257 }
1258 
1259 static const struct mmc_host_ops mmc_spi_ops = {
1260 	.request	= mmc_spi_request,
1261 	.set_ios	= mmc_spi_set_ios,
1262 	.get_ro		= mmc_spi_get_ro,
1263 	.get_cd		= mmc_spi_get_cd,
1264 };
1265 
1266 
1267 /****************************************************************************/
1268 
1269 /*
1270  * SPI driver implementation
1271  */
1272 
1273 static irqreturn_t
1274 mmc_spi_detect_irq(int irq, void *mmc)
1275 {
1276 	struct mmc_spi_host *host = mmc_priv(mmc);
1277 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1278 
1279 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1280 	return IRQ_HANDLED;
1281 }
1282 
1283 struct count_children {
1284 	unsigned	n;
1285 	struct bus_type	*bus;
1286 };
1287 
1288 static int maybe_count_child(struct device *dev, void *c)
1289 {
1290 	struct count_children *ccp = c;
1291 
1292 	if (dev->bus == ccp->bus) {
1293 		if (ccp->n)
1294 			return -EBUSY;
1295 		ccp->n++;
1296 	}
1297 	return 0;
1298 }
1299 
1300 static int mmc_spi_probe(struct spi_device *spi)
1301 {
1302 	void			*ones;
1303 	struct mmc_host		*mmc;
1304 	struct mmc_spi_host	*host;
1305 	int			status;
1306 
1307 	/* MMC and SD specs only seem to care that sampling is on the
1308 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1309 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1310 	 * which is appropriate for hotplugging, unless the platform data
1311 	 * specify mode 3 (if hardware is not compatible to mode 0).
1312 	 */
1313 	if (spi->mode != SPI_MODE_3)
1314 		spi->mode = SPI_MODE_0;
1315 	spi->bits_per_word = 8;
1316 
1317 	status = spi_setup(spi);
1318 	if (status < 0) {
1319 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1320 				spi->mode, spi->max_speed_hz / 1000,
1321 				status);
1322 		return status;
1323 	}
1324 
1325 	/* We can use the bus safely iff nobody else will interfere with us.
1326 	 * Most commands consist of one SPI message to issue a command, then
1327 	 * several more to collect its response, then possibly more for data
1328 	 * transfer.  Clocking access to other devices during that period will
1329 	 * corrupt the command execution.
1330 	 *
1331 	 * Until we have software primitives which guarantee non-interference,
1332 	 * we'll aim for a hardware-level guarantee.
1333 	 *
1334 	 * REVISIT we can't guarantee another device won't be added later...
1335 	 */
1336 	if (spi->master->num_chipselect > 1) {
1337 		struct count_children cc;
1338 
1339 		cc.n = 0;
1340 		cc.bus = spi->dev.bus;
1341 		status = device_for_each_child(spi->dev.parent, &cc,
1342 				maybe_count_child);
1343 		if (status < 0) {
1344 			dev_err(&spi->dev, "can't share SPI bus\n");
1345 			return status;
1346 		}
1347 
1348 		dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1349 	}
1350 
1351 	/* We need a supply of ones to transmit.  This is the only time
1352 	 * the CPU touches these, so cache coherency isn't a concern.
1353 	 *
1354 	 * NOTE if many systems use more than one MMC-over-SPI connector
1355 	 * it'd save some memory to share this.  That's evidently rare.
1356 	 */
1357 	status = -ENOMEM;
1358 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1359 	if (!ones)
1360 		goto nomem;
1361 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1362 
1363 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1364 	if (!mmc)
1365 		goto nomem;
1366 
1367 	mmc->ops = &mmc_spi_ops;
1368 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1369 
1370 	mmc->caps = MMC_CAP_SPI;
1371 
1372 	/* SPI doesn't need the lowspeed device identification thing for
1373 	 * MMC or SD cards, since it never comes up in open drain mode.
1374 	 * That's good; some SPI masters can't handle very low speeds!
1375 	 *
1376 	 * However, low speed SDIO cards need not handle over 400 KHz;
1377 	 * that's the only reason not to use a few MHz for f_min (until
1378 	 * the upper layer reads the target frequency from the CSD).
1379 	 */
1380 	mmc->f_min = 400000;
1381 	mmc->f_max = spi->max_speed_hz;
1382 
1383 	host = mmc_priv(mmc);
1384 	host->mmc = mmc;
1385 	host->spi = spi;
1386 
1387 	host->ones = ones;
1388 
1389 	/* Platform data is used to hook up things like card sensing
1390 	 * and power switching gpios.
1391 	 */
1392 	host->pdata = mmc_spi_get_pdata(spi);
1393 	if (host->pdata)
1394 		mmc->ocr_avail = host->pdata->ocr_mask;
1395 	if (!mmc->ocr_avail) {
1396 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1397 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1398 	}
1399 	if (host->pdata && host->pdata->setpower) {
1400 		host->powerup_msecs = host->pdata->powerup_msecs;
1401 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1402 			host->powerup_msecs = 250;
1403 	}
1404 
1405 	dev_set_drvdata(&spi->dev, mmc);
1406 
1407 	/* preallocate dma buffers */
1408 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1409 	if (!host->data)
1410 		goto fail_nobuf1;
1411 
1412 	if (spi->master->dev.parent->dma_mask) {
1413 		struct device	*dev = spi->master->dev.parent;
1414 
1415 		host->dma_dev = dev;
1416 		host->ones_dma = dma_map_single(dev, ones,
1417 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1418 		host->data_dma = dma_map_single(dev, host->data,
1419 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1420 
1421 		/* REVISIT in theory those map operations can fail... */
1422 
1423 		dma_sync_single_for_cpu(host->dma_dev,
1424 				host->data_dma, sizeof(*host->data),
1425 				DMA_BIDIRECTIONAL);
1426 	}
1427 
1428 	/* setup message for status/busy readback */
1429 	spi_message_init(&host->readback);
1430 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1431 
1432 	spi_message_add_tail(&host->status, &host->readback);
1433 	host->status.tx_buf = host->ones;
1434 	host->status.tx_dma = host->ones_dma;
1435 	host->status.rx_buf = &host->data->status;
1436 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1437 	host->status.cs_change = 1;
1438 
1439 	/* register card detect irq */
1440 	if (host->pdata && host->pdata->init) {
1441 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1442 		if (status != 0)
1443 			goto fail_glue_init;
1444 	}
1445 
1446 	/* pass platform capabilities, if any */
1447 	if (host->pdata)
1448 		mmc->caps |= host->pdata->caps;
1449 
1450 	status = mmc_add_host(mmc);
1451 	if (status != 0)
1452 		goto fail_add_host;
1453 
1454 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1455 			dev_name(&mmc->class_dev),
1456 			host->dma_dev ? "" : ", no DMA",
1457 			(host->pdata && host->pdata->get_ro)
1458 				? "" : ", no WP",
1459 			(host->pdata && host->pdata->setpower)
1460 				? "" : ", no poweroff",
1461 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1462 				? ", cd polling" : "");
1463 	return 0;
1464 
1465 fail_add_host:
1466 	mmc_remove_host (mmc);
1467 fail_glue_init:
1468 	if (host->dma_dev)
1469 		dma_unmap_single(host->dma_dev, host->data_dma,
1470 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1471 	kfree(host->data);
1472 
1473 fail_nobuf1:
1474 	mmc_free_host(mmc);
1475 	mmc_spi_put_pdata(spi);
1476 	dev_set_drvdata(&spi->dev, NULL);
1477 
1478 nomem:
1479 	kfree(ones);
1480 	return status;
1481 }
1482 
1483 
1484 static int __devexit mmc_spi_remove(struct spi_device *spi)
1485 {
1486 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1487 	struct mmc_spi_host	*host;
1488 
1489 	if (mmc) {
1490 		host = mmc_priv(mmc);
1491 
1492 		/* prevent new mmc_detect_change() calls */
1493 		if (host->pdata && host->pdata->exit)
1494 			host->pdata->exit(&spi->dev, mmc);
1495 
1496 		mmc_remove_host(mmc);
1497 
1498 		if (host->dma_dev) {
1499 			dma_unmap_single(host->dma_dev, host->ones_dma,
1500 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1501 			dma_unmap_single(host->dma_dev, host->data_dma,
1502 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1503 		}
1504 
1505 		kfree(host->data);
1506 		kfree(host->ones);
1507 
1508 		spi->max_speed_hz = mmc->f_max;
1509 		mmc_free_host(mmc);
1510 		mmc_spi_put_pdata(spi);
1511 		dev_set_drvdata(&spi->dev, NULL);
1512 	}
1513 	return 0;
1514 }
1515 
1516 
1517 static struct spi_driver mmc_spi_driver = {
1518 	.driver = {
1519 		.name =		"mmc_spi",
1520 		.bus =		&spi_bus_type,
1521 		.owner =	THIS_MODULE,
1522 	},
1523 	.probe =	mmc_spi_probe,
1524 	.remove =	__devexit_p(mmc_spi_remove),
1525 };
1526 
1527 
1528 static int __init mmc_spi_init(void)
1529 {
1530 	return spi_register_driver(&mmc_spi_driver);
1531 }
1532 module_init(mmc_spi_init);
1533 
1534 
1535 static void __exit mmc_spi_exit(void)
1536 {
1537 	spi_unregister_driver(&mmc_spi_driver);
1538 }
1539 module_exit(mmc_spi_exit);
1540 
1541 
1542 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1543 		"Hans-Peter Nilsson, Jan Nikitenko");
1544 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1545 MODULE_LICENSE("GPL");
1546