xref: /linux/drivers/mmc/host/mmc_spi.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3  *
4  * (C) Copyright 2005, Intec Automation,
5  *		Mike Lavender (mike@steroidmicros)
6  * (C) Copyright 2006-2007, David Brownell
7  * (C) Copyright 2007, Axis Communications,
8  *		Hans-Peter Nilsson (hp@axis.com)
9  * (C) Copyright 2007, ATRON electronic GmbH,
10  *		Jan Nikitenko <jan.nikitenko@gmail.com>
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 #include <linux/hrtimer.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
34 
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
37 
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
40 
41 #include <asm/unaligned.h>
42 
43 
44 /* NOTES:
45  *
46  * - For now, we won't try to interoperate with a real mmc/sd/sdio
47  *   controller, although some of them do have hardware support for
48  *   SPI protocol.  The main reason for such configs would be mmc-ish
49  *   cards like DataFlash, which don't support that "native" protocol.
50  *
51  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52  *   switch between driver stacks, and in any case if "native" mode
53  *   is available, it will be faster and hence preferable.
54  *
55  * - MMC depends on a different chipselect management policy than the
56  *   SPI interface currently supports for shared bus segments:  it needs
57  *   to issue multiple spi_message requests with the chipselect active,
58  *   using the results of one message to decide the next one to issue.
59  *
60  *   Pending updates to the programming interface, this driver expects
61  *   that it not share the bus with other drivers (precluding conflicts).
62  *
63  * - We tell the controller to keep the chipselect active from the
64  *   beginning of an mmc_host_ops.request until the end.  So beware
65  *   of SPI controller drivers that mis-handle the cs_change flag!
66  *
67  *   However, many cards seem OK with chipselect flapping up/down
68  *   during that time ... at least on unshared bus segments.
69  */
70 
71 
72 /*
73  * Local protocol constants, internal to data block protocols.
74  */
75 
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
81 
82 /* Read and write blocks start with these tokens and end with crc;
83  * on error, read tokens act like a subset of R2_SPI_* values.
84  */
85 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
88 
89 #define MMC_SPI_BLOCKSIZE	512
90 
91 
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
94  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95  * reads which takes nowhere near that long.  Older cards may be able to use
96  * shorter timeouts ... but why bother?
97  */
98 #define r1b_timeout		ktime_set(3, 0)
99 
100 
101 /****************************************************************************/
102 
103 /*
104  * Local Data Structures
105  */
106 
107 /* "scratch" is per-{command,block} data exchanged with the card */
108 struct scratch {
109 	u8			status[29];
110 	u8			data_token;
111 	__be16			crc_val;
112 };
113 
114 struct mmc_spi_host {
115 	struct mmc_host		*mmc;
116 	struct spi_device	*spi;
117 
118 	unsigned char		power_mode;
119 	u16			powerup_msecs;
120 
121 	struct mmc_spi_platform_data	*pdata;
122 
123 	/* for bulk data transfers */
124 	struct spi_transfer	token, t, crc, early_status;
125 	struct spi_message	m;
126 
127 	/* for status readback */
128 	struct spi_transfer	status;
129 	struct spi_message	readback;
130 
131 	/* underlying DMA-aware controller, or null */
132 	struct device		*dma_dev;
133 
134 	/* buffer used for commands and for message "overhead" */
135 	struct scratch		*data;
136 	dma_addr_t		data_dma;
137 
138 	/* Specs say to write ones most of the time, even when the card
139 	 * has no need to read its input data; and many cards won't care.
140 	 * This is our source of those ones.
141 	 */
142 	void			*ones;
143 	dma_addr_t		ones_dma;
144 };
145 
146 
147 /****************************************************************************/
148 
149 /*
150  * MMC-over-SPI protocol glue, used by the MMC stack interface
151  */
152 
153 static inline int mmc_cs_off(struct mmc_spi_host *host)
154 {
155 	/* chipselect will always be inactive after setup() */
156 	return spi_setup(host->spi);
157 }
158 
159 static int
160 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
161 {
162 	int status;
163 
164 	if (len > sizeof(*host->data)) {
165 		WARN_ON(1);
166 		return -EIO;
167 	}
168 
169 	host->status.len = len;
170 
171 	if (host->dma_dev)
172 		dma_sync_single_for_device(host->dma_dev,
173 				host->data_dma, sizeof(*host->data),
174 				DMA_FROM_DEVICE);
175 
176 	status = spi_sync(host->spi, &host->readback);
177 
178 	if (host->dma_dev)
179 		dma_sync_single_for_cpu(host->dma_dev,
180 				host->data_dma, sizeof(*host->data),
181 				DMA_FROM_DEVICE);
182 
183 	return status;
184 }
185 
186 static int
187 mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte)
188 {
189 	u8		*cp = host->data->status;
190 
191 	timeout = ktime_add(timeout, ktime_get());
192 
193 	while (1) {
194 		int		status;
195 		unsigned	i;
196 
197 		status = mmc_spi_readbytes(host, n);
198 		if (status < 0)
199 			return status;
200 
201 		for (i = 0; i < n; i++) {
202 			if (cp[i] != byte)
203 				return cp[i];
204 		}
205 
206 		/* REVISIT investigate msleep() to avoid busy-wait I/O
207 		 * in at least some cases.
208 		 */
209 		if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0)
210 			break;
211 	}
212 	return -ETIMEDOUT;
213 }
214 
215 static inline int
216 mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout)
217 {
218 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
219 }
220 
221 static int mmc_spi_readtoken(struct mmc_spi_host *host, ktime_t timeout)
222 {
223 	return mmc_spi_skip(host, timeout, 1, 0xff);
224 }
225 
226 
227 /*
228  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
229  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
230  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
231  *
232  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
233  * newer cards R7 (IF_COND).
234  */
235 
236 static char *maptype(struct mmc_command *cmd)
237 {
238 	switch (mmc_spi_resp_type(cmd)) {
239 	case MMC_RSP_SPI_R1:	return "R1";
240 	case MMC_RSP_SPI_R1B:	return "R1B";
241 	case MMC_RSP_SPI_R2:	return "R2/R5";
242 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
243 	default:		return "?";
244 	}
245 }
246 
247 /* return zero, else negative errno after setting cmd->error */
248 static int mmc_spi_response_get(struct mmc_spi_host *host,
249 		struct mmc_command *cmd, int cs_on)
250 {
251 	u8	*cp = host->data->status;
252 	u8	*end = cp + host->t.len;
253 	int	value = 0;
254 	char	tag[32];
255 
256 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
257 		cmd->opcode, maptype(cmd));
258 
259 	/* Except for data block reads, the whole response will already
260 	 * be stored in the scratch buffer.  It's somewhere after the
261 	 * command and the first byte we read after it.  We ignore that
262 	 * first byte.  After STOP_TRANSMISSION command it may include
263 	 * two data bits, but otherwise it's all ones.
264 	 */
265 	cp += 8;
266 	while (cp < end && *cp == 0xff)
267 		cp++;
268 
269 	/* Data block reads (R1 response types) may need more data... */
270 	if (cp == end) {
271 		unsigned	i;
272 
273 		cp = host->data->status;
274 
275 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
276 		 * status byte ... and we already scanned 2 bytes.
277 		 *
278 		 * REVISIT block read paths use nasty byte-at-a-time I/O
279 		 * so it can always DMA directly into the target buffer.
280 		 * It'd probably be better to memcpy() the first chunk and
281 		 * avoid extra i/o calls...
282 		 */
283 		for (i = 2; i < 9; i++) {
284 			value = mmc_spi_readbytes(host, 1);
285 			if (value < 0)
286 				goto done;
287 			if (*cp != 0xff)
288 				goto checkstatus;
289 		}
290 		value = -ETIMEDOUT;
291 		goto done;
292 	}
293 
294 checkstatus:
295 	if (*cp & 0x80) {
296 		dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n",
297 					tag, *cp);
298 		value = -EBADR;
299 		goto done;
300 	}
301 
302 	cmd->resp[0] = *cp++;
303 	cmd->error = 0;
304 
305 	/* Status byte: the entire seven-bit R1 response.  */
306 	if (cmd->resp[0] != 0) {
307 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
308 					| R1_SPI_ILLEGAL_COMMAND)
309 				& cmd->resp[0])
310 			value = -EINVAL;
311 		else if (R1_SPI_COM_CRC & cmd->resp[0])
312 			value = -EILSEQ;
313 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
314 				& cmd->resp[0])
315 			value = -EIO;
316 		/* else R1_SPI_IDLE, "it's resetting" */
317 	}
318 
319 	switch (mmc_spi_resp_type(cmd)) {
320 
321 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
322 	 * and less-common stuff like various erase operations.
323 	 */
324 	case MMC_RSP_SPI_R1B:
325 		/* maybe we read all the busy tokens already */
326 		while (cp < end && *cp == 0)
327 			cp++;
328 		if (cp == end)
329 			mmc_spi_wait_unbusy(host, r1b_timeout);
330 		break;
331 
332 	/* SPI R2 == R1 + second status byte; SEND_STATUS
333 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
334 	 */
335 	case MMC_RSP_SPI_R2:
336 		cmd->resp[0] |= *cp << 8;
337 		break;
338 
339 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
340 	case MMC_RSP_SPI_R3:
341 		cmd->resp[1] = get_unaligned_be32(cp);
342 		break;
343 
344 	/* SPI R1 == just one status byte */
345 	case MMC_RSP_SPI_R1:
346 		break;
347 
348 	default:
349 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
350 				mmc_spi_resp_type(cmd));
351 		if (value >= 0)
352 			value = -EINVAL;
353 		goto done;
354 	}
355 
356 	if (value < 0)
357 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
358 			tag, cmd->resp[0], cmd->resp[1]);
359 
360 	/* disable chipselect on errors and some success cases */
361 	if (value >= 0 && cs_on)
362 		return value;
363 done:
364 	if (value < 0)
365 		cmd->error = value;
366 	mmc_cs_off(host);
367 	return value;
368 }
369 
370 /* Issue command and read its response.
371  * Returns zero on success, negative for error.
372  *
373  * On error, caller must cope with mmc core retry mechanism.  That
374  * means immediate low-level resubmit, which affects the bus lock...
375  */
376 static int
377 mmc_spi_command_send(struct mmc_spi_host *host,
378 		struct mmc_request *mrq,
379 		struct mmc_command *cmd, int cs_on)
380 {
381 	struct scratch		*data = host->data;
382 	u8			*cp = data->status;
383 	u32			arg = cmd->arg;
384 	int			status;
385 	struct spi_transfer	*t;
386 
387 	/* We can handle most commands (except block reads) in one full
388 	 * duplex I/O operation before either starting the next transfer
389 	 * (data block or command) or else deselecting the card.
390 	 *
391 	 * First, write 7 bytes:
392 	 *  - an all-ones byte to ensure the card is ready
393 	 *  - opcode byte (plus start and transmission bits)
394 	 *  - four bytes of big-endian argument
395 	 *  - crc7 (plus end bit) ... always computed, it's cheap
396 	 *
397 	 * We init the whole buffer to all-ones, which is what we need
398 	 * to write while we're reading (later) response data.
399 	 */
400 	memset(cp++, 0xff, sizeof(data->status));
401 
402 	*cp++ = 0x40 | cmd->opcode;
403 	*cp++ = (u8)(arg >> 24);
404 	*cp++ = (u8)(arg >> 16);
405 	*cp++ = (u8)(arg >> 8);
406 	*cp++ = (u8)arg;
407 	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
408 
409 	/* Then, read up to 13 bytes (while writing all-ones):
410 	 *  - N(CR) (== 1..8) bytes of all-ones
411 	 *  - status byte (for all response types)
412 	 *  - the rest of the response, either:
413 	 *      + nothing, for R1 or R1B responses
414 	 *	+ second status byte, for R2 responses
415 	 *	+ four data bytes, for R3 and R7 responses
416 	 *
417 	 * Finally, read some more bytes ... in the nice cases we know in
418 	 * advance how many, and reading 1 more is always OK:
419 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
420 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
421 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
422 	 *
423 	 * So in those cases one full duplex I/O of at most 21 bytes will
424 	 * handle the whole command, leaving the card ready to receive a
425 	 * data block or new command.  We do that whenever we can, shaving
426 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
427 	 *
428 	 * There are two other cases, where it's not generally practical
429 	 * to rely on a single I/O:
430 	 *
431 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
432 	 *
433 	 *    In this case we can *try* to fit it into one I/O, then
434 	 *    maybe read more data later.
435 	 *
436 	 *  - Data block reads are more troublesome, since a variable
437 	 *    number of padding bytes precede the token and data.
438 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
439 	 *      + N(AC) (== 1..many) bytes of all-ones
440 	 *
441 	 *    In this case we currently only have minimal speedups here:
442 	 *    when N(CR) == 1 we can avoid I/O in response_get().
443 	 */
444 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
445 		cp += 2;	/* min(N(CR)) + status */
446 		/* R1 */
447 	} else {
448 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
449 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
450 			cp++;
451 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
452 			cp += 4;
453 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
454 			cp = data->status + sizeof(data->status);
455 		/* else:  R1 (most commands) */
456 	}
457 
458 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
459 		cmd->opcode, maptype(cmd));
460 
461 	/* send command, leaving chipselect active */
462 	spi_message_init(&host->m);
463 
464 	t = &host->t;
465 	memset(t, 0, sizeof(*t));
466 	t->tx_buf = t->rx_buf = data->status;
467 	t->tx_dma = t->rx_dma = host->data_dma;
468 	t->len = cp - data->status;
469 	t->cs_change = 1;
470 	spi_message_add_tail(t, &host->m);
471 
472 	if (host->dma_dev) {
473 		host->m.is_dma_mapped = 1;
474 		dma_sync_single_for_device(host->dma_dev,
475 				host->data_dma, sizeof(*host->data),
476 				DMA_BIDIRECTIONAL);
477 	}
478 	status = spi_sync(host->spi, &host->m);
479 
480 	if (host->dma_dev)
481 		dma_sync_single_for_cpu(host->dma_dev,
482 				host->data_dma, sizeof(*host->data),
483 				DMA_BIDIRECTIONAL);
484 	if (status < 0) {
485 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
486 		cmd->error = status;
487 		return status;
488 	}
489 
490 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
491 	return mmc_spi_response_get(host, cmd, cs_on);
492 }
493 
494 /* Build data message with up to four separate transfers.  For TX, we
495  * start by writing the data token.  And in most cases, we finish with
496  * a status transfer.
497  *
498  * We always provide TX data for data and CRC.  The MMC/SD protocol
499  * requires us to write ones; but Linux defaults to writing zeroes;
500  * so we explicitly initialize it to all ones on RX paths.
501  *
502  * We also handle DMA mapping, so the underlying SPI controller does
503  * not need to (re)do it for each message.
504  */
505 static void
506 mmc_spi_setup_data_message(
507 	struct mmc_spi_host	*host,
508 	int			multiple,
509 	enum dma_data_direction	direction)
510 {
511 	struct spi_transfer	*t;
512 	struct scratch		*scratch = host->data;
513 	dma_addr_t		dma = host->data_dma;
514 
515 	spi_message_init(&host->m);
516 	if (dma)
517 		host->m.is_dma_mapped = 1;
518 
519 	/* for reads, readblock() skips 0xff bytes before finding
520 	 * the token; for writes, this transfer issues that token.
521 	 */
522 	if (direction == DMA_TO_DEVICE) {
523 		t = &host->token;
524 		memset(t, 0, sizeof(*t));
525 		t->len = 1;
526 		if (multiple)
527 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
528 		else
529 			scratch->data_token = SPI_TOKEN_SINGLE;
530 		t->tx_buf = &scratch->data_token;
531 		if (dma)
532 			t->tx_dma = dma + offsetof(struct scratch, data_token);
533 		spi_message_add_tail(t, &host->m);
534 	}
535 
536 	/* Body of transfer is buffer, then CRC ...
537 	 * either TX-only, or RX with TX-ones.
538 	 */
539 	t = &host->t;
540 	memset(t, 0, sizeof(*t));
541 	t->tx_buf = host->ones;
542 	t->tx_dma = host->ones_dma;
543 	/* length and actual buffer info are written later */
544 	spi_message_add_tail(t, &host->m);
545 
546 	t = &host->crc;
547 	memset(t, 0, sizeof(*t));
548 	t->len = 2;
549 	if (direction == DMA_TO_DEVICE) {
550 		/* the actual CRC may get written later */
551 		t->tx_buf = &scratch->crc_val;
552 		if (dma)
553 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
554 	} else {
555 		t->tx_buf = host->ones;
556 		t->tx_dma = host->ones_dma;
557 		t->rx_buf = &scratch->crc_val;
558 		if (dma)
559 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
560 	}
561 	spi_message_add_tail(t, &host->m);
562 
563 	/*
564 	 * A single block read is followed by N(EC) [0+] all-ones bytes
565 	 * before deselect ... don't bother.
566 	 *
567 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
568 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
569 	 * collect that single byte, so readblock() doesn't need to.
570 	 *
571 	 * For a write, the one-byte data response follows immediately, then
572 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
573 	 * Then single block reads may deselect, and multiblock ones issue
574 	 * the next token (next data block, or STOP_TRAN).  We can try to
575 	 * minimize I/O ops by using a single read to collect end-of-busy.
576 	 */
577 	if (multiple || direction == DMA_TO_DEVICE) {
578 		t = &host->early_status;
579 		memset(t, 0, sizeof(*t));
580 		t->len = (direction == DMA_TO_DEVICE)
581 				? sizeof(scratch->status)
582 				: 1;
583 		t->tx_buf = host->ones;
584 		t->tx_dma = host->ones_dma;
585 		t->rx_buf = scratch->status;
586 		if (dma)
587 			t->rx_dma = dma + offsetof(struct scratch, status);
588 		t->cs_change = 1;
589 		spi_message_add_tail(t, &host->m);
590 	}
591 }
592 
593 /*
594  * Write one block:
595  *  - caller handled preceding N(WR) [1+] all-ones bytes
596  *  - data block
597  *	+ token
598  *	+ data bytes
599  *	+ crc16
600  *  - an all-ones byte ... card writes a data-response byte
601  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
602  *
603  * Return negative errno, else success.
604  */
605 static int
606 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
607 	ktime_t timeout)
608 {
609 	struct spi_device	*spi = host->spi;
610 	int			status, i;
611 	struct scratch		*scratch = host->data;
612 
613 	if (host->mmc->use_spi_crc)
614 		scratch->crc_val = cpu_to_be16(
615 				crc_itu_t(0, t->tx_buf, t->len));
616 	if (host->dma_dev)
617 		dma_sync_single_for_device(host->dma_dev,
618 				host->data_dma, sizeof(*scratch),
619 				DMA_BIDIRECTIONAL);
620 
621 	status = spi_sync(spi, &host->m);
622 
623 	if (status != 0) {
624 		dev_dbg(&spi->dev, "write error (%d)\n", status);
625 		return status;
626 	}
627 
628 	if (host->dma_dev)
629 		dma_sync_single_for_cpu(host->dma_dev,
630 				host->data_dma, sizeof(*scratch),
631 				DMA_BIDIRECTIONAL);
632 
633 	/*
634 	 * Get the transmission data-response reply.  It must follow
635 	 * immediately after the data block we transferred.  This reply
636 	 * doesn't necessarily tell whether the write operation succeeded;
637 	 * it just says if the transmission was ok and whether *earlier*
638 	 * writes succeeded; see the standard.
639 	 */
640 	switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) {
641 	case SPI_RESPONSE_ACCEPTED:
642 		status = 0;
643 		break;
644 	case SPI_RESPONSE_CRC_ERR:
645 		/* host shall then issue MMC_STOP_TRANSMISSION */
646 		status = -EILSEQ;
647 		break;
648 	case SPI_RESPONSE_WRITE_ERR:
649 		/* host shall then issue MMC_STOP_TRANSMISSION,
650 		 * and should MMC_SEND_STATUS to sort it out
651 		 */
652 		status = -EIO;
653 		break;
654 	default:
655 		status = -EPROTO;
656 		break;
657 	}
658 	if (status != 0) {
659 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
660 			scratch->status[0], status);
661 		return status;
662 	}
663 
664 	t->tx_buf += t->len;
665 	if (host->dma_dev)
666 		t->tx_dma += t->len;
667 
668 	/* Return when not busy.  If we didn't collect that status yet,
669 	 * we'll need some more I/O.
670 	 */
671 	for (i = 1; i < sizeof(scratch->status); i++) {
672 		if (scratch->status[i] != 0)
673 			return 0;
674 	}
675 	return mmc_spi_wait_unbusy(host, timeout);
676 }
677 
678 /*
679  * Read one block:
680  *  - skip leading all-ones bytes ... either
681  *      + N(AC) [1..f(clock,CSD)] usually, else
682  *      + N(CX) [0..8] when reading CSD or CID
683  *  - data block
684  *	+ token ... if error token, no data or crc
685  *	+ data bytes
686  *	+ crc16
687  *
688  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
689  * before dropping chipselect.
690  *
691  * For multiblock reads, caller either reads the next block or issues a
692  * STOP_TRANSMISSION command.
693  */
694 static int
695 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
696 	ktime_t timeout)
697 {
698 	struct spi_device	*spi = host->spi;
699 	int			status;
700 	struct scratch		*scratch = host->data;
701 
702 	/* At least one SD card sends an all-zeroes byte when N(CX)
703 	 * applies, before the all-ones bytes ... just cope with that.
704 	 */
705 	status = mmc_spi_readbytes(host, 1);
706 	if (status < 0)
707 		return status;
708 	status = scratch->status[0];
709 	if (status == 0xff || status == 0)
710 		status = mmc_spi_readtoken(host, timeout);
711 
712 	if (status == SPI_TOKEN_SINGLE) {
713 		if (host->dma_dev) {
714 			dma_sync_single_for_device(host->dma_dev,
715 					host->data_dma, sizeof(*scratch),
716 					DMA_BIDIRECTIONAL);
717 			dma_sync_single_for_device(host->dma_dev,
718 					t->rx_dma, t->len,
719 					DMA_FROM_DEVICE);
720 		}
721 
722 		status = spi_sync(spi, &host->m);
723 
724 		if (host->dma_dev) {
725 			dma_sync_single_for_cpu(host->dma_dev,
726 					host->data_dma, sizeof(*scratch),
727 					DMA_BIDIRECTIONAL);
728 			dma_sync_single_for_cpu(host->dma_dev,
729 					t->rx_dma, t->len,
730 					DMA_FROM_DEVICE);
731 		}
732 
733 	} else {
734 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
735 
736 		/* we've read extra garbage, timed out, etc */
737 		if (status < 0)
738 			return status;
739 
740 		/* low four bits are an R2 subset, fifth seems to be
741 		 * vendor specific ... map them all to generic error..
742 		 */
743 		return -EIO;
744 	}
745 
746 	if (host->mmc->use_spi_crc) {
747 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
748 
749 		be16_to_cpus(&scratch->crc_val);
750 		if (scratch->crc_val != crc) {
751 			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
752 					"computed=0x%04x len=%d\n",
753 					scratch->crc_val, crc, t->len);
754 			return -EILSEQ;
755 		}
756 	}
757 
758 	t->rx_buf += t->len;
759 	if (host->dma_dev)
760 		t->rx_dma += t->len;
761 
762 	return 0;
763 }
764 
765 /*
766  * An MMC/SD data stage includes one or more blocks, optional CRCs,
767  * and inline handshaking.  That handhaking makes it unlike most
768  * other SPI protocol stacks.
769  */
770 static void
771 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
772 		struct mmc_data *data, u32 blk_size)
773 {
774 	struct spi_device	*spi = host->spi;
775 	struct device		*dma_dev = host->dma_dev;
776 	struct spi_transfer	*t;
777 	enum dma_data_direction	direction;
778 	struct scatterlist	*sg;
779 	unsigned		n_sg;
780 	int			multiple = (data->blocks > 1);
781 	u32			clock_rate;
782 	ktime_t			timeout;
783 
784 	if (data->flags & MMC_DATA_READ)
785 		direction = DMA_FROM_DEVICE;
786 	else
787 		direction = DMA_TO_DEVICE;
788 	mmc_spi_setup_data_message(host, multiple, direction);
789 	t = &host->t;
790 
791 	if (t->speed_hz)
792 		clock_rate = t->speed_hz;
793 	else
794 		clock_rate = spi->max_speed_hz;
795 
796 	timeout = ktime_add_ns(ktime_set(0, 0), data->timeout_ns +
797 			data->timeout_clks * 1000000 / clock_rate);
798 
799 	/* Handle scatterlist segments one at a time, with synch for
800 	 * each 512-byte block
801 	 */
802 	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
803 		int			status = 0;
804 		dma_addr_t		dma_addr = 0;
805 		void			*kmap_addr;
806 		unsigned		length = sg->length;
807 		enum dma_data_direction	dir = direction;
808 
809 		/* set up dma mapping for controller drivers that might
810 		 * use DMA ... though they may fall back to PIO
811 		 */
812 		if (dma_dev) {
813 			/* never invalidate whole *shared* pages ... */
814 			if ((sg->offset != 0 || length != PAGE_SIZE)
815 					&& dir == DMA_FROM_DEVICE)
816 				dir = DMA_BIDIRECTIONAL;
817 
818 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
819 						PAGE_SIZE, dir);
820 			if (direction == DMA_TO_DEVICE)
821 				t->tx_dma = dma_addr + sg->offset;
822 			else
823 				t->rx_dma = dma_addr + sg->offset;
824 		}
825 
826 		/* allow pio too; we don't allow highmem */
827 		kmap_addr = kmap(sg_page(sg));
828 		if (direction == DMA_TO_DEVICE)
829 			t->tx_buf = kmap_addr + sg->offset;
830 		else
831 			t->rx_buf = kmap_addr + sg->offset;
832 
833 		/* transfer each block, and update request status */
834 		while (length) {
835 			t->len = min(length, blk_size);
836 
837 			dev_dbg(&host->spi->dev,
838 				"    mmc_spi: %s block, %d bytes\n",
839 				(direction == DMA_TO_DEVICE)
840 				? "write"
841 				: "read",
842 				t->len);
843 
844 			if (direction == DMA_TO_DEVICE)
845 				status = mmc_spi_writeblock(host, t, timeout);
846 			else
847 				status = mmc_spi_readblock(host, t, timeout);
848 			if (status < 0)
849 				break;
850 
851 			data->bytes_xfered += t->len;
852 			length -= t->len;
853 
854 			if (!multiple)
855 				break;
856 		}
857 
858 		/* discard mappings */
859 		if (direction == DMA_FROM_DEVICE)
860 			flush_kernel_dcache_page(sg_page(sg));
861 		kunmap(sg_page(sg));
862 		if (dma_dev)
863 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
864 
865 		if (status < 0) {
866 			data->error = status;
867 			dev_dbg(&spi->dev, "%s status %d\n",
868 				(direction == DMA_TO_DEVICE)
869 					? "write" : "read",
870 				status);
871 			break;
872 		}
873 	}
874 
875 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
876 	 * can be issued before multiblock writes.  Unlike its more widely
877 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
878 	 * that can affect the STOP_TRAN logic.   Complete (and current)
879 	 * MMC specs should sort that out before Linux starts using CMD23.
880 	 */
881 	if (direction == DMA_TO_DEVICE && multiple) {
882 		struct scratch	*scratch = host->data;
883 		int		tmp;
884 		const unsigned	statlen = sizeof(scratch->status);
885 
886 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
887 
888 		/* Tweak the per-block message we set up earlier by morphing
889 		 * it to hold single buffer with the token followed by some
890 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
891 		 * "not busy any longer" status, and leave chip selected.
892 		 */
893 		INIT_LIST_HEAD(&host->m.transfers);
894 		list_add(&host->early_status.transfer_list,
895 				&host->m.transfers);
896 
897 		memset(scratch->status, 0xff, statlen);
898 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
899 
900 		host->early_status.tx_buf = host->early_status.rx_buf;
901 		host->early_status.tx_dma = host->early_status.rx_dma;
902 		host->early_status.len = statlen;
903 
904 		if (host->dma_dev)
905 			dma_sync_single_for_device(host->dma_dev,
906 					host->data_dma, sizeof(*scratch),
907 					DMA_BIDIRECTIONAL);
908 
909 		tmp = spi_sync(spi, &host->m);
910 
911 		if (host->dma_dev)
912 			dma_sync_single_for_cpu(host->dma_dev,
913 					host->data_dma, sizeof(*scratch),
914 					DMA_BIDIRECTIONAL);
915 
916 		if (tmp < 0) {
917 			if (!data->error)
918 				data->error = tmp;
919 			return;
920 		}
921 
922 		/* Ideally we collected "not busy" status with one I/O,
923 		 * avoiding wasteful byte-at-a-time scanning... but more
924 		 * I/O is often needed.
925 		 */
926 		for (tmp = 2; tmp < statlen; tmp++) {
927 			if (scratch->status[tmp] != 0)
928 				return;
929 		}
930 		tmp = mmc_spi_wait_unbusy(host, timeout);
931 		if (tmp < 0 && !data->error)
932 			data->error = tmp;
933 	}
934 }
935 
936 /****************************************************************************/
937 
938 /*
939  * MMC driver implementation -- the interface to the MMC stack
940  */
941 
942 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
943 {
944 	struct mmc_spi_host	*host = mmc_priv(mmc);
945 	int			status = -EINVAL;
946 
947 #ifdef DEBUG
948 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
949 	{
950 		struct mmc_command	*cmd;
951 		int			invalid = 0;
952 
953 		cmd = mrq->cmd;
954 		if (!mmc_spi_resp_type(cmd)) {
955 			dev_dbg(&host->spi->dev, "bogus command\n");
956 			cmd->error = -EINVAL;
957 			invalid = 1;
958 		}
959 
960 		cmd = mrq->stop;
961 		if (cmd && !mmc_spi_resp_type(cmd)) {
962 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
963 			cmd->error = -EINVAL;
964 			invalid = 1;
965 		}
966 
967 		if (invalid) {
968 			dump_stack();
969 			mmc_request_done(host->mmc, mrq);
970 			return;
971 		}
972 	}
973 #endif
974 
975 	/* issue command; then optionally data and stop */
976 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
977 	if (status == 0 && mrq->data) {
978 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
979 		if (mrq->stop)
980 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
981 		else
982 			mmc_cs_off(host);
983 	}
984 
985 	mmc_request_done(host->mmc, mrq);
986 }
987 
988 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
989  *
990  * NOTE that here we can't know that the card has just been powered up;
991  * not all MMC/SD sockets support power switching.
992  *
993  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
994  * this doesn't seem to do the right thing at all...
995  */
996 static void mmc_spi_initsequence(struct mmc_spi_host *host)
997 {
998 	/* Try to be very sure any previous command has completed;
999 	 * wait till not-busy, skip debris from any old commands.
1000 	 */
1001 	mmc_spi_wait_unbusy(host, r1b_timeout);
1002 	mmc_spi_readbytes(host, 10);
1003 
1004 	/*
1005 	 * Do a burst with chipselect active-high.  We need to do this to
1006 	 * meet the requirement of 74 clock cycles with both chipselect
1007 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1008 	 * powered up to Vdd(min), and so is ready to take commands.
1009 	 *
1010 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1011 	 * while most others don't seem to care.
1012 	 *
1013 	 * Note that this is one of the places MMC/SD plays games with the
1014 	 * SPI protocol.  Another is that when chipselect is released while
1015 	 * the card returns BUSY status, the clock must issue several cycles
1016 	 * with chipselect high before the card will stop driving its output.
1017 	 */
1018 	host->spi->mode |= SPI_CS_HIGH;
1019 	if (spi_setup(host->spi) != 0) {
1020 		/* Just warn; most cards work without it. */
1021 		dev_warn(&host->spi->dev,
1022 				"can't change chip-select polarity\n");
1023 		host->spi->mode &= ~SPI_CS_HIGH;
1024 	} else {
1025 		mmc_spi_readbytes(host, 18);
1026 
1027 		host->spi->mode &= ~SPI_CS_HIGH;
1028 		if (spi_setup(host->spi) != 0) {
1029 			/* Wot, we can't get the same setup we had before? */
1030 			dev_err(&host->spi->dev,
1031 					"can't restore chip-select polarity\n");
1032 		}
1033 	}
1034 }
1035 
1036 static char *mmc_powerstring(u8 power_mode)
1037 {
1038 	switch (power_mode) {
1039 	case MMC_POWER_OFF: return "off";
1040 	case MMC_POWER_UP:  return "up";
1041 	case MMC_POWER_ON:  return "on";
1042 	}
1043 	return "?";
1044 }
1045 
1046 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1047 {
1048 	struct mmc_spi_host *host = mmc_priv(mmc);
1049 
1050 	if (host->power_mode != ios->power_mode) {
1051 		int		canpower;
1052 
1053 		canpower = host->pdata && host->pdata->setpower;
1054 
1055 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1056 				mmc_powerstring(ios->power_mode),
1057 				ios->vdd,
1058 				canpower ? ", can switch" : "");
1059 
1060 		/* switch power on/off if possible, accounting for
1061 		 * max 250msec powerup time if needed.
1062 		 */
1063 		if (canpower) {
1064 			switch (ios->power_mode) {
1065 			case MMC_POWER_OFF:
1066 			case MMC_POWER_UP:
1067 				host->pdata->setpower(&host->spi->dev,
1068 						ios->vdd);
1069 				if (ios->power_mode == MMC_POWER_UP)
1070 					msleep(host->powerup_msecs);
1071 			}
1072 		}
1073 
1074 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1075 		if (ios->power_mode == MMC_POWER_ON)
1076 			mmc_spi_initsequence(host);
1077 
1078 		/* If powering down, ground all card inputs to avoid power
1079 		 * delivery from data lines!  On a shared SPI bus, this
1080 		 * will probably be temporary; 6.4.2 of the simplified SD
1081 		 * spec says this must last at least 1msec.
1082 		 *
1083 		 *   - Clock low means CPOL 0, e.g. mode 0
1084 		 *   - MOSI low comes from writing zero
1085 		 *   - Chipselect is usually active low...
1086 		 */
1087 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1088 			int mres;
1089 			u8 nullbyte = 0;
1090 
1091 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1092 			mres = spi_setup(host->spi);
1093 			if (mres < 0)
1094 				dev_dbg(&host->spi->dev,
1095 					"switch to SPI mode 0 failed\n");
1096 
1097 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1098 				dev_dbg(&host->spi->dev,
1099 					"put spi signals to low failed\n");
1100 
1101 			/*
1102 			 * Now clock should be low due to spi mode 0;
1103 			 * MOSI should be low because of written 0x00;
1104 			 * chipselect should be low (it is active low)
1105 			 * power supply is off, so now MMC is off too!
1106 			 *
1107 			 * FIXME no, chipselect can be high since the
1108 			 * device is inactive and SPI_CS_HIGH is clear...
1109 			 */
1110 			msleep(10);
1111 			if (mres == 0) {
1112 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1113 				mres = spi_setup(host->spi);
1114 				if (mres < 0)
1115 					dev_dbg(&host->spi->dev,
1116 						"switch back to SPI mode 3"
1117 						" failed\n");
1118 			}
1119 		}
1120 
1121 		host->power_mode = ios->power_mode;
1122 	}
1123 
1124 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1125 		int		status;
1126 
1127 		host->spi->max_speed_hz = ios->clock;
1128 		status = spi_setup(host->spi);
1129 		dev_dbg(&host->spi->dev,
1130 			"mmc_spi:  clock to %d Hz, %d\n",
1131 			host->spi->max_speed_hz, status);
1132 	}
1133 }
1134 
1135 static int mmc_spi_get_ro(struct mmc_host *mmc)
1136 {
1137 	struct mmc_spi_host *host = mmc_priv(mmc);
1138 
1139 	if (host->pdata && host->pdata->get_ro)
1140 		return !!host->pdata->get_ro(mmc->parent);
1141 	/*
1142 	 * Board doesn't support read only detection; let the mmc core
1143 	 * decide what to do.
1144 	 */
1145 	return -ENOSYS;
1146 }
1147 
1148 static int mmc_spi_get_cd(struct mmc_host *mmc)
1149 {
1150 	struct mmc_spi_host *host = mmc_priv(mmc);
1151 
1152 	if (host->pdata && host->pdata->get_cd)
1153 		return !!host->pdata->get_cd(mmc->parent);
1154 	return -ENOSYS;
1155 }
1156 
1157 static const struct mmc_host_ops mmc_spi_ops = {
1158 	.request	= mmc_spi_request,
1159 	.set_ios	= mmc_spi_set_ios,
1160 	.get_ro		= mmc_spi_get_ro,
1161 	.get_cd		= mmc_spi_get_cd,
1162 };
1163 
1164 
1165 /****************************************************************************/
1166 
1167 /*
1168  * SPI driver implementation
1169  */
1170 
1171 static irqreturn_t
1172 mmc_spi_detect_irq(int irq, void *mmc)
1173 {
1174 	struct mmc_spi_host *host = mmc_priv(mmc);
1175 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1176 
1177 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1178 	return IRQ_HANDLED;
1179 }
1180 
1181 struct count_children {
1182 	unsigned	n;
1183 	struct bus_type	*bus;
1184 };
1185 
1186 static int maybe_count_child(struct device *dev, void *c)
1187 {
1188 	struct count_children *ccp = c;
1189 
1190 	if (dev->bus == ccp->bus) {
1191 		if (ccp->n)
1192 			return -EBUSY;
1193 		ccp->n++;
1194 	}
1195 	return 0;
1196 }
1197 
1198 static int mmc_spi_probe(struct spi_device *spi)
1199 {
1200 	void			*ones;
1201 	struct mmc_host		*mmc;
1202 	struct mmc_spi_host	*host;
1203 	int			status;
1204 
1205 	/* MMC and SD specs only seem to care that sampling is on the
1206 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1207 	 * should be legit.  We'll use mode 0 since it seems to be a
1208 	 * bit less troublesome on some hardware ... unclear why.
1209 	 */
1210 	spi->mode = SPI_MODE_0;
1211 	spi->bits_per_word = 8;
1212 
1213 	status = spi_setup(spi);
1214 	if (status < 0) {
1215 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1216 				spi->mode, spi->max_speed_hz / 1000,
1217 				status);
1218 		return status;
1219 	}
1220 
1221 	/* We can use the bus safely iff nobody else will interfere with us.
1222 	 * Most commands consist of one SPI message to issue a command, then
1223 	 * several more to collect its response, then possibly more for data
1224 	 * transfer.  Clocking access to other devices during that period will
1225 	 * corrupt the command execution.
1226 	 *
1227 	 * Until we have software primitives which guarantee non-interference,
1228 	 * we'll aim for a hardware-level guarantee.
1229 	 *
1230 	 * REVISIT we can't guarantee another device won't be added later...
1231 	 */
1232 	if (spi->master->num_chipselect > 1) {
1233 		struct count_children cc;
1234 
1235 		cc.n = 0;
1236 		cc.bus = spi->dev.bus;
1237 		status = device_for_each_child(spi->dev.parent, &cc,
1238 				maybe_count_child);
1239 		if (status < 0) {
1240 			dev_err(&spi->dev, "can't share SPI bus\n");
1241 			return status;
1242 		}
1243 
1244 		dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1245 	}
1246 
1247 	/* We need a supply of ones to transmit.  This is the only time
1248 	 * the CPU touches these, so cache coherency isn't a concern.
1249 	 *
1250 	 * NOTE if many systems use more than one MMC-over-SPI connector
1251 	 * it'd save some memory to share this.  That's evidently rare.
1252 	 */
1253 	status = -ENOMEM;
1254 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1255 	if (!ones)
1256 		goto nomem;
1257 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1258 
1259 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1260 	if (!mmc)
1261 		goto nomem;
1262 
1263 	mmc->ops = &mmc_spi_ops;
1264 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1265 
1266 	mmc->caps = MMC_CAP_SPI;
1267 
1268 	/* SPI doesn't need the lowspeed device identification thing for
1269 	 * MMC or SD cards, since it never comes up in open drain mode.
1270 	 * That's good; some SPI masters can't handle very low speeds!
1271 	 *
1272 	 * However, low speed SDIO cards need not handle over 400 KHz;
1273 	 * that's the only reason not to use a few MHz for f_min (until
1274 	 * the upper layer reads the target frequency from the CSD).
1275 	 */
1276 	mmc->f_min = 400000;
1277 	mmc->f_max = spi->max_speed_hz;
1278 
1279 	host = mmc_priv(mmc);
1280 	host->mmc = mmc;
1281 	host->spi = spi;
1282 
1283 	host->ones = ones;
1284 
1285 	/* Platform data is used to hook up things like card sensing
1286 	 * and power switching gpios.
1287 	 */
1288 	host->pdata = spi->dev.platform_data;
1289 	if (host->pdata)
1290 		mmc->ocr_avail = host->pdata->ocr_mask;
1291 	if (!mmc->ocr_avail) {
1292 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1293 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1294 	}
1295 	if (host->pdata && host->pdata->setpower) {
1296 		host->powerup_msecs = host->pdata->powerup_msecs;
1297 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1298 			host->powerup_msecs = 250;
1299 	}
1300 
1301 	dev_set_drvdata(&spi->dev, mmc);
1302 
1303 	/* preallocate dma buffers */
1304 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1305 	if (!host->data)
1306 		goto fail_nobuf1;
1307 
1308 	if (spi->master->dev.parent->dma_mask) {
1309 		struct device	*dev = spi->master->dev.parent;
1310 
1311 		host->dma_dev = dev;
1312 		host->ones_dma = dma_map_single(dev, ones,
1313 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1314 		host->data_dma = dma_map_single(dev, host->data,
1315 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1316 
1317 		/* REVISIT in theory those map operations can fail... */
1318 
1319 		dma_sync_single_for_cpu(host->dma_dev,
1320 				host->data_dma, sizeof(*host->data),
1321 				DMA_BIDIRECTIONAL);
1322 	}
1323 
1324 	/* setup message for status/busy readback */
1325 	spi_message_init(&host->readback);
1326 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1327 
1328 	spi_message_add_tail(&host->status, &host->readback);
1329 	host->status.tx_buf = host->ones;
1330 	host->status.tx_dma = host->ones_dma;
1331 	host->status.rx_buf = &host->data->status;
1332 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1333 	host->status.cs_change = 1;
1334 
1335 	/* register card detect irq */
1336 	if (host->pdata && host->pdata->init) {
1337 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1338 		if (status != 0)
1339 			goto fail_glue_init;
1340 	}
1341 
1342 	/* pass platform capabilities, if any */
1343 	if (host->pdata)
1344 		mmc->caps |= host->pdata->caps;
1345 
1346 	status = mmc_add_host(mmc);
1347 	if (status != 0)
1348 		goto fail_add_host;
1349 
1350 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1351 			mmc->class_dev.bus_id,
1352 			host->dma_dev ? "" : ", no DMA",
1353 			(host->pdata && host->pdata->get_ro)
1354 				? "" : ", no WP",
1355 			(host->pdata && host->pdata->setpower)
1356 				? "" : ", no poweroff",
1357 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1358 				? ", cd polling" : "");
1359 	return 0;
1360 
1361 fail_add_host:
1362 	mmc_remove_host (mmc);
1363 fail_glue_init:
1364 	if (host->dma_dev)
1365 		dma_unmap_single(host->dma_dev, host->data_dma,
1366 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1367 	kfree(host->data);
1368 
1369 fail_nobuf1:
1370 	mmc_free_host(mmc);
1371 	dev_set_drvdata(&spi->dev, NULL);
1372 
1373 nomem:
1374 	kfree(ones);
1375 	return status;
1376 }
1377 
1378 
1379 static int __devexit mmc_spi_remove(struct spi_device *spi)
1380 {
1381 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1382 	struct mmc_spi_host	*host;
1383 
1384 	if (mmc) {
1385 		host = mmc_priv(mmc);
1386 
1387 		/* prevent new mmc_detect_change() calls */
1388 		if (host->pdata && host->pdata->exit)
1389 			host->pdata->exit(&spi->dev, mmc);
1390 
1391 		mmc_remove_host(mmc);
1392 
1393 		if (host->dma_dev) {
1394 			dma_unmap_single(host->dma_dev, host->ones_dma,
1395 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1396 			dma_unmap_single(host->dma_dev, host->data_dma,
1397 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1398 		}
1399 
1400 		kfree(host->data);
1401 		kfree(host->ones);
1402 
1403 		spi->max_speed_hz = mmc->f_max;
1404 		mmc_free_host(mmc);
1405 		dev_set_drvdata(&spi->dev, NULL);
1406 	}
1407 	return 0;
1408 }
1409 
1410 
1411 static struct spi_driver mmc_spi_driver = {
1412 	.driver = {
1413 		.name =		"mmc_spi",
1414 		.bus =		&spi_bus_type,
1415 		.owner =	THIS_MODULE,
1416 	},
1417 	.probe =	mmc_spi_probe,
1418 	.remove =	__devexit_p(mmc_spi_remove),
1419 };
1420 
1421 
1422 static int __init mmc_spi_init(void)
1423 {
1424 	return spi_register_driver(&mmc_spi_driver);
1425 }
1426 module_init(mmc_spi_init);
1427 
1428 
1429 static void __exit mmc_spi_exit(void)
1430 {
1431 	spi_unregister_driver(&mmc_spi_driver);
1432 }
1433 module_exit(mmc_spi_exit);
1434 
1435 
1436 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1437 		"Hans-Peter Nilsson, Jan Nikitenko");
1438 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1439 MODULE_LICENSE("GPL");
1440