1 /* 2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers 3 * 4 * (C) Copyright 2005, Intec Automation, 5 * Mike Lavender (mike@steroidmicros) 6 * (C) Copyright 2006-2007, David Brownell 7 * (C) Copyright 2007, Axis Communications, 8 * Hans-Peter Nilsson (hp@axis.com) 9 * (C) Copyright 2007, ATRON electronic GmbH, 10 * Jan Nikitenko <jan.nikitenko@gmail.com> 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 #include <linux/hrtimer.h> 28 #include <linux/delay.h> 29 #include <linux/bio.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/crc7.h> 32 #include <linux/crc-itu-t.h> 33 #include <linux/scatterlist.h> 34 35 #include <linux/mmc/host.h> 36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 37 38 #include <linux/spi/spi.h> 39 #include <linux/spi/mmc_spi.h> 40 41 #include <asm/unaligned.h> 42 43 44 /* NOTES: 45 * 46 * - For now, we won't try to interoperate with a real mmc/sd/sdio 47 * controller, although some of them do have hardware support for 48 * SPI protocol. The main reason for such configs would be mmc-ish 49 * cards like DataFlash, which don't support that "native" protocol. 50 * 51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 52 * switch between driver stacks, and in any case if "native" mode 53 * is available, it will be faster and hence preferable. 54 * 55 * - MMC depends on a different chipselect management policy than the 56 * SPI interface currently supports for shared bus segments: it needs 57 * to issue multiple spi_message requests with the chipselect active, 58 * using the results of one message to decide the next one to issue. 59 * 60 * Pending updates to the programming interface, this driver expects 61 * that it not share the bus with other drivers (precluding conflicts). 62 * 63 * - We tell the controller to keep the chipselect active from the 64 * beginning of an mmc_host_ops.request until the end. So beware 65 * of SPI controller drivers that mis-handle the cs_change flag! 66 * 67 * However, many cards seem OK with chipselect flapping up/down 68 * during that time ... at least on unshared bus segments. 69 */ 70 71 72 /* 73 * Local protocol constants, internal to data block protocols. 74 */ 75 76 /* Response tokens used to ack each block written: */ 77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 81 82 /* Read and write blocks start with these tokens and end with crc; 83 * on error, read tokens act like a subset of R2_SPI_* values. 84 */ 85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 88 89 #define MMC_SPI_BLOCKSIZE 512 90 91 92 /* These fixed timeouts come from the latest SD specs, which say to ignore 93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the 94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after 95 * reads which takes nowhere near that long. Older cards may be able to use 96 * shorter timeouts ... but why bother? 97 */ 98 #define r1b_timeout ktime_set(3, 0) 99 100 101 /****************************************************************************/ 102 103 /* 104 * Local Data Structures 105 */ 106 107 /* "scratch" is per-{command,block} data exchanged with the card */ 108 struct scratch { 109 u8 status[29]; 110 u8 data_token; 111 __be16 crc_val; 112 }; 113 114 struct mmc_spi_host { 115 struct mmc_host *mmc; 116 struct spi_device *spi; 117 118 unsigned char power_mode; 119 u16 powerup_msecs; 120 121 struct mmc_spi_platform_data *pdata; 122 123 /* for bulk data transfers */ 124 struct spi_transfer token, t, crc, early_status; 125 struct spi_message m; 126 127 /* for status readback */ 128 struct spi_transfer status; 129 struct spi_message readback; 130 131 /* underlying DMA-aware controller, or null */ 132 struct device *dma_dev; 133 134 /* buffer used for commands and for message "overhead" */ 135 struct scratch *data; 136 dma_addr_t data_dma; 137 138 /* Specs say to write ones most of the time, even when the card 139 * has no need to read its input data; and many cards won't care. 140 * This is our source of those ones. 141 */ 142 void *ones; 143 dma_addr_t ones_dma; 144 }; 145 146 147 /****************************************************************************/ 148 149 /* 150 * MMC-over-SPI protocol glue, used by the MMC stack interface 151 */ 152 153 static inline int mmc_cs_off(struct mmc_spi_host *host) 154 { 155 /* chipselect will always be inactive after setup() */ 156 return spi_setup(host->spi); 157 } 158 159 static int 160 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 161 { 162 int status; 163 164 if (len > sizeof(*host->data)) { 165 WARN_ON(1); 166 return -EIO; 167 } 168 169 host->status.len = len; 170 171 if (host->dma_dev) 172 dma_sync_single_for_device(host->dma_dev, 173 host->data_dma, sizeof(*host->data), 174 DMA_FROM_DEVICE); 175 176 status = spi_sync(host->spi, &host->readback); 177 178 if (host->dma_dev) 179 dma_sync_single_for_cpu(host->dma_dev, 180 host->data_dma, sizeof(*host->data), 181 DMA_FROM_DEVICE); 182 183 return status; 184 } 185 186 static int 187 mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte) 188 { 189 u8 *cp = host->data->status; 190 191 timeout = ktime_add(timeout, ktime_get()); 192 193 while (1) { 194 int status; 195 unsigned i; 196 197 status = mmc_spi_readbytes(host, n); 198 if (status < 0) 199 return status; 200 201 for (i = 0; i < n; i++) { 202 if (cp[i] != byte) 203 return cp[i]; 204 } 205 206 /* REVISIT investigate msleep() to avoid busy-wait I/O 207 * in at least some cases. 208 */ 209 if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0) 210 break; 211 } 212 return -ETIMEDOUT; 213 } 214 215 static inline int 216 mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout) 217 { 218 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 219 } 220 221 static int mmc_spi_readtoken(struct mmc_spi_host *host, ktime_t timeout) 222 { 223 return mmc_spi_skip(host, timeout, 1, 0xff); 224 } 225 226 227 /* 228 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 229 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 230 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 231 * 232 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 233 * newer cards R7 (IF_COND). 234 */ 235 236 static char *maptype(struct mmc_command *cmd) 237 { 238 switch (mmc_spi_resp_type(cmd)) { 239 case MMC_RSP_SPI_R1: return "R1"; 240 case MMC_RSP_SPI_R1B: return "R1B"; 241 case MMC_RSP_SPI_R2: return "R2/R5"; 242 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 243 default: return "?"; 244 } 245 } 246 247 /* return zero, else negative errno after setting cmd->error */ 248 static int mmc_spi_response_get(struct mmc_spi_host *host, 249 struct mmc_command *cmd, int cs_on) 250 { 251 u8 *cp = host->data->status; 252 u8 *end = cp + host->t.len; 253 int value = 0; 254 char tag[32]; 255 256 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 257 cmd->opcode, maptype(cmd)); 258 259 /* Except for data block reads, the whole response will already 260 * be stored in the scratch buffer. It's somewhere after the 261 * command and the first byte we read after it. We ignore that 262 * first byte. After STOP_TRANSMISSION command it may include 263 * two data bits, but otherwise it's all ones. 264 */ 265 cp += 8; 266 while (cp < end && *cp == 0xff) 267 cp++; 268 269 /* Data block reads (R1 response types) may need more data... */ 270 if (cp == end) { 271 unsigned i; 272 273 cp = host->data->status; 274 275 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 276 * status byte ... and we already scanned 2 bytes. 277 * 278 * REVISIT block read paths use nasty byte-at-a-time I/O 279 * so it can always DMA directly into the target buffer. 280 * It'd probably be better to memcpy() the first chunk and 281 * avoid extra i/o calls... 282 */ 283 for (i = 2; i < 9; i++) { 284 value = mmc_spi_readbytes(host, 1); 285 if (value < 0) 286 goto done; 287 if (*cp != 0xff) 288 goto checkstatus; 289 } 290 value = -ETIMEDOUT; 291 goto done; 292 } 293 294 checkstatus: 295 if (*cp & 0x80) { 296 dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n", 297 tag, *cp); 298 value = -EBADR; 299 goto done; 300 } 301 302 cmd->resp[0] = *cp++; 303 cmd->error = 0; 304 305 /* Status byte: the entire seven-bit R1 response. */ 306 if (cmd->resp[0] != 0) { 307 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS 308 | R1_SPI_ILLEGAL_COMMAND) 309 & cmd->resp[0]) 310 value = -EINVAL; 311 else if (R1_SPI_COM_CRC & cmd->resp[0]) 312 value = -EILSEQ; 313 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 314 & cmd->resp[0]) 315 value = -EIO; 316 /* else R1_SPI_IDLE, "it's resetting" */ 317 } 318 319 switch (mmc_spi_resp_type(cmd)) { 320 321 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 322 * and less-common stuff like various erase operations. 323 */ 324 case MMC_RSP_SPI_R1B: 325 /* maybe we read all the busy tokens already */ 326 while (cp < end && *cp == 0) 327 cp++; 328 if (cp == end) 329 mmc_spi_wait_unbusy(host, r1b_timeout); 330 break; 331 332 /* SPI R2 == R1 + second status byte; SEND_STATUS 333 * SPI R5 == R1 + data byte; IO_RW_DIRECT 334 */ 335 case MMC_RSP_SPI_R2: 336 cmd->resp[0] |= *cp << 8; 337 break; 338 339 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 340 case MMC_RSP_SPI_R3: 341 cmd->resp[1] = get_unaligned_be32(cp); 342 break; 343 344 /* SPI R1 == just one status byte */ 345 case MMC_RSP_SPI_R1: 346 break; 347 348 default: 349 dev_dbg(&host->spi->dev, "bad response type %04x\n", 350 mmc_spi_resp_type(cmd)); 351 if (value >= 0) 352 value = -EINVAL; 353 goto done; 354 } 355 356 if (value < 0) 357 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 358 tag, cmd->resp[0], cmd->resp[1]); 359 360 /* disable chipselect on errors and some success cases */ 361 if (value >= 0 && cs_on) 362 return value; 363 done: 364 if (value < 0) 365 cmd->error = value; 366 mmc_cs_off(host); 367 return value; 368 } 369 370 /* Issue command and read its response. 371 * Returns zero on success, negative for error. 372 * 373 * On error, caller must cope with mmc core retry mechanism. That 374 * means immediate low-level resubmit, which affects the bus lock... 375 */ 376 static int 377 mmc_spi_command_send(struct mmc_spi_host *host, 378 struct mmc_request *mrq, 379 struct mmc_command *cmd, int cs_on) 380 { 381 struct scratch *data = host->data; 382 u8 *cp = data->status; 383 u32 arg = cmd->arg; 384 int status; 385 struct spi_transfer *t; 386 387 /* We can handle most commands (except block reads) in one full 388 * duplex I/O operation before either starting the next transfer 389 * (data block or command) or else deselecting the card. 390 * 391 * First, write 7 bytes: 392 * - an all-ones byte to ensure the card is ready 393 * - opcode byte (plus start and transmission bits) 394 * - four bytes of big-endian argument 395 * - crc7 (plus end bit) ... always computed, it's cheap 396 * 397 * We init the whole buffer to all-ones, which is what we need 398 * to write while we're reading (later) response data. 399 */ 400 memset(cp++, 0xff, sizeof(data->status)); 401 402 *cp++ = 0x40 | cmd->opcode; 403 *cp++ = (u8)(arg >> 24); 404 *cp++ = (u8)(arg >> 16); 405 *cp++ = (u8)(arg >> 8); 406 *cp++ = (u8)arg; 407 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; 408 409 /* Then, read up to 13 bytes (while writing all-ones): 410 * - N(CR) (== 1..8) bytes of all-ones 411 * - status byte (for all response types) 412 * - the rest of the response, either: 413 * + nothing, for R1 or R1B responses 414 * + second status byte, for R2 responses 415 * + four data bytes, for R3 and R7 responses 416 * 417 * Finally, read some more bytes ... in the nice cases we know in 418 * advance how many, and reading 1 more is always OK: 419 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 420 * - N(RC) (== 1..N) bytes of all-ones, before next command 421 * - N(WR) (== 1..N) bytes of all-ones, before data write 422 * 423 * So in those cases one full duplex I/O of at most 21 bytes will 424 * handle the whole command, leaving the card ready to receive a 425 * data block or new command. We do that whenever we can, shaving 426 * CPU and IRQ costs (especially when using DMA or FIFOs). 427 * 428 * There are two other cases, where it's not generally practical 429 * to rely on a single I/O: 430 * 431 * - R1B responses need at least N(EC) bytes of all-zeroes. 432 * 433 * In this case we can *try* to fit it into one I/O, then 434 * maybe read more data later. 435 * 436 * - Data block reads are more troublesome, since a variable 437 * number of padding bytes precede the token and data. 438 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 439 * + N(AC) (== 1..many) bytes of all-ones 440 * 441 * In this case we currently only have minimal speedups here: 442 * when N(CR) == 1 we can avoid I/O in response_get(). 443 */ 444 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 445 cp += 2; /* min(N(CR)) + status */ 446 /* R1 */ 447 } else { 448 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 449 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 450 cp++; 451 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 452 cp += 4; 453 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 454 cp = data->status + sizeof(data->status); 455 /* else: R1 (most commands) */ 456 } 457 458 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 459 cmd->opcode, maptype(cmd)); 460 461 /* send command, leaving chipselect active */ 462 spi_message_init(&host->m); 463 464 t = &host->t; 465 memset(t, 0, sizeof(*t)); 466 t->tx_buf = t->rx_buf = data->status; 467 t->tx_dma = t->rx_dma = host->data_dma; 468 t->len = cp - data->status; 469 t->cs_change = 1; 470 spi_message_add_tail(t, &host->m); 471 472 if (host->dma_dev) { 473 host->m.is_dma_mapped = 1; 474 dma_sync_single_for_device(host->dma_dev, 475 host->data_dma, sizeof(*host->data), 476 DMA_BIDIRECTIONAL); 477 } 478 status = spi_sync(host->spi, &host->m); 479 480 if (host->dma_dev) 481 dma_sync_single_for_cpu(host->dma_dev, 482 host->data_dma, sizeof(*host->data), 483 DMA_BIDIRECTIONAL); 484 if (status < 0) { 485 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 486 cmd->error = status; 487 return status; 488 } 489 490 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 491 return mmc_spi_response_get(host, cmd, cs_on); 492 } 493 494 /* Build data message with up to four separate transfers. For TX, we 495 * start by writing the data token. And in most cases, we finish with 496 * a status transfer. 497 * 498 * We always provide TX data for data and CRC. The MMC/SD protocol 499 * requires us to write ones; but Linux defaults to writing zeroes; 500 * so we explicitly initialize it to all ones on RX paths. 501 * 502 * We also handle DMA mapping, so the underlying SPI controller does 503 * not need to (re)do it for each message. 504 */ 505 static void 506 mmc_spi_setup_data_message( 507 struct mmc_spi_host *host, 508 int multiple, 509 enum dma_data_direction direction) 510 { 511 struct spi_transfer *t; 512 struct scratch *scratch = host->data; 513 dma_addr_t dma = host->data_dma; 514 515 spi_message_init(&host->m); 516 if (dma) 517 host->m.is_dma_mapped = 1; 518 519 /* for reads, readblock() skips 0xff bytes before finding 520 * the token; for writes, this transfer issues that token. 521 */ 522 if (direction == DMA_TO_DEVICE) { 523 t = &host->token; 524 memset(t, 0, sizeof(*t)); 525 t->len = 1; 526 if (multiple) 527 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 528 else 529 scratch->data_token = SPI_TOKEN_SINGLE; 530 t->tx_buf = &scratch->data_token; 531 if (dma) 532 t->tx_dma = dma + offsetof(struct scratch, data_token); 533 spi_message_add_tail(t, &host->m); 534 } 535 536 /* Body of transfer is buffer, then CRC ... 537 * either TX-only, or RX with TX-ones. 538 */ 539 t = &host->t; 540 memset(t, 0, sizeof(*t)); 541 t->tx_buf = host->ones; 542 t->tx_dma = host->ones_dma; 543 /* length and actual buffer info are written later */ 544 spi_message_add_tail(t, &host->m); 545 546 t = &host->crc; 547 memset(t, 0, sizeof(*t)); 548 t->len = 2; 549 if (direction == DMA_TO_DEVICE) { 550 /* the actual CRC may get written later */ 551 t->tx_buf = &scratch->crc_val; 552 if (dma) 553 t->tx_dma = dma + offsetof(struct scratch, crc_val); 554 } else { 555 t->tx_buf = host->ones; 556 t->tx_dma = host->ones_dma; 557 t->rx_buf = &scratch->crc_val; 558 if (dma) 559 t->rx_dma = dma + offsetof(struct scratch, crc_val); 560 } 561 spi_message_add_tail(t, &host->m); 562 563 /* 564 * A single block read is followed by N(EC) [0+] all-ones bytes 565 * before deselect ... don't bother. 566 * 567 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 568 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 569 * collect that single byte, so readblock() doesn't need to. 570 * 571 * For a write, the one-byte data response follows immediately, then 572 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 573 * Then single block reads may deselect, and multiblock ones issue 574 * the next token (next data block, or STOP_TRAN). We can try to 575 * minimize I/O ops by using a single read to collect end-of-busy. 576 */ 577 if (multiple || direction == DMA_TO_DEVICE) { 578 t = &host->early_status; 579 memset(t, 0, sizeof(*t)); 580 t->len = (direction == DMA_TO_DEVICE) 581 ? sizeof(scratch->status) 582 : 1; 583 t->tx_buf = host->ones; 584 t->tx_dma = host->ones_dma; 585 t->rx_buf = scratch->status; 586 if (dma) 587 t->rx_dma = dma + offsetof(struct scratch, status); 588 t->cs_change = 1; 589 spi_message_add_tail(t, &host->m); 590 } 591 } 592 593 /* 594 * Write one block: 595 * - caller handled preceding N(WR) [1+] all-ones bytes 596 * - data block 597 * + token 598 * + data bytes 599 * + crc16 600 * - an all-ones byte ... card writes a data-response byte 601 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 602 * 603 * Return negative errno, else success. 604 */ 605 static int 606 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 607 ktime_t timeout) 608 { 609 struct spi_device *spi = host->spi; 610 int status, i; 611 struct scratch *scratch = host->data; 612 613 if (host->mmc->use_spi_crc) 614 scratch->crc_val = cpu_to_be16( 615 crc_itu_t(0, t->tx_buf, t->len)); 616 if (host->dma_dev) 617 dma_sync_single_for_device(host->dma_dev, 618 host->data_dma, sizeof(*scratch), 619 DMA_BIDIRECTIONAL); 620 621 status = spi_sync(spi, &host->m); 622 623 if (status != 0) { 624 dev_dbg(&spi->dev, "write error (%d)\n", status); 625 return status; 626 } 627 628 if (host->dma_dev) 629 dma_sync_single_for_cpu(host->dma_dev, 630 host->data_dma, sizeof(*scratch), 631 DMA_BIDIRECTIONAL); 632 633 /* 634 * Get the transmission data-response reply. It must follow 635 * immediately after the data block we transferred. This reply 636 * doesn't necessarily tell whether the write operation succeeded; 637 * it just says if the transmission was ok and whether *earlier* 638 * writes succeeded; see the standard. 639 */ 640 switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) { 641 case SPI_RESPONSE_ACCEPTED: 642 status = 0; 643 break; 644 case SPI_RESPONSE_CRC_ERR: 645 /* host shall then issue MMC_STOP_TRANSMISSION */ 646 status = -EILSEQ; 647 break; 648 case SPI_RESPONSE_WRITE_ERR: 649 /* host shall then issue MMC_STOP_TRANSMISSION, 650 * and should MMC_SEND_STATUS to sort it out 651 */ 652 status = -EIO; 653 break; 654 default: 655 status = -EPROTO; 656 break; 657 } 658 if (status != 0) { 659 dev_dbg(&spi->dev, "write error %02x (%d)\n", 660 scratch->status[0], status); 661 return status; 662 } 663 664 t->tx_buf += t->len; 665 if (host->dma_dev) 666 t->tx_dma += t->len; 667 668 /* Return when not busy. If we didn't collect that status yet, 669 * we'll need some more I/O. 670 */ 671 for (i = 1; i < sizeof(scratch->status); i++) { 672 if (scratch->status[i] != 0) 673 return 0; 674 } 675 return mmc_spi_wait_unbusy(host, timeout); 676 } 677 678 /* 679 * Read one block: 680 * - skip leading all-ones bytes ... either 681 * + N(AC) [1..f(clock,CSD)] usually, else 682 * + N(CX) [0..8] when reading CSD or CID 683 * - data block 684 * + token ... if error token, no data or crc 685 * + data bytes 686 * + crc16 687 * 688 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 689 * before dropping chipselect. 690 * 691 * For multiblock reads, caller either reads the next block or issues a 692 * STOP_TRANSMISSION command. 693 */ 694 static int 695 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 696 ktime_t timeout) 697 { 698 struct spi_device *spi = host->spi; 699 int status; 700 struct scratch *scratch = host->data; 701 702 /* At least one SD card sends an all-zeroes byte when N(CX) 703 * applies, before the all-ones bytes ... just cope with that. 704 */ 705 status = mmc_spi_readbytes(host, 1); 706 if (status < 0) 707 return status; 708 status = scratch->status[0]; 709 if (status == 0xff || status == 0) 710 status = mmc_spi_readtoken(host, timeout); 711 712 if (status == SPI_TOKEN_SINGLE) { 713 if (host->dma_dev) { 714 dma_sync_single_for_device(host->dma_dev, 715 host->data_dma, sizeof(*scratch), 716 DMA_BIDIRECTIONAL); 717 dma_sync_single_for_device(host->dma_dev, 718 t->rx_dma, t->len, 719 DMA_FROM_DEVICE); 720 } 721 722 status = spi_sync(spi, &host->m); 723 724 if (host->dma_dev) { 725 dma_sync_single_for_cpu(host->dma_dev, 726 host->data_dma, sizeof(*scratch), 727 DMA_BIDIRECTIONAL); 728 dma_sync_single_for_cpu(host->dma_dev, 729 t->rx_dma, t->len, 730 DMA_FROM_DEVICE); 731 } 732 733 } else { 734 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 735 736 /* we've read extra garbage, timed out, etc */ 737 if (status < 0) 738 return status; 739 740 /* low four bits are an R2 subset, fifth seems to be 741 * vendor specific ... map them all to generic error.. 742 */ 743 return -EIO; 744 } 745 746 if (host->mmc->use_spi_crc) { 747 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 748 749 be16_to_cpus(&scratch->crc_val); 750 if (scratch->crc_val != crc) { 751 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " 752 "computed=0x%04x len=%d\n", 753 scratch->crc_val, crc, t->len); 754 return -EILSEQ; 755 } 756 } 757 758 t->rx_buf += t->len; 759 if (host->dma_dev) 760 t->rx_dma += t->len; 761 762 return 0; 763 } 764 765 /* 766 * An MMC/SD data stage includes one or more blocks, optional CRCs, 767 * and inline handshaking. That handhaking makes it unlike most 768 * other SPI protocol stacks. 769 */ 770 static void 771 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 772 struct mmc_data *data, u32 blk_size) 773 { 774 struct spi_device *spi = host->spi; 775 struct device *dma_dev = host->dma_dev; 776 struct spi_transfer *t; 777 enum dma_data_direction direction; 778 struct scatterlist *sg; 779 unsigned n_sg; 780 int multiple = (data->blocks > 1); 781 u32 clock_rate; 782 ktime_t timeout; 783 784 if (data->flags & MMC_DATA_READ) 785 direction = DMA_FROM_DEVICE; 786 else 787 direction = DMA_TO_DEVICE; 788 mmc_spi_setup_data_message(host, multiple, direction); 789 t = &host->t; 790 791 if (t->speed_hz) 792 clock_rate = t->speed_hz; 793 else 794 clock_rate = spi->max_speed_hz; 795 796 timeout = ktime_add_ns(ktime_set(0, 0), data->timeout_ns + 797 data->timeout_clks * 1000000 / clock_rate); 798 799 /* Handle scatterlist segments one at a time, with synch for 800 * each 512-byte block 801 */ 802 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { 803 int status = 0; 804 dma_addr_t dma_addr = 0; 805 void *kmap_addr; 806 unsigned length = sg->length; 807 enum dma_data_direction dir = direction; 808 809 /* set up dma mapping for controller drivers that might 810 * use DMA ... though they may fall back to PIO 811 */ 812 if (dma_dev) { 813 /* never invalidate whole *shared* pages ... */ 814 if ((sg->offset != 0 || length != PAGE_SIZE) 815 && dir == DMA_FROM_DEVICE) 816 dir = DMA_BIDIRECTIONAL; 817 818 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, 819 PAGE_SIZE, dir); 820 if (direction == DMA_TO_DEVICE) 821 t->tx_dma = dma_addr + sg->offset; 822 else 823 t->rx_dma = dma_addr + sg->offset; 824 } 825 826 /* allow pio too; we don't allow highmem */ 827 kmap_addr = kmap(sg_page(sg)); 828 if (direction == DMA_TO_DEVICE) 829 t->tx_buf = kmap_addr + sg->offset; 830 else 831 t->rx_buf = kmap_addr + sg->offset; 832 833 /* transfer each block, and update request status */ 834 while (length) { 835 t->len = min(length, blk_size); 836 837 dev_dbg(&host->spi->dev, 838 " mmc_spi: %s block, %d bytes\n", 839 (direction == DMA_TO_DEVICE) 840 ? "write" 841 : "read", 842 t->len); 843 844 if (direction == DMA_TO_DEVICE) 845 status = mmc_spi_writeblock(host, t, timeout); 846 else 847 status = mmc_spi_readblock(host, t, timeout); 848 if (status < 0) 849 break; 850 851 data->bytes_xfered += t->len; 852 length -= t->len; 853 854 if (!multiple) 855 break; 856 } 857 858 /* discard mappings */ 859 if (direction == DMA_FROM_DEVICE) 860 flush_kernel_dcache_page(sg_page(sg)); 861 kunmap(sg_page(sg)); 862 if (dma_dev) 863 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 864 865 if (status < 0) { 866 data->error = status; 867 dev_dbg(&spi->dev, "%s status %d\n", 868 (direction == DMA_TO_DEVICE) 869 ? "write" : "read", 870 status); 871 break; 872 } 873 } 874 875 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 876 * can be issued before multiblock writes. Unlike its more widely 877 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 878 * that can affect the STOP_TRAN logic. Complete (and current) 879 * MMC specs should sort that out before Linux starts using CMD23. 880 */ 881 if (direction == DMA_TO_DEVICE && multiple) { 882 struct scratch *scratch = host->data; 883 int tmp; 884 const unsigned statlen = sizeof(scratch->status); 885 886 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 887 888 /* Tweak the per-block message we set up earlier by morphing 889 * it to hold single buffer with the token followed by some 890 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 891 * "not busy any longer" status, and leave chip selected. 892 */ 893 INIT_LIST_HEAD(&host->m.transfers); 894 list_add(&host->early_status.transfer_list, 895 &host->m.transfers); 896 897 memset(scratch->status, 0xff, statlen); 898 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 899 900 host->early_status.tx_buf = host->early_status.rx_buf; 901 host->early_status.tx_dma = host->early_status.rx_dma; 902 host->early_status.len = statlen; 903 904 if (host->dma_dev) 905 dma_sync_single_for_device(host->dma_dev, 906 host->data_dma, sizeof(*scratch), 907 DMA_BIDIRECTIONAL); 908 909 tmp = spi_sync(spi, &host->m); 910 911 if (host->dma_dev) 912 dma_sync_single_for_cpu(host->dma_dev, 913 host->data_dma, sizeof(*scratch), 914 DMA_BIDIRECTIONAL); 915 916 if (tmp < 0) { 917 if (!data->error) 918 data->error = tmp; 919 return; 920 } 921 922 /* Ideally we collected "not busy" status with one I/O, 923 * avoiding wasteful byte-at-a-time scanning... but more 924 * I/O is often needed. 925 */ 926 for (tmp = 2; tmp < statlen; tmp++) { 927 if (scratch->status[tmp] != 0) 928 return; 929 } 930 tmp = mmc_spi_wait_unbusy(host, timeout); 931 if (tmp < 0 && !data->error) 932 data->error = tmp; 933 } 934 } 935 936 /****************************************************************************/ 937 938 /* 939 * MMC driver implementation -- the interface to the MMC stack 940 */ 941 942 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 943 { 944 struct mmc_spi_host *host = mmc_priv(mmc); 945 int status = -EINVAL; 946 947 #ifdef DEBUG 948 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 949 { 950 struct mmc_command *cmd; 951 int invalid = 0; 952 953 cmd = mrq->cmd; 954 if (!mmc_spi_resp_type(cmd)) { 955 dev_dbg(&host->spi->dev, "bogus command\n"); 956 cmd->error = -EINVAL; 957 invalid = 1; 958 } 959 960 cmd = mrq->stop; 961 if (cmd && !mmc_spi_resp_type(cmd)) { 962 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 963 cmd->error = -EINVAL; 964 invalid = 1; 965 } 966 967 if (invalid) { 968 dump_stack(); 969 mmc_request_done(host->mmc, mrq); 970 return; 971 } 972 } 973 #endif 974 975 /* issue command; then optionally data and stop */ 976 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 977 if (status == 0 && mrq->data) { 978 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 979 if (mrq->stop) 980 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 981 else 982 mmc_cs_off(host); 983 } 984 985 mmc_request_done(host->mmc, mrq); 986 } 987 988 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 989 * 990 * NOTE that here we can't know that the card has just been powered up; 991 * not all MMC/SD sockets support power switching. 992 * 993 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 994 * this doesn't seem to do the right thing at all... 995 */ 996 static void mmc_spi_initsequence(struct mmc_spi_host *host) 997 { 998 /* Try to be very sure any previous command has completed; 999 * wait till not-busy, skip debris from any old commands. 1000 */ 1001 mmc_spi_wait_unbusy(host, r1b_timeout); 1002 mmc_spi_readbytes(host, 10); 1003 1004 /* 1005 * Do a burst with chipselect active-high. We need to do this to 1006 * meet the requirement of 74 clock cycles with both chipselect 1007 * and CMD (MOSI) high before CMD0 ... after the card has been 1008 * powered up to Vdd(min), and so is ready to take commands. 1009 * 1010 * Some cards are particularly needy of this (e.g. Viking "SD256") 1011 * while most others don't seem to care. 1012 * 1013 * Note that this is one of the places MMC/SD plays games with the 1014 * SPI protocol. Another is that when chipselect is released while 1015 * the card returns BUSY status, the clock must issue several cycles 1016 * with chipselect high before the card will stop driving its output. 1017 */ 1018 host->spi->mode |= SPI_CS_HIGH; 1019 if (spi_setup(host->spi) != 0) { 1020 /* Just warn; most cards work without it. */ 1021 dev_warn(&host->spi->dev, 1022 "can't change chip-select polarity\n"); 1023 host->spi->mode &= ~SPI_CS_HIGH; 1024 } else { 1025 mmc_spi_readbytes(host, 18); 1026 1027 host->spi->mode &= ~SPI_CS_HIGH; 1028 if (spi_setup(host->spi) != 0) { 1029 /* Wot, we can't get the same setup we had before? */ 1030 dev_err(&host->spi->dev, 1031 "can't restore chip-select polarity\n"); 1032 } 1033 } 1034 } 1035 1036 static char *mmc_powerstring(u8 power_mode) 1037 { 1038 switch (power_mode) { 1039 case MMC_POWER_OFF: return "off"; 1040 case MMC_POWER_UP: return "up"; 1041 case MMC_POWER_ON: return "on"; 1042 } 1043 return "?"; 1044 } 1045 1046 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1047 { 1048 struct mmc_spi_host *host = mmc_priv(mmc); 1049 1050 if (host->power_mode != ios->power_mode) { 1051 int canpower; 1052 1053 canpower = host->pdata && host->pdata->setpower; 1054 1055 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1056 mmc_powerstring(ios->power_mode), 1057 ios->vdd, 1058 canpower ? ", can switch" : ""); 1059 1060 /* switch power on/off if possible, accounting for 1061 * max 250msec powerup time if needed. 1062 */ 1063 if (canpower) { 1064 switch (ios->power_mode) { 1065 case MMC_POWER_OFF: 1066 case MMC_POWER_UP: 1067 host->pdata->setpower(&host->spi->dev, 1068 ios->vdd); 1069 if (ios->power_mode == MMC_POWER_UP) 1070 msleep(host->powerup_msecs); 1071 } 1072 } 1073 1074 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1075 if (ios->power_mode == MMC_POWER_ON) 1076 mmc_spi_initsequence(host); 1077 1078 /* If powering down, ground all card inputs to avoid power 1079 * delivery from data lines! On a shared SPI bus, this 1080 * will probably be temporary; 6.4.2 of the simplified SD 1081 * spec says this must last at least 1msec. 1082 * 1083 * - Clock low means CPOL 0, e.g. mode 0 1084 * - MOSI low comes from writing zero 1085 * - Chipselect is usually active low... 1086 */ 1087 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1088 int mres; 1089 u8 nullbyte = 0; 1090 1091 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1092 mres = spi_setup(host->spi); 1093 if (mres < 0) 1094 dev_dbg(&host->spi->dev, 1095 "switch to SPI mode 0 failed\n"); 1096 1097 if (spi_write(host->spi, &nullbyte, 1) < 0) 1098 dev_dbg(&host->spi->dev, 1099 "put spi signals to low failed\n"); 1100 1101 /* 1102 * Now clock should be low due to spi mode 0; 1103 * MOSI should be low because of written 0x00; 1104 * chipselect should be low (it is active low) 1105 * power supply is off, so now MMC is off too! 1106 * 1107 * FIXME no, chipselect can be high since the 1108 * device is inactive and SPI_CS_HIGH is clear... 1109 */ 1110 msleep(10); 1111 if (mres == 0) { 1112 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1113 mres = spi_setup(host->spi); 1114 if (mres < 0) 1115 dev_dbg(&host->spi->dev, 1116 "switch back to SPI mode 3" 1117 " failed\n"); 1118 } 1119 } 1120 1121 host->power_mode = ios->power_mode; 1122 } 1123 1124 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1125 int status; 1126 1127 host->spi->max_speed_hz = ios->clock; 1128 status = spi_setup(host->spi); 1129 dev_dbg(&host->spi->dev, 1130 "mmc_spi: clock to %d Hz, %d\n", 1131 host->spi->max_speed_hz, status); 1132 } 1133 } 1134 1135 static int mmc_spi_get_ro(struct mmc_host *mmc) 1136 { 1137 struct mmc_spi_host *host = mmc_priv(mmc); 1138 1139 if (host->pdata && host->pdata->get_ro) 1140 return !!host->pdata->get_ro(mmc->parent); 1141 /* 1142 * Board doesn't support read only detection; let the mmc core 1143 * decide what to do. 1144 */ 1145 return -ENOSYS; 1146 } 1147 1148 static int mmc_spi_get_cd(struct mmc_host *mmc) 1149 { 1150 struct mmc_spi_host *host = mmc_priv(mmc); 1151 1152 if (host->pdata && host->pdata->get_cd) 1153 return !!host->pdata->get_cd(mmc->parent); 1154 return -ENOSYS; 1155 } 1156 1157 static const struct mmc_host_ops mmc_spi_ops = { 1158 .request = mmc_spi_request, 1159 .set_ios = mmc_spi_set_ios, 1160 .get_ro = mmc_spi_get_ro, 1161 .get_cd = mmc_spi_get_cd, 1162 }; 1163 1164 1165 /****************************************************************************/ 1166 1167 /* 1168 * SPI driver implementation 1169 */ 1170 1171 static irqreturn_t 1172 mmc_spi_detect_irq(int irq, void *mmc) 1173 { 1174 struct mmc_spi_host *host = mmc_priv(mmc); 1175 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1176 1177 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1178 return IRQ_HANDLED; 1179 } 1180 1181 struct count_children { 1182 unsigned n; 1183 struct bus_type *bus; 1184 }; 1185 1186 static int maybe_count_child(struct device *dev, void *c) 1187 { 1188 struct count_children *ccp = c; 1189 1190 if (dev->bus == ccp->bus) { 1191 if (ccp->n) 1192 return -EBUSY; 1193 ccp->n++; 1194 } 1195 return 0; 1196 } 1197 1198 static int mmc_spi_probe(struct spi_device *spi) 1199 { 1200 void *ones; 1201 struct mmc_host *mmc; 1202 struct mmc_spi_host *host; 1203 int status; 1204 1205 /* MMC and SD specs only seem to care that sampling is on the 1206 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1207 * should be legit. We'll use mode 0 since it seems to be a 1208 * bit less troublesome on some hardware ... unclear why. 1209 */ 1210 spi->mode = SPI_MODE_0; 1211 spi->bits_per_word = 8; 1212 1213 status = spi_setup(spi); 1214 if (status < 0) { 1215 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1216 spi->mode, spi->max_speed_hz / 1000, 1217 status); 1218 return status; 1219 } 1220 1221 /* We can use the bus safely iff nobody else will interfere with us. 1222 * Most commands consist of one SPI message to issue a command, then 1223 * several more to collect its response, then possibly more for data 1224 * transfer. Clocking access to other devices during that period will 1225 * corrupt the command execution. 1226 * 1227 * Until we have software primitives which guarantee non-interference, 1228 * we'll aim for a hardware-level guarantee. 1229 * 1230 * REVISIT we can't guarantee another device won't be added later... 1231 */ 1232 if (spi->master->num_chipselect > 1) { 1233 struct count_children cc; 1234 1235 cc.n = 0; 1236 cc.bus = spi->dev.bus; 1237 status = device_for_each_child(spi->dev.parent, &cc, 1238 maybe_count_child); 1239 if (status < 0) { 1240 dev_err(&spi->dev, "can't share SPI bus\n"); 1241 return status; 1242 } 1243 1244 dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n"); 1245 } 1246 1247 /* We need a supply of ones to transmit. This is the only time 1248 * the CPU touches these, so cache coherency isn't a concern. 1249 * 1250 * NOTE if many systems use more than one MMC-over-SPI connector 1251 * it'd save some memory to share this. That's evidently rare. 1252 */ 1253 status = -ENOMEM; 1254 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1255 if (!ones) 1256 goto nomem; 1257 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1258 1259 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1260 if (!mmc) 1261 goto nomem; 1262 1263 mmc->ops = &mmc_spi_ops; 1264 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1265 1266 mmc->caps = MMC_CAP_SPI; 1267 1268 /* SPI doesn't need the lowspeed device identification thing for 1269 * MMC or SD cards, since it never comes up in open drain mode. 1270 * That's good; some SPI masters can't handle very low speeds! 1271 * 1272 * However, low speed SDIO cards need not handle over 400 KHz; 1273 * that's the only reason not to use a few MHz for f_min (until 1274 * the upper layer reads the target frequency from the CSD). 1275 */ 1276 mmc->f_min = 400000; 1277 mmc->f_max = spi->max_speed_hz; 1278 1279 host = mmc_priv(mmc); 1280 host->mmc = mmc; 1281 host->spi = spi; 1282 1283 host->ones = ones; 1284 1285 /* Platform data is used to hook up things like card sensing 1286 * and power switching gpios. 1287 */ 1288 host->pdata = spi->dev.platform_data; 1289 if (host->pdata) 1290 mmc->ocr_avail = host->pdata->ocr_mask; 1291 if (!mmc->ocr_avail) { 1292 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1293 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1294 } 1295 if (host->pdata && host->pdata->setpower) { 1296 host->powerup_msecs = host->pdata->powerup_msecs; 1297 if (!host->powerup_msecs || host->powerup_msecs > 250) 1298 host->powerup_msecs = 250; 1299 } 1300 1301 dev_set_drvdata(&spi->dev, mmc); 1302 1303 /* preallocate dma buffers */ 1304 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1305 if (!host->data) 1306 goto fail_nobuf1; 1307 1308 if (spi->master->dev.parent->dma_mask) { 1309 struct device *dev = spi->master->dev.parent; 1310 1311 host->dma_dev = dev; 1312 host->ones_dma = dma_map_single(dev, ones, 1313 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1314 host->data_dma = dma_map_single(dev, host->data, 1315 sizeof(*host->data), DMA_BIDIRECTIONAL); 1316 1317 /* REVISIT in theory those map operations can fail... */ 1318 1319 dma_sync_single_for_cpu(host->dma_dev, 1320 host->data_dma, sizeof(*host->data), 1321 DMA_BIDIRECTIONAL); 1322 } 1323 1324 /* setup message for status/busy readback */ 1325 spi_message_init(&host->readback); 1326 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1327 1328 spi_message_add_tail(&host->status, &host->readback); 1329 host->status.tx_buf = host->ones; 1330 host->status.tx_dma = host->ones_dma; 1331 host->status.rx_buf = &host->data->status; 1332 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1333 host->status.cs_change = 1; 1334 1335 /* register card detect irq */ 1336 if (host->pdata && host->pdata->init) { 1337 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1338 if (status != 0) 1339 goto fail_glue_init; 1340 } 1341 1342 /* pass platform capabilities, if any */ 1343 if (host->pdata) 1344 mmc->caps |= host->pdata->caps; 1345 1346 status = mmc_add_host(mmc); 1347 if (status != 0) 1348 goto fail_add_host; 1349 1350 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n", 1351 mmc->class_dev.bus_id, 1352 host->dma_dev ? "" : ", no DMA", 1353 (host->pdata && host->pdata->get_ro) 1354 ? "" : ", no WP", 1355 (host->pdata && host->pdata->setpower) 1356 ? "" : ", no poweroff", 1357 (mmc->caps & MMC_CAP_NEEDS_POLL) 1358 ? ", cd polling" : ""); 1359 return 0; 1360 1361 fail_add_host: 1362 mmc_remove_host (mmc); 1363 fail_glue_init: 1364 if (host->dma_dev) 1365 dma_unmap_single(host->dma_dev, host->data_dma, 1366 sizeof(*host->data), DMA_BIDIRECTIONAL); 1367 kfree(host->data); 1368 1369 fail_nobuf1: 1370 mmc_free_host(mmc); 1371 dev_set_drvdata(&spi->dev, NULL); 1372 1373 nomem: 1374 kfree(ones); 1375 return status; 1376 } 1377 1378 1379 static int __devexit mmc_spi_remove(struct spi_device *spi) 1380 { 1381 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1382 struct mmc_spi_host *host; 1383 1384 if (mmc) { 1385 host = mmc_priv(mmc); 1386 1387 /* prevent new mmc_detect_change() calls */ 1388 if (host->pdata && host->pdata->exit) 1389 host->pdata->exit(&spi->dev, mmc); 1390 1391 mmc_remove_host(mmc); 1392 1393 if (host->dma_dev) { 1394 dma_unmap_single(host->dma_dev, host->ones_dma, 1395 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1396 dma_unmap_single(host->dma_dev, host->data_dma, 1397 sizeof(*host->data), DMA_BIDIRECTIONAL); 1398 } 1399 1400 kfree(host->data); 1401 kfree(host->ones); 1402 1403 spi->max_speed_hz = mmc->f_max; 1404 mmc_free_host(mmc); 1405 dev_set_drvdata(&spi->dev, NULL); 1406 } 1407 return 0; 1408 } 1409 1410 1411 static struct spi_driver mmc_spi_driver = { 1412 .driver = { 1413 .name = "mmc_spi", 1414 .bus = &spi_bus_type, 1415 .owner = THIS_MODULE, 1416 }, 1417 .probe = mmc_spi_probe, 1418 .remove = __devexit_p(mmc_spi_remove), 1419 }; 1420 1421 1422 static int __init mmc_spi_init(void) 1423 { 1424 return spi_register_driver(&mmc_spi_driver); 1425 } 1426 module_init(mmc_spi_init); 1427 1428 1429 static void __exit mmc_spi_exit(void) 1430 { 1431 spi_unregister_driver(&mmc_spi_driver); 1432 } 1433 module_exit(mmc_spi_exit); 1434 1435 1436 MODULE_AUTHOR("Mike Lavender, David Brownell, " 1437 "Hans-Peter Nilsson, Jan Nikitenko"); 1438 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1439 MODULE_LICENSE("GPL"); 1440