1 /* 2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers 3 * 4 * (C) Copyright 2005, Intec Automation, 5 * Mike Lavender (mike@steroidmicros) 6 * (C) Copyright 2006-2007, David Brownell 7 * (C) Copyright 2007, Axis Communications, 8 * Hans-Peter Nilsson (hp@axis.com) 9 * (C) Copyright 2007, ATRON electronic GmbH, 10 * Jan Nikitenko <jan.nikitenko@gmail.com> 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 #include <linux/hrtimer.h> 28 #include <linux/delay.h> 29 #include <linux/blkdev.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/crc7.h> 32 #include <linux/crc-itu-t.h> 33 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 36 37 #include <linux/spi/spi.h> 38 #include <linux/spi/mmc_spi.h> 39 40 #include <asm/unaligned.h> 41 42 43 /* NOTES: 44 * 45 * - For now, we won't try to interoperate with a real mmc/sd/sdio 46 * controller, although some of them do have hardware support for 47 * SPI protocol. The main reason for such configs would be mmc-ish 48 * cards like DataFlash, which don't support that "native" protocol. 49 * 50 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 51 * switch between driver stacks, and in any case if "native" mode 52 * is available, it will be faster and hence preferable. 53 * 54 * - MMC depends on a different chipselect management policy than the 55 * SPI interface currently supports for shared bus segments: it needs 56 * to issue multiple spi_message requests with the chipselect active, 57 * using the results of one message to decide the next one to issue. 58 * 59 * Pending updates to the programming interface, this driver expects 60 * that it not share the bus with other drivers (precluding conflicts). 61 * 62 * - We tell the controller to keep the chipselect active from the 63 * beginning of an mmc_host_ops.request until the end. So beware 64 * of SPI controller drivers that mis-handle the cs_change flag! 65 * 66 * However, many cards seem OK with chipselect flapping up/down 67 * during that time ... at least on unshared bus segments. 68 */ 69 70 71 /* 72 * Local protocol constants, internal to data block protocols. 73 */ 74 75 /* Response tokens used to ack each block written: */ 76 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 77 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 78 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 79 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 80 81 /* Read and write blocks start with these tokens and end with crc; 82 * on error, read tokens act like a subset of R2_SPI_* values. 83 */ 84 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 85 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 86 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 87 88 #define MMC_SPI_BLOCKSIZE 512 89 90 91 /* These fixed timeouts come from the latest SD specs, which say to ignore 92 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the 93 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after 94 * reads which takes nowhere near that long. Older cards may be able to use 95 * shorter timeouts ... but why bother? 96 */ 97 #define readblock_timeout ktime_set(0, 100 * 1000 * 1000) 98 #define writeblock_timeout ktime_set(0, 250 * 1000 * 1000) 99 #define r1b_timeout ktime_set(3, 0) 100 101 102 /****************************************************************************/ 103 104 /* 105 * Local Data Structures 106 */ 107 108 /* "scratch" is per-{command,block} data exchanged with the card */ 109 struct scratch { 110 u8 status[29]; 111 u8 data_token; 112 __be16 crc_val; 113 }; 114 115 struct mmc_spi_host { 116 struct mmc_host *mmc; 117 struct spi_device *spi; 118 119 unsigned char power_mode; 120 u16 powerup_msecs; 121 122 struct mmc_spi_platform_data *pdata; 123 124 /* for bulk data transfers */ 125 struct spi_transfer token, t, crc, early_status; 126 struct spi_message m; 127 128 /* for status readback */ 129 struct spi_transfer status; 130 struct spi_message readback; 131 132 /* underlying DMA-aware controller, or null */ 133 struct device *dma_dev; 134 135 /* buffer used for commands and for message "overhead" */ 136 struct scratch *data; 137 dma_addr_t data_dma; 138 139 /* Specs say to write ones most of the time, even when the card 140 * has no need to read its input data; and many cards won't care. 141 * This is our source of those ones. 142 */ 143 void *ones; 144 dma_addr_t ones_dma; 145 }; 146 147 148 /****************************************************************************/ 149 150 /* 151 * MMC-over-SPI protocol glue, used by the MMC stack interface 152 */ 153 154 static inline int mmc_cs_off(struct mmc_spi_host *host) 155 { 156 /* chipselect will always be inactive after setup() */ 157 return spi_setup(host->spi); 158 } 159 160 static int 161 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 162 { 163 int status; 164 165 if (len > sizeof(*host->data)) { 166 WARN_ON(1); 167 return -EIO; 168 } 169 170 host->status.len = len; 171 172 if (host->dma_dev) 173 dma_sync_single_for_device(host->dma_dev, 174 host->data_dma, sizeof(*host->data), 175 DMA_FROM_DEVICE); 176 177 status = spi_sync(host->spi, &host->readback); 178 if (status == 0) 179 status = host->readback.status; 180 181 if (host->dma_dev) 182 dma_sync_single_for_cpu(host->dma_dev, 183 host->data_dma, sizeof(*host->data), 184 DMA_FROM_DEVICE); 185 186 return status; 187 } 188 189 static int 190 mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte) 191 { 192 u8 *cp = host->data->status; 193 194 timeout = ktime_add(timeout, ktime_get()); 195 196 while (1) { 197 int status; 198 unsigned i; 199 200 status = mmc_spi_readbytes(host, n); 201 if (status < 0) 202 return status; 203 204 for (i = 0; i < n; i++) { 205 if (cp[i] != byte) 206 return cp[i]; 207 } 208 209 /* REVISIT investigate msleep() to avoid busy-wait I/O 210 * in at least some cases. 211 */ 212 if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0) 213 break; 214 } 215 return -ETIMEDOUT; 216 } 217 218 static inline int 219 mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout) 220 { 221 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 222 } 223 224 static int mmc_spi_readtoken(struct mmc_spi_host *host) 225 { 226 return mmc_spi_skip(host, readblock_timeout, 1, 0xff); 227 } 228 229 230 /* 231 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 232 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 233 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 234 * 235 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 236 * newer cards R7 (IF_COND). 237 */ 238 239 static char *maptype(struct mmc_command *cmd) 240 { 241 switch (mmc_spi_resp_type(cmd)) { 242 case MMC_RSP_SPI_R1: return "R1"; 243 case MMC_RSP_SPI_R1B: return "R1B"; 244 case MMC_RSP_SPI_R2: return "R2/R5"; 245 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 246 default: return "?"; 247 } 248 } 249 250 /* return zero, else negative errno after setting cmd->error */ 251 static int mmc_spi_response_get(struct mmc_spi_host *host, 252 struct mmc_command *cmd, int cs_on) 253 { 254 u8 *cp = host->data->status; 255 u8 *end = cp + host->t.len; 256 int value = 0; 257 char tag[32]; 258 259 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 260 cmd->opcode, maptype(cmd)); 261 262 /* Except for data block reads, the whole response will already 263 * be stored in the scratch buffer. It's somewhere after the 264 * command and the first byte we read after it. We ignore that 265 * first byte. After STOP_TRANSMISSION command it may include 266 * two data bits, but otherwise it's all ones. 267 */ 268 cp += 8; 269 while (cp < end && *cp == 0xff) 270 cp++; 271 272 /* Data block reads (R1 response types) may need more data... */ 273 if (cp == end) { 274 unsigned i; 275 276 cp = host->data->status; 277 278 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 279 * status byte ... and we already scanned 2 bytes. 280 * 281 * REVISIT block read paths use nasty byte-at-a-time I/O 282 * so it can always DMA directly into the target buffer. 283 * It'd probably be better to memcpy() the first chunk and 284 * avoid extra i/o calls... 285 */ 286 for (i = 2; i < 9; i++) { 287 value = mmc_spi_readbytes(host, 1); 288 if (value < 0) 289 goto done; 290 if (*cp != 0xff) 291 goto checkstatus; 292 } 293 value = -ETIMEDOUT; 294 goto done; 295 } 296 297 checkstatus: 298 if (*cp & 0x80) { 299 dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n", 300 tag, *cp); 301 value = -EBADR; 302 goto done; 303 } 304 305 cmd->resp[0] = *cp++; 306 cmd->error = 0; 307 308 /* Status byte: the entire seven-bit R1 response. */ 309 if (cmd->resp[0] != 0) { 310 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS 311 | R1_SPI_ILLEGAL_COMMAND) 312 & cmd->resp[0]) 313 value = -EINVAL; 314 else if (R1_SPI_COM_CRC & cmd->resp[0]) 315 value = -EILSEQ; 316 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 317 & cmd->resp[0]) 318 value = -EIO; 319 /* else R1_SPI_IDLE, "it's resetting" */ 320 } 321 322 switch (mmc_spi_resp_type(cmd)) { 323 324 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 325 * and less-common stuff like various erase operations. 326 */ 327 case MMC_RSP_SPI_R1B: 328 /* maybe we read all the busy tokens already */ 329 while (cp < end && *cp == 0) 330 cp++; 331 if (cp == end) 332 mmc_spi_wait_unbusy(host, r1b_timeout); 333 break; 334 335 /* SPI R2 == R1 + second status byte; SEND_STATUS 336 * SPI R5 == R1 + data byte; IO_RW_DIRECT 337 */ 338 case MMC_RSP_SPI_R2: 339 cmd->resp[0] |= *cp << 8; 340 break; 341 342 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 343 case MMC_RSP_SPI_R3: 344 cmd->resp[1] = be32_to_cpu(get_unaligned((u32 *)cp)); 345 break; 346 347 /* SPI R1 == just one status byte */ 348 case MMC_RSP_SPI_R1: 349 break; 350 351 default: 352 dev_dbg(&host->spi->dev, "bad response type %04x\n", 353 mmc_spi_resp_type(cmd)); 354 if (value >= 0) 355 value = -EINVAL; 356 goto done; 357 } 358 359 if (value < 0) 360 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 361 tag, cmd->resp[0], cmd->resp[1]); 362 363 /* disable chipselect on errors and some success cases */ 364 if (value >= 0 && cs_on) 365 return value; 366 done: 367 if (value < 0) 368 cmd->error = value; 369 mmc_cs_off(host); 370 return value; 371 } 372 373 /* Issue command and read its response. 374 * Returns zero on success, negative for error. 375 * 376 * On error, caller must cope with mmc core retry mechanism. That 377 * means immediate low-level resubmit, which affects the bus lock... 378 */ 379 static int 380 mmc_spi_command_send(struct mmc_spi_host *host, 381 struct mmc_request *mrq, 382 struct mmc_command *cmd, int cs_on) 383 { 384 struct scratch *data = host->data; 385 u8 *cp = data->status; 386 u32 arg = cmd->arg; 387 int status; 388 struct spi_transfer *t; 389 390 /* We can handle most commands (except block reads) in one full 391 * duplex I/O operation before either starting the next transfer 392 * (data block or command) or else deselecting the card. 393 * 394 * First, write 7 bytes: 395 * - an all-ones byte to ensure the card is ready 396 * - opcode byte (plus start and transmission bits) 397 * - four bytes of big-endian argument 398 * - crc7 (plus end bit) ... always computed, it's cheap 399 * 400 * We init the whole buffer to all-ones, which is what we need 401 * to write while we're reading (later) response data. 402 */ 403 memset(cp++, 0xff, sizeof(data->status)); 404 405 *cp++ = 0x40 | cmd->opcode; 406 *cp++ = (u8)(arg >> 24); 407 *cp++ = (u8)(arg >> 16); 408 *cp++ = (u8)(arg >> 8); 409 *cp++ = (u8)arg; 410 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; 411 412 /* Then, read up to 13 bytes (while writing all-ones): 413 * - N(CR) (== 1..8) bytes of all-ones 414 * - status byte (for all response types) 415 * - the rest of the response, either: 416 * + nothing, for R1 or R1B responses 417 * + second status byte, for R2 responses 418 * + four data bytes, for R3 and R7 responses 419 * 420 * Finally, read some more bytes ... in the nice cases we know in 421 * advance how many, and reading 1 more is always OK: 422 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 423 * - N(RC) (== 1..N) bytes of all-ones, before next command 424 * - N(WR) (== 1..N) bytes of all-ones, before data write 425 * 426 * So in those cases one full duplex I/O of at most 21 bytes will 427 * handle the whole command, leaving the card ready to receive a 428 * data block or new command. We do that whenever we can, shaving 429 * CPU and IRQ costs (especially when using DMA or FIFOs). 430 * 431 * There are two other cases, where it's not generally practical 432 * to rely on a single I/O: 433 * 434 * - R1B responses need at least N(EC) bytes of all-zeroes. 435 * 436 * In this case we can *try* to fit it into one I/O, then 437 * maybe read more data later. 438 * 439 * - Data block reads are more troublesome, since a variable 440 * number of padding bytes precede the token and data. 441 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 442 * + N(AC) (== 1..many) bytes of all-ones 443 * 444 * In this case we currently only have minimal speedups here: 445 * when N(CR) == 1 we can avoid I/O in response_get(). 446 */ 447 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 448 cp += 2; /* min(N(CR)) + status */ 449 /* R1 */ 450 } else { 451 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 452 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 453 cp++; 454 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 455 cp += 4; 456 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 457 cp = data->status + sizeof(data->status); 458 /* else: R1 (most commands) */ 459 } 460 461 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 462 cmd->opcode, maptype(cmd)); 463 464 /* send command, leaving chipselect active */ 465 spi_message_init(&host->m); 466 467 t = &host->t; 468 memset(t, 0, sizeof(*t)); 469 t->tx_buf = t->rx_buf = data->status; 470 t->tx_dma = t->rx_dma = host->data_dma; 471 t->len = cp - data->status; 472 t->cs_change = 1; 473 spi_message_add_tail(t, &host->m); 474 475 if (host->dma_dev) { 476 host->m.is_dma_mapped = 1; 477 dma_sync_single_for_device(host->dma_dev, 478 host->data_dma, sizeof(*host->data), 479 DMA_BIDIRECTIONAL); 480 } 481 status = spi_sync(host->spi, &host->m); 482 if (status == 0) 483 status = host->m.status; 484 485 if (host->dma_dev) 486 dma_sync_single_for_cpu(host->dma_dev, 487 host->data_dma, sizeof(*host->data), 488 DMA_BIDIRECTIONAL); 489 if (status < 0) { 490 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 491 cmd->error = status; 492 return status; 493 } 494 495 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 496 return mmc_spi_response_get(host, cmd, cs_on); 497 } 498 499 /* Build data message with up to four separate transfers. For TX, we 500 * start by writing the data token. And in most cases, we finish with 501 * a status transfer. 502 * 503 * We always provide TX data for data and CRC. The MMC/SD protocol 504 * requires us to write ones; but Linux defaults to writing zeroes; 505 * so we explicitly initialize it to all ones on RX paths. 506 * 507 * We also handle DMA mapping, so the underlying SPI controller does 508 * not need to (re)do it for each message. 509 */ 510 static void 511 mmc_spi_setup_data_message( 512 struct mmc_spi_host *host, 513 int multiple, 514 enum dma_data_direction direction) 515 { 516 struct spi_transfer *t; 517 struct scratch *scratch = host->data; 518 dma_addr_t dma = host->data_dma; 519 520 spi_message_init(&host->m); 521 if (dma) 522 host->m.is_dma_mapped = 1; 523 524 /* for reads, readblock() skips 0xff bytes before finding 525 * the token; for writes, this transfer issues that token. 526 */ 527 if (direction == DMA_TO_DEVICE) { 528 t = &host->token; 529 memset(t, 0, sizeof(*t)); 530 t->len = 1; 531 if (multiple) 532 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 533 else 534 scratch->data_token = SPI_TOKEN_SINGLE; 535 t->tx_buf = &scratch->data_token; 536 if (dma) 537 t->tx_dma = dma + offsetof(struct scratch, data_token); 538 spi_message_add_tail(t, &host->m); 539 } 540 541 /* Body of transfer is buffer, then CRC ... 542 * either TX-only, or RX with TX-ones. 543 */ 544 t = &host->t; 545 memset(t, 0, sizeof(*t)); 546 t->tx_buf = host->ones; 547 t->tx_dma = host->ones_dma; 548 /* length and actual buffer info are written later */ 549 spi_message_add_tail(t, &host->m); 550 551 t = &host->crc; 552 memset(t, 0, sizeof(*t)); 553 t->len = 2; 554 if (direction == DMA_TO_DEVICE) { 555 /* the actual CRC may get written later */ 556 t->tx_buf = &scratch->crc_val; 557 if (dma) 558 t->tx_dma = dma + offsetof(struct scratch, crc_val); 559 } else { 560 t->tx_buf = host->ones; 561 t->tx_dma = host->ones_dma; 562 t->rx_buf = &scratch->crc_val; 563 if (dma) 564 t->rx_dma = dma + offsetof(struct scratch, crc_val); 565 } 566 spi_message_add_tail(t, &host->m); 567 568 /* 569 * A single block read is followed by N(EC) [0+] all-ones bytes 570 * before deselect ... don't bother. 571 * 572 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 573 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 574 * collect that single byte, so readblock() doesn't need to. 575 * 576 * For a write, the one-byte data response follows immediately, then 577 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 578 * Then single block reads may deselect, and multiblock ones issue 579 * the next token (next data block, or STOP_TRAN). We can try to 580 * minimize I/O ops by using a single read to collect end-of-busy. 581 */ 582 if (multiple || direction == DMA_TO_DEVICE) { 583 t = &host->early_status; 584 memset(t, 0, sizeof(*t)); 585 t->len = (direction == DMA_TO_DEVICE) 586 ? sizeof(scratch->status) 587 : 1; 588 t->tx_buf = host->ones; 589 t->tx_dma = host->ones_dma; 590 t->rx_buf = scratch->status; 591 if (dma) 592 t->rx_dma = dma + offsetof(struct scratch, status); 593 t->cs_change = 1; 594 spi_message_add_tail(t, &host->m); 595 } 596 } 597 598 /* 599 * Write one block: 600 * - caller handled preceding N(WR) [1+] all-ones bytes 601 * - data block 602 * + token 603 * + data bytes 604 * + crc16 605 * - an all-ones byte ... card writes a data-response byte 606 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 607 * 608 * Return negative errno, else success. 609 */ 610 static int 611 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t) 612 { 613 struct spi_device *spi = host->spi; 614 int status, i; 615 struct scratch *scratch = host->data; 616 617 if (host->mmc->use_spi_crc) 618 scratch->crc_val = cpu_to_be16( 619 crc_itu_t(0, t->tx_buf, t->len)); 620 if (host->dma_dev) 621 dma_sync_single_for_device(host->dma_dev, 622 host->data_dma, sizeof(*scratch), 623 DMA_BIDIRECTIONAL); 624 625 status = spi_sync(spi, &host->m); 626 if (status == 0) 627 status = host->m.status; 628 629 if (status != 0) { 630 dev_dbg(&spi->dev, "write error (%d)\n", status); 631 return status; 632 } 633 634 if (host->dma_dev) 635 dma_sync_single_for_cpu(host->dma_dev, 636 host->data_dma, sizeof(*scratch), 637 DMA_BIDIRECTIONAL); 638 639 /* 640 * Get the transmission data-response reply. It must follow 641 * immediately after the data block we transferred. This reply 642 * doesn't necessarily tell whether the write operation succeeded; 643 * it just says if the transmission was ok and whether *earlier* 644 * writes succeeded; see the standard. 645 */ 646 switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) { 647 case SPI_RESPONSE_ACCEPTED: 648 status = 0; 649 break; 650 case SPI_RESPONSE_CRC_ERR: 651 /* host shall then issue MMC_STOP_TRANSMISSION */ 652 status = -EILSEQ; 653 break; 654 case SPI_RESPONSE_WRITE_ERR: 655 /* host shall then issue MMC_STOP_TRANSMISSION, 656 * and should MMC_SEND_STATUS to sort it out 657 */ 658 status = -EIO; 659 break; 660 default: 661 status = -EPROTO; 662 break; 663 } 664 if (status != 0) { 665 dev_dbg(&spi->dev, "write error %02x (%d)\n", 666 scratch->status[0], status); 667 return status; 668 } 669 670 t->tx_buf += t->len; 671 if (host->dma_dev) 672 t->tx_dma += t->len; 673 674 /* Return when not busy. If we didn't collect that status yet, 675 * we'll need some more I/O. 676 */ 677 for (i = 1; i < sizeof(scratch->status); i++) { 678 if (scratch->status[i] != 0) 679 return 0; 680 } 681 return mmc_spi_wait_unbusy(host, writeblock_timeout); 682 } 683 684 /* 685 * Read one block: 686 * - skip leading all-ones bytes ... either 687 * + N(AC) [1..f(clock,CSD)] usually, else 688 * + N(CX) [0..8] when reading CSD or CID 689 * - data block 690 * + token ... if error token, no data or crc 691 * + data bytes 692 * + crc16 693 * 694 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 695 * before dropping chipselect. 696 * 697 * For multiblock reads, caller either reads the next block or issues a 698 * STOP_TRANSMISSION command. 699 */ 700 static int 701 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t) 702 { 703 struct spi_device *spi = host->spi; 704 int status; 705 struct scratch *scratch = host->data; 706 707 /* At least one SD card sends an all-zeroes byte when N(CX) 708 * applies, before the all-ones bytes ... just cope with that. 709 */ 710 status = mmc_spi_readbytes(host, 1); 711 if (status < 0) 712 return status; 713 status = scratch->status[0]; 714 if (status == 0xff || status == 0) 715 status = mmc_spi_readtoken(host); 716 717 if (status == SPI_TOKEN_SINGLE) { 718 if (host->dma_dev) { 719 dma_sync_single_for_device(host->dma_dev, 720 host->data_dma, sizeof(*scratch), 721 DMA_BIDIRECTIONAL); 722 dma_sync_single_for_device(host->dma_dev, 723 t->rx_dma, t->len, 724 DMA_FROM_DEVICE); 725 } 726 727 status = spi_sync(spi, &host->m); 728 if (status == 0) 729 status = host->m.status; 730 731 if (host->dma_dev) { 732 dma_sync_single_for_cpu(host->dma_dev, 733 host->data_dma, sizeof(*scratch), 734 DMA_BIDIRECTIONAL); 735 dma_sync_single_for_cpu(host->dma_dev, 736 t->rx_dma, t->len, 737 DMA_FROM_DEVICE); 738 } 739 740 } else { 741 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 742 743 /* we've read extra garbage, timed out, etc */ 744 if (status < 0) 745 return status; 746 747 /* low four bits are an R2 subset, fifth seems to be 748 * vendor specific ... map them all to generic error.. 749 */ 750 return -EIO; 751 } 752 753 if (host->mmc->use_spi_crc) { 754 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 755 756 be16_to_cpus(&scratch->crc_val); 757 if (scratch->crc_val != crc) { 758 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " 759 "computed=0x%04x len=%d\n", 760 scratch->crc_val, crc, t->len); 761 return -EILSEQ; 762 } 763 } 764 765 t->rx_buf += t->len; 766 if (host->dma_dev) 767 t->rx_dma += t->len; 768 769 return 0; 770 } 771 772 /* 773 * An MMC/SD data stage includes one or more blocks, optional CRCs, 774 * and inline handshaking. That handhaking makes it unlike most 775 * other SPI protocol stacks. 776 */ 777 static void 778 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 779 struct mmc_data *data, u32 blk_size) 780 { 781 struct spi_device *spi = host->spi; 782 struct device *dma_dev = host->dma_dev; 783 struct spi_transfer *t; 784 enum dma_data_direction direction; 785 struct scatterlist *sg; 786 unsigned n_sg; 787 int multiple = (data->blocks > 1); 788 789 if (data->flags & MMC_DATA_READ) 790 direction = DMA_FROM_DEVICE; 791 else 792 direction = DMA_TO_DEVICE; 793 mmc_spi_setup_data_message(host, multiple, direction); 794 t = &host->t; 795 796 /* Handle scatterlist segments one at a time, with synch for 797 * each 512-byte block 798 */ 799 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { 800 int status = 0; 801 dma_addr_t dma_addr = 0; 802 void *kmap_addr; 803 unsigned length = sg->length; 804 enum dma_data_direction dir = direction; 805 806 /* set up dma mapping for controller drivers that might 807 * use DMA ... though they may fall back to PIO 808 */ 809 if (dma_dev) { 810 /* never invalidate whole *shared* pages ... */ 811 if ((sg->offset != 0 || length != PAGE_SIZE) 812 && dir == DMA_FROM_DEVICE) 813 dir = DMA_BIDIRECTIONAL; 814 815 dma_addr = dma_map_page(dma_dev, sg->page, 0, 816 PAGE_SIZE, dir); 817 if (direction == DMA_TO_DEVICE) 818 t->tx_dma = dma_addr + sg->offset; 819 else 820 t->rx_dma = dma_addr + sg->offset; 821 } 822 823 /* allow pio too; we don't allow highmem */ 824 kmap_addr = kmap(sg->page); 825 if (direction == DMA_TO_DEVICE) 826 t->tx_buf = kmap_addr + sg->offset; 827 else 828 t->rx_buf = kmap_addr + sg->offset; 829 830 /* transfer each block, and update request status */ 831 while (length) { 832 t->len = min(length, blk_size); 833 834 dev_dbg(&host->spi->dev, 835 " mmc_spi: %s block, %d bytes\n", 836 (direction == DMA_TO_DEVICE) 837 ? "write" 838 : "read", 839 t->len); 840 841 if (direction == DMA_TO_DEVICE) 842 status = mmc_spi_writeblock(host, t); 843 else 844 status = mmc_spi_readblock(host, t); 845 if (status < 0) 846 break; 847 848 data->bytes_xfered += t->len; 849 length -= t->len; 850 851 if (!multiple) 852 break; 853 } 854 855 /* discard mappings */ 856 if (direction == DMA_FROM_DEVICE) 857 flush_kernel_dcache_page(sg->page); 858 kunmap(sg->page); 859 if (dma_dev) 860 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 861 862 if (status < 0) { 863 data->error = status; 864 dev_dbg(&spi->dev, "%s status %d\n", 865 (direction == DMA_TO_DEVICE) 866 ? "write" : "read", 867 status); 868 break; 869 } 870 } 871 872 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 873 * can be issued before multiblock writes. Unlike its more widely 874 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 875 * that can affect the STOP_TRAN logic. Complete (and current) 876 * MMC specs should sort that out before Linux starts using CMD23. 877 */ 878 if (direction == DMA_TO_DEVICE && multiple) { 879 struct scratch *scratch = host->data; 880 int tmp; 881 const unsigned statlen = sizeof(scratch->status); 882 883 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 884 885 /* Tweak the per-block message we set up earlier by morphing 886 * it to hold single buffer with the token followed by some 887 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 888 * "not busy any longer" status, and leave chip selected. 889 */ 890 INIT_LIST_HEAD(&host->m.transfers); 891 list_add(&host->early_status.transfer_list, 892 &host->m.transfers); 893 894 memset(scratch->status, 0xff, statlen); 895 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 896 897 host->early_status.tx_buf = host->early_status.rx_buf; 898 host->early_status.tx_dma = host->early_status.rx_dma; 899 host->early_status.len = statlen; 900 901 if (host->dma_dev) 902 dma_sync_single_for_device(host->dma_dev, 903 host->data_dma, sizeof(*scratch), 904 DMA_BIDIRECTIONAL); 905 906 tmp = spi_sync(spi, &host->m); 907 if (tmp == 0) 908 tmp = host->m.status; 909 910 if (host->dma_dev) 911 dma_sync_single_for_cpu(host->dma_dev, 912 host->data_dma, sizeof(*scratch), 913 DMA_BIDIRECTIONAL); 914 915 if (tmp < 0) { 916 if (!data->error) 917 data->error = tmp; 918 return; 919 } 920 921 /* Ideally we collected "not busy" status with one I/O, 922 * avoiding wasteful byte-at-a-time scanning... but more 923 * I/O is often needed. 924 */ 925 for (tmp = 2; tmp < statlen; tmp++) { 926 if (scratch->status[tmp] != 0) 927 return; 928 } 929 tmp = mmc_spi_wait_unbusy(host, writeblock_timeout); 930 if (tmp < 0 && !data->error) 931 data->error = tmp; 932 } 933 } 934 935 /****************************************************************************/ 936 937 /* 938 * MMC driver implementation -- the interface to the MMC stack 939 */ 940 941 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 942 { 943 struct mmc_spi_host *host = mmc_priv(mmc); 944 int status = -EINVAL; 945 946 #ifdef DEBUG 947 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 948 { 949 struct mmc_command *cmd; 950 int invalid = 0; 951 952 cmd = mrq->cmd; 953 if (!mmc_spi_resp_type(cmd)) { 954 dev_dbg(&host->spi->dev, "bogus command\n"); 955 cmd->error = -EINVAL; 956 invalid = 1; 957 } 958 959 cmd = mrq->stop; 960 if (cmd && !mmc_spi_resp_type(cmd)) { 961 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 962 cmd->error = -EINVAL; 963 invalid = 1; 964 } 965 966 if (invalid) { 967 dump_stack(); 968 mmc_request_done(host->mmc, mrq); 969 return; 970 } 971 } 972 #endif 973 974 /* issue command; then optionally data and stop */ 975 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 976 if (status == 0 && mrq->data) { 977 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 978 if (mrq->stop) 979 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 980 else 981 mmc_cs_off(host); 982 } 983 984 mmc_request_done(host->mmc, mrq); 985 } 986 987 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 988 * 989 * NOTE that here we can't know that the card has just been powered up; 990 * not all MMC/SD sockets support power switching. 991 * 992 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 993 * this doesn't seem to do the right thing at all... 994 */ 995 static void mmc_spi_initsequence(struct mmc_spi_host *host) 996 { 997 /* Try to be very sure any previous command has completed; 998 * wait till not-busy, skip debris from any old commands. 999 */ 1000 mmc_spi_wait_unbusy(host, r1b_timeout); 1001 mmc_spi_readbytes(host, 10); 1002 1003 /* 1004 * Do a burst with chipselect active-high. We need to do this to 1005 * meet the requirement of 74 clock cycles with both chipselect 1006 * and CMD (MOSI) high before CMD0 ... after the card has been 1007 * powered up to Vdd(min), and so is ready to take commands. 1008 * 1009 * Some cards are particularly needy of this (e.g. Viking "SD256") 1010 * while most others don't seem to care. 1011 * 1012 * Note that this is one of the places MMC/SD plays games with the 1013 * SPI protocol. Another is that when chipselect is released while 1014 * the card returns BUSY status, the clock must issue several cycles 1015 * with chipselect high before the card will stop driving its output. 1016 */ 1017 host->spi->mode |= SPI_CS_HIGH; 1018 if (spi_setup(host->spi) != 0) { 1019 /* Just warn; most cards work without it. */ 1020 dev_warn(&host->spi->dev, 1021 "can't change chip-select polarity\n"); 1022 host->spi->mode &= ~SPI_CS_HIGH; 1023 } else { 1024 mmc_spi_readbytes(host, 18); 1025 1026 host->spi->mode &= ~SPI_CS_HIGH; 1027 if (spi_setup(host->spi) != 0) { 1028 /* Wot, we can't get the same setup we had before? */ 1029 dev_err(&host->spi->dev, 1030 "can't restore chip-select polarity\n"); 1031 } 1032 } 1033 } 1034 1035 static char *mmc_powerstring(u8 power_mode) 1036 { 1037 switch (power_mode) { 1038 case MMC_POWER_OFF: return "off"; 1039 case MMC_POWER_UP: return "up"; 1040 case MMC_POWER_ON: return "on"; 1041 } 1042 return "?"; 1043 } 1044 1045 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1046 { 1047 struct mmc_spi_host *host = mmc_priv(mmc); 1048 1049 if (host->power_mode != ios->power_mode) { 1050 int canpower; 1051 1052 canpower = host->pdata && host->pdata->setpower; 1053 1054 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1055 mmc_powerstring(ios->power_mode), 1056 ios->vdd, 1057 canpower ? ", can switch" : ""); 1058 1059 /* switch power on/off if possible, accounting for 1060 * max 250msec powerup time if needed. 1061 */ 1062 if (canpower) { 1063 switch (ios->power_mode) { 1064 case MMC_POWER_OFF: 1065 case MMC_POWER_UP: 1066 host->pdata->setpower(&host->spi->dev, 1067 ios->vdd); 1068 if (ios->power_mode == MMC_POWER_UP) 1069 msleep(host->powerup_msecs); 1070 } 1071 } 1072 1073 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1074 if (ios->power_mode == MMC_POWER_ON) 1075 mmc_spi_initsequence(host); 1076 1077 /* If powering down, ground all card inputs to avoid power 1078 * delivery from data lines! On a shared SPI bus, this 1079 * will probably be temporary; 6.4.2 of the simplified SD 1080 * spec says this must last at least 1msec. 1081 * 1082 * - Clock low means CPOL 0, e.g. mode 0 1083 * - MOSI low comes from writing zero 1084 * - Chipselect is usually active low... 1085 */ 1086 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1087 int mres; 1088 1089 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1090 mres = spi_setup(host->spi); 1091 if (mres < 0) 1092 dev_dbg(&host->spi->dev, 1093 "switch to SPI mode 0 failed\n"); 1094 1095 if (spi_w8r8(host->spi, 0x00) < 0) 1096 dev_dbg(&host->spi->dev, 1097 "put spi signals to low failed\n"); 1098 1099 /* 1100 * Now clock should be low due to spi mode 0; 1101 * MOSI should be low because of written 0x00; 1102 * chipselect should be low (it is active low) 1103 * power supply is off, so now MMC is off too! 1104 * 1105 * FIXME no, chipselect can be high since the 1106 * device is inactive and SPI_CS_HIGH is clear... 1107 */ 1108 msleep(10); 1109 if (mres == 0) { 1110 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1111 mres = spi_setup(host->spi); 1112 if (mres < 0) 1113 dev_dbg(&host->spi->dev, 1114 "switch back to SPI mode 3" 1115 " failed\n"); 1116 } 1117 } 1118 1119 host->power_mode = ios->power_mode; 1120 } 1121 1122 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1123 int status; 1124 1125 host->spi->max_speed_hz = ios->clock; 1126 status = spi_setup(host->spi); 1127 dev_dbg(&host->spi->dev, 1128 "mmc_spi: clock to %d Hz, %d\n", 1129 host->spi->max_speed_hz, status); 1130 } 1131 } 1132 1133 static int mmc_spi_get_ro(struct mmc_host *mmc) 1134 { 1135 struct mmc_spi_host *host = mmc_priv(mmc); 1136 1137 if (host->pdata && host->pdata->get_ro) 1138 return host->pdata->get_ro(mmc->parent); 1139 /* board doesn't support read only detection; assume writeable */ 1140 return 0; 1141 } 1142 1143 1144 static const struct mmc_host_ops mmc_spi_ops = { 1145 .request = mmc_spi_request, 1146 .set_ios = mmc_spi_set_ios, 1147 .get_ro = mmc_spi_get_ro, 1148 }; 1149 1150 1151 /****************************************************************************/ 1152 1153 /* 1154 * SPI driver implementation 1155 */ 1156 1157 static irqreturn_t 1158 mmc_spi_detect_irq(int irq, void *mmc) 1159 { 1160 struct mmc_spi_host *host = mmc_priv(mmc); 1161 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1162 1163 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1164 return IRQ_HANDLED; 1165 } 1166 1167 static int mmc_spi_probe(struct spi_device *spi) 1168 { 1169 void *ones; 1170 struct mmc_host *mmc; 1171 struct mmc_spi_host *host; 1172 int status; 1173 1174 /* MMC and SD specs only seem to care that sampling is on the 1175 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1176 * should be legit. We'll use mode 0 since it seems to be a 1177 * bit less troublesome on some hardware ... unclear why. 1178 */ 1179 spi->mode = SPI_MODE_0; 1180 spi->bits_per_word = 8; 1181 1182 status = spi_setup(spi); 1183 if (status < 0) { 1184 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1185 spi->mode, spi->max_speed_hz / 1000, 1186 status); 1187 return status; 1188 } 1189 1190 /* We can use the bus safely iff nobody else will interfere with 1191 * us. That is, either we have the experimental exclusive access 1192 * primitives ... or else there's nobody to share it with. 1193 */ 1194 if (spi->master->num_chipselect > 1) { 1195 struct device *parent = spi->dev.parent; 1196 1197 /* If there are multiple devices on this bus, we 1198 * can't proceed. 1199 */ 1200 spin_lock(&parent->klist_children.k_lock); 1201 if (parent->klist_children.k_list.next 1202 != parent->klist_children.k_list.prev) 1203 status = -EMLINK; 1204 else 1205 status = 0; 1206 spin_unlock(&parent->klist_children.k_lock); 1207 if (status < 0) { 1208 dev_err(&spi->dev, "can't share SPI bus\n"); 1209 return status; 1210 } 1211 1212 /* REVISIT we can't guarantee another device won't 1213 * be added later. It's uncommon though ... for now, 1214 * work as if this is safe. 1215 */ 1216 dev_warn(&spi->dev, "ASSUMING unshared SPI bus!\n"); 1217 } 1218 1219 /* We need a supply of ones to transmit. This is the only time 1220 * the CPU touches these, so cache coherency isn't a concern. 1221 * 1222 * NOTE if many systems use more than one MMC-over-SPI connector 1223 * it'd save some memory to share this. That's evidently rare. 1224 */ 1225 status = -ENOMEM; 1226 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1227 if (!ones) 1228 goto nomem; 1229 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1230 1231 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1232 if (!mmc) 1233 goto nomem; 1234 1235 mmc->ops = &mmc_spi_ops; 1236 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1237 1238 /* As long as we keep track of the number of successfully 1239 * transmitted blocks, we're good for multiwrite. 1240 */ 1241 mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE; 1242 1243 /* SPI doesn't need the lowspeed device identification thing for 1244 * MMC or SD cards, since it never comes up in open drain mode. 1245 * That's good; some SPI masters can't handle very low speeds! 1246 * 1247 * However, low speed SDIO cards need not handle over 400 KHz; 1248 * that's the only reason not to use a few MHz for f_min (until 1249 * the upper layer reads the target frequency from the CSD). 1250 */ 1251 mmc->f_min = 400000; 1252 mmc->f_max = spi->max_speed_hz; 1253 1254 host = mmc_priv(mmc); 1255 host->mmc = mmc; 1256 host->spi = spi; 1257 1258 host->ones = ones; 1259 1260 /* Platform data is used to hook up things like card sensing 1261 * and power switching gpios. 1262 */ 1263 host->pdata = spi->dev.platform_data; 1264 if (host->pdata) 1265 mmc->ocr_avail = host->pdata->ocr_mask; 1266 if (!mmc->ocr_avail) { 1267 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1268 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1269 } 1270 if (host->pdata && host->pdata->setpower) { 1271 host->powerup_msecs = host->pdata->powerup_msecs; 1272 if (!host->powerup_msecs || host->powerup_msecs > 250) 1273 host->powerup_msecs = 250; 1274 } 1275 1276 dev_set_drvdata(&spi->dev, mmc); 1277 1278 /* preallocate dma buffers */ 1279 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1280 if (!host->data) 1281 goto fail_nobuf1; 1282 1283 if (spi->master->cdev.dev->dma_mask) { 1284 struct device *dev = spi->master->cdev.dev; 1285 1286 host->dma_dev = dev; 1287 host->ones_dma = dma_map_single(dev, ones, 1288 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1289 host->data_dma = dma_map_single(dev, host->data, 1290 sizeof(*host->data), DMA_BIDIRECTIONAL); 1291 1292 /* REVISIT in theory those map operations can fail... */ 1293 1294 dma_sync_single_for_cpu(host->dma_dev, 1295 host->data_dma, sizeof(*host->data), 1296 DMA_BIDIRECTIONAL); 1297 } 1298 1299 /* setup message for status/busy readback */ 1300 spi_message_init(&host->readback); 1301 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1302 1303 spi_message_add_tail(&host->status, &host->readback); 1304 host->status.tx_buf = host->ones; 1305 host->status.tx_dma = host->ones_dma; 1306 host->status.rx_buf = &host->data->status; 1307 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1308 host->status.cs_change = 1; 1309 1310 /* register card detect irq */ 1311 if (host->pdata && host->pdata->init) { 1312 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1313 if (status != 0) 1314 goto fail_glue_init; 1315 } 1316 1317 status = mmc_add_host(mmc); 1318 if (status != 0) 1319 goto fail_add_host; 1320 1321 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n", 1322 mmc->class_dev.bus_id, 1323 host->dma_dev ? "" : ", no DMA", 1324 (host->pdata && host->pdata->get_ro) 1325 ? "" : ", no WP", 1326 (host->pdata && host->pdata->setpower) 1327 ? "" : ", no poweroff"); 1328 return 0; 1329 1330 fail_add_host: 1331 mmc_remove_host (mmc); 1332 fail_glue_init: 1333 if (host->dma_dev) 1334 dma_unmap_single(host->dma_dev, host->data_dma, 1335 sizeof(*host->data), DMA_BIDIRECTIONAL); 1336 kfree(host->data); 1337 1338 fail_nobuf1: 1339 mmc_free_host(mmc); 1340 dev_set_drvdata(&spi->dev, NULL); 1341 1342 nomem: 1343 kfree(ones); 1344 return status; 1345 } 1346 1347 1348 static int __devexit mmc_spi_remove(struct spi_device *spi) 1349 { 1350 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1351 struct mmc_spi_host *host; 1352 1353 if (mmc) { 1354 host = mmc_priv(mmc); 1355 1356 /* prevent new mmc_detect_change() calls */ 1357 if (host->pdata && host->pdata->exit) 1358 host->pdata->exit(&spi->dev, mmc); 1359 1360 mmc_remove_host(mmc); 1361 1362 if (host->dma_dev) { 1363 dma_unmap_single(host->dma_dev, host->ones_dma, 1364 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1365 dma_unmap_single(host->dma_dev, host->data_dma, 1366 sizeof(*host->data), DMA_BIDIRECTIONAL); 1367 } 1368 1369 kfree(host->data); 1370 kfree(host->ones); 1371 1372 spi->max_speed_hz = mmc->f_max; 1373 mmc_free_host(mmc); 1374 dev_set_drvdata(&spi->dev, NULL); 1375 } 1376 return 0; 1377 } 1378 1379 1380 static struct spi_driver mmc_spi_driver = { 1381 .driver = { 1382 .name = "mmc_spi", 1383 .bus = &spi_bus_type, 1384 .owner = THIS_MODULE, 1385 }, 1386 .probe = mmc_spi_probe, 1387 .remove = __devexit_p(mmc_spi_remove), 1388 }; 1389 1390 1391 static int __init mmc_spi_init(void) 1392 { 1393 return spi_register_driver(&mmc_spi_driver); 1394 } 1395 module_init(mmc_spi_init); 1396 1397 1398 static void __exit mmc_spi_exit(void) 1399 { 1400 spi_unregister_driver(&mmc_spi_driver); 1401 } 1402 module_exit(mmc_spi_exit); 1403 1404 1405 MODULE_AUTHOR("Mike Lavender, David Brownell, " 1406 "Hans-Peter Nilsson, Jan Nikitenko"); 1407 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1408 MODULE_LICENSE("GPL"); 1409