1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Access SD/MMC cards through SPI master controllers 4 * 5 * (C) Copyright 2005, Intec Automation, 6 * Mike Lavender (mike@steroidmicros) 7 * (C) Copyright 2006-2007, David Brownell 8 * (C) Copyright 2007, Axis Communications, 9 * Hans-Peter Nilsson (hp@axis.com) 10 * (C) Copyright 2007, ATRON electronic GmbH, 11 * Jan Nikitenko <jan.nikitenko@gmail.com> 12 */ 13 #include <linux/sched.h> 14 #include <linux/delay.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/crc7.h> 20 #include <linux/crc-itu-t.h> 21 #include <linux/scatterlist.h> 22 23 #include <linux/mmc/host.h> 24 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 25 #include <linux/mmc/slot-gpio.h> 26 27 #include <linux/spi/spi.h> 28 #include <linux/spi/mmc_spi.h> 29 30 #include <asm/unaligned.h> 31 32 33 /* NOTES: 34 * 35 * - For now, we won't try to interoperate with a real mmc/sd/sdio 36 * controller, although some of them do have hardware support for 37 * SPI protocol. The main reason for such configs would be mmc-ish 38 * cards like DataFlash, which don't support that "native" protocol. 39 * 40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 41 * switch between driver stacks, and in any case if "native" mode 42 * is available, it will be faster and hence preferable. 43 * 44 * - MMC depends on a different chipselect management policy than the 45 * SPI interface currently supports for shared bus segments: it needs 46 * to issue multiple spi_message requests with the chipselect active, 47 * using the results of one message to decide the next one to issue. 48 * 49 * Pending updates to the programming interface, this driver expects 50 * that it not share the bus with other drivers (precluding conflicts). 51 * 52 * - We tell the controller to keep the chipselect active from the 53 * beginning of an mmc_host_ops.request until the end. So beware 54 * of SPI controller drivers that mis-handle the cs_change flag! 55 * 56 * However, many cards seem OK with chipselect flapping up/down 57 * during that time ... at least on unshared bus segments. 58 */ 59 60 61 /* 62 * Local protocol constants, internal to data block protocols. 63 */ 64 65 /* Response tokens used to ack each block written: */ 66 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 67 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 68 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 69 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 70 71 /* Read and write blocks start with these tokens and end with crc; 72 * on error, read tokens act like a subset of R2_SPI_* values. 73 */ 74 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 75 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 76 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 77 78 #define MMC_SPI_BLOCKSIZE 512 79 80 #define MMC_SPI_R1B_TIMEOUT_MS 3000 81 #define MMC_SPI_INIT_TIMEOUT_MS 3000 82 83 /* One of the critical speed parameters is the amount of data which may 84 * be transferred in one command. If this value is too low, the SD card 85 * controller has to do multiple partial block writes (argggh!). With 86 * today (2008) SD cards there is little speed gain if we transfer more 87 * than 64 KBytes at a time. So use this value until there is any indication 88 * that we should do more here. 89 */ 90 #define MMC_SPI_BLOCKSATONCE 128 91 92 /****************************************************************************/ 93 94 /* 95 * Local Data Structures 96 */ 97 98 /* "scratch" is per-{command,block} data exchanged with the card */ 99 struct scratch { 100 u8 status[29]; 101 u8 data_token; 102 __be16 crc_val; 103 }; 104 105 struct mmc_spi_host { 106 struct mmc_host *mmc; 107 struct spi_device *spi; 108 109 unsigned char power_mode; 110 u16 powerup_msecs; 111 112 struct mmc_spi_platform_data *pdata; 113 114 /* for bulk data transfers */ 115 struct spi_transfer token, t, crc, early_status; 116 struct spi_message m; 117 118 /* for status readback */ 119 struct spi_transfer status; 120 struct spi_message readback; 121 122 /* underlying DMA-aware controller, or null */ 123 struct device *dma_dev; 124 125 /* buffer used for commands and for message "overhead" */ 126 struct scratch *data; 127 dma_addr_t data_dma; 128 129 /* Specs say to write ones most of the time, even when the card 130 * has no need to read its input data; and many cards won't care. 131 * This is our source of those ones. 132 */ 133 void *ones; 134 dma_addr_t ones_dma; 135 }; 136 137 138 /****************************************************************************/ 139 140 /* 141 * MMC-over-SPI protocol glue, used by the MMC stack interface 142 */ 143 144 static inline int mmc_cs_off(struct mmc_spi_host *host) 145 { 146 /* chipselect will always be inactive after setup() */ 147 return spi_setup(host->spi); 148 } 149 150 static int 151 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 152 { 153 int status; 154 155 if (len > sizeof(*host->data)) { 156 WARN_ON(1); 157 return -EIO; 158 } 159 160 host->status.len = len; 161 162 if (host->dma_dev) 163 dma_sync_single_for_device(host->dma_dev, 164 host->data_dma, sizeof(*host->data), 165 DMA_FROM_DEVICE); 166 167 status = spi_sync_locked(host->spi, &host->readback); 168 169 if (host->dma_dev) 170 dma_sync_single_for_cpu(host->dma_dev, 171 host->data_dma, sizeof(*host->data), 172 DMA_FROM_DEVICE); 173 174 return status; 175 } 176 177 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 178 unsigned n, u8 byte) 179 { 180 u8 *cp = host->data->status; 181 unsigned long start = jiffies; 182 183 while (1) { 184 int status; 185 unsigned i; 186 187 status = mmc_spi_readbytes(host, n); 188 if (status < 0) 189 return status; 190 191 for (i = 0; i < n; i++) { 192 if (cp[i] != byte) 193 return cp[i]; 194 } 195 196 if (time_is_before_jiffies(start + timeout)) 197 break; 198 199 /* If we need long timeouts, we may release the CPU. 200 * We use jiffies here because we want to have a relation 201 * between elapsed time and the blocking of the scheduler. 202 */ 203 if (time_is_before_jiffies(start + 1)) 204 schedule(); 205 } 206 return -ETIMEDOUT; 207 } 208 209 static inline int 210 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 211 { 212 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 213 } 214 215 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 216 { 217 return mmc_spi_skip(host, timeout, 1, 0xff); 218 } 219 220 221 /* 222 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 223 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 224 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 225 * 226 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 227 * newer cards R7 (IF_COND). 228 */ 229 230 static char *maptype(struct mmc_command *cmd) 231 { 232 switch (mmc_spi_resp_type(cmd)) { 233 case MMC_RSP_SPI_R1: return "R1"; 234 case MMC_RSP_SPI_R1B: return "R1B"; 235 case MMC_RSP_SPI_R2: return "R2/R5"; 236 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 237 default: return "?"; 238 } 239 } 240 241 /* return zero, else negative errno after setting cmd->error */ 242 static int mmc_spi_response_get(struct mmc_spi_host *host, 243 struct mmc_command *cmd, int cs_on) 244 { 245 unsigned long timeout_ms; 246 u8 *cp = host->data->status; 247 u8 *end = cp + host->t.len; 248 int value = 0; 249 int bitshift; 250 u8 leftover = 0; 251 unsigned short rotator; 252 int i; 253 char tag[32]; 254 255 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 256 cmd->opcode, maptype(cmd)); 257 258 /* Except for data block reads, the whole response will already 259 * be stored in the scratch buffer. It's somewhere after the 260 * command and the first byte we read after it. We ignore that 261 * first byte. After STOP_TRANSMISSION command it may include 262 * two data bits, but otherwise it's all ones. 263 */ 264 cp += 8; 265 while (cp < end && *cp == 0xff) 266 cp++; 267 268 /* Data block reads (R1 response types) may need more data... */ 269 if (cp == end) { 270 cp = host->data->status; 271 end = cp+1; 272 273 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 274 * status byte ... and we already scanned 2 bytes. 275 * 276 * REVISIT block read paths use nasty byte-at-a-time I/O 277 * so it can always DMA directly into the target buffer. 278 * It'd probably be better to memcpy() the first chunk and 279 * avoid extra i/o calls... 280 * 281 * Note we check for more than 8 bytes, because in practice, 282 * some SD cards are slow... 283 */ 284 for (i = 2; i < 16; i++) { 285 value = mmc_spi_readbytes(host, 1); 286 if (value < 0) 287 goto done; 288 if (*cp != 0xff) 289 goto checkstatus; 290 } 291 value = -ETIMEDOUT; 292 goto done; 293 } 294 295 checkstatus: 296 bitshift = 0; 297 if (*cp & 0x80) { 298 /* Houston, we have an ugly card with a bit-shifted response */ 299 rotator = *cp++ << 8; 300 /* read the next byte */ 301 if (cp == end) { 302 value = mmc_spi_readbytes(host, 1); 303 if (value < 0) 304 goto done; 305 cp = host->data->status; 306 end = cp+1; 307 } 308 rotator |= *cp++; 309 while (rotator & 0x8000) { 310 bitshift++; 311 rotator <<= 1; 312 } 313 cmd->resp[0] = rotator >> 8; 314 leftover = rotator; 315 } else { 316 cmd->resp[0] = *cp++; 317 } 318 cmd->error = 0; 319 320 /* Status byte: the entire seven-bit R1 response. */ 321 if (cmd->resp[0] != 0) { 322 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS) 323 & cmd->resp[0]) 324 value = -EFAULT; /* Bad address */ 325 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0]) 326 value = -ENOSYS; /* Function not implemented */ 327 else if (R1_SPI_COM_CRC & cmd->resp[0]) 328 value = -EILSEQ; /* Illegal byte sequence */ 329 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 330 & cmd->resp[0]) 331 value = -EIO; /* I/O error */ 332 /* else R1_SPI_IDLE, "it's resetting" */ 333 } 334 335 switch (mmc_spi_resp_type(cmd)) { 336 337 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 338 * and less-common stuff like various erase operations. 339 */ 340 case MMC_RSP_SPI_R1B: 341 /* maybe we read all the busy tokens already */ 342 while (cp < end && *cp == 0) 343 cp++; 344 if (cp == end) { 345 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout : 346 MMC_SPI_R1B_TIMEOUT_MS; 347 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms)); 348 } 349 break; 350 351 /* SPI R2 == R1 + second status byte; SEND_STATUS 352 * SPI R5 == R1 + data byte; IO_RW_DIRECT 353 */ 354 case MMC_RSP_SPI_R2: 355 /* read the next byte */ 356 if (cp == end) { 357 value = mmc_spi_readbytes(host, 1); 358 if (value < 0) 359 goto done; 360 cp = host->data->status; 361 end = cp+1; 362 } 363 if (bitshift) { 364 rotator = leftover << 8; 365 rotator |= *cp << bitshift; 366 cmd->resp[0] |= (rotator & 0xFF00); 367 } else { 368 cmd->resp[0] |= *cp << 8; 369 } 370 break; 371 372 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 373 case MMC_RSP_SPI_R3: 374 rotator = leftover << 8; 375 cmd->resp[1] = 0; 376 for (i = 0; i < 4; i++) { 377 cmd->resp[1] <<= 8; 378 /* read the next byte */ 379 if (cp == end) { 380 value = mmc_spi_readbytes(host, 1); 381 if (value < 0) 382 goto done; 383 cp = host->data->status; 384 end = cp+1; 385 } 386 if (bitshift) { 387 rotator |= *cp++ << bitshift; 388 cmd->resp[1] |= (rotator >> 8); 389 rotator <<= 8; 390 } else { 391 cmd->resp[1] |= *cp++; 392 } 393 } 394 break; 395 396 /* SPI R1 == just one status byte */ 397 case MMC_RSP_SPI_R1: 398 break; 399 400 default: 401 dev_dbg(&host->spi->dev, "bad response type %04x\n", 402 mmc_spi_resp_type(cmd)); 403 if (value >= 0) 404 value = -EINVAL; 405 goto done; 406 } 407 408 if (value < 0) 409 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 410 tag, cmd->resp[0], cmd->resp[1]); 411 412 /* disable chipselect on errors and some success cases */ 413 if (value >= 0 && cs_on) 414 return value; 415 done: 416 if (value < 0) 417 cmd->error = value; 418 mmc_cs_off(host); 419 return value; 420 } 421 422 /* Issue command and read its response. 423 * Returns zero on success, negative for error. 424 * 425 * On error, caller must cope with mmc core retry mechanism. That 426 * means immediate low-level resubmit, which affects the bus lock... 427 */ 428 static int 429 mmc_spi_command_send(struct mmc_spi_host *host, 430 struct mmc_request *mrq, 431 struct mmc_command *cmd, int cs_on) 432 { 433 struct scratch *data = host->data; 434 u8 *cp = data->status; 435 int status; 436 struct spi_transfer *t; 437 438 /* We can handle most commands (except block reads) in one full 439 * duplex I/O operation before either starting the next transfer 440 * (data block or command) or else deselecting the card. 441 * 442 * First, write 7 bytes: 443 * - an all-ones byte to ensure the card is ready 444 * - opcode byte (plus start and transmission bits) 445 * - four bytes of big-endian argument 446 * - crc7 (plus end bit) ... always computed, it's cheap 447 * 448 * We init the whole buffer to all-ones, which is what we need 449 * to write while we're reading (later) response data. 450 */ 451 memset(cp, 0xff, sizeof(data->status)); 452 453 cp[1] = 0x40 | cmd->opcode; 454 put_unaligned_be32(cmd->arg, cp + 2); 455 cp[6] = crc7_be(0, cp + 1, 5) | 0x01; 456 cp += 7; 457 458 /* Then, read up to 13 bytes (while writing all-ones): 459 * - N(CR) (== 1..8) bytes of all-ones 460 * - status byte (for all response types) 461 * - the rest of the response, either: 462 * + nothing, for R1 or R1B responses 463 * + second status byte, for R2 responses 464 * + four data bytes, for R3 and R7 responses 465 * 466 * Finally, read some more bytes ... in the nice cases we know in 467 * advance how many, and reading 1 more is always OK: 468 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 469 * - N(RC) (== 1..N) bytes of all-ones, before next command 470 * - N(WR) (== 1..N) bytes of all-ones, before data write 471 * 472 * So in those cases one full duplex I/O of at most 21 bytes will 473 * handle the whole command, leaving the card ready to receive a 474 * data block or new command. We do that whenever we can, shaving 475 * CPU and IRQ costs (especially when using DMA or FIFOs). 476 * 477 * There are two other cases, where it's not generally practical 478 * to rely on a single I/O: 479 * 480 * - R1B responses need at least N(EC) bytes of all-zeroes. 481 * 482 * In this case we can *try* to fit it into one I/O, then 483 * maybe read more data later. 484 * 485 * - Data block reads are more troublesome, since a variable 486 * number of padding bytes precede the token and data. 487 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 488 * + N(AC) (== 1..many) bytes of all-ones 489 * 490 * In this case we currently only have minimal speedups here: 491 * when N(CR) == 1 we can avoid I/O in response_get(). 492 */ 493 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 494 cp += 2; /* min(N(CR)) + status */ 495 /* R1 */ 496 } else { 497 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 498 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 499 cp++; 500 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 501 cp += 4; 502 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 503 cp = data->status + sizeof(data->status); 504 /* else: R1 (most commands) */ 505 } 506 507 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n", 508 cmd->opcode, maptype(cmd)); 509 510 /* send command, leaving chipselect active */ 511 spi_message_init(&host->m); 512 513 t = &host->t; 514 memset(t, 0, sizeof(*t)); 515 t->tx_buf = t->rx_buf = data->status; 516 t->tx_dma = t->rx_dma = host->data_dma; 517 t->len = cp - data->status; 518 t->cs_change = 1; 519 spi_message_add_tail(t, &host->m); 520 521 if (host->dma_dev) { 522 host->m.is_dma_mapped = 1; 523 dma_sync_single_for_device(host->dma_dev, 524 host->data_dma, sizeof(*host->data), 525 DMA_BIDIRECTIONAL); 526 } 527 status = spi_sync_locked(host->spi, &host->m); 528 529 if (host->dma_dev) 530 dma_sync_single_for_cpu(host->dma_dev, 531 host->data_dma, sizeof(*host->data), 532 DMA_BIDIRECTIONAL); 533 if (status < 0) { 534 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 535 cmd->error = status; 536 return status; 537 } 538 539 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 540 return mmc_spi_response_get(host, cmd, cs_on); 541 } 542 543 /* Build data message with up to four separate transfers. For TX, we 544 * start by writing the data token. And in most cases, we finish with 545 * a status transfer. 546 * 547 * We always provide TX data for data and CRC. The MMC/SD protocol 548 * requires us to write ones; but Linux defaults to writing zeroes; 549 * so we explicitly initialize it to all ones on RX paths. 550 * 551 * We also handle DMA mapping, so the underlying SPI controller does 552 * not need to (re)do it for each message. 553 */ 554 static void 555 mmc_spi_setup_data_message( 556 struct mmc_spi_host *host, 557 int multiple, 558 enum dma_data_direction direction) 559 { 560 struct spi_transfer *t; 561 struct scratch *scratch = host->data; 562 dma_addr_t dma = host->data_dma; 563 564 spi_message_init(&host->m); 565 if (dma) 566 host->m.is_dma_mapped = 1; 567 568 /* for reads, readblock() skips 0xff bytes before finding 569 * the token; for writes, this transfer issues that token. 570 */ 571 if (direction == DMA_TO_DEVICE) { 572 t = &host->token; 573 memset(t, 0, sizeof(*t)); 574 t->len = 1; 575 if (multiple) 576 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 577 else 578 scratch->data_token = SPI_TOKEN_SINGLE; 579 t->tx_buf = &scratch->data_token; 580 if (dma) 581 t->tx_dma = dma + offsetof(struct scratch, data_token); 582 spi_message_add_tail(t, &host->m); 583 } 584 585 /* Body of transfer is buffer, then CRC ... 586 * either TX-only, or RX with TX-ones. 587 */ 588 t = &host->t; 589 memset(t, 0, sizeof(*t)); 590 t->tx_buf = host->ones; 591 t->tx_dma = host->ones_dma; 592 /* length and actual buffer info are written later */ 593 spi_message_add_tail(t, &host->m); 594 595 t = &host->crc; 596 memset(t, 0, sizeof(*t)); 597 t->len = 2; 598 if (direction == DMA_TO_DEVICE) { 599 /* the actual CRC may get written later */ 600 t->tx_buf = &scratch->crc_val; 601 if (dma) 602 t->tx_dma = dma + offsetof(struct scratch, crc_val); 603 } else { 604 t->tx_buf = host->ones; 605 t->tx_dma = host->ones_dma; 606 t->rx_buf = &scratch->crc_val; 607 if (dma) 608 t->rx_dma = dma + offsetof(struct scratch, crc_val); 609 } 610 spi_message_add_tail(t, &host->m); 611 612 /* 613 * A single block read is followed by N(EC) [0+] all-ones bytes 614 * before deselect ... don't bother. 615 * 616 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 617 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 618 * collect that single byte, so readblock() doesn't need to. 619 * 620 * For a write, the one-byte data response follows immediately, then 621 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 622 * Then single block reads may deselect, and multiblock ones issue 623 * the next token (next data block, or STOP_TRAN). We can try to 624 * minimize I/O ops by using a single read to collect end-of-busy. 625 */ 626 if (multiple || direction == DMA_TO_DEVICE) { 627 t = &host->early_status; 628 memset(t, 0, sizeof(*t)); 629 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1; 630 t->tx_buf = host->ones; 631 t->tx_dma = host->ones_dma; 632 t->rx_buf = scratch->status; 633 if (dma) 634 t->rx_dma = dma + offsetof(struct scratch, status); 635 t->cs_change = 1; 636 spi_message_add_tail(t, &host->m); 637 } 638 } 639 640 /* 641 * Write one block: 642 * - caller handled preceding N(WR) [1+] all-ones bytes 643 * - data block 644 * + token 645 * + data bytes 646 * + crc16 647 * - an all-ones byte ... card writes a data-response byte 648 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 649 * 650 * Return negative errno, else success. 651 */ 652 static int 653 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 654 unsigned long timeout) 655 { 656 struct spi_device *spi = host->spi; 657 int status, i; 658 struct scratch *scratch = host->data; 659 u32 pattern; 660 661 if (host->mmc->use_spi_crc) 662 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len)); 663 if (host->dma_dev) 664 dma_sync_single_for_device(host->dma_dev, 665 host->data_dma, sizeof(*scratch), 666 DMA_BIDIRECTIONAL); 667 668 status = spi_sync_locked(spi, &host->m); 669 670 if (status != 0) { 671 dev_dbg(&spi->dev, "write error (%d)\n", status); 672 return status; 673 } 674 675 if (host->dma_dev) 676 dma_sync_single_for_cpu(host->dma_dev, 677 host->data_dma, sizeof(*scratch), 678 DMA_BIDIRECTIONAL); 679 680 /* 681 * Get the transmission data-response reply. It must follow 682 * immediately after the data block we transferred. This reply 683 * doesn't necessarily tell whether the write operation succeeded; 684 * it just says if the transmission was ok and whether *earlier* 685 * writes succeeded; see the standard. 686 * 687 * In practice, there are (even modern SDHC-)cards which are late 688 * in sending the response, and miss the time frame by a few bits, 689 * so we have to cope with this situation and check the response 690 * bit-by-bit. Arggh!!! 691 */ 692 pattern = get_unaligned_be32(scratch->status); 693 694 /* First 3 bit of pattern are undefined */ 695 pattern |= 0xE0000000; 696 697 /* left-adjust to leading 0 bit */ 698 while (pattern & 0x80000000) 699 pattern <<= 1; 700 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 701 pattern >>= 27; 702 703 switch (pattern) { 704 case SPI_RESPONSE_ACCEPTED: 705 status = 0; 706 break; 707 case SPI_RESPONSE_CRC_ERR: 708 /* host shall then issue MMC_STOP_TRANSMISSION */ 709 status = -EILSEQ; 710 break; 711 case SPI_RESPONSE_WRITE_ERR: 712 /* host shall then issue MMC_STOP_TRANSMISSION, 713 * and should MMC_SEND_STATUS to sort it out 714 */ 715 status = -EIO; 716 break; 717 default: 718 status = -EPROTO; 719 break; 720 } 721 if (status != 0) { 722 dev_dbg(&spi->dev, "write error %02x (%d)\n", 723 scratch->status[0], status); 724 return status; 725 } 726 727 t->tx_buf += t->len; 728 if (host->dma_dev) 729 t->tx_dma += t->len; 730 731 /* Return when not busy. If we didn't collect that status yet, 732 * we'll need some more I/O. 733 */ 734 for (i = 4; i < sizeof(scratch->status); i++) { 735 /* card is non-busy if the most recent bit is 1 */ 736 if (scratch->status[i] & 0x01) 737 return 0; 738 } 739 return mmc_spi_wait_unbusy(host, timeout); 740 } 741 742 /* 743 * Read one block: 744 * - skip leading all-ones bytes ... either 745 * + N(AC) [1..f(clock,CSD)] usually, else 746 * + N(CX) [0..8] when reading CSD or CID 747 * - data block 748 * + token ... if error token, no data or crc 749 * + data bytes 750 * + crc16 751 * 752 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 753 * before dropping chipselect. 754 * 755 * For multiblock reads, caller either reads the next block or issues a 756 * STOP_TRANSMISSION command. 757 */ 758 static int 759 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 760 unsigned long timeout) 761 { 762 struct spi_device *spi = host->spi; 763 int status; 764 struct scratch *scratch = host->data; 765 unsigned int bitshift; 766 u8 leftover; 767 768 /* At least one SD card sends an all-zeroes byte when N(CX) 769 * applies, before the all-ones bytes ... just cope with that. 770 */ 771 status = mmc_spi_readbytes(host, 1); 772 if (status < 0) 773 return status; 774 status = scratch->status[0]; 775 if (status == 0xff || status == 0) 776 status = mmc_spi_readtoken(host, timeout); 777 778 if (status < 0) { 779 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 780 return status; 781 } 782 783 /* The token may be bit-shifted... 784 * the first 0-bit precedes the data stream. 785 */ 786 bitshift = 7; 787 while (status & 0x80) { 788 status <<= 1; 789 bitshift--; 790 } 791 leftover = status << 1; 792 793 if (host->dma_dev) { 794 dma_sync_single_for_device(host->dma_dev, 795 host->data_dma, sizeof(*scratch), 796 DMA_BIDIRECTIONAL); 797 dma_sync_single_for_device(host->dma_dev, 798 t->rx_dma, t->len, 799 DMA_FROM_DEVICE); 800 } 801 802 status = spi_sync_locked(spi, &host->m); 803 if (status < 0) { 804 dev_dbg(&spi->dev, "read error %d\n", status); 805 return status; 806 } 807 808 if (host->dma_dev) { 809 dma_sync_single_for_cpu(host->dma_dev, 810 host->data_dma, sizeof(*scratch), 811 DMA_BIDIRECTIONAL); 812 dma_sync_single_for_cpu(host->dma_dev, 813 t->rx_dma, t->len, 814 DMA_FROM_DEVICE); 815 } 816 817 if (bitshift) { 818 /* Walk through the data and the crc and do 819 * all the magic to get byte-aligned data. 820 */ 821 u8 *cp = t->rx_buf; 822 unsigned int len; 823 unsigned int bitright = 8 - bitshift; 824 u8 temp; 825 for (len = t->len; len; len--) { 826 temp = *cp; 827 *cp++ = leftover | (temp >> bitshift); 828 leftover = temp << bitright; 829 } 830 cp = (u8 *) &scratch->crc_val; 831 temp = *cp; 832 *cp++ = leftover | (temp >> bitshift); 833 leftover = temp << bitright; 834 temp = *cp; 835 *cp = leftover | (temp >> bitshift); 836 } 837 838 if (host->mmc->use_spi_crc) { 839 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 840 841 be16_to_cpus(&scratch->crc_val); 842 if (scratch->crc_val != crc) { 843 dev_dbg(&spi->dev, 844 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n", 845 scratch->crc_val, crc, t->len); 846 return -EILSEQ; 847 } 848 } 849 850 t->rx_buf += t->len; 851 if (host->dma_dev) 852 t->rx_dma += t->len; 853 854 return 0; 855 } 856 857 /* 858 * An MMC/SD data stage includes one or more blocks, optional CRCs, 859 * and inline handshaking. That handhaking makes it unlike most 860 * other SPI protocol stacks. 861 */ 862 static void 863 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 864 struct mmc_data *data, u32 blk_size) 865 { 866 struct spi_device *spi = host->spi; 867 struct device *dma_dev = host->dma_dev; 868 struct spi_transfer *t; 869 enum dma_data_direction direction; 870 struct scatterlist *sg; 871 unsigned n_sg; 872 int multiple = (data->blocks > 1); 873 u32 clock_rate; 874 unsigned long timeout; 875 876 direction = mmc_get_dma_dir(data); 877 mmc_spi_setup_data_message(host, multiple, direction); 878 t = &host->t; 879 880 if (t->speed_hz) 881 clock_rate = t->speed_hz; 882 else 883 clock_rate = spi->max_speed_hz; 884 885 timeout = data->timeout_ns / 1000 + 886 data->timeout_clks * 1000000 / clock_rate; 887 timeout = usecs_to_jiffies((unsigned int)timeout) + 1; 888 889 /* Handle scatterlist segments one at a time, with synch for 890 * each 512-byte block 891 */ 892 for_each_sg(data->sg, sg, data->sg_len, n_sg) { 893 int status = 0; 894 dma_addr_t dma_addr = 0; 895 void *kmap_addr; 896 unsigned length = sg->length; 897 enum dma_data_direction dir = direction; 898 899 /* set up dma mapping for controller drivers that might 900 * use DMA ... though they may fall back to PIO 901 */ 902 if (dma_dev) { 903 /* never invalidate whole *shared* pages ... */ 904 if ((sg->offset != 0 || length != PAGE_SIZE) 905 && dir == DMA_FROM_DEVICE) 906 dir = DMA_BIDIRECTIONAL; 907 908 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, 909 PAGE_SIZE, dir); 910 if (dma_mapping_error(dma_dev, dma_addr)) { 911 data->error = -EFAULT; 912 break; 913 } 914 if (direction == DMA_TO_DEVICE) 915 t->tx_dma = dma_addr + sg->offset; 916 else 917 t->rx_dma = dma_addr + sg->offset; 918 } 919 920 /* allow pio too; we don't allow highmem */ 921 kmap_addr = kmap(sg_page(sg)); 922 if (direction == DMA_TO_DEVICE) 923 t->tx_buf = kmap_addr + sg->offset; 924 else 925 t->rx_buf = kmap_addr + sg->offset; 926 927 /* transfer each block, and update request status */ 928 while (length) { 929 t->len = min(length, blk_size); 930 931 dev_dbg(&host->spi->dev, " %s block, %d bytes\n", 932 (direction == DMA_TO_DEVICE) ? "write" : "read", 933 t->len); 934 935 if (direction == DMA_TO_DEVICE) 936 status = mmc_spi_writeblock(host, t, timeout); 937 else 938 status = mmc_spi_readblock(host, t, timeout); 939 if (status < 0) 940 break; 941 942 data->bytes_xfered += t->len; 943 length -= t->len; 944 945 if (!multiple) 946 break; 947 } 948 949 /* discard mappings */ 950 if (direction == DMA_FROM_DEVICE) 951 flush_kernel_dcache_page(sg_page(sg)); 952 kunmap(sg_page(sg)); 953 if (dma_dev) 954 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 955 956 if (status < 0) { 957 data->error = status; 958 dev_dbg(&spi->dev, "%s status %d\n", 959 (direction == DMA_TO_DEVICE) ? "write" : "read", 960 status); 961 break; 962 } 963 } 964 965 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 966 * can be issued before multiblock writes. Unlike its more widely 967 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 968 * that can affect the STOP_TRAN logic. Complete (and current) 969 * MMC specs should sort that out before Linux starts using CMD23. 970 */ 971 if (direction == DMA_TO_DEVICE && multiple) { 972 struct scratch *scratch = host->data; 973 int tmp; 974 const unsigned statlen = sizeof(scratch->status); 975 976 dev_dbg(&spi->dev, " STOP_TRAN\n"); 977 978 /* Tweak the per-block message we set up earlier by morphing 979 * it to hold single buffer with the token followed by some 980 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 981 * "not busy any longer" status, and leave chip selected. 982 */ 983 INIT_LIST_HEAD(&host->m.transfers); 984 list_add(&host->early_status.transfer_list, 985 &host->m.transfers); 986 987 memset(scratch->status, 0xff, statlen); 988 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 989 990 host->early_status.tx_buf = host->early_status.rx_buf; 991 host->early_status.tx_dma = host->early_status.rx_dma; 992 host->early_status.len = statlen; 993 994 if (host->dma_dev) 995 dma_sync_single_for_device(host->dma_dev, 996 host->data_dma, sizeof(*scratch), 997 DMA_BIDIRECTIONAL); 998 999 tmp = spi_sync_locked(spi, &host->m); 1000 1001 if (host->dma_dev) 1002 dma_sync_single_for_cpu(host->dma_dev, 1003 host->data_dma, sizeof(*scratch), 1004 DMA_BIDIRECTIONAL); 1005 1006 if (tmp < 0) { 1007 if (!data->error) 1008 data->error = tmp; 1009 return; 1010 } 1011 1012 /* Ideally we collected "not busy" status with one I/O, 1013 * avoiding wasteful byte-at-a-time scanning... but more 1014 * I/O is often needed. 1015 */ 1016 for (tmp = 2; tmp < statlen; tmp++) { 1017 if (scratch->status[tmp] != 0) 1018 return; 1019 } 1020 tmp = mmc_spi_wait_unbusy(host, timeout); 1021 if (tmp < 0 && !data->error) 1022 data->error = tmp; 1023 } 1024 } 1025 1026 /****************************************************************************/ 1027 1028 /* 1029 * MMC driver implementation -- the interface to the MMC stack 1030 */ 1031 1032 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 1033 { 1034 struct mmc_spi_host *host = mmc_priv(mmc); 1035 int status = -EINVAL; 1036 int crc_retry = 5; 1037 struct mmc_command stop; 1038 1039 #ifdef DEBUG 1040 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 1041 { 1042 struct mmc_command *cmd; 1043 int invalid = 0; 1044 1045 cmd = mrq->cmd; 1046 if (!mmc_spi_resp_type(cmd)) { 1047 dev_dbg(&host->spi->dev, "bogus command\n"); 1048 cmd->error = -EINVAL; 1049 invalid = 1; 1050 } 1051 1052 cmd = mrq->stop; 1053 if (cmd && !mmc_spi_resp_type(cmd)) { 1054 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 1055 cmd->error = -EINVAL; 1056 invalid = 1; 1057 } 1058 1059 if (invalid) { 1060 dump_stack(); 1061 mmc_request_done(host->mmc, mrq); 1062 return; 1063 } 1064 } 1065 #endif 1066 1067 /* request exclusive bus access */ 1068 spi_bus_lock(host->spi->master); 1069 1070 crc_recover: 1071 /* issue command; then optionally data and stop */ 1072 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 1073 if (status == 0 && mrq->data) { 1074 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 1075 1076 /* 1077 * The SPI bus is not always reliable for large data transfers. 1078 * If an occasional crc error is reported by the SD device with 1079 * data read/write over SPI, it may be recovered by repeating 1080 * the last SD command again. The retry count is set to 5 to 1081 * ensure the driver passes stress tests. 1082 */ 1083 if (mrq->data->error == -EILSEQ && crc_retry) { 1084 stop.opcode = MMC_STOP_TRANSMISSION; 1085 stop.arg = 0; 1086 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1087 status = mmc_spi_command_send(host, mrq, &stop, 0); 1088 crc_retry--; 1089 mrq->data->error = 0; 1090 goto crc_recover; 1091 } 1092 1093 if (mrq->stop) 1094 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 1095 else 1096 mmc_cs_off(host); 1097 } 1098 1099 /* release the bus */ 1100 spi_bus_unlock(host->spi->master); 1101 1102 mmc_request_done(host->mmc, mrq); 1103 } 1104 1105 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 1106 * 1107 * NOTE that here we can't know that the card has just been powered up; 1108 * not all MMC/SD sockets support power switching. 1109 * 1110 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 1111 * this doesn't seem to do the right thing at all... 1112 */ 1113 static void mmc_spi_initsequence(struct mmc_spi_host *host) 1114 { 1115 /* Try to be very sure any previous command has completed; 1116 * wait till not-busy, skip debris from any old commands. 1117 */ 1118 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS)); 1119 mmc_spi_readbytes(host, 10); 1120 1121 /* 1122 * Do a burst with chipselect active-high. We need to do this to 1123 * meet the requirement of 74 clock cycles with both chipselect 1124 * and CMD (MOSI) high before CMD0 ... after the card has been 1125 * powered up to Vdd(min), and so is ready to take commands. 1126 * 1127 * Some cards are particularly needy of this (e.g. Viking "SD256") 1128 * while most others don't seem to care. 1129 * 1130 * Note that this is one of the places MMC/SD plays games with the 1131 * SPI protocol. Another is that when chipselect is released while 1132 * the card returns BUSY status, the clock must issue several cycles 1133 * with chipselect high before the card will stop driving its output. 1134 * 1135 * SPI_CS_HIGH means "asserted" here. In some cases like when using 1136 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically 1137 * inverted by gpiolib, so if we want to ascertain to drive it high 1138 * we should toggle the default with an XOR as we do here. 1139 */ 1140 host->spi->mode ^= SPI_CS_HIGH; 1141 if (spi_setup(host->spi) != 0) { 1142 /* Just warn; most cards work without it. */ 1143 dev_warn(&host->spi->dev, 1144 "can't change chip-select polarity\n"); 1145 host->spi->mode ^= SPI_CS_HIGH; 1146 } else { 1147 mmc_spi_readbytes(host, 18); 1148 1149 host->spi->mode ^= SPI_CS_HIGH; 1150 if (spi_setup(host->spi) != 0) { 1151 /* Wot, we can't get the same setup we had before? */ 1152 dev_err(&host->spi->dev, 1153 "can't restore chip-select polarity\n"); 1154 } 1155 } 1156 } 1157 1158 static char *mmc_powerstring(u8 power_mode) 1159 { 1160 switch (power_mode) { 1161 case MMC_POWER_OFF: return "off"; 1162 case MMC_POWER_UP: return "up"; 1163 case MMC_POWER_ON: return "on"; 1164 } 1165 return "?"; 1166 } 1167 1168 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1169 { 1170 struct mmc_spi_host *host = mmc_priv(mmc); 1171 1172 if (host->power_mode != ios->power_mode) { 1173 int canpower; 1174 1175 canpower = host->pdata && host->pdata->setpower; 1176 1177 dev_dbg(&host->spi->dev, "power %s (%d)%s\n", 1178 mmc_powerstring(ios->power_mode), 1179 ios->vdd, 1180 canpower ? ", can switch" : ""); 1181 1182 /* switch power on/off if possible, accounting for 1183 * max 250msec powerup time if needed. 1184 */ 1185 if (canpower) { 1186 switch (ios->power_mode) { 1187 case MMC_POWER_OFF: 1188 case MMC_POWER_UP: 1189 host->pdata->setpower(&host->spi->dev, 1190 ios->vdd); 1191 if (ios->power_mode == MMC_POWER_UP) 1192 msleep(host->powerup_msecs); 1193 } 1194 } 1195 1196 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1197 if (ios->power_mode == MMC_POWER_ON) 1198 mmc_spi_initsequence(host); 1199 1200 /* If powering down, ground all card inputs to avoid power 1201 * delivery from data lines! On a shared SPI bus, this 1202 * will probably be temporary; 6.4.2 of the simplified SD 1203 * spec says this must last at least 1msec. 1204 * 1205 * - Clock low means CPOL 0, e.g. mode 0 1206 * - MOSI low comes from writing zero 1207 * - Chipselect is usually active low... 1208 */ 1209 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1210 int mres; 1211 u8 nullbyte = 0; 1212 1213 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1214 mres = spi_setup(host->spi); 1215 if (mres < 0) 1216 dev_dbg(&host->spi->dev, 1217 "switch to SPI mode 0 failed\n"); 1218 1219 if (spi_write(host->spi, &nullbyte, 1) < 0) 1220 dev_dbg(&host->spi->dev, 1221 "put spi signals to low failed\n"); 1222 1223 /* 1224 * Now clock should be low due to spi mode 0; 1225 * MOSI should be low because of written 0x00; 1226 * chipselect should be low (it is active low) 1227 * power supply is off, so now MMC is off too! 1228 * 1229 * FIXME no, chipselect can be high since the 1230 * device is inactive and SPI_CS_HIGH is clear... 1231 */ 1232 msleep(10); 1233 if (mres == 0) { 1234 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1235 mres = spi_setup(host->spi); 1236 if (mres < 0) 1237 dev_dbg(&host->spi->dev, 1238 "switch back to SPI mode 3 failed\n"); 1239 } 1240 } 1241 1242 host->power_mode = ios->power_mode; 1243 } 1244 1245 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1246 int status; 1247 1248 host->spi->max_speed_hz = ios->clock; 1249 status = spi_setup(host->spi); 1250 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n", 1251 host->spi->max_speed_hz, status); 1252 } 1253 } 1254 1255 static const struct mmc_host_ops mmc_spi_ops = { 1256 .request = mmc_spi_request, 1257 .set_ios = mmc_spi_set_ios, 1258 .get_ro = mmc_gpio_get_ro, 1259 .get_cd = mmc_gpio_get_cd, 1260 }; 1261 1262 1263 /****************************************************************************/ 1264 1265 /* 1266 * SPI driver implementation 1267 */ 1268 1269 static irqreturn_t 1270 mmc_spi_detect_irq(int irq, void *mmc) 1271 { 1272 struct mmc_spi_host *host = mmc_priv(mmc); 1273 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1274 1275 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1276 return IRQ_HANDLED; 1277 } 1278 1279 #ifdef CONFIG_HAS_DMA 1280 static int mmc_spi_dma_alloc(struct mmc_spi_host *host) 1281 { 1282 struct spi_device *spi = host->spi; 1283 struct device *dev; 1284 1285 if (!spi->master->dev.parent->dma_mask) 1286 return 0; 1287 1288 dev = spi->master->dev.parent; 1289 1290 host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE, 1291 DMA_TO_DEVICE); 1292 if (dma_mapping_error(dev, host->ones_dma)) 1293 return -ENOMEM; 1294 1295 host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data), 1296 DMA_BIDIRECTIONAL); 1297 if (dma_mapping_error(dev, host->data_dma)) { 1298 dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE, 1299 DMA_TO_DEVICE); 1300 return -ENOMEM; 1301 } 1302 1303 dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data), 1304 DMA_BIDIRECTIONAL); 1305 1306 host->dma_dev = dev; 1307 return 0; 1308 } 1309 1310 static void mmc_spi_dma_free(struct mmc_spi_host *host) 1311 { 1312 if (!host->dma_dev) 1313 return; 1314 1315 dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE, 1316 DMA_TO_DEVICE); 1317 dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data), 1318 DMA_BIDIRECTIONAL); 1319 } 1320 #else 1321 static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; } 1322 static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {} 1323 #endif 1324 1325 static int mmc_spi_probe(struct spi_device *spi) 1326 { 1327 void *ones; 1328 struct mmc_host *mmc; 1329 struct mmc_spi_host *host; 1330 int status; 1331 bool has_ro = false; 1332 1333 /* We rely on full duplex transfers, mostly to reduce 1334 * per-transfer overheads (by making fewer transfers). 1335 */ 1336 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) 1337 return -EINVAL; 1338 1339 /* MMC and SD specs only seem to care that sampling is on the 1340 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1341 * should be legit. We'll use mode 0 since the steady state is 0, 1342 * which is appropriate for hotplugging, unless the platform data 1343 * specify mode 3 (if hardware is not compatible to mode 0). 1344 */ 1345 if (spi->mode != SPI_MODE_3) 1346 spi->mode = SPI_MODE_0; 1347 spi->bits_per_word = 8; 1348 1349 status = spi_setup(spi); 1350 if (status < 0) { 1351 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1352 spi->mode, spi->max_speed_hz / 1000, 1353 status); 1354 return status; 1355 } 1356 1357 /* We need a supply of ones to transmit. This is the only time 1358 * the CPU touches these, so cache coherency isn't a concern. 1359 * 1360 * NOTE if many systems use more than one MMC-over-SPI connector 1361 * it'd save some memory to share this. That's evidently rare. 1362 */ 1363 status = -ENOMEM; 1364 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1365 if (!ones) 1366 goto nomem; 1367 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1368 1369 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1370 if (!mmc) 1371 goto nomem; 1372 1373 mmc->ops = &mmc_spi_ops; 1374 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1375 mmc->max_segs = MMC_SPI_BLOCKSATONCE; 1376 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE; 1377 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE; 1378 1379 mmc->caps = MMC_CAP_SPI; 1380 1381 /* SPI doesn't need the lowspeed device identification thing for 1382 * MMC or SD cards, since it never comes up in open drain mode. 1383 * That's good; some SPI masters can't handle very low speeds! 1384 * 1385 * However, low speed SDIO cards need not handle over 400 KHz; 1386 * that's the only reason not to use a few MHz for f_min (until 1387 * the upper layer reads the target frequency from the CSD). 1388 */ 1389 mmc->f_min = 400000; 1390 mmc->f_max = spi->max_speed_hz; 1391 1392 host = mmc_priv(mmc); 1393 host->mmc = mmc; 1394 host->spi = spi; 1395 1396 host->ones = ones; 1397 1398 dev_set_drvdata(&spi->dev, mmc); 1399 1400 /* Platform data is used to hook up things like card sensing 1401 * and power switching gpios. 1402 */ 1403 host->pdata = mmc_spi_get_pdata(spi); 1404 if (host->pdata) 1405 mmc->ocr_avail = host->pdata->ocr_mask; 1406 if (!mmc->ocr_avail) { 1407 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1408 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1409 } 1410 if (host->pdata && host->pdata->setpower) { 1411 host->powerup_msecs = host->pdata->powerup_msecs; 1412 if (!host->powerup_msecs || host->powerup_msecs > 250) 1413 host->powerup_msecs = 250; 1414 } 1415 1416 /* preallocate dma buffers */ 1417 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1418 if (!host->data) 1419 goto fail_nobuf1; 1420 1421 status = mmc_spi_dma_alloc(host); 1422 if (status) 1423 goto fail_dma; 1424 1425 /* setup message for status/busy readback */ 1426 spi_message_init(&host->readback); 1427 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1428 1429 spi_message_add_tail(&host->status, &host->readback); 1430 host->status.tx_buf = host->ones; 1431 host->status.tx_dma = host->ones_dma; 1432 host->status.rx_buf = &host->data->status; 1433 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1434 host->status.cs_change = 1; 1435 1436 /* register card detect irq */ 1437 if (host->pdata && host->pdata->init) { 1438 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1439 if (status != 0) 1440 goto fail_glue_init; 1441 } 1442 1443 /* pass platform capabilities, if any */ 1444 if (host->pdata) { 1445 mmc->caps |= host->pdata->caps; 1446 mmc->caps2 |= host->pdata->caps2; 1447 } 1448 1449 status = mmc_add_host(mmc); 1450 if (status != 0) 1451 goto fail_add_host; 1452 1453 /* 1454 * Index 0 is card detect 1455 * Old boardfiles were specifying 1 ms as debounce 1456 */ 1457 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000); 1458 if (status == -EPROBE_DEFER) 1459 goto fail_add_host; 1460 if (!status) { 1461 /* 1462 * The platform has a CD GPIO signal that may support 1463 * interrupts, so let mmc_gpiod_request_cd_irq() decide 1464 * if polling is needed or not. 1465 */ 1466 mmc->caps &= ~MMC_CAP_NEEDS_POLL; 1467 mmc_gpiod_request_cd_irq(mmc); 1468 } 1469 mmc_detect_change(mmc, 0); 1470 1471 /* Index 1 is write protect/read only */ 1472 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0); 1473 if (status == -EPROBE_DEFER) 1474 goto fail_add_host; 1475 if (!status) 1476 has_ro = true; 1477 1478 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n", 1479 dev_name(&mmc->class_dev), 1480 host->dma_dev ? "" : ", no DMA", 1481 has_ro ? "" : ", no WP", 1482 (host->pdata && host->pdata->setpower) 1483 ? "" : ", no poweroff", 1484 (mmc->caps & MMC_CAP_NEEDS_POLL) 1485 ? ", cd polling" : ""); 1486 return 0; 1487 1488 fail_add_host: 1489 mmc_remove_host(mmc); 1490 fail_glue_init: 1491 mmc_spi_dma_free(host); 1492 fail_dma: 1493 kfree(host->data); 1494 fail_nobuf1: 1495 mmc_spi_put_pdata(spi); 1496 mmc_free_host(mmc); 1497 nomem: 1498 kfree(ones); 1499 return status; 1500 } 1501 1502 1503 static int mmc_spi_remove(struct spi_device *spi) 1504 { 1505 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1506 struct mmc_spi_host *host = mmc_priv(mmc); 1507 1508 /* prevent new mmc_detect_change() calls */ 1509 if (host->pdata && host->pdata->exit) 1510 host->pdata->exit(&spi->dev, mmc); 1511 1512 mmc_remove_host(mmc); 1513 1514 mmc_spi_dma_free(host); 1515 kfree(host->data); 1516 kfree(host->ones); 1517 1518 spi->max_speed_hz = mmc->f_max; 1519 mmc_spi_put_pdata(spi); 1520 mmc_free_host(mmc); 1521 return 0; 1522 } 1523 1524 static const struct of_device_id mmc_spi_of_match_table[] = { 1525 { .compatible = "mmc-spi-slot", }, 1526 {}, 1527 }; 1528 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table); 1529 1530 static struct spi_driver mmc_spi_driver = { 1531 .driver = { 1532 .name = "mmc_spi", 1533 .of_match_table = mmc_spi_of_match_table, 1534 }, 1535 .probe = mmc_spi_probe, 1536 .remove = mmc_spi_remove, 1537 }; 1538 1539 module_spi_driver(mmc_spi_driver); 1540 1541 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko"); 1542 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1543 MODULE_LICENSE("GPL"); 1544 MODULE_ALIAS("spi:mmc_spi"); 1545