1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Access SD/MMC cards through SPI master controllers 4 * 5 * (C) Copyright 2005, Intec Automation, 6 * Mike Lavender (mike@steroidmicros) 7 * (C) Copyright 2006-2007, David Brownell 8 * (C) Copyright 2007, Axis Communications, 9 * Hans-Peter Nilsson (hp@axis.com) 10 * (C) Copyright 2007, ATRON electronic GmbH, 11 * Jan Nikitenko <jan.nikitenko@gmail.com> 12 */ 13 #include <linux/sched.h> 14 #include <linux/delay.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/crc7.h> 19 #include <linux/crc-itu-t.h> 20 #include <linux/scatterlist.h> 21 22 #include <linux/mmc/host.h> 23 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 24 #include <linux/mmc/slot-gpio.h> 25 26 #include <linux/spi/spi.h> 27 #include <linux/spi/mmc_spi.h> 28 29 #include <linux/unaligned.h> 30 31 32 /* NOTES: 33 * 34 * - For now, we won't try to interoperate with a real mmc/sd/sdio 35 * controller, although some of them do have hardware support for 36 * SPI protocol. The main reason for such configs would be mmc-ish 37 * cards like DataFlash, which don't support that "native" protocol. 38 * 39 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 40 * switch between driver stacks, and in any case if "native" mode 41 * is available, it will be faster and hence preferable. 42 * 43 * - MMC depends on a different chipselect management policy than the 44 * SPI interface currently supports for shared bus segments: it needs 45 * to issue multiple spi_message requests with the chipselect active, 46 * using the results of one message to decide the next one to issue. 47 * 48 * Pending updates to the programming interface, this driver expects 49 * that it not share the bus with other drivers (precluding conflicts). 50 * 51 * - We tell the controller to keep the chipselect active from the 52 * beginning of an mmc_host_ops.request until the end. So beware 53 * of SPI controller drivers that mis-handle the cs_change flag! 54 * 55 * However, many cards seem OK with chipselect flapping up/down 56 * during that time ... at least on unshared bus segments. 57 */ 58 59 60 /* 61 * Local protocol constants, internal to data block protocols. 62 */ 63 64 /* Response tokens used to ack each block written: */ 65 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 66 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 67 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 68 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 69 70 /* Read and write blocks start with these tokens and end with crc; 71 * on error, read tokens act like a subset of R2_SPI_* values. 72 */ 73 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 74 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 75 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 76 77 #define MMC_SPI_BLOCKSIZE 512 78 79 #define MMC_SPI_R1B_TIMEOUT_MS 3000 80 #define MMC_SPI_INIT_TIMEOUT_MS 3000 81 82 /* One of the critical speed parameters is the amount of data which may 83 * be transferred in one command. If this value is too low, the SD card 84 * controller has to do multiple partial block writes (argggh!). With 85 * today (2008) SD cards there is little speed gain if we transfer more 86 * than 64 KBytes at a time. So use this value until there is any indication 87 * that we should do more here. 88 */ 89 #define MMC_SPI_BLOCKSATONCE 128 90 91 /****************************************************************************/ 92 93 /* 94 * Local Data Structures 95 */ 96 97 /* "scratch" is per-{command,block} data exchanged with the card */ 98 struct scratch { 99 u8 status[29]; 100 u8 data_token; 101 __be16 crc_val; 102 }; 103 104 struct mmc_spi_host { 105 struct mmc_host *mmc; 106 struct spi_device *spi; 107 108 unsigned char power_mode; 109 u16 powerup_msecs; 110 111 struct mmc_spi_platform_data *pdata; 112 113 /* for bulk data transfers */ 114 struct spi_transfer token, t, crc, early_status; 115 struct spi_message m; 116 117 /* for status readback */ 118 struct spi_transfer status; 119 struct spi_message readback; 120 121 /* buffer used for commands and for message "overhead" */ 122 struct scratch *data; 123 124 /* Specs say to write ones most of the time, even when the card 125 * has no need to read its input data; and many cards won't care. 126 * This is our source of those ones. 127 */ 128 void *ones; 129 }; 130 131 132 /****************************************************************************/ 133 134 /* 135 * MMC-over-SPI protocol glue, used by the MMC stack interface 136 */ 137 138 static inline int mmc_cs_off(struct mmc_spi_host *host) 139 { 140 /* chipselect will always be inactive after setup() */ 141 return spi_setup(host->spi); 142 } 143 144 static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len) 145 { 146 if (len > sizeof(*host->data)) { 147 WARN_ON(1); 148 return -EIO; 149 } 150 151 host->status.len = len; 152 153 return spi_sync_locked(host->spi, &host->readback); 154 } 155 156 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 157 unsigned n, u8 byte) 158 { 159 u8 *cp = host->data->status; 160 unsigned long start = jiffies; 161 162 do { 163 int status; 164 unsigned i; 165 166 status = mmc_spi_readbytes(host, n); 167 if (status < 0) 168 return status; 169 170 for (i = 0; i < n; i++) { 171 if (cp[i] != byte) 172 return cp[i]; 173 } 174 175 /* If we need long timeouts, we may release the CPU */ 176 cond_resched(); 177 } while (time_is_after_jiffies(start + timeout)); 178 return -ETIMEDOUT; 179 } 180 181 static inline int 182 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 183 { 184 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 185 } 186 187 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 188 { 189 return mmc_spi_skip(host, timeout, 1, 0xff); 190 } 191 192 193 /* 194 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 195 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 196 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 197 * 198 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 199 * newer cards R7 (IF_COND). 200 */ 201 202 static char *maptype(struct mmc_command *cmd) 203 { 204 switch (mmc_spi_resp_type(cmd)) { 205 case MMC_RSP_SPI_R1: return "R1"; 206 case MMC_RSP_SPI_R1B: return "R1B"; 207 case MMC_RSP_SPI_R2: return "R2/R5"; 208 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 209 default: return "?"; 210 } 211 } 212 213 /* return zero, else negative errno after setting cmd->error */ 214 static int mmc_spi_response_get(struct mmc_spi_host *host, 215 struct mmc_command *cmd, int cs_on) 216 { 217 unsigned long timeout_ms; 218 u8 *cp = host->data->status; 219 u8 *end = cp + host->t.len; 220 int value = 0; 221 int bitshift; 222 u8 leftover = 0; 223 unsigned short rotator; 224 int i; 225 226 /* Except for data block reads, the whole response will already 227 * be stored in the scratch buffer. It's somewhere after the 228 * command and the first byte we read after it. We ignore that 229 * first byte. After STOP_TRANSMISSION command it may include 230 * two data bits, but otherwise it's all ones. 231 */ 232 cp += 8; 233 while (cp < end && *cp == 0xff) 234 cp++; 235 236 /* Data block reads (R1 response types) may need more data... */ 237 if (cp == end) { 238 cp = host->data->status; 239 end = cp+1; 240 241 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 242 * status byte ... and we already scanned 2 bytes. 243 * 244 * REVISIT block read paths use nasty byte-at-a-time I/O 245 * so it can always DMA directly into the target buffer. 246 * It'd probably be better to memcpy() the first chunk and 247 * avoid extra i/o calls... 248 * 249 * Note we check for more than 8 bytes, because in practice, 250 * some SD cards are slow... 251 */ 252 for (i = 2; i < 16; i++) { 253 value = mmc_spi_readbytes(host, 1); 254 if (value < 0) 255 goto done; 256 if (*cp != 0xff) 257 goto checkstatus; 258 } 259 value = -ETIMEDOUT; 260 goto done; 261 } 262 263 checkstatus: 264 bitshift = 0; 265 if (*cp & 0x80) { 266 /* Houston, we have an ugly card with a bit-shifted response */ 267 rotator = *cp++ << 8; 268 /* read the next byte */ 269 if (cp == end) { 270 value = mmc_spi_readbytes(host, 1); 271 if (value < 0) 272 goto done; 273 cp = host->data->status; 274 end = cp+1; 275 } 276 rotator |= *cp++; 277 while (rotator & 0x8000) { 278 bitshift++; 279 rotator <<= 1; 280 } 281 cmd->resp[0] = rotator >> 8; 282 leftover = rotator; 283 } else { 284 cmd->resp[0] = *cp++; 285 } 286 cmd->error = 0; 287 288 /* Status byte: the entire seven-bit R1 response. */ 289 if (cmd->resp[0] != 0) { 290 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS) 291 & cmd->resp[0]) 292 value = -EFAULT; /* Bad address */ 293 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0]) 294 value = -ENOSYS; /* Function not implemented */ 295 else if (R1_SPI_COM_CRC & cmd->resp[0]) 296 value = -EILSEQ; /* Illegal byte sequence */ 297 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 298 & cmd->resp[0]) 299 value = -EIO; /* I/O error */ 300 /* else R1_SPI_IDLE, "it's resetting" */ 301 } 302 303 switch (mmc_spi_resp_type(cmd)) { 304 305 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 306 * and less-common stuff like various erase operations. 307 */ 308 case MMC_RSP_SPI_R1B: 309 /* maybe we read all the busy tokens already */ 310 while (cp < end && *cp == 0) 311 cp++; 312 if (cp == end) { 313 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout : 314 MMC_SPI_R1B_TIMEOUT_MS; 315 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms)); 316 } 317 break; 318 319 /* SPI R2 == R1 + second status byte; SEND_STATUS 320 * SPI R5 == R1 + data byte; IO_RW_DIRECT 321 */ 322 case MMC_RSP_SPI_R2: 323 /* read the next byte */ 324 if (cp == end) { 325 value = mmc_spi_readbytes(host, 1); 326 if (value < 0) 327 goto done; 328 cp = host->data->status; 329 end = cp+1; 330 } 331 if (bitshift) { 332 rotator = leftover << 8; 333 rotator |= *cp << bitshift; 334 cmd->resp[0] |= (rotator & 0xFF00); 335 } else { 336 cmd->resp[0] |= *cp << 8; 337 } 338 break; 339 340 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 341 case MMC_RSP_SPI_R3: 342 rotator = leftover << 8; 343 cmd->resp[1] = 0; 344 for (i = 0; i < 4; i++) { 345 cmd->resp[1] <<= 8; 346 /* read the next byte */ 347 if (cp == end) { 348 value = mmc_spi_readbytes(host, 1); 349 if (value < 0) 350 goto done; 351 cp = host->data->status; 352 end = cp+1; 353 } 354 if (bitshift) { 355 rotator |= *cp++ << bitshift; 356 cmd->resp[1] |= (rotator >> 8); 357 rotator <<= 8; 358 } else { 359 cmd->resp[1] |= *cp++; 360 } 361 } 362 break; 363 364 /* SPI R1 == just one status byte */ 365 case MMC_RSP_SPI_R1: 366 break; 367 368 default: 369 dev_dbg(&host->spi->dev, "bad response type %04x\n", 370 mmc_spi_resp_type(cmd)); 371 if (value >= 0) 372 value = -EINVAL; 373 goto done; 374 } 375 376 if (value < 0) 377 dev_dbg(&host->spi->dev, 378 " ... CMD%d response SPI_%s: resp %04x %08x\n", 379 cmd->opcode, maptype(cmd), cmd->resp[0], cmd->resp[1]); 380 381 /* disable chipselect on errors and some success cases */ 382 if (value >= 0 && cs_on) 383 return value; 384 done: 385 if (value < 0) 386 cmd->error = value; 387 mmc_cs_off(host); 388 return value; 389 } 390 391 /* Issue command and read its response. 392 * Returns zero on success, negative for error. 393 * 394 * On error, caller must cope with mmc core retry mechanism. That 395 * means immediate low-level resubmit, which affects the bus lock... 396 */ 397 static int 398 mmc_spi_command_send(struct mmc_spi_host *host, 399 struct mmc_request *mrq, 400 struct mmc_command *cmd, int cs_on) 401 { 402 struct scratch *data = host->data; 403 u8 *cp = data->status; 404 int status; 405 struct spi_transfer *t; 406 407 /* We can handle most commands (except block reads) in one full 408 * duplex I/O operation before either starting the next transfer 409 * (data block or command) or else deselecting the card. 410 * 411 * First, write 7 bytes: 412 * - an all-ones byte to ensure the card is ready 413 * - opcode byte (plus start and transmission bits) 414 * - four bytes of big-endian argument 415 * - crc7 (plus end bit) ... always computed, it's cheap 416 * 417 * We init the whole buffer to all-ones, which is what we need 418 * to write while we're reading (later) response data. 419 */ 420 memset(cp, 0xff, sizeof(data->status)); 421 422 cp[1] = 0x40 | cmd->opcode; 423 put_unaligned_be32(cmd->arg, cp + 2); 424 cp[6] = crc7_be(0, cp + 1, 5) | 0x01; 425 cp += 7; 426 427 /* Then, read up to 13 bytes (while writing all-ones): 428 * - N(CR) (== 1..8) bytes of all-ones 429 * - status byte (for all response types) 430 * - the rest of the response, either: 431 * + nothing, for R1 or R1B responses 432 * + second status byte, for R2 responses 433 * + four data bytes, for R3 and R7 responses 434 * 435 * Finally, read some more bytes ... in the nice cases we know in 436 * advance how many, and reading 1 more is always OK: 437 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 438 * - N(RC) (== 1..N) bytes of all-ones, before next command 439 * - N(WR) (== 1..N) bytes of all-ones, before data write 440 * 441 * So in those cases one full duplex I/O of at most 21 bytes will 442 * handle the whole command, leaving the card ready to receive a 443 * data block or new command. We do that whenever we can, shaving 444 * CPU and IRQ costs (especially when using DMA or FIFOs). 445 * 446 * There are two other cases, where it's not generally practical 447 * to rely on a single I/O: 448 * 449 * - R1B responses need at least N(EC) bytes of all-zeroes. 450 * 451 * In this case we can *try* to fit it into one I/O, then 452 * maybe read more data later. 453 * 454 * - Data block reads are more troublesome, since a variable 455 * number of padding bytes precede the token and data. 456 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 457 * + N(AC) (== 1..many) bytes of all-ones 458 * 459 * In this case we currently only have minimal speedups here: 460 * when N(CR) == 1 we can avoid I/O in response_get(). 461 */ 462 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 463 cp += 2; /* min(N(CR)) + status */ 464 /* R1 */ 465 } else { 466 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 467 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 468 cp++; 469 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 470 cp += 4; 471 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 472 cp = data->status + sizeof(data->status); 473 /* else: R1 (most commands) */ 474 } 475 476 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n", 477 cmd->opcode, maptype(cmd)); 478 479 /* send command, leaving chipselect active */ 480 spi_message_init(&host->m); 481 482 t = &host->t; 483 memset(t, 0, sizeof(*t)); 484 t->tx_buf = t->rx_buf = data->status; 485 t->len = cp - data->status; 486 t->cs_change = 1; 487 spi_message_add_tail(t, &host->m); 488 489 status = spi_sync_locked(host->spi, &host->m); 490 if (status < 0) { 491 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 492 cmd->error = status; 493 return status; 494 } 495 496 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 497 return mmc_spi_response_get(host, cmd, cs_on); 498 } 499 500 /* Build data message with up to four separate transfers. For TX, we 501 * start by writing the data token. And in most cases, we finish with 502 * a status transfer. 503 * 504 * We always provide TX data for data and CRC. The MMC/SD protocol 505 * requires us to write ones; but Linux defaults to writing zeroes; 506 * so we explicitly initialize it to all ones on RX paths. 507 */ 508 static void 509 mmc_spi_setup_data_message(struct mmc_spi_host *host, bool multiple, bool write) 510 { 511 struct spi_transfer *t; 512 struct scratch *scratch = host->data; 513 514 spi_message_init(&host->m); 515 516 /* for reads, readblock() skips 0xff bytes before finding 517 * the token; for writes, this transfer issues that token. 518 */ 519 if (write) { 520 t = &host->token; 521 memset(t, 0, sizeof(*t)); 522 t->len = 1; 523 if (multiple) 524 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 525 else 526 scratch->data_token = SPI_TOKEN_SINGLE; 527 t->tx_buf = &scratch->data_token; 528 spi_message_add_tail(t, &host->m); 529 } 530 531 /* Body of transfer is buffer, then CRC ... 532 * either TX-only, or RX with TX-ones. 533 */ 534 t = &host->t; 535 memset(t, 0, sizeof(*t)); 536 t->tx_buf = host->ones; 537 /* length and actual buffer info are written later */ 538 spi_message_add_tail(t, &host->m); 539 540 t = &host->crc; 541 memset(t, 0, sizeof(*t)); 542 t->len = 2; 543 if (write) { 544 /* the actual CRC may get written later */ 545 t->tx_buf = &scratch->crc_val; 546 } else { 547 t->tx_buf = host->ones; 548 t->rx_buf = &scratch->crc_val; 549 } 550 spi_message_add_tail(t, &host->m); 551 552 /* 553 * A single block read is followed by N(EC) [0+] all-ones bytes 554 * before deselect ... don't bother. 555 * 556 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 557 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 558 * collect that single byte, so readblock() doesn't need to. 559 * 560 * For a write, the one-byte data response follows immediately, then 561 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 562 * Then single block reads may deselect, and multiblock ones issue 563 * the next token (next data block, or STOP_TRAN). We can try to 564 * minimize I/O ops by using a single read to collect end-of-busy. 565 */ 566 if (multiple || write) { 567 t = &host->early_status; 568 memset(t, 0, sizeof(*t)); 569 t->len = write ? sizeof(scratch->status) : 1; 570 t->tx_buf = host->ones; 571 t->rx_buf = scratch->status; 572 t->cs_change = 1; 573 spi_message_add_tail(t, &host->m); 574 } 575 } 576 577 /* 578 * Write one block: 579 * - caller handled preceding N(WR) [1+] all-ones bytes 580 * - data block 581 * + token 582 * + data bytes 583 * + crc16 584 * - an all-ones byte ... card writes a data-response byte 585 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 586 * 587 * Return negative errno, else success. 588 */ 589 static int 590 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 591 unsigned long timeout) 592 { 593 struct spi_device *spi = host->spi; 594 int status, i; 595 struct scratch *scratch = host->data; 596 u32 pattern; 597 598 if (host->mmc->use_spi_crc) 599 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len)); 600 601 status = spi_sync_locked(spi, &host->m); 602 if (status != 0) { 603 dev_dbg(&spi->dev, "write error (%d)\n", status); 604 return status; 605 } 606 607 /* 608 * Get the transmission data-response reply. It must follow 609 * immediately after the data block we transferred. This reply 610 * doesn't necessarily tell whether the write operation succeeded; 611 * it just says if the transmission was ok and whether *earlier* 612 * writes succeeded; see the standard. 613 * 614 * In practice, there are (even modern SDHC-)cards which are late 615 * in sending the response, and miss the time frame by a few bits, 616 * so we have to cope with this situation and check the response 617 * bit-by-bit. Arggh!!! 618 */ 619 pattern = get_unaligned_be32(scratch->status); 620 621 /* First 3 bit of pattern are undefined */ 622 pattern |= 0xE0000000; 623 624 /* left-adjust to leading 0 bit */ 625 while (pattern & 0x80000000) 626 pattern <<= 1; 627 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 628 pattern >>= 27; 629 630 switch (pattern) { 631 case SPI_RESPONSE_ACCEPTED: 632 status = 0; 633 break; 634 case SPI_RESPONSE_CRC_ERR: 635 /* host shall then issue MMC_STOP_TRANSMISSION */ 636 status = -EILSEQ; 637 break; 638 case SPI_RESPONSE_WRITE_ERR: 639 /* host shall then issue MMC_STOP_TRANSMISSION, 640 * and should MMC_SEND_STATUS to sort it out 641 */ 642 status = -EIO; 643 break; 644 default: 645 status = -EPROTO; 646 break; 647 } 648 if (status != 0) { 649 dev_dbg(&spi->dev, "write error %02x (%d)\n", 650 scratch->status[0], status); 651 return status; 652 } 653 654 t->tx_buf += t->len; 655 656 /* Return when not busy. If we didn't collect that status yet, 657 * we'll need some more I/O. 658 */ 659 for (i = 4; i < sizeof(scratch->status); i++) { 660 /* card is non-busy if the most recent bit is 1 */ 661 if (scratch->status[i] & 0x01) 662 return 0; 663 } 664 return mmc_spi_wait_unbusy(host, timeout); 665 } 666 667 /* 668 * Read one block: 669 * - skip leading all-ones bytes ... either 670 * + N(AC) [1..f(clock,CSD)] usually, else 671 * + N(CX) [0..8] when reading CSD or CID 672 * - data block 673 * + token ... if error token, no data or crc 674 * + data bytes 675 * + crc16 676 * 677 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 678 * before dropping chipselect. 679 * 680 * For multiblock reads, caller either reads the next block or issues a 681 * STOP_TRANSMISSION command. 682 */ 683 static int 684 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 685 unsigned long timeout) 686 { 687 struct spi_device *spi = host->spi; 688 int status; 689 struct scratch *scratch = host->data; 690 unsigned int bitshift; 691 u8 leftover; 692 693 /* At least one SD card sends an all-zeroes byte when N(CX) 694 * applies, before the all-ones bytes ... just cope with that. 695 */ 696 status = mmc_spi_readbytes(host, 1); 697 if (status < 0) 698 return status; 699 status = scratch->status[0]; 700 if (status == 0xff || status == 0) 701 status = mmc_spi_readtoken(host, timeout); 702 703 if (status < 0) { 704 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 705 return status; 706 } 707 708 /* The token may be bit-shifted... 709 * the first 0-bit precedes the data stream. 710 */ 711 bitshift = 7; 712 while (status & 0x80) { 713 status <<= 1; 714 bitshift--; 715 } 716 leftover = status << 1; 717 718 status = spi_sync_locked(spi, &host->m); 719 if (status < 0) { 720 dev_dbg(&spi->dev, "read error %d\n", status); 721 return status; 722 } 723 724 if (bitshift) { 725 /* Walk through the data and the crc and do 726 * all the magic to get byte-aligned data. 727 */ 728 u8 *cp = t->rx_buf; 729 unsigned int len; 730 unsigned int bitright = 8 - bitshift; 731 u8 temp; 732 for (len = t->len; len; len--) { 733 temp = *cp; 734 *cp++ = leftover | (temp >> bitshift); 735 leftover = temp << bitright; 736 } 737 cp = (u8 *) &scratch->crc_val; 738 temp = *cp; 739 *cp++ = leftover | (temp >> bitshift); 740 leftover = temp << bitright; 741 temp = *cp; 742 *cp = leftover | (temp >> bitshift); 743 } 744 745 if (host->mmc->use_spi_crc) { 746 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 747 748 be16_to_cpus(&scratch->crc_val); 749 if (scratch->crc_val != crc) { 750 dev_dbg(&spi->dev, 751 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n", 752 scratch->crc_val, crc, t->len); 753 return -EILSEQ; 754 } 755 } 756 757 t->rx_buf += t->len; 758 759 return 0; 760 } 761 762 /* 763 * An MMC/SD data stage includes one or more blocks, optional CRCs, 764 * and inline handshaking. That handhaking makes it unlike most 765 * other SPI protocol stacks. 766 */ 767 static void 768 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 769 struct mmc_data *data, u32 blk_size) 770 { 771 struct spi_device *spi = host->spi; 772 struct spi_transfer *t; 773 struct scatterlist *sg; 774 unsigned n_sg; 775 bool multiple = (data->blocks > 1); 776 bool write = (data->flags & MMC_DATA_WRITE); 777 const char *write_or_read = write ? "write" : "read"; 778 u32 clock_rate; 779 unsigned long timeout; 780 781 mmc_spi_setup_data_message(host, multiple, write); 782 t = &host->t; 783 784 if (t->speed_hz) 785 clock_rate = t->speed_hz; 786 else 787 clock_rate = spi->max_speed_hz; 788 789 timeout = data->timeout_ns / 1000 + 790 data->timeout_clks * 1000000 / clock_rate; 791 timeout = usecs_to_jiffies((unsigned int)timeout) + 1; 792 793 /* Handle scatterlist segments one at a time, with synch for 794 * each 512-byte block 795 */ 796 for_each_sg(data->sg, sg, data->sg_len, n_sg) { 797 int status = 0; 798 void *kmap_addr; 799 unsigned length = sg->length; 800 801 /* allow pio too; we don't allow highmem */ 802 kmap_addr = kmap(sg_page(sg)); 803 if (write) 804 t->tx_buf = kmap_addr + sg->offset; 805 else 806 t->rx_buf = kmap_addr + sg->offset; 807 808 /* transfer each block, and update request status */ 809 while (length) { 810 t->len = min(length, blk_size); 811 812 dev_dbg(&spi->dev, " %s block, %d bytes\n", write_or_read, t->len); 813 814 if (write) 815 status = mmc_spi_writeblock(host, t, timeout); 816 else 817 status = mmc_spi_readblock(host, t, timeout); 818 if (status < 0) 819 break; 820 821 data->bytes_xfered += t->len; 822 length -= t->len; 823 824 if (!multiple) 825 break; 826 } 827 828 /* discard mappings */ 829 if (write) 830 /* nothing to do */; 831 else 832 flush_dcache_page(sg_page(sg)); 833 kunmap(sg_page(sg)); 834 835 if (status < 0) { 836 data->error = status; 837 dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status); 838 break; 839 } 840 } 841 842 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 843 * can be issued before multiblock writes. Unlike its more widely 844 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 845 * that can affect the STOP_TRAN logic. Complete (and current) 846 * MMC specs should sort that out before Linux starts using CMD23. 847 */ 848 if (write && multiple) { 849 struct scratch *scratch = host->data; 850 int tmp; 851 const unsigned statlen = sizeof(scratch->status); 852 853 dev_dbg(&spi->dev, " STOP_TRAN\n"); 854 855 /* Tweak the per-block message we set up earlier by morphing 856 * it to hold single buffer with the token followed by some 857 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 858 * "not busy any longer" status, and leave chip selected. 859 */ 860 INIT_LIST_HEAD(&host->m.transfers); 861 list_add(&host->early_status.transfer_list, 862 &host->m.transfers); 863 864 memset(scratch->status, 0xff, statlen); 865 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 866 867 host->early_status.tx_buf = host->early_status.rx_buf; 868 host->early_status.len = statlen; 869 870 tmp = spi_sync_locked(spi, &host->m); 871 if (tmp < 0) { 872 if (!data->error) 873 data->error = tmp; 874 return; 875 } 876 877 /* Ideally we collected "not busy" status with one I/O, 878 * avoiding wasteful byte-at-a-time scanning... but more 879 * I/O is often needed. 880 */ 881 for (tmp = 2; tmp < statlen; tmp++) { 882 if (scratch->status[tmp] != 0) 883 return; 884 } 885 tmp = mmc_spi_wait_unbusy(host, timeout); 886 if (tmp < 0 && !data->error) 887 data->error = tmp; 888 } 889 } 890 891 /****************************************************************************/ 892 893 /* 894 * MMC driver implementation -- the interface to the MMC stack 895 */ 896 897 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 898 { 899 struct mmc_spi_host *host = mmc_priv(mmc); 900 int status = -EINVAL; 901 int crc_retry = 5; 902 struct mmc_command stop; 903 904 #ifdef DEBUG 905 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 906 { 907 struct mmc_command *cmd; 908 int invalid = 0; 909 910 cmd = mrq->cmd; 911 if (!mmc_spi_resp_type(cmd)) { 912 dev_dbg(&host->spi->dev, "bogus command\n"); 913 cmd->error = -EINVAL; 914 invalid = 1; 915 } 916 917 cmd = mrq->stop; 918 if (cmd && !mmc_spi_resp_type(cmd)) { 919 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 920 cmd->error = -EINVAL; 921 invalid = 1; 922 } 923 924 if (invalid) { 925 dump_stack(); 926 mmc_request_done(host->mmc, mrq); 927 return; 928 } 929 } 930 #endif 931 932 /* request exclusive bus access */ 933 spi_bus_lock(host->spi->controller); 934 935 crc_recover: 936 /* issue command; then optionally data and stop */ 937 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 938 if (status == 0 && mrq->data) { 939 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 940 941 /* 942 * The SPI bus is not always reliable for large data transfers. 943 * If an occasional crc error is reported by the SD device with 944 * data read/write over SPI, it may be recovered by repeating 945 * the last SD command again. The retry count is set to 5 to 946 * ensure the driver passes stress tests. 947 */ 948 if (mrq->data->error == -EILSEQ && crc_retry) { 949 stop.opcode = MMC_STOP_TRANSMISSION; 950 stop.arg = 0; 951 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 952 status = mmc_spi_command_send(host, mrq, &stop, 0); 953 crc_retry--; 954 mrq->data->error = 0; 955 goto crc_recover; 956 } 957 958 if (mrq->stop) 959 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 960 else 961 mmc_cs_off(host); 962 } 963 964 /* release the bus */ 965 spi_bus_unlock(host->spi->controller); 966 967 mmc_request_done(host->mmc, mrq); 968 } 969 970 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 971 * 972 * NOTE that here we can't know that the card has just been powered up; 973 * not all MMC/SD sockets support power switching. 974 * 975 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 976 * this doesn't seem to do the right thing at all... 977 */ 978 static void mmc_spi_initsequence(struct mmc_spi_host *host) 979 { 980 /* Try to be very sure any previous command has completed; 981 * wait till not-busy, skip debris from any old commands. 982 */ 983 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS)); 984 mmc_spi_readbytes(host, 10); 985 986 /* 987 * Do a burst with chipselect active-high. We need to do this to 988 * meet the requirement of 74 clock cycles with both chipselect 989 * and CMD (MOSI) high before CMD0 ... after the card has been 990 * powered up to Vdd(min), and so is ready to take commands. 991 * 992 * Some cards are particularly needy of this (e.g. Viking "SD256") 993 * while most others don't seem to care. 994 * 995 * Note that this is one of the places MMC/SD plays games with the 996 * SPI protocol. Another is that when chipselect is released while 997 * the card returns BUSY status, the clock must issue several cycles 998 * with chipselect high before the card will stop driving its output. 999 * 1000 * SPI_CS_HIGH means "asserted" here. In some cases like when using 1001 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically 1002 * inverted by gpiolib, so if we want to ascertain to drive it high 1003 * we should toggle the default with an XOR as we do here. 1004 */ 1005 host->spi->mode ^= SPI_CS_HIGH; 1006 if (spi_setup(host->spi) != 0) { 1007 /* Just warn; most cards work without it. */ 1008 dev_warn(&host->spi->dev, 1009 "can't change chip-select polarity\n"); 1010 host->spi->mode ^= SPI_CS_HIGH; 1011 } else { 1012 mmc_spi_readbytes(host, 18); 1013 1014 host->spi->mode ^= SPI_CS_HIGH; 1015 if (spi_setup(host->spi) != 0) { 1016 /* Wot, we can't get the same setup we had before? */ 1017 dev_err(&host->spi->dev, 1018 "can't restore chip-select polarity\n"); 1019 } 1020 } 1021 } 1022 1023 static char *mmc_powerstring(u8 power_mode) 1024 { 1025 switch (power_mode) { 1026 case MMC_POWER_OFF: return "off"; 1027 case MMC_POWER_UP: return "up"; 1028 case MMC_POWER_ON: return "on"; 1029 } 1030 return "?"; 1031 } 1032 1033 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1034 { 1035 struct mmc_spi_host *host = mmc_priv(mmc); 1036 1037 if (host->power_mode != ios->power_mode) { 1038 int canpower; 1039 1040 canpower = host->pdata && host->pdata->setpower; 1041 1042 dev_dbg(&host->spi->dev, "power %s (%d)%s\n", 1043 mmc_powerstring(ios->power_mode), 1044 ios->vdd, 1045 canpower ? ", can switch" : ""); 1046 1047 /* switch power on/off if possible, accounting for 1048 * max 250msec powerup time if needed. 1049 */ 1050 if (canpower) { 1051 switch (ios->power_mode) { 1052 case MMC_POWER_OFF: 1053 case MMC_POWER_UP: 1054 host->pdata->setpower(&host->spi->dev, 1055 ios->vdd); 1056 if (ios->power_mode == MMC_POWER_UP) 1057 msleep(host->powerup_msecs); 1058 } 1059 } 1060 1061 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1062 if (ios->power_mode == MMC_POWER_ON) 1063 mmc_spi_initsequence(host); 1064 1065 /* If powering down, ground all card inputs to avoid power 1066 * delivery from data lines! On a shared SPI bus, this 1067 * will probably be temporary; 6.4.2 of the simplified SD 1068 * spec says this must last at least 1msec. 1069 * 1070 * - Clock low means CPOL 0, e.g. mode 0 1071 * - MOSI low comes from writing zero 1072 * - Chipselect is usually active low... 1073 */ 1074 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1075 int mres; 1076 u8 nullbyte = 0; 1077 1078 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1079 mres = spi_setup(host->spi); 1080 if (mres < 0) 1081 dev_dbg(&host->spi->dev, 1082 "switch to SPI mode 0 failed\n"); 1083 1084 if (spi_write(host->spi, &nullbyte, 1) < 0) 1085 dev_dbg(&host->spi->dev, 1086 "put spi signals to low failed\n"); 1087 1088 /* 1089 * Now clock should be low due to spi mode 0; 1090 * MOSI should be low because of written 0x00; 1091 * chipselect should be low (it is active low) 1092 * power supply is off, so now MMC is off too! 1093 * 1094 * FIXME no, chipselect can be high since the 1095 * device is inactive and SPI_CS_HIGH is clear... 1096 */ 1097 msleep(10); 1098 if (mres == 0) { 1099 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1100 mres = spi_setup(host->spi); 1101 if (mres < 0) 1102 dev_dbg(&host->spi->dev, 1103 "switch back to SPI mode 3 failed\n"); 1104 } 1105 } 1106 1107 host->power_mode = ios->power_mode; 1108 } 1109 1110 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1111 int status; 1112 1113 host->spi->max_speed_hz = ios->clock; 1114 status = spi_setup(host->spi); 1115 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n", 1116 host->spi->max_speed_hz, status); 1117 } 1118 } 1119 1120 static const struct mmc_host_ops mmc_spi_ops = { 1121 .request = mmc_spi_request, 1122 .set_ios = mmc_spi_set_ios, 1123 .get_ro = mmc_gpio_get_ro, 1124 .get_cd = mmc_gpio_get_cd, 1125 }; 1126 1127 1128 /****************************************************************************/ 1129 1130 /* 1131 * SPI driver implementation 1132 */ 1133 1134 static irqreturn_t 1135 mmc_spi_detect_irq(int irq, void *mmc) 1136 { 1137 struct mmc_spi_host *host = mmc_priv(mmc); 1138 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1139 1140 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1141 return IRQ_HANDLED; 1142 } 1143 1144 static int mmc_spi_probe(struct spi_device *spi) 1145 { 1146 void *ones; 1147 struct mmc_host *mmc; 1148 struct mmc_spi_host *host; 1149 int status; 1150 bool has_ro = false; 1151 1152 /* We rely on full duplex transfers, mostly to reduce 1153 * per-transfer overheads (by making fewer transfers). 1154 */ 1155 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) 1156 return -EINVAL; 1157 1158 /* MMC and SD specs only seem to care that sampling is on the 1159 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1160 * should be legit. We'll use mode 0 since the steady state is 0, 1161 * which is appropriate for hotplugging, unless the platform data 1162 * specify mode 3 (if hardware is not compatible to mode 0). 1163 */ 1164 if (spi->mode != SPI_MODE_3) 1165 spi->mode = SPI_MODE_0; 1166 spi->bits_per_word = 8; 1167 1168 status = spi_setup(spi); 1169 if (status < 0) { 1170 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1171 spi->mode, spi->max_speed_hz / 1000, 1172 status); 1173 return status; 1174 } 1175 1176 /* We need a supply of ones to transmit. This is the only time 1177 * the CPU touches these, so cache coherency isn't a concern. 1178 * 1179 * NOTE if many systems use more than one MMC-over-SPI connector 1180 * it'd save some memory to share this. That's evidently rare. 1181 */ 1182 status = -ENOMEM; 1183 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1184 if (!ones) 1185 goto nomem; 1186 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1187 1188 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1189 if (!mmc) 1190 goto nomem; 1191 1192 mmc->ops = &mmc_spi_ops; 1193 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1194 mmc->max_segs = MMC_SPI_BLOCKSATONCE; 1195 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE; 1196 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE; 1197 1198 mmc->caps = MMC_CAP_SPI; 1199 1200 /* SPI doesn't need the lowspeed device identification thing for 1201 * MMC or SD cards, since it never comes up in open drain mode. 1202 * That's good; some SPI masters can't handle very low speeds! 1203 * 1204 * However, low speed SDIO cards need not handle over 400 KHz; 1205 * that's the only reason not to use a few MHz for f_min (until 1206 * the upper layer reads the target frequency from the CSD). 1207 */ 1208 if (spi->controller->min_speed_hz > 400000) 1209 dev_warn(&spi->dev,"Controller unable to reduce bus clock to 400 KHz\n"); 1210 1211 mmc->f_min = max(spi->controller->min_speed_hz, 400000); 1212 mmc->f_max = spi->max_speed_hz; 1213 1214 host = mmc_priv(mmc); 1215 host->mmc = mmc; 1216 host->spi = spi; 1217 1218 host->ones = ones; 1219 1220 dev_set_drvdata(&spi->dev, mmc); 1221 1222 /* Platform data is used to hook up things like card sensing 1223 * and power switching gpios. 1224 */ 1225 host->pdata = mmc_spi_get_pdata(spi); 1226 if (host->pdata) 1227 mmc->ocr_avail = host->pdata->ocr_mask; 1228 if (!mmc->ocr_avail) { 1229 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1230 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1231 } 1232 if (host->pdata && host->pdata->setpower) { 1233 host->powerup_msecs = host->pdata->powerup_msecs; 1234 if (!host->powerup_msecs || host->powerup_msecs > 250) 1235 host->powerup_msecs = 250; 1236 } 1237 1238 /* Preallocate buffers */ 1239 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1240 if (!host->data) 1241 goto fail_nobuf1; 1242 1243 /* setup message for status/busy readback */ 1244 spi_message_init(&host->readback); 1245 1246 spi_message_add_tail(&host->status, &host->readback); 1247 host->status.tx_buf = host->ones; 1248 host->status.rx_buf = &host->data->status; 1249 host->status.cs_change = 1; 1250 1251 /* register card detect irq */ 1252 if (host->pdata && host->pdata->init) { 1253 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1254 if (status != 0) 1255 goto fail_glue_init; 1256 } 1257 1258 /* pass platform capabilities, if any */ 1259 if (host->pdata) { 1260 mmc->caps |= host->pdata->caps; 1261 mmc->caps2 |= host->pdata->caps2; 1262 } 1263 1264 status = mmc_add_host(mmc); 1265 if (status != 0) 1266 goto fail_glue_init; 1267 1268 /* 1269 * Index 0 is card detect 1270 * Old boardfiles were specifying 1 ms as debounce 1271 */ 1272 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000); 1273 if (status == -EPROBE_DEFER) 1274 goto fail_gpiod_request; 1275 if (!status) { 1276 /* 1277 * The platform has a CD GPIO signal that may support 1278 * interrupts, so let mmc_gpiod_request_cd_irq() decide 1279 * if polling is needed or not. 1280 */ 1281 mmc->caps &= ~MMC_CAP_NEEDS_POLL; 1282 mmc_gpiod_request_cd_irq(mmc); 1283 } 1284 mmc_detect_change(mmc, 0); 1285 1286 /* Index 1 is write protect/read only */ 1287 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0); 1288 if (status == -EPROBE_DEFER) 1289 goto fail_gpiod_request; 1290 if (!status) 1291 has_ro = true; 1292 1293 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n", 1294 dev_name(&mmc->class_dev), 1295 has_ro ? "" : ", no WP", 1296 (host->pdata && host->pdata->setpower) 1297 ? "" : ", no poweroff", 1298 (mmc->caps & MMC_CAP_NEEDS_POLL) 1299 ? ", cd polling" : ""); 1300 return 0; 1301 1302 fail_gpiod_request: 1303 mmc_remove_host(mmc); 1304 fail_glue_init: 1305 kfree(host->data); 1306 fail_nobuf1: 1307 mmc_spi_put_pdata(spi); 1308 mmc_free_host(mmc); 1309 nomem: 1310 kfree(ones); 1311 return status; 1312 } 1313 1314 1315 static void mmc_spi_remove(struct spi_device *spi) 1316 { 1317 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1318 struct mmc_spi_host *host = mmc_priv(mmc); 1319 1320 /* prevent new mmc_detect_change() calls */ 1321 if (host->pdata && host->pdata->exit) 1322 host->pdata->exit(&spi->dev, mmc); 1323 1324 mmc_remove_host(mmc); 1325 1326 kfree(host->data); 1327 kfree(host->ones); 1328 1329 spi->max_speed_hz = mmc->f_max; 1330 mmc_spi_put_pdata(spi); 1331 mmc_free_host(mmc); 1332 } 1333 1334 static const struct spi_device_id mmc_spi_dev_ids[] = { 1335 { "mmc-spi-slot"}, 1336 { }, 1337 }; 1338 MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids); 1339 1340 static const struct of_device_id mmc_spi_of_match_table[] = { 1341 { .compatible = "mmc-spi-slot", }, 1342 {}, 1343 }; 1344 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table); 1345 1346 static struct spi_driver mmc_spi_driver = { 1347 .driver = { 1348 .name = "mmc_spi", 1349 .of_match_table = mmc_spi_of_match_table, 1350 }, 1351 .id_table = mmc_spi_dev_ids, 1352 .probe = mmc_spi_probe, 1353 .remove = mmc_spi_remove, 1354 }; 1355 1356 module_spi_driver(mmc_spi_driver); 1357 1358 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko"); 1359 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1360 MODULE_LICENSE("GPL"); 1361 MODULE_ALIAS("spi:mmc_spi"); 1362