xref: /linux/drivers/mmc/host/mmc_spi.c (revision 9208c05f9fdfd927ea160b97dfef3c379049fff2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Access SD/MMC cards through SPI master controllers
4  *
5  * (C) Copyright 2005, Intec Automation,
6  *		Mike Lavender (mike@steroidmicros)
7  * (C) Copyright 2006-2007, David Brownell
8  * (C) Copyright 2007, Axis Communications,
9  *		Hans-Peter Nilsson (hp@axis.com)
10  * (C) Copyright 2007, ATRON electronic GmbH,
11  *		Jan Nikitenko <jan.nikitenko@gmail.com>
12  */
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/crc7.h>
19 #include <linux/crc-itu-t.h>
20 #include <linux/scatterlist.h>
21 
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
24 #include <linux/mmc/slot-gpio.h>
25 
26 #include <linux/spi/spi.h>
27 #include <linux/spi/mmc_spi.h>
28 
29 #include <linux/unaligned.h>
30 
31 
32 /* NOTES:
33  *
34  * - For now, we won't try to interoperate with a real mmc/sd/sdio
35  *   controller, although some of them do have hardware support for
36  *   SPI protocol.  The main reason for such configs would be mmc-ish
37  *   cards like DataFlash, which don't support that "native" protocol.
38  *
39  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
40  *   switch between driver stacks, and in any case if "native" mode
41  *   is available, it will be faster and hence preferable.
42  *
43  * - MMC depends on a different chipselect management policy than the
44  *   SPI interface currently supports for shared bus segments:  it needs
45  *   to issue multiple spi_message requests with the chipselect active,
46  *   using the results of one message to decide the next one to issue.
47  *
48  *   Pending updates to the programming interface, this driver expects
49  *   that it not share the bus with other drivers (precluding conflicts).
50  *
51  * - We tell the controller to keep the chipselect active from the
52  *   beginning of an mmc_host_ops.request until the end.  So beware
53  *   of SPI controller drivers that mis-handle the cs_change flag!
54  *
55  *   However, many cards seem OK with chipselect flapping up/down
56  *   during that time ... at least on unshared bus segments.
57  */
58 
59 
60 /*
61  * Local protocol constants, internal to data block protocols.
62  */
63 
64 /* Response tokens used to ack each block written: */
65 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
66 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
67 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
68 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
69 
70 /* Read and write blocks start with these tokens and end with crc;
71  * on error, read tokens act like a subset of R2_SPI_* values.
72  */
73 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
74 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
75 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
76 
77 #define MMC_SPI_BLOCKSIZE	512
78 
79 #define MMC_SPI_R1B_TIMEOUT_MS	3000
80 #define MMC_SPI_INIT_TIMEOUT_MS	3000
81 
82 /* One of the critical speed parameters is the amount of data which may
83  * be transferred in one command. If this value is too low, the SD card
84  * controller has to do multiple partial block writes (argggh!). With
85  * today (2008) SD cards there is little speed gain if we transfer more
86  * than 64 KBytes at a time. So use this value until there is any indication
87  * that we should do more here.
88  */
89 #define MMC_SPI_BLOCKSATONCE	128
90 
91 /****************************************************************************/
92 
93 /*
94  * Local Data Structures
95  */
96 
97 /* "scratch" is per-{command,block} data exchanged with the card */
98 struct scratch {
99 	u8			status[29];
100 	u8			data_token;
101 	__be16			crc_val;
102 };
103 
104 struct mmc_spi_host {
105 	struct mmc_host		*mmc;
106 	struct spi_device	*spi;
107 
108 	unsigned char		power_mode;
109 	u16			powerup_msecs;
110 
111 	struct mmc_spi_platform_data	*pdata;
112 
113 	/* for bulk data transfers */
114 	struct spi_transfer	token, t, crc, early_status;
115 	struct spi_message	m;
116 
117 	/* for status readback */
118 	struct spi_transfer	status;
119 	struct spi_message	readback;
120 
121 	/* buffer used for commands and for message "overhead" */
122 	struct scratch		*data;
123 
124 	/* Specs say to write ones most of the time, even when the card
125 	 * has no need to read its input data; and many cards won't care.
126 	 * This is our source of those ones.
127 	 */
128 	void			*ones;
129 };
130 
131 
132 /****************************************************************************/
133 
134 /*
135  * MMC-over-SPI protocol glue, used by the MMC stack interface
136  */
137 
138 static inline int mmc_cs_off(struct mmc_spi_host *host)
139 {
140 	/* chipselect will always be inactive after setup() */
141 	return spi_setup(host->spi);
142 }
143 
144 static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
145 {
146 	if (len > sizeof(*host->data)) {
147 		WARN_ON(1);
148 		return -EIO;
149 	}
150 
151 	host->status.len = len;
152 
153 	return spi_sync_locked(host->spi, &host->readback);
154 }
155 
156 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
157 			unsigned n, u8 byte)
158 {
159 	u8 *cp = host->data->status;
160 	unsigned long start = jiffies;
161 
162 	do {
163 		int		status;
164 		unsigned	i;
165 
166 		status = mmc_spi_readbytes(host, n);
167 		if (status < 0)
168 			return status;
169 
170 		for (i = 0; i < n; i++) {
171 			if (cp[i] != byte)
172 				return cp[i];
173 		}
174 
175 		/* If we need long timeouts, we may release the CPU */
176 		cond_resched();
177 	} while (time_is_after_jiffies(start + timeout));
178 	return -ETIMEDOUT;
179 }
180 
181 static inline int
182 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
183 {
184 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
185 }
186 
187 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
188 {
189 	return mmc_spi_skip(host, timeout, 1, 0xff);
190 }
191 
192 
193 /*
194  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
195  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
196  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
197  *
198  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
199  * newer cards R7 (IF_COND).
200  */
201 
202 static char *maptype(struct mmc_command *cmd)
203 {
204 	switch (mmc_spi_resp_type(cmd)) {
205 	case MMC_RSP_SPI_R1:	return "R1";
206 	case MMC_RSP_SPI_R1B:	return "R1B";
207 	case MMC_RSP_SPI_R2:	return "R2/R5";
208 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
209 	default:		return "?";
210 	}
211 }
212 
213 /* return zero, else negative errno after setting cmd->error */
214 static int mmc_spi_response_get(struct mmc_spi_host *host,
215 		struct mmc_command *cmd, int cs_on)
216 {
217 	unsigned long timeout_ms;
218 	u8	*cp = host->data->status;
219 	u8	*end = cp + host->t.len;
220 	int	value = 0;
221 	int	bitshift;
222 	u8 	leftover = 0;
223 	unsigned short rotator;
224 	int 	i;
225 
226 	/* Except for data block reads, the whole response will already
227 	 * be stored in the scratch buffer.  It's somewhere after the
228 	 * command and the first byte we read after it.  We ignore that
229 	 * first byte.  After STOP_TRANSMISSION command it may include
230 	 * two data bits, but otherwise it's all ones.
231 	 */
232 	cp += 8;
233 	while (cp < end && *cp == 0xff)
234 		cp++;
235 
236 	/* Data block reads (R1 response types) may need more data... */
237 	if (cp == end) {
238 		cp = host->data->status;
239 		end = cp+1;
240 
241 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
242 		 * status byte ... and we already scanned 2 bytes.
243 		 *
244 		 * REVISIT block read paths use nasty byte-at-a-time I/O
245 		 * so it can always DMA directly into the target buffer.
246 		 * It'd probably be better to memcpy() the first chunk and
247 		 * avoid extra i/o calls...
248 		 *
249 		 * Note we check for more than 8 bytes, because in practice,
250 		 * some SD cards are slow...
251 		 */
252 		for (i = 2; i < 16; i++) {
253 			value = mmc_spi_readbytes(host, 1);
254 			if (value < 0)
255 				goto done;
256 			if (*cp != 0xff)
257 				goto checkstatus;
258 		}
259 		value = -ETIMEDOUT;
260 		goto done;
261 	}
262 
263 checkstatus:
264 	bitshift = 0;
265 	if (*cp & 0x80)	{
266 		/* Houston, we have an ugly card with a bit-shifted response */
267 		rotator = *cp++ << 8;
268 		/* read the next byte */
269 		if (cp == end) {
270 			value = mmc_spi_readbytes(host, 1);
271 			if (value < 0)
272 				goto done;
273 			cp = host->data->status;
274 			end = cp+1;
275 		}
276 		rotator |= *cp++;
277 		while (rotator & 0x8000) {
278 			bitshift++;
279 			rotator <<= 1;
280 		}
281 		cmd->resp[0] = rotator >> 8;
282 		leftover = rotator;
283 	} else {
284 		cmd->resp[0] = *cp++;
285 	}
286 	cmd->error = 0;
287 
288 	/* Status byte: the entire seven-bit R1 response.  */
289 	if (cmd->resp[0] != 0) {
290 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
291 				& cmd->resp[0])
292 			value = -EFAULT; /* Bad address */
293 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
294 			value = -ENOSYS; /* Function not implemented */
295 		else if (R1_SPI_COM_CRC & cmd->resp[0])
296 			value = -EILSEQ; /* Illegal byte sequence */
297 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
298 				& cmd->resp[0])
299 			value = -EIO;    /* I/O error */
300 		/* else R1_SPI_IDLE, "it's resetting" */
301 	}
302 
303 	switch (mmc_spi_resp_type(cmd)) {
304 
305 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
306 	 * and less-common stuff like various erase operations.
307 	 */
308 	case MMC_RSP_SPI_R1B:
309 		/* maybe we read all the busy tokens already */
310 		while (cp < end && *cp == 0)
311 			cp++;
312 		if (cp == end) {
313 			timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
314 				MMC_SPI_R1B_TIMEOUT_MS;
315 			mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
316 		}
317 		break;
318 
319 	/* SPI R2 == R1 + second status byte; SEND_STATUS
320 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
321 	 */
322 	case MMC_RSP_SPI_R2:
323 		/* read the next byte */
324 		if (cp == end) {
325 			value = mmc_spi_readbytes(host, 1);
326 			if (value < 0)
327 				goto done;
328 			cp = host->data->status;
329 			end = cp+1;
330 		}
331 		if (bitshift) {
332 			rotator = leftover << 8;
333 			rotator |= *cp << bitshift;
334 			cmd->resp[0] |= (rotator & 0xFF00);
335 		} else {
336 			cmd->resp[0] |= *cp << 8;
337 		}
338 		break;
339 
340 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
341 	case MMC_RSP_SPI_R3:
342 		rotator = leftover << 8;
343 		cmd->resp[1] = 0;
344 		for (i = 0; i < 4; i++) {
345 			cmd->resp[1] <<= 8;
346 			/* read the next byte */
347 			if (cp == end) {
348 				value = mmc_spi_readbytes(host, 1);
349 				if (value < 0)
350 					goto done;
351 				cp = host->data->status;
352 				end = cp+1;
353 			}
354 			if (bitshift) {
355 				rotator |= *cp++ << bitshift;
356 				cmd->resp[1] |= (rotator >> 8);
357 				rotator <<= 8;
358 			} else {
359 				cmd->resp[1] |= *cp++;
360 			}
361 		}
362 		break;
363 
364 	/* SPI R1 == just one status byte */
365 	case MMC_RSP_SPI_R1:
366 		break;
367 
368 	default:
369 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
370 			mmc_spi_resp_type(cmd));
371 		if (value >= 0)
372 			value = -EINVAL;
373 		goto done;
374 	}
375 
376 	if (value < 0)
377 		dev_dbg(&host->spi->dev,
378 			"  ... CMD%d response SPI_%s: resp %04x %08x\n",
379 			cmd->opcode, maptype(cmd), cmd->resp[0], cmd->resp[1]);
380 
381 	/* disable chipselect on errors and some success cases */
382 	if (value >= 0 && cs_on)
383 		return value;
384 done:
385 	if (value < 0)
386 		cmd->error = value;
387 	mmc_cs_off(host);
388 	return value;
389 }
390 
391 /* Issue command and read its response.
392  * Returns zero on success, negative for error.
393  *
394  * On error, caller must cope with mmc core retry mechanism.  That
395  * means immediate low-level resubmit, which affects the bus lock...
396  */
397 static int
398 mmc_spi_command_send(struct mmc_spi_host *host,
399 		struct mmc_request *mrq,
400 		struct mmc_command *cmd, int cs_on)
401 {
402 	struct scratch		*data = host->data;
403 	u8			*cp = data->status;
404 	int			status;
405 	struct spi_transfer	*t;
406 
407 	/* We can handle most commands (except block reads) in one full
408 	 * duplex I/O operation before either starting the next transfer
409 	 * (data block or command) or else deselecting the card.
410 	 *
411 	 * First, write 7 bytes:
412 	 *  - an all-ones byte to ensure the card is ready
413 	 *  - opcode byte (plus start and transmission bits)
414 	 *  - four bytes of big-endian argument
415 	 *  - crc7 (plus end bit) ... always computed, it's cheap
416 	 *
417 	 * We init the whole buffer to all-ones, which is what we need
418 	 * to write while we're reading (later) response data.
419 	 */
420 	memset(cp, 0xff, sizeof(data->status));
421 
422 	cp[1] = 0x40 | cmd->opcode;
423 	put_unaligned_be32(cmd->arg, cp + 2);
424 	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
425 	cp += 7;
426 
427 	/* Then, read up to 13 bytes (while writing all-ones):
428 	 *  - N(CR) (== 1..8) bytes of all-ones
429 	 *  - status byte (for all response types)
430 	 *  - the rest of the response, either:
431 	 *      + nothing, for R1 or R1B responses
432 	 *	+ second status byte, for R2 responses
433 	 *	+ four data bytes, for R3 and R7 responses
434 	 *
435 	 * Finally, read some more bytes ... in the nice cases we know in
436 	 * advance how many, and reading 1 more is always OK:
437 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
438 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
439 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
440 	 *
441 	 * So in those cases one full duplex I/O of at most 21 bytes will
442 	 * handle the whole command, leaving the card ready to receive a
443 	 * data block or new command.  We do that whenever we can, shaving
444 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
445 	 *
446 	 * There are two other cases, where it's not generally practical
447 	 * to rely on a single I/O:
448 	 *
449 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
450 	 *
451 	 *    In this case we can *try* to fit it into one I/O, then
452 	 *    maybe read more data later.
453 	 *
454 	 *  - Data block reads are more troublesome, since a variable
455 	 *    number of padding bytes precede the token and data.
456 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
457 	 *      + N(AC) (== 1..many) bytes of all-ones
458 	 *
459 	 *    In this case we currently only have minimal speedups here:
460 	 *    when N(CR) == 1 we can avoid I/O in response_get().
461 	 */
462 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
463 		cp += 2;	/* min(N(CR)) + status */
464 		/* R1 */
465 	} else {
466 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
467 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
468 			cp++;
469 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
470 			cp += 4;
471 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
472 			cp = data->status + sizeof(data->status);
473 		/* else:  R1 (most commands) */
474 	}
475 
476 	dev_dbg(&host->spi->dev, "  CMD%d, resp %s\n",
477 		cmd->opcode, maptype(cmd));
478 
479 	/* send command, leaving chipselect active */
480 	spi_message_init(&host->m);
481 
482 	t = &host->t;
483 	memset(t, 0, sizeof(*t));
484 	t->tx_buf = t->rx_buf = data->status;
485 	t->len = cp - data->status;
486 	t->cs_change = 1;
487 	spi_message_add_tail(t, &host->m);
488 
489 	status = spi_sync_locked(host->spi, &host->m);
490 	if (status < 0) {
491 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
492 		cmd->error = status;
493 		return status;
494 	}
495 
496 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
497 	return mmc_spi_response_get(host, cmd, cs_on);
498 }
499 
500 /* Build data message with up to four separate transfers.  For TX, we
501  * start by writing the data token.  And in most cases, we finish with
502  * a status transfer.
503  *
504  * We always provide TX data for data and CRC.  The MMC/SD protocol
505  * requires us to write ones; but Linux defaults to writing zeroes;
506  * so we explicitly initialize it to all ones on RX paths.
507  */
508 static void
509 mmc_spi_setup_data_message(struct mmc_spi_host *host, bool multiple, bool write)
510 {
511 	struct spi_transfer	*t;
512 	struct scratch		*scratch = host->data;
513 
514 	spi_message_init(&host->m);
515 
516 	/* for reads, readblock() skips 0xff bytes before finding
517 	 * the token; for writes, this transfer issues that token.
518 	 */
519 	if (write) {
520 		t = &host->token;
521 		memset(t, 0, sizeof(*t));
522 		t->len = 1;
523 		if (multiple)
524 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
525 		else
526 			scratch->data_token = SPI_TOKEN_SINGLE;
527 		t->tx_buf = &scratch->data_token;
528 		spi_message_add_tail(t, &host->m);
529 	}
530 
531 	/* Body of transfer is buffer, then CRC ...
532 	 * either TX-only, or RX with TX-ones.
533 	 */
534 	t = &host->t;
535 	memset(t, 0, sizeof(*t));
536 	t->tx_buf = host->ones;
537 	/* length and actual buffer info are written later */
538 	spi_message_add_tail(t, &host->m);
539 
540 	t = &host->crc;
541 	memset(t, 0, sizeof(*t));
542 	t->len = 2;
543 	if (write) {
544 		/* the actual CRC may get written later */
545 		t->tx_buf = &scratch->crc_val;
546 	} else {
547 		t->tx_buf = host->ones;
548 		t->rx_buf = &scratch->crc_val;
549 	}
550 	spi_message_add_tail(t, &host->m);
551 
552 	/*
553 	 * A single block read is followed by N(EC) [0+] all-ones bytes
554 	 * before deselect ... don't bother.
555 	 *
556 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
557 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
558 	 * collect that single byte, so readblock() doesn't need to.
559 	 *
560 	 * For a write, the one-byte data response follows immediately, then
561 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
562 	 * Then single block reads may deselect, and multiblock ones issue
563 	 * the next token (next data block, or STOP_TRAN).  We can try to
564 	 * minimize I/O ops by using a single read to collect end-of-busy.
565 	 */
566 	if (multiple || write) {
567 		t = &host->early_status;
568 		memset(t, 0, sizeof(*t));
569 		t->len = write ? sizeof(scratch->status) : 1;
570 		t->tx_buf = host->ones;
571 		t->rx_buf = scratch->status;
572 		t->cs_change = 1;
573 		spi_message_add_tail(t, &host->m);
574 	}
575 }
576 
577 /*
578  * Write one block:
579  *  - caller handled preceding N(WR) [1+] all-ones bytes
580  *  - data block
581  *	+ token
582  *	+ data bytes
583  *	+ crc16
584  *  - an all-ones byte ... card writes a data-response byte
585  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
586  *
587  * Return negative errno, else success.
588  */
589 static int
590 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
591 	unsigned long timeout)
592 {
593 	struct spi_device	*spi = host->spi;
594 	int			status, i;
595 	struct scratch		*scratch = host->data;
596 	u32			pattern;
597 
598 	if (host->mmc->use_spi_crc)
599 		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
600 
601 	status = spi_sync_locked(spi, &host->m);
602 	if (status != 0) {
603 		dev_dbg(&spi->dev, "write error (%d)\n", status);
604 		return status;
605 	}
606 
607 	/*
608 	 * Get the transmission data-response reply.  It must follow
609 	 * immediately after the data block we transferred.  This reply
610 	 * doesn't necessarily tell whether the write operation succeeded;
611 	 * it just says if the transmission was ok and whether *earlier*
612 	 * writes succeeded; see the standard.
613 	 *
614 	 * In practice, there are (even modern SDHC-)cards which are late
615 	 * in sending the response, and miss the time frame by a few bits,
616 	 * so we have to cope with this situation and check the response
617 	 * bit-by-bit. Arggh!!!
618 	 */
619 	pattern = get_unaligned_be32(scratch->status);
620 
621 	/* First 3 bit of pattern are undefined */
622 	pattern |= 0xE0000000;
623 
624 	/* left-adjust to leading 0 bit */
625 	while (pattern & 0x80000000)
626 		pattern <<= 1;
627 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
628 	pattern >>= 27;
629 
630 	switch (pattern) {
631 	case SPI_RESPONSE_ACCEPTED:
632 		status = 0;
633 		break;
634 	case SPI_RESPONSE_CRC_ERR:
635 		/* host shall then issue MMC_STOP_TRANSMISSION */
636 		status = -EILSEQ;
637 		break;
638 	case SPI_RESPONSE_WRITE_ERR:
639 		/* host shall then issue MMC_STOP_TRANSMISSION,
640 		 * and should MMC_SEND_STATUS to sort it out
641 		 */
642 		status = -EIO;
643 		break;
644 	default:
645 		status = -EPROTO;
646 		break;
647 	}
648 	if (status != 0) {
649 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
650 			scratch->status[0], status);
651 		return status;
652 	}
653 
654 	t->tx_buf += t->len;
655 
656 	/* Return when not busy.  If we didn't collect that status yet,
657 	 * we'll need some more I/O.
658 	 */
659 	for (i = 4; i < sizeof(scratch->status); i++) {
660 		/* card is non-busy if the most recent bit is 1 */
661 		if (scratch->status[i] & 0x01)
662 			return 0;
663 	}
664 	return mmc_spi_wait_unbusy(host, timeout);
665 }
666 
667 /*
668  * Read one block:
669  *  - skip leading all-ones bytes ... either
670  *      + N(AC) [1..f(clock,CSD)] usually, else
671  *      + N(CX) [0..8] when reading CSD or CID
672  *  - data block
673  *	+ token ... if error token, no data or crc
674  *	+ data bytes
675  *	+ crc16
676  *
677  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
678  * before dropping chipselect.
679  *
680  * For multiblock reads, caller either reads the next block or issues a
681  * STOP_TRANSMISSION command.
682  */
683 static int
684 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
685 	unsigned long timeout)
686 {
687 	struct spi_device	*spi = host->spi;
688 	int			status;
689 	struct scratch		*scratch = host->data;
690 	unsigned int 		bitshift;
691 	u8			leftover;
692 
693 	/* At least one SD card sends an all-zeroes byte when N(CX)
694 	 * applies, before the all-ones bytes ... just cope with that.
695 	 */
696 	status = mmc_spi_readbytes(host, 1);
697 	if (status < 0)
698 		return status;
699 	status = scratch->status[0];
700 	if (status == 0xff || status == 0)
701 		status = mmc_spi_readtoken(host, timeout);
702 
703 	if (status < 0) {
704 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
705 		return status;
706 	}
707 
708 	/* The token may be bit-shifted...
709 	 * the first 0-bit precedes the data stream.
710 	 */
711 	bitshift = 7;
712 	while (status & 0x80) {
713 		status <<= 1;
714 		bitshift--;
715 	}
716 	leftover = status << 1;
717 
718 	status = spi_sync_locked(spi, &host->m);
719 	if (status < 0) {
720 		dev_dbg(&spi->dev, "read error %d\n", status);
721 		return status;
722 	}
723 
724 	if (bitshift) {
725 		/* Walk through the data and the crc and do
726 		 * all the magic to get byte-aligned data.
727 		 */
728 		u8 *cp = t->rx_buf;
729 		unsigned int len;
730 		unsigned int bitright = 8 - bitshift;
731 		u8 temp;
732 		for (len = t->len; len; len--) {
733 			temp = *cp;
734 			*cp++ = leftover | (temp >> bitshift);
735 			leftover = temp << bitright;
736 		}
737 		cp = (u8 *) &scratch->crc_val;
738 		temp = *cp;
739 		*cp++ = leftover | (temp >> bitshift);
740 		leftover = temp << bitright;
741 		temp = *cp;
742 		*cp = leftover | (temp >> bitshift);
743 	}
744 
745 	if (host->mmc->use_spi_crc) {
746 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
747 
748 		be16_to_cpus(&scratch->crc_val);
749 		if (scratch->crc_val != crc) {
750 			dev_dbg(&spi->dev,
751 				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
752 				scratch->crc_val, crc, t->len);
753 			return -EILSEQ;
754 		}
755 	}
756 
757 	t->rx_buf += t->len;
758 
759 	return 0;
760 }
761 
762 /*
763  * An MMC/SD data stage includes one or more blocks, optional CRCs,
764  * and inline handshaking.  That handhaking makes it unlike most
765  * other SPI protocol stacks.
766  */
767 static void
768 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
769 		struct mmc_data *data, u32 blk_size)
770 {
771 	struct spi_device	*spi = host->spi;
772 	struct spi_transfer	*t;
773 	struct scatterlist	*sg;
774 	unsigned		n_sg;
775 	bool			multiple = (data->blocks > 1);
776 	bool			write = (data->flags & MMC_DATA_WRITE);
777 	const char		*write_or_read = write ? "write" : "read";
778 	u32			clock_rate;
779 	unsigned long		timeout;
780 
781 	mmc_spi_setup_data_message(host, multiple, write);
782 	t = &host->t;
783 
784 	if (t->speed_hz)
785 		clock_rate = t->speed_hz;
786 	else
787 		clock_rate = spi->max_speed_hz;
788 
789 	timeout = data->timeout_ns / 1000 +
790 		  data->timeout_clks * 1000000 / clock_rate;
791 	timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
792 
793 	/* Handle scatterlist segments one at a time, with synch for
794 	 * each 512-byte block
795 	 */
796 	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
797 		int			status = 0;
798 		void			*kmap_addr;
799 		unsigned		length = sg->length;
800 
801 		/* allow pio too; we don't allow highmem */
802 		kmap_addr = kmap(sg_page(sg));
803 		if (write)
804 			t->tx_buf = kmap_addr + sg->offset;
805 		else
806 			t->rx_buf = kmap_addr + sg->offset;
807 
808 		/* transfer each block, and update request status */
809 		while (length) {
810 			t->len = min(length, blk_size);
811 
812 			dev_dbg(&spi->dev, "    %s block, %d bytes\n", write_or_read, t->len);
813 
814 			if (write)
815 				status = mmc_spi_writeblock(host, t, timeout);
816 			else
817 				status = mmc_spi_readblock(host, t, timeout);
818 			if (status < 0)
819 				break;
820 
821 			data->bytes_xfered += t->len;
822 			length -= t->len;
823 
824 			if (!multiple)
825 				break;
826 		}
827 
828 		/* discard mappings */
829 		if (write)
830 			/* nothing to do */;
831 		else
832 			flush_dcache_page(sg_page(sg));
833 		kunmap(sg_page(sg));
834 
835 		if (status < 0) {
836 			data->error = status;
837 			dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
838 			break;
839 		}
840 	}
841 
842 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
843 	 * can be issued before multiblock writes.  Unlike its more widely
844 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
845 	 * that can affect the STOP_TRAN logic.   Complete (and current)
846 	 * MMC specs should sort that out before Linux starts using CMD23.
847 	 */
848 	if (write && multiple) {
849 		struct scratch	*scratch = host->data;
850 		int		tmp;
851 		const unsigned	statlen = sizeof(scratch->status);
852 
853 		dev_dbg(&spi->dev, "    STOP_TRAN\n");
854 
855 		/* Tweak the per-block message we set up earlier by morphing
856 		 * it to hold single buffer with the token followed by some
857 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
858 		 * "not busy any longer" status, and leave chip selected.
859 		 */
860 		INIT_LIST_HEAD(&host->m.transfers);
861 		list_add(&host->early_status.transfer_list,
862 				&host->m.transfers);
863 
864 		memset(scratch->status, 0xff, statlen);
865 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
866 
867 		host->early_status.tx_buf = host->early_status.rx_buf;
868 		host->early_status.len = statlen;
869 
870 		tmp = spi_sync_locked(spi, &host->m);
871 		if (tmp < 0) {
872 			if (!data->error)
873 				data->error = tmp;
874 			return;
875 		}
876 
877 		/* Ideally we collected "not busy" status with one I/O,
878 		 * avoiding wasteful byte-at-a-time scanning... but more
879 		 * I/O is often needed.
880 		 */
881 		for (tmp = 2; tmp < statlen; tmp++) {
882 			if (scratch->status[tmp] != 0)
883 				return;
884 		}
885 		tmp = mmc_spi_wait_unbusy(host, timeout);
886 		if (tmp < 0 && !data->error)
887 			data->error = tmp;
888 	}
889 }
890 
891 /****************************************************************************/
892 
893 /*
894  * MMC driver implementation -- the interface to the MMC stack
895  */
896 
897 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
898 {
899 	struct mmc_spi_host	*host = mmc_priv(mmc);
900 	int			status = -EINVAL;
901 	int			crc_retry = 5;
902 	struct mmc_command	stop;
903 
904 #ifdef DEBUG
905 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
906 	{
907 		struct mmc_command	*cmd;
908 		int			invalid = 0;
909 
910 		cmd = mrq->cmd;
911 		if (!mmc_spi_resp_type(cmd)) {
912 			dev_dbg(&host->spi->dev, "bogus command\n");
913 			cmd->error = -EINVAL;
914 			invalid = 1;
915 		}
916 
917 		cmd = mrq->stop;
918 		if (cmd && !mmc_spi_resp_type(cmd)) {
919 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
920 			cmd->error = -EINVAL;
921 			invalid = 1;
922 		}
923 
924 		if (invalid) {
925 			dump_stack();
926 			mmc_request_done(host->mmc, mrq);
927 			return;
928 		}
929 	}
930 #endif
931 
932 	/* request exclusive bus access */
933 	spi_bus_lock(host->spi->controller);
934 
935 crc_recover:
936 	/* issue command; then optionally data and stop */
937 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
938 	if (status == 0 && mrq->data) {
939 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
940 
941 		/*
942 		 * The SPI bus is not always reliable for large data transfers.
943 		 * If an occasional crc error is reported by the SD device with
944 		 * data read/write over SPI, it may be recovered by repeating
945 		 * the last SD command again. The retry count is set to 5 to
946 		 * ensure the driver passes stress tests.
947 		 */
948 		if (mrq->data->error == -EILSEQ && crc_retry) {
949 			stop.opcode = MMC_STOP_TRANSMISSION;
950 			stop.arg = 0;
951 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
952 			status = mmc_spi_command_send(host, mrq, &stop, 0);
953 			crc_retry--;
954 			mrq->data->error = 0;
955 			goto crc_recover;
956 		}
957 
958 		if (mrq->stop)
959 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
960 		else
961 			mmc_cs_off(host);
962 	}
963 
964 	/* release the bus */
965 	spi_bus_unlock(host->spi->controller);
966 
967 	mmc_request_done(host->mmc, mrq);
968 }
969 
970 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
971  *
972  * NOTE that here we can't know that the card has just been powered up;
973  * not all MMC/SD sockets support power switching.
974  *
975  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
976  * this doesn't seem to do the right thing at all...
977  */
978 static void mmc_spi_initsequence(struct mmc_spi_host *host)
979 {
980 	/* Try to be very sure any previous command has completed;
981 	 * wait till not-busy, skip debris from any old commands.
982 	 */
983 	mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
984 	mmc_spi_readbytes(host, 10);
985 
986 	/*
987 	 * Do a burst with chipselect active-high.  We need to do this to
988 	 * meet the requirement of 74 clock cycles with both chipselect
989 	 * and CMD (MOSI) high before CMD0 ... after the card has been
990 	 * powered up to Vdd(min), and so is ready to take commands.
991 	 *
992 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
993 	 * while most others don't seem to care.
994 	 *
995 	 * Note that this is one of the places MMC/SD plays games with the
996 	 * SPI protocol.  Another is that when chipselect is released while
997 	 * the card returns BUSY status, the clock must issue several cycles
998 	 * with chipselect high before the card will stop driving its output.
999 	 *
1000 	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1001 	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1002 	 * inverted by gpiolib, so if we want to ascertain to drive it high
1003 	 * we should toggle the default with an XOR as we do here.
1004 	 */
1005 	host->spi->mode ^= SPI_CS_HIGH;
1006 	if (spi_setup(host->spi) != 0) {
1007 		/* Just warn; most cards work without it. */
1008 		dev_warn(&host->spi->dev,
1009 				"can't change chip-select polarity\n");
1010 		host->spi->mode ^= SPI_CS_HIGH;
1011 	} else {
1012 		mmc_spi_readbytes(host, 18);
1013 
1014 		host->spi->mode ^= SPI_CS_HIGH;
1015 		if (spi_setup(host->spi) != 0) {
1016 			/* Wot, we can't get the same setup we had before? */
1017 			dev_err(&host->spi->dev,
1018 					"can't restore chip-select polarity\n");
1019 		}
1020 	}
1021 }
1022 
1023 static char *mmc_powerstring(u8 power_mode)
1024 {
1025 	switch (power_mode) {
1026 	case MMC_POWER_OFF: return "off";
1027 	case MMC_POWER_UP:  return "up";
1028 	case MMC_POWER_ON:  return "on";
1029 	}
1030 	return "?";
1031 }
1032 
1033 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1034 {
1035 	struct mmc_spi_host *host = mmc_priv(mmc);
1036 
1037 	if (host->power_mode != ios->power_mode) {
1038 		int		canpower;
1039 
1040 		canpower = host->pdata && host->pdata->setpower;
1041 
1042 		dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1043 				mmc_powerstring(ios->power_mode),
1044 				ios->vdd,
1045 				canpower ? ", can switch" : "");
1046 
1047 		/* switch power on/off if possible, accounting for
1048 		 * max 250msec powerup time if needed.
1049 		 */
1050 		if (canpower) {
1051 			switch (ios->power_mode) {
1052 			case MMC_POWER_OFF:
1053 			case MMC_POWER_UP:
1054 				host->pdata->setpower(&host->spi->dev,
1055 						ios->vdd);
1056 				if (ios->power_mode == MMC_POWER_UP)
1057 					msleep(host->powerup_msecs);
1058 			}
1059 		}
1060 
1061 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1062 		if (ios->power_mode == MMC_POWER_ON)
1063 			mmc_spi_initsequence(host);
1064 
1065 		/* If powering down, ground all card inputs to avoid power
1066 		 * delivery from data lines!  On a shared SPI bus, this
1067 		 * will probably be temporary; 6.4.2 of the simplified SD
1068 		 * spec says this must last at least 1msec.
1069 		 *
1070 		 *   - Clock low means CPOL 0, e.g. mode 0
1071 		 *   - MOSI low comes from writing zero
1072 		 *   - Chipselect is usually active low...
1073 		 */
1074 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1075 			int mres;
1076 			u8 nullbyte = 0;
1077 
1078 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1079 			mres = spi_setup(host->spi);
1080 			if (mres < 0)
1081 				dev_dbg(&host->spi->dev,
1082 					"switch to SPI mode 0 failed\n");
1083 
1084 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1085 				dev_dbg(&host->spi->dev,
1086 					"put spi signals to low failed\n");
1087 
1088 			/*
1089 			 * Now clock should be low due to spi mode 0;
1090 			 * MOSI should be low because of written 0x00;
1091 			 * chipselect should be low (it is active low)
1092 			 * power supply is off, so now MMC is off too!
1093 			 *
1094 			 * FIXME no, chipselect can be high since the
1095 			 * device is inactive and SPI_CS_HIGH is clear...
1096 			 */
1097 			msleep(10);
1098 			if (mres == 0) {
1099 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1100 				mres = spi_setup(host->spi);
1101 				if (mres < 0)
1102 					dev_dbg(&host->spi->dev,
1103 						"switch back to SPI mode 3 failed\n");
1104 			}
1105 		}
1106 
1107 		host->power_mode = ios->power_mode;
1108 	}
1109 
1110 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1111 		int		status;
1112 
1113 		host->spi->max_speed_hz = ios->clock;
1114 		status = spi_setup(host->spi);
1115 		dev_dbg(&host->spi->dev, "  clock to %d Hz, %d\n",
1116 			host->spi->max_speed_hz, status);
1117 	}
1118 }
1119 
1120 static const struct mmc_host_ops mmc_spi_ops = {
1121 	.request	= mmc_spi_request,
1122 	.set_ios	= mmc_spi_set_ios,
1123 	.get_ro		= mmc_gpio_get_ro,
1124 	.get_cd		= mmc_gpio_get_cd,
1125 };
1126 
1127 
1128 /****************************************************************************/
1129 
1130 /*
1131  * SPI driver implementation
1132  */
1133 
1134 static irqreturn_t
1135 mmc_spi_detect_irq(int irq, void *mmc)
1136 {
1137 	struct mmc_spi_host *host = mmc_priv(mmc);
1138 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1139 
1140 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1141 	return IRQ_HANDLED;
1142 }
1143 
1144 static int mmc_spi_probe(struct spi_device *spi)
1145 {
1146 	void			*ones;
1147 	struct mmc_host		*mmc;
1148 	struct mmc_spi_host	*host;
1149 	int			status;
1150 	bool			has_ro = false;
1151 
1152 	/* We rely on full duplex transfers, mostly to reduce
1153 	 * per-transfer overheads (by making fewer transfers).
1154 	 */
1155 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
1156 		return -EINVAL;
1157 
1158 	/* MMC and SD specs only seem to care that sampling is on the
1159 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1160 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1161 	 * which is appropriate for hotplugging, unless the platform data
1162 	 * specify mode 3 (if hardware is not compatible to mode 0).
1163 	 */
1164 	if (spi->mode != SPI_MODE_3)
1165 		spi->mode = SPI_MODE_0;
1166 	spi->bits_per_word = 8;
1167 
1168 	status = spi_setup(spi);
1169 	if (status < 0) {
1170 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1171 				spi->mode, spi->max_speed_hz / 1000,
1172 				status);
1173 		return status;
1174 	}
1175 
1176 	/* We need a supply of ones to transmit.  This is the only time
1177 	 * the CPU touches these, so cache coherency isn't a concern.
1178 	 *
1179 	 * NOTE if many systems use more than one MMC-over-SPI connector
1180 	 * it'd save some memory to share this.  That's evidently rare.
1181 	 */
1182 	status = -ENOMEM;
1183 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1184 	if (!ones)
1185 		goto nomem;
1186 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1187 
1188 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1189 	if (!mmc)
1190 		goto nomem;
1191 
1192 	mmc->ops = &mmc_spi_ops;
1193 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1194 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1195 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1196 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1197 
1198 	mmc->caps = MMC_CAP_SPI;
1199 
1200 	/* SPI doesn't need the lowspeed device identification thing for
1201 	 * MMC or SD cards, since it never comes up in open drain mode.
1202 	 * That's good; some SPI masters can't handle very low speeds!
1203 	 *
1204 	 * However, low speed SDIO cards need not handle over 400 KHz;
1205 	 * that's the only reason not to use a few MHz for f_min (until
1206 	 * the upper layer reads the target frequency from the CSD).
1207 	 */
1208 	if (spi->controller->min_speed_hz > 400000)
1209 		dev_warn(&spi->dev,"Controller unable to reduce bus clock to 400 KHz\n");
1210 
1211 	mmc->f_min = max(spi->controller->min_speed_hz, 400000);
1212 	mmc->f_max = spi->max_speed_hz;
1213 
1214 	host = mmc_priv(mmc);
1215 	host->mmc = mmc;
1216 	host->spi = spi;
1217 
1218 	host->ones = ones;
1219 
1220 	dev_set_drvdata(&spi->dev, mmc);
1221 
1222 	/* Platform data is used to hook up things like card sensing
1223 	 * and power switching gpios.
1224 	 */
1225 	host->pdata = mmc_spi_get_pdata(spi);
1226 	if (host->pdata)
1227 		mmc->ocr_avail = host->pdata->ocr_mask;
1228 	if (!mmc->ocr_avail) {
1229 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1230 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1231 	}
1232 	if (host->pdata && host->pdata->setpower) {
1233 		host->powerup_msecs = host->pdata->powerup_msecs;
1234 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1235 			host->powerup_msecs = 250;
1236 	}
1237 
1238 	/* Preallocate buffers */
1239 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1240 	if (!host->data)
1241 		goto fail_nobuf1;
1242 
1243 	/* setup message for status/busy readback */
1244 	spi_message_init(&host->readback);
1245 
1246 	spi_message_add_tail(&host->status, &host->readback);
1247 	host->status.tx_buf = host->ones;
1248 	host->status.rx_buf = &host->data->status;
1249 	host->status.cs_change = 1;
1250 
1251 	/* register card detect irq */
1252 	if (host->pdata && host->pdata->init) {
1253 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1254 		if (status != 0)
1255 			goto fail_glue_init;
1256 	}
1257 
1258 	/* pass platform capabilities, if any */
1259 	if (host->pdata) {
1260 		mmc->caps |= host->pdata->caps;
1261 		mmc->caps2 |= host->pdata->caps2;
1262 	}
1263 
1264 	status = mmc_add_host(mmc);
1265 	if (status != 0)
1266 		goto fail_glue_init;
1267 
1268 	/*
1269 	 * Index 0 is card detect
1270 	 * Old boardfiles were specifying 1 ms as debounce
1271 	 */
1272 	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1273 	if (status == -EPROBE_DEFER)
1274 		goto fail_gpiod_request;
1275 	if (!status) {
1276 		/*
1277 		 * The platform has a CD GPIO signal that may support
1278 		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1279 		 * if polling is needed or not.
1280 		 */
1281 		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1282 		mmc_gpiod_request_cd_irq(mmc);
1283 	}
1284 	mmc_detect_change(mmc, 0);
1285 
1286 	/* Index 1 is write protect/read only */
1287 	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1288 	if (status == -EPROBE_DEFER)
1289 		goto fail_gpiod_request;
1290 	if (!status)
1291 		has_ro = true;
1292 
1293 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1294 			dev_name(&mmc->class_dev),
1295 			has_ro ? "" : ", no WP",
1296 			(host->pdata && host->pdata->setpower)
1297 				? "" : ", no poweroff",
1298 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1299 				? ", cd polling" : "");
1300 	return 0;
1301 
1302 fail_gpiod_request:
1303 	mmc_remove_host(mmc);
1304 fail_glue_init:
1305 	kfree(host->data);
1306 fail_nobuf1:
1307 	mmc_spi_put_pdata(spi);
1308 	mmc_free_host(mmc);
1309 nomem:
1310 	kfree(ones);
1311 	return status;
1312 }
1313 
1314 
1315 static void mmc_spi_remove(struct spi_device *spi)
1316 {
1317 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1318 	struct mmc_spi_host	*host = mmc_priv(mmc);
1319 
1320 	/* prevent new mmc_detect_change() calls */
1321 	if (host->pdata && host->pdata->exit)
1322 		host->pdata->exit(&spi->dev, mmc);
1323 
1324 	mmc_remove_host(mmc);
1325 
1326 	kfree(host->data);
1327 	kfree(host->ones);
1328 
1329 	spi->max_speed_hz = mmc->f_max;
1330 	mmc_spi_put_pdata(spi);
1331 	mmc_free_host(mmc);
1332 }
1333 
1334 static const struct spi_device_id mmc_spi_dev_ids[] = {
1335 	{ "mmc-spi-slot"},
1336 	{ },
1337 };
1338 MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1339 
1340 static const struct of_device_id mmc_spi_of_match_table[] = {
1341 	{ .compatible = "mmc-spi-slot", },
1342 	{},
1343 };
1344 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1345 
1346 static struct spi_driver mmc_spi_driver = {
1347 	.driver = {
1348 		.name =		"mmc_spi",
1349 		.of_match_table = mmc_spi_of_match_table,
1350 	},
1351 	.id_table =	mmc_spi_dev_ids,
1352 	.probe =	mmc_spi_probe,
1353 	.remove =	mmc_spi_remove,
1354 };
1355 
1356 module_spi_driver(mmc_spi_driver);
1357 
1358 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1359 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1360 MODULE_LICENSE("GPL");
1361 MODULE_ALIAS("spi:mmc_spi");
1362