xref: /linux/drivers/mmc/host/mmc_spi.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3  *
4  * (C) Copyright 2005, Intec Automation,
5  *		Mike Lavender (mike@steroidmicros)
6  * (C) Copyright 2006-2007, David Brownell
7  * (C) Copyright 2007, Axis Communications,
8  *		Hans-Peter Nilsson (hp@axis.com)
9  * (C) Copyright 2007, ATRON electronic GmbH,
10  *		Jan Nikitenko <jan.nikitenko@gmail.com>
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 #include <linux/hrtimer.h>
28 #include <linux/delay.h>
29 #include <linux/blkdev.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
36 
37 #include <linux/spi/spi.h>
38 #include <linux/spi/mmc_spi.h>
39 
40 #include <asm/unaligned.h>
41 
42 
43 /* NOTES:
44  *
45  * - For now, we won't try to interoperate with a real mmc/sd/sdio
46  *   controller, although some of them do have hardware support for
47  *   SPI protocol.  The main reason for such configs would be mmc-ish
48  *   cards like DataFlash, which don't support that "native" protocol.
49  *
50  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
51  *   switch between driver stacks, and in any case if "native" mode
52  *   is available, it will be faster and hence preferable.
53  *
54  * - MMC depends on a different chipselect management policy than the
55  *   SPI interface currently supports for shared bus segments:  it needs
56  *   to issue multiple spi_message requests with the chipselect active,
57  *   using the results of one message to decide the next one to issue.
58  *
59  *   Pending updates to the programming interface, this driver expects
60  *   that it not share the bus with other drivers (precluding conflicts).
61  *
62  * - We tell the controller to keep the chipselect active from the
63  *   beginning of an mmc_host_ops.request until the end.  So beware
64  *   of SPI controller drivers that mis-handle the cs_change flag!
65  *
66  *   However, many cards seem OK with chipselect flapping up/down
67  *   during that time ... at least on unshared bus segments.
68  */
69 
70 
71 /*
72  * Local protocol constants, internal to data block protocols.
73  */
74 
75 /* Response tokens used to ack each block written: */
76 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
77 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
78 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
79 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
80 
81 /* Read and write blocks start with these tokens and end with crc;
82  * on error, read tokens act like a subset of R2_SPI_* values.
83  */
84 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
85 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
86 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
87 
88 #define MMC_SPI_BLOCKSIZE	512
89 
90 
91 /* These fixed timeouts come from the latest SD specs, which say to ignore
92  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
93  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
94  * reads which takes nowhere near that long.  Older cards may be able to use
95  * shorter timeouts ... but why bother?
96  */
97 #define readblock_timeout	ktime_set(0, 100 * 1000 * 1000)
98 #define writeblock_timeout	ktime_set(0, 250 * 1000 * 1000)
99 #define r1b_timeout		ktime_set(3, 0)
100 
101 
102 /****************************************************************************/
103 
104 /*
105  * Local Data Structures
106  */
107 
108 /* "scratch" is per-{command,block} data exchanged with the card */
109 struct scratch {
110 	u8			status[29];
111 	u8			data_token;
112 	__be16			crc_val;
113 };
114 
115 struct mmc_spi_host {
116 	struct mmc_host		*mmc;
117 	struct spi_device	*spi;
118 
119 	unsigned char		power_mode;
120 	u16			powerup_msecs;
121 
122 	struct mmc_spi_platform_data	*pdata;
123 
124 	/* for bulk data transfers */
125 	struct spi_transfer	token, t, crc, early_status;
126 	struct spi_message	m;
127 
128 	/* for status readback */
129 	struct spi_transfer	status;
130 	struct spi_message	readback;
131 
132 	/* underlying DMA-aware controller, or null */
133 	struct device		*dma_dev;
134 
135 	/* buffer used for commands and for message "overhead" */
136 	struct scratch		*data;
137 	dma_addr_t		data_dma;
138 
139 	/* Specs say to write ones most of the time, even when the card
140 	 * has no need to read its input data; and many cards won't care.
141 	 * This is our source of those ones.
142 	 */
143 	void			*ones;
144 	dma_addr_t		ones_dma;
145 };
146 
147 
148 /****************************************************************************/
149 
150 /*
151  * MMC-over-SPI protocol glue, used by the MMC stack interface
152  */
153 
154 static inline int mmc_cs_off(struct mmc_spi_host *host)
155 {
156 	/* chipselect will always be inactive after setup() */
157 	return spi_setup(host->spi);
158 }
159 
160 static int
161 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
162 {
163 	int status;
164 
165 	if (len > sizeof(*host->data)) {
166 		WARN_ON(1);
167 		return -EIO;
168 	}
169 
170 	host->status.len = len;
171 
172 	if (host->dma_dev)
173 		dma_sync_single_for_device(host->dma_dev,
174 				host->data_dma, sizeof(*host->data),
175 				DMA_FROM_DEVICE);
176 
177 	status = spi_sync(host->spi, &host->readback);
178 	if (status == 0)
179 		status = host->readback.status;
180 
181 	if (host->dma_dev)
182 		dma_sync_single_for_cpu(host->dma_dev,
183 				host->data_dma, sizeof(*host->data),
184 				DMA_FROM_DEVICE);
185 
186 	return status;
187 }
188 
189 static int
190 mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte)
191 {
192 	u8		*cp = host->data->status;
193 
194 	timeout = ktime_add(timeout, ktime_get());
195 
196 	while (1) {
197 		int		status;
198 		unsigned	i;
199 
200 		status = mmc_spi_readbytes(host, n);
201 		if (status < 0)
202 			return status;
203 
204 		for (i = 0; i < n; i++) {
205 			if (cp[i] != byte)
206 				return cp[i];
207 		}
208 
209 		/* REVISIT investigate msleep() to avoid busy-wait I/O
210 		 * in at least some cases.
211 		 */
212 		if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0)
213 			break;
214 	}
215 	return -ETIMEDOUT;
216 }
217 
218 static inline int
219 mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout)
220 {
221 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
222 }
223 
224 static int mmc_spi_readtoken(struct mmc_spi_host *host)
225 {
226 	return mmc_spi_skip(host, readblock_timeout, 1, 0xff);
227 }
228 
229 
230 /*
231  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
232  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
233  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
234  *
235  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
236  * newer cards R7 (IF_COND).
237  */
238 
239 static char *maptype(struct mmc_command *cmd)
240 {
241 	switch (mmc_spi_resp_type(cmd)) {
242 	case MMC_RSP_SPI_R1:	return "R1";
243 	case MMC_RSP_SPI_R1B:	return "R1B";
244 	case MMC_RSP_SPI_R2:	return "R2/R5";
245 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
246 	default:		return "?";
247 	}
248 }
249 
250 /* return zero, else negative errno after setting cmd->error */
251 static int mmc_spi_response_get(struct mmc_spi_host *host,
252 		struct mmc_command *cmd, int cs_on)
253 {
254 	u8	*cp = host->data->status;
255 	u8	*end = cp + host->t.len;
256 	int	value = 0;
257 	char	tag[32];
258 
259 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
260 		cmd->opcode, maptype(cmd));
261 
262 	/* Except for data block reads, the whole response will already
263 	 * be stored in the scratch buffer.  It's somewhere after the
264 	 * command and the first byte we read after it.  We ignore that
265 	 * first byte.  After STOP_TRANSMISSION command it may include
266 	 * two data bits, but otherwise it's all ones.
267 	 */
268 	cp += 8;
269 	while (cp < end && *cp == 0xff)
270 		cp++;
271 
272 	/* Data block reads (R1 response types) may need more data... */
273 	if (cp == end) {
274 		unsigned	i;
275 
276 		cp = host->data->status;
277 
278 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
279 		 * status byte ... and we already scanned 2 bytes.
280 		 *
281 		 * REVISIT block read paths use nasty byte-at-a-time I/O
282 		 * so it can always DMA directly into the target buffer.
283 		 * It'd probably be better to memcpy() the first chunk and
284 		 * avoid extra i/o calls...
285 		 */
286 		for (i = 2; i < 9; i++) {
287 			value = mmc_spi_readbytes(host, 1);
288 			if (value < 0)
289 				goto done;
290 			if (*cp != 0xff)
291 				goto checkstatus;
292 		}
293 		value = -ETIMEDOUT;
294 		goto done;
295 	}
296 
297 checkstatus:
298 	if (*cp & 0x80) {
299 		dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n",
300 					tag, *cp);
301 		value = -EBADR;
302 		goto done;
303 	}
304 
305 	cmd->resp[0] = *cp++;
306 	cmd->error = 0;
307 
308 	/* Status byte: the entire seven-bit R1 response.  */
309 	if (cmd->resp[0] != 0) {
310 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
311 					| R1_SPI_ILLEGAL_COMMAND)
312 				& cmd->resp[0])
313 			value = -EINVAL;
314 		else if (R1_SPI_COM_CRC & cmd->resp[0])
315 			value = -EILSEQ;
316 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
317 				& cmd->resp[0])
318 			value = -EIO;
319 		/* else R1_SPI_IDLE, "it's resetting" */
320 	}
321 
322 	switch (mmc_spi_resp_type(cmd)) {
323 
324 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
325 	 * and less-common stuff like various erase operations.
326 	 */
327 	case MMC_RSP_SPI_R1B:
328 		/* maybe we read all the busy tokens already */
329 		while (cp < end && *cp == 0)
330 			cp++;
331 		if (cp == end)
332 			mmc_spi_wait_unbusy(host, r1b_timeout);
333 		break;
334 
335 	/* SPI R2 == R1 + second status byte; SEND_STATUS
336 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
337 	 */
338 	case MMC_RSP_SPI_R2:
339 		cmd->resp[0] |= *cp << 8;
340 		break;
341 
342 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
343 	case MMC_RSP_SPI_R3:
344 		cmd->resp[1] = be32_to_cpu(get_unaligned((u32 *)cp));
345 		break;
346 
347 	/* SPI R1 == just one status byte */
348 	case MMC_RSP_SPI_R1:
349 		break;
350 
351 	default:
352 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
353 				mmc_spi_resp_type(cmd));
354 		if (value >= 0)
355 			value = -EINVAL;
356 		goto done;
357 	}
358 
359 	if (value < 0)
360 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
361 			tag, cmd->resp[0], cmd->resp[1]);
362 
363 	/* disable chipselect on errors and some success cases */
364 	if (value >= 0 && cs_on)
365 		return value;
366 done:
367 	if (value < 0)
368 		cmd->error = value;
369 	mmc_cs_off(host);
370 	return value;
371 }
372 
373 /* Issue command and read its response.
374  * Returns zero on success, negative for error.
375  *
376  * On error, caller must cope with mmc core retry mechanism.  That
377  * means immediate low-level resubmit, which affects the bus lock...
378  */
379 static int
380 mmc_spi_command_send(struct mmc_spi_host *host,
381 		struct mmc_request *mrq,
382 		struct mmc_command *cmd, int cs_on)
383 {
384 	struct scratch		*data = host->data;
385 	u8			*cp = data->status;
386 	u32			arg = cmd->arg;
387 	int			status;
388 	struct spi_transfer	*t;
389 
390 	/* We can handle most commands (except block reads) in one full
391 	 * duplex I/O operation before either starting the next transfer
392 	 * (data block or command) or else deselecting the card.
393 	 *
394 	 * First, write 7 bytes:
395 	 *  - an all-ones byte to ensure the card is ready
396 	 *  - opcode byte (plus start and transmission bits)
397 	 *  - four bytes of big-endian argument
398 	 *  - crc7 (plus end bit) ... always computed, it's cheap
399 	 *
400 	 * We init the whole buffer to all-ones, which is what we need
401 	 * to write while we're reading (later) response data.
402 	 */
403 	memset(cp++, 0xff, sizeof(data->status));
404 
405 	*cp++ = 0x40 | cmd->opcode;
406 	*cp++ = (u8)(arg >> 24);
407 	*cp++ = (u8)(arg >> 16);
408 	*cp++ = (u8)(arg >> 8);
409 	*cp++ = (u8)arg;
410 	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
411 
412 	/* Then, read up to 13 bytes (while writing all-ones):
413 	 *  - N(CR) (== 1..8) bytes of all-ones
414 	 *  - status byte (for all response types)
415 	 *  - the rest of the response, either:
416 	 *      + nothing, for R1 or R1B responses
417 	 *	+ second status byte, for R2 responses
418 	 *	+ four data bytes, for R3 and R7 responses
419 	 *
420 	 * Finally, read some more bytes ... in the nice cases we know in
421 	 * advance how many, and reading 1 more is always OK:
422 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
423 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
424 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
425 	 *
426 	 * So in those cases one full duplex I/O of at most 21 bytes will
427 	 * handle the whole command, leaving the card ready to receive a
428 	 * data block or new command.  We do that whenever we can, shaving
429 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
430 	 *
431 	 * There are two other cases, where it's not generally practical
432 	 * to rely on a single I/O:
433 	 *
434 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
435 	 *
436 	 *    In this case we can *try* to fit it into one I/O, then
437 	 *    maybe read more data later.
438 	 *
439 	 *  - Data block reads are more troublesome, since a variable
440 	 *    number of padding bytes precede the token and data.
441 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
442 	 *      + N(AC) (== 1..many) bytes of all-ones
443 	 *
444 	 *    In this case we currently only have minimal speedups here:
445 	 *    when N(CR) == 1 we can avoid I/O in response_get().
446 	 */
447 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
448 		cp += 2;	/* min(N(CR)) + status */
449 		/* R1 */
450 	} else {
451 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
452 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
453 			cp++;
454 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
455 			cp += 4;
456 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
457 			cp = data->status + sizeof(data->status);
458 		/* else:  R1 (most commands) */
459 	}
460 
461 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
462 		cmd->opcode, maptype(cmd));
463 
464 	/* send command, leaving chipselect active */
465 	spi_message_init(&host->m);
466 
467 	t = &host->t;
468 	memset(t, 0, sizeof(*t));
469 	t->tx_buf = t->rx_buf = data->status;
470 	t->tx_dma = t->rx_dma = host->data_dma;
471 	t->len = cp - data->status;
472 	t->cs_change = 1;
473 	spi_message_add_tail(t, &host->m);
474 
475 	if (host->dma_dev) {
476 		host->m.is_dma_mapped = 1;
477 		dma_sync_single_for_device(host->dma_dev,
478 				host->data_dma, sizeof(*host->data),
479 				DMA_BIDIRECTIONAL);
480 	}
481 	status = spi_sync(host->spi, &host->m);
482 	if (status == 0)
483 		status = host->m.status;
484 
485 	if (host->dma_dev)
486 		dma_sync_single_for_cpu(host->dma_dev,
487 				host->data_dma, sizeof(*host->data),
488 				DMA_BIDIRECTIONAL);
489 	if (status < 0) {
490 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
491 		cmd->error = status;
492 		return status;
493 	}
494 
495 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
496 	return mmc_spi_response_get(host, cmd, cs_on);
497 }
498 
499 /* Build data message with up to four separate transfers.  For TX, we
500  * start by writing the data token.  And in most cases, we finish with
501  * a status transfer.
502  *
503  * We always provide TX data for data and CRC.  The MMC/SD protocol
504  * requires us to write ones; but Linux defaults to writing zeroes;
505  * so we explicitly initialize it to all ones on RX paths.
506  *
507  * We also handle DMA mapping, so the underlying SPI controller does
508  * not need to (re)do it for each message.
509  */
510 static void
511 mmc_spi_setup_data_message(
512 	struct mmc_spi_host	*host,
513 	int			multiple,
514 	enum dma_data_direction	direction)
515 {
516 	struct spi_transfer	*t;
517 	struct scratch		*scratch = host->data;
518 	dma_addr_t		dma = host->data_dma;
519 
520 	spi_message_init(&host->m);
521 	if (dma)
522 		host->m.is_dma_mapped = 1;
523 
524 	/* for reads, readblock() skips 0xff bytes before finding
525 	 * the token; for writes, this transfer issues that token.
526 	 */
527 	if (direction == DMA_TO_DEVICE) {
528 		t = &host->token;
529 		memset(t, 0, sizeof(*t));
530 		t->len = 1;
531 		if (multiple)
532 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
533 		else
534 			scratch->data_token = SPI_TOKEN_SINGLE;
535 		t->tx_buf = &scratch->data_token;
536 		if (dma)
537 			t->tx_dma = dma + offsetof(struct scratch, data_token);
538 		spi_message_add_tail(t, &host->m);
539 	}
540 
541 	/* Body of transfer is buffer, then CRC ...
542 	 * either TX-only, or RX with TX-ones.
543 	 */
544 	t = &host->t;
545 	memset(t, 0, sizeof(*t));
546 	t->tx_buf = host->ones;
547 	t->tx_dma = host->ones_dma;
548 	/* length and actual buffer info are written later */
549 	spi_message_add_tail(t, &host->m);
550 
551 	t = &host->crc;
552 	memset(t, 0, sizeof(*t));
553 	t->len = 2;
554 	if (direction == DMA_TO_DEVICE) {
555 		/* the actual CRC may get written later */
556 		t->tx_buf = &scratch->crc_val;
557 		if (dma)
558 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
559 	} else {
560 		t->tx_buf = host->ones;
561 		t->tx_dma = host->ones_dma;
562 		t->rx_buf = &scratch->crc_val;
563 		if (dma)
564 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
565 	}
566 	spi_message_add_tail(t, &host->m);
567 
568 	/*
569 	 * A single block read is followed by N(EC) [0+] all-ones bytes
570 	 * before deselect ... don't bother.
571 	 *
572 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
573 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
574 	 * collect that single byte, so readblock() doesn't need to.
575 	 *
576 	 * For a write, the one-byte data response follows immediately, then
577 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
578 	 * Then single block reads may deselect, and multiblock ones issue
579 	 * the next token (next data block, or STOP_TRAN).  We can try to
580 	 * minimize I/O ops by using a single read to collect end-of-busy.
581 	 */
582 	if (multiple || direction == DMA_TO_DEVICE) {
583 		t = &host->early_status;
584 		memset(t, 0, sizeof(*t));
585 		t->len = (direction == DMA_TO_DEVICE)
586 				? sizeof(scratch->status)
587 				: 1;
588 		t->tx_buf = host->ones;
589 		t->tx_dma = host->ones_dma;
590 		t->rx_buf = scratch->status;
591 		if (dma)
592 			t->rx_dma = dma + offsetof(struct scratch, status);
593 		t->cs_change = 1;
594 		spi_message_add_tail(t, &host->m);
595 	}
596 }
597 
598 /*
599  * Write one block:
600  *  - caller handled preceding N(WR) [1+] all-ones bytes
601  *  - data block
602  *	+ token
603  *	+ data bytes
604  *	+ crc16
605  *  - an all-ones byte ... card writes a data-response byte
606  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
607  *
608  * Return negative errno, else success.
609  */
610 static int
611 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t)
612 {
613 	struct spi_device	*spi = host->spi;
614 	int			status, i;
615 	struct scratch		*scratch = host->data;
616 
617 	if (host->mmc->use_spi_crc)
618 		scratch->crc_val = cpu_to_be16(
619 				crc_itu_t(0, t->tx_buf, t->len));
620 	if (host->dma_dev)
621 		dma_sync_single_for_device(host->dma_dev,
622 				host->data_dma, sizeof(*scratch),
623 				DMA_BIDIRECTIONAL);
624 
625 	status = spi_sync(spi, &host->m);
626 	if (status == 0)
627 		status = host->m.status;
628 
629 	if (status != 0) {
630 		dev_dbg(&spi->dev, "write error (%d)\n", status);
631 		return status;
632 	}
633 
634 	if (host->dma_dev)
635 		dma_sync_single_for_cpu(host->dma_dev,
636 				host->data_dma, sizeof(*scratch),
637 				DMA_BIDIRECTIONAL);
638 
639 	/*
640 	 * Get the transmission data-response reply.  It must follow
641 	 * immediately after the data block we transferred.  This reply
642 	 * doesn't necessarily tell whether the write operation succeeded;
643 	 * it just says if the transmission was ok and whether *earlier*
644 	 * writes succeeded; see the standard.
645 	 */
646 	switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) {
647 	case SPI_RESPONSE_ACCEPTED:
648 		status = 0;
649 		break;
650 	case SPI_RESPONSE_CRC_ERR:
651 		/* host shall then issue MMC_STOP_TRANSMISSION */
652 		status = -EILSEQ;
653 		break;
654 	case SPI_RESPONSE_WRITE_ERR:
655 		/* host shall then issue MMC_STOP_TRANSMISSION,
656 		 * and should MMC_SEND_STATUS to sort it out
657 		 */
658 		status = -EIO;
659 		break;
660 	default:
661 		status = -EPROTO;
662 		break;
663 	}
664 	if (status != 0) {
665 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
666 			scratch->status[0], status);
667 		return status;
668 	}
669 
670 	t->tx_buf += t->len;
671 	if (host->dma_dev)
672 		t->tx_dma += t->len;
673 
674 	/* Return when not busy.  If we didn't collect that status yet,
675 	 * we'll need some more I/O.
676 	 */
677 	for (i = 1; i < sizeof(scratch->status); i++) {
678 		if (scratch->status[i] != 0)
679 			return 0;
680 	}
681 	return mmc_spi_wait_unbusy(host, writeblock_timeout);
682 }
683 
684 /*
685  * Read one block:
686  *  - skip leading all-ones bytes ... either
687  *      + N(AC) [1..f(clock,CSD)] usually, else
688  *      + N(CX) [0..8] when reading CSD or CID
689  *  - data block
690  *	+ token ... if error token, no data or crc
691  *	+ data bytes
692  *	+ crc16
693  *
694  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
695  * before dropping chipselect.
696  *
697  * For multiblock reads, caller either reads the next block or issues a
698  * STOP_TRANSMISSION command.
699  */
700 static int
701 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t)
702 {
703 	struct spi_device	*spi = host->spi;
704 	int			status;
705 	struct scratch		*scratch = host->data;
706 
707 	/* At least one SD card sends an all-zeroes byte when N(CX)
708 	 * applies, before the all-ones bytes ... just cope with that.
709 	 */
710 	status = mmc_spi_readbytes(host, 1);
711 	if (status < 0)
712 		return status;
713 	status = scratch->status[0];
714 	if (status == 0xff || status == 0)
715 		status = mmc_spi_readtoken(host);
716 
717 	if (status == SPI_TOKEN_SINGLE) {
718 		if (host->dma_dev) {
719 			dma_sync_single_for_device(host->dma_dev,
720 					host->data_dma, sizeof(*scratch),
721 					DMA_BIDIRECTIONAL);
722 			dma_sync_single_for_device(host->dma_dev,
723 					t->rx_dma, t->len,
724 					DMA_FROM_DEVICE);
725 		}
726 
727 		status = spi_sync(spi, &host->m);
728 		if (status == 0)
729 			status = host->m.status;
730 
731 		if (host->dma_dev) {
732 			dma_sync_single_for_cpu(host->dma_dev,
733 					host->data_dma, sizeof(*scratch),
734 					DMA_BIDIRECTIONAL);
735 			dma_sync_single_for_cpu(host->dma_dev,
736 					t->rx_dma, t->len,
737 					DMA_FROM_DEVICE);
738 		}
739 
740 	} else {
741 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
742 
743 		/* we've read extra garbage, timed out, etc */
744 		if (status < 0)
745 			return status;
746 
747 		/* low four bits are an R2 subset, fifth seems to be
748 		 * vendor specific ... map them all to generic error..
749 		 */
750 		return -EIO;
751 	}
752 
753 	if (host->mmc->use_spi_crc) {
754 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
755 
756 		be16_to_cpus(&scratch->crc_val);
757 		if (scratch->crc_val != crc) {
758 			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
759 					"computed=0x%04x len=%d\n",
760 					scratch->crc_val, crc, t->len);
761 			return -EILSEQ;
762 		}
763 	}
764 
765 	t->rx_buf += t->len;
766 	if (host->dma_dev)
767 		t->rx_dma += t->len;
768 
769 	return 0;
770 }
771 
772 /*
773  * An MMC/SD data stage includes one or more blocks, optional CRCs,
774  * and inline handshaking.  That handhaking makes it unlike most
775  * other SPI protocol stacks.
776  */
777 static void
778 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
779 		struct mmc_data *data, u32 blk_size)
780 {
781 	struct spi_device	*spi = host->spi;
782 	struct device		*dma_dev = host->dma_dev;
783 	struct spi_transfer	*t;
784 	enum dma_data_direction	direction;
785 	struct scatterlist	*sg;
786 	unsigned		n_sg;
787 	int			multiple = (data->blocks > 1);
788 
789 	if (data->flags & MMC_DATA_READ)
790 		direction = DMA_FROM_DEVICE;
791 	else
792 		direction = DMA_TO_DEVICE;
793 	mmc_spi_setup_data_message(host, multiple, direction);
794 	t = &host->t;
795 
796 	/* Handle scatterlist segments one at a time, with synch for
797 	 * each 512-byte block
798 	 */
799 	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
800 		int			status = 0;
801 		dma_addr_t		dma_addr = 0;
802 		void			*kmap_addr;
803 		unsigned		length = sg->length;
804 		enum dma_data_direction	dir = direction;
805 
806 		/* set up dma mapping for controller drivers that might
807 		 * use DMA ... though they may fall back to PIO
808 		 */
809 		if (dma_dev) {
810 			/* never invalidate whole *shared* pages ... */
811 			if ((sg->offset != 0 || length != PAGE_SIZE)
812 					&& dir == DMA_FROM_DEVICE)
813 				dir = DMA_BIDIRECTIONAL;
814 
815 			dma_addr = dma_map_page(dma_dev, sg->page, 0,
816 						PAGE_SIZE, dir);
817 			if (direction == DMA_TO_DEVICE)
818 				t->tx_dma = dma_addr + sg->offset;
819 			else
820 				t->rx_dma = dma_addr + sg->offset;
821 		}
822 
823 		/* allow pio too; we don't allow highmem */
824 		kmap_addr = kmap(sg->page);
825 		if (direction == DMA_TO_DEVICE)
826 			t->tx_buf = kmap_addr + sg->offset;
827 		else
828 			t->rx_buf = kmap_addr + sg->offset;
829 
830 		/* transfer each block, and update request status */
831 		while (length) {
832 			t->len = min(length, blk_size);
833 
834 			dev_dbg(&host->spi->dev,
835 				"    mmc_spi: %s block, %d bytes\n",
836 				(direction == DMA_TO_DEVICE)
837 				? "write"
838 				: "read",
839 				t->len);
840 
841 			if (direction == DMA_TO_DEVICE)
842 				status = mmc_spi_writeblock(host, t);
843 			else
844 				status = mmc_spi_readblock(host, t);
845 			if (status < 0)
846 				break;
847 
848 			data->bytes_xfered += t->len;
849 			length -= t->len;
850 
851 			if (!multiple)
852 				break;
853 		}
854 
855 		/* discard mappings */
856 		if (direction == DMA_FROM_DEVICE)
857 			flush_kernel_dcache_page(sg->page);
858 		kunmap(sg->page);
859 		if (dma_dev)
860 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
861 
862 		if (status < 0) {
863 			data->error = status;
864 			dev_dbg(&spi->dev, "%s status %d\n",
865 				(direction == DMA_TO_DEVICE)
866 					? "write" : "read",
867 				status);
868 			break;
869 		}
870 	}
871 
872 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
873 	 * can be issued before multiblock writes.  Unlike its more widely
874 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
875 	 * that can affect the STOP_TRAN logic.   Complete (and current)
876 	 * MMC specs should sort that out before Linux starts using CMD23.
877 	 */
878 	if (direction == DMA_TO_DEVICE && multiple) {
879 		struct scratch	*scratch = host->data;
880 		int		tmp;
881 		const unsigned	statlen = sizeof(scratch->status);
882 
883 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
884 
885 		/* Tweak the per-block message we set up earlier by morphing
886 		 * it to hold single buffer with the token followed by some
887 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
888 		 * "not busy any longer" status, and leave chip selected.
889 		 */
890 		INIT_LIST_HEAD(&host->m.transfers);
891 		list_add(&host->early_status.transfer_list,
892 				&host->m.transfers);
893 
894 		memset(scratch->status, 0xff, statlen);
895 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
896 
897 		host->early_status.tx_buf = host->early_status.rx_buf;
898 		host->early_status.tx_dma = host->early_status.rx_dma;
899 		host->early_status.len = statlen;
900 
901 		if (host->dma_dev)
902 			dma_sync_single_for_device(host->dma_dev,
903 					host->data_dma, sizeof(*scratch),
904 					DMA_BIDIRECTIONAL);
905 
906 		tmp = spi_sync(spi, &host->m);
907 		if (tmp == 0)
908 			tmp = host->m.status;
909 
910 		if (host->dma_dev)
911 			dma_sync_single_for_cpu(host->dma_dev,
912 					host->data_dma, sizeof(*scratch),
913 					DMA_BIDIRECTIONAL);
914 
915 		if (tmp < 0) {
916 			if (!data->error)
917 				data->error = tmp;
918 			return;
919 		}
920 
921 		/* Ideally we collected "not busy" status with one I/O,
922 		 * avoiding wasteful byte-at-a-time scanning... but more
923 		 * I/O is often needed.
924 		 */
925 		for (tmp = 2; tmp < statlen; tmp++) {
926 			if (scratch->status[tmp] != 0)
927 				return;
928 		}
929 		tmp = mmc_spi_wait_unbusy(host, writeblock_timeout);
930 		if (tmp < 0 && !data->error)
931 			data->error = tmp;
932 	}
933 }
934 
935 /****************************************************************************/
936 
937 /*
938  * MMC driver implementation -- the interface to the MMC stack
939  */
940 
941 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
942 {
943 	struct mmc_spi_host	*host = mmc_priv(mmc);
944 	int			status = -EINVAL;
945 
946 #ifdef DEBUG
947 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
948 	{
949 		struct mmc_command	*cmd;
950 		int			invalid = 0;
951 
952 		cmd = mrq->cmd;
953 		if (!mmc_spi_resp_type(cmd)) {
954 			dev_dbg(&host->spi->dev, "bogus command\n");
955 			cmd->error = -EINVAL;
956 			invalid = 1;
957 		}
958 
959 		cmd = mrq->stop;
960 		if (cmd && !mmc_spi_resp_type(cmd)) {
961 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
962 			cmd->error = -EINVAL;
963 			invalid = 1;
964 		}
965 
966 		if (invalid) {
967 			dump_stack();
968 			mmc_request_done(host->mmc, mrq);
969 			return;
970 		}
971 	}
972 #endif
973 
974 	/* issue command; then optionally data and stop */
975 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
976 	if (status == 0 && mrq->data) {
977 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
978 		if (mrq->stop)
979 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
980 		else
981 			mmc_cs_off(host);
982 	}
983 
984 	mmc_request_done(host->mmc, mrq);
985 }
986 
987 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
988  *
989  * NOTE that here we can't know that the card has just been powered up;
990  * not all MMC/SD sockets support power switching.
991  *
992  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
993  * this doesn't seem to do the right thing at all...
994  */
995 static void mmc_spi_initsequence(struct mmc_spi_host *host)
996 {
997 	/* Try to be very sure any previous command has completed;
998 	 * wait till not-busy, skip debris from any old commands.
999 	 */
1000 	mmc_spi_wait_unbusy(host, r1b_timeout);
1001 	mmc_spi_readbytes(host, 10);
1002 
1003 	/*
1004 	 * Do a burst with chipselect active-high.  We need to do this to
1005 	 * meet the requirement of 74 clock cycles with both chipselect
1006 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1007 	 * powered up to Vdd(min), and so is ready to take commands.
1008 	 *
1009 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1010 	 * while most others don't seem to care.
1011 	 *
1012 	 * Note that this is one of the places MMC/SD plays games with the
1013 	 * SPI protocol.  Another is that when chipselect is released while
1014 	 * the card returns BUSY status, the clock must issue several cycles
1015 	 * with chipselect high before the card will stop driving its output.
1016 	 */
1017 	host->spi->mode |= SPI_CS_HIGH;
1018 	if (spi_setup(host->spi) != 0) {
1019 		/* Just warn; most cards work without it. */
1020 		dev_warn(&host->spi->dev,
1021 				"can't change chip-select polarity\n");
1022 		host->spi->mode &= ~SPI_CS_HIGH;
1023 	} else {
1024 		mmc_spi_readbytes(host, 18);
1025 
1026 		host->spi->mode &= ~SPI_CS_HIGH;
1027 		if (spi_setup(host->spi) != 0) {
1028 			/* Wot, we can't get the same setup we had before? */
1029 			dev_err(&host->spi->dev,
1030 					"can't restore chip-select polarity\n");
1031 		}
1032 	}
1033 }
1034 
1035 static char *mmc_powerstring(u8 power_mode)
1036 {
1037 	switch (power_mode) {
1038 	case MMC_POWER_OFF: return "off";
1039 	case MMC_POWER_UP:  return "up";
1040 	case MMC_POWER_ON:  return "on";
1041 	}
1042 	return "?";
1043 }
1044 
1045 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1046 {
1047 	struct mmc_spi_host *host = mmc_priv(mmc);
1048 
1049 	if (host->power_mode != ios->power_mode) {
1050 		int		canpower;
1051 
1052 		canpower = host->pdata && host->pdata->setpower;
1053 
1054 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1055 				mmc_powerstring(ios->power_mode),
1056 				ios->vdd,
1057 				canpower ? ", can switch" : "");
1058 
1059 		/* switch power on/off if possible, accounting for
1060 		 * max 250msec powerup time if needed.
1061 		 */
1062 		if (canpower) {
1063 			switch (ios->power_mode) {
1064 			case MMC_POWER_OFF:
1065 			case MMC_POWER_UP:
1066 				host->pdata->setpower(&host->spi->dev,
1067 						ios->vdd);
1068 				if (ios->power_mode == MMC_POWER_UP)
1069 					msleep(host->powerup_msecs);
1070 			}
1071 		}
1072 
1073 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1074 		if (ios->power_mode == MMC_POWER_ON)
1075 			mmc_spi_initsequence(host);
1076 
1077 		/* If powering down, ground all card inputs to avoid power
1078 		 * delivery from data lines!  On a shared SPI bus, this
1079 		 * will probably be temporary; 6.4.2 of the simplified SD
1080 		 * spec says this must last at least 1msec.
1081 		 *
1082 		 *   - Clock low means CPOL 0, e.g. mode 0
1083 		 *   - MOSI low comes from writing zero
1084 		 *   - Chipselect is usually active low...
1085 		 */
1086 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1087 			int mres;
1088 
1089 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1090 			mres = spi_setup(host->spi);
1091 			if (mres < 0)
1092 				dev_dbg(&host->spi->dev,
1093 					"switch to SPI mode 0 failed\n");
1094 
1095 			if (spi_w8r8(host->spi, 0x00) < 0)
1096 				dev_dbg(&host->spi->dev,
1097 					"put spi signals to low failed\n");
1098 
1099 			/*
1100 			 * Now clock should be low due to spi mode 0;
1101 			 * MOSI should be low because of written 0x00;
1102 			 * chipselect should be low (it is active low)
1103 			 * power supply is off, so now MMC is off too!
1104 			 *
1105 			 * FIXME no, chipselect can be high since the
1106 			 * device is inactive and SPI_CS_HIGH is clear...
1107 			 */
1108 			msleep(10);
1109 			if (mres == 0) {
1110 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1111 				mres = spi_setup(host->spi);
1112 				if (mres < 0)
1113 					dev_dbg(&host->spi->dev,
1114 						"switch back to SPI mode 3"
1115 						" failed\n");
1116 			}
1117 		}
1118 
1119 		host->power_mode = ios->power_mode;
1120 	}
1121 
1122 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1123 		int		status;
1124 
1125 		host->spi->max_speed_hz = ios->clock;
1126 		status = spi_setup(host->spi);
1127 		dev_dbg(&host->spi->dev,
1128 			"mmc_spi:  clock to %d Hz, %d\n",
1129 			host->spi->max_speed_hz, status);
1130 	}
1131 }
1132 
1133 static int mmc_spi_get_ro(struct mmc_host *mmc)
1134 {
1135 	struct mmc_spi_host *host = mmc_priv(mmc);
1136 
1137 	if (host->pdata && host->pdata->get_ro)
1138 		return host->pdata->get_ro(mmc->parent);
1139 	/* board doesn't support read only detection; assume writeable */
1140 	return 0;
1141 }
1142 
1143 
1144 static const struct mmc_host_ops mmc_spi_ops = {
1145 	.request	= mmc_spi_request,
1146 	.set_ios	= mmc_spi_set_ios,
1147 	.get_ro		= mmc_spi_get_ro,
1148 };
1149 
1150 
1151 /****************************************************************************/
1152 
1153 /*
1154  * SPI driver implementation
1155  */
1156 
1157 static irqreturn_t
1158 mmc_spi_detect_irq(int irq, void *mmc)
1159 {
1160 	struct mmc_spi_host *host = mmc_priv(mmc);
1161 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1162 
1163 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1164 	return IRQ_HANDLED;
1165 }
1166 
1167 static int mmc_spi_probe(struct spi_device *spi)
1168 {
1169 	void			*ones;
1170 	struct mmc_host		*mmc;
1171 	struct mmc_spi_host	*host;
1172 	int			status;
1173 
1174 	/* MMC and SD specs only seem to care that sampling is on the
1175 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1176 	 * should be legit.  We'll use mode 0 since it seems to be a
1177 	 * bit less troublesome on some hardware ... unclear why.
1178 	 */
1179 	spi->mode = SPI_MODE_0;
1180 	spi->bits_per_word = 8;
1181 
1182 	status = spi_setup(spi);
1183 	if (status < 0) {
1184 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1185 				spi->mode, spi->max_speed_hz / 1000,
1186 				status);
1187 		return status;
1188 	}
1189 
1190 	/* We can use the bus safely iff nobody else will interfere with
1191 	 * us.  That is, either we have the experimental exclusive access
1192 	 * primitives ... or else there's nobody to share it with.
1193 	 */
1194 	if (spi->master->num_chipselect > 1) {
1195 		struct device	*parent = spi->dev.parent;
1196 
1197 		/* If there are multiple devices on this bus, we
1198 		 * can't proceed.
1199 		 */
1200 		spin_lock(&parent->klist_children.k_lock);
1201 		if (parent->klist_children.k_list.next
1202 				!= parent->klist_children.k_list.prev)
1203 			status = -EMLINK;
1204 		else
1205 			status = 0;
1206 		spin_unlock(&parent->klist_children.k_lock);
1207 		if (status < 0) {
1208 			dev_err(&spi->dev, "can't share SPI bus\n");
1209 			return status;
1210 		}
1211 
1212 		/* REVISIT we can't guarantee another device won't
1213 		 * be added later.  It's uncommon though ... for now,
1214 		 * work as if this is safe.
1215 		 */
1216 		dev_warn(&spi->dev, "ASSUMING unshared SPI bus!\n");
1217 	}
1218 
1219 	/* We need a supply of ones to transmit.  This is the only time
1220 	 * the CPU touches these, so cache coherency isn't a concern.
1221 	 *
1222 	 * NOTE if many systems use more than one MMC-over-SPI connector
1223 	 * it'd save some memory to share this.  That's evidently rare.
1224 	 */
1225 	status = -ENOMEM;
1226 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1227 	if (!ones)
1228 		goto nomem;
1229 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1230 
1231 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1232 	if (!mmc)
1233 		goto nomem;
1234 
1235 	mmc->ops = &mmc_spi_ops;
1236 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1237 
1238 	/* As long as we keep track of the number of successfully
1239 	 * transmitted blocks, we're good for multiwrite.
1240 	 */
1241 	mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE;
1242 
1243 	/* SPI doesn't need the lowspeed device identification thing for
1244 	 * MMC or SD cards, since it never comes up in open drain mode.
1245 	 * That's good; some SPI masters can't handle very low speeds!
1246 	 *
1247 	 * However, low speed SDIO cards need not handle over 400 KHz;
1248 	 * that's the only reason not to use a few MHz for f_min (until
1249 	 * the upper layer reads the target frequency from the CSD).
1250 	 */
1251 	mmc->f_min = 400000;
1252 	mmc->f_max = spi->max_speed_hz;
1253 
1254 	host = mmc_priv(mmc);
1255 	host->mmc = mmc;
1256 	host->spi = spi;
1257 
1258 	host->ones = ones;
1259 
1260 	/* Platform data is used to hook up things like card sensing
1261 	 * and power switching gpios.
1262 	 */
1263 	host->pdata = spi->dev.platform_data;
1264 	if (host->pdata)
1265 		mmc->ocr_avail = host->pdata->ocr_mask;
1266 	if (!mmc->ocr_avail) {
1267 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1268 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1269 	}
1270 	if (host->pdata && host->pdata->setpower) {
1271 		host->powerup_msecs = host->pdata->powerup_msecs;
1272 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1273 			host->powerup_msecs = 250;
1274 	}
1275 
1276 	dev_set_drvdata(&spi->dev, mmc);
1277 
1278 	/* preallocate dma buffers */
1279 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1280 	if (!host->data)
1281 		goto fail_nobuf1;
1282 
1283 	if (spi->master->cdev.dev->dma_mask) {
1284 		struct device	*dev = spi->master->cdev.dev;
1285 
1286 		host->dma_dev = dev;
1287 		host->ones_dma = dma_map_single(dev, ones,
1288 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1289 		host->data_dma = dma_map_single(dev, host->data,
1290 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1291 
1292 		/* REVISIT in theory those map operations can fail... */
1293 
1294 		dma_sync_single_for_cpu(host->dma_dev,
1295 				host->data_dma, sizeof(*host->data),
1296 				DMA_BIDIRECTIONAL);
1297 	}
1298 
1299 	/* setup message for status/busy readback */
1300 	spi_message_init(&host->readback);
1301 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1302 
1303 	spi_message_add_tail(&host->status, &host->readback);
1304 	host->status.tx_buf = host->ones;
1305 	host->status.tx_dma = host->ones_dma;
1306 	host->status.rx_buf = &host->data->status;
1307 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1308 	host->status.cs_change = 1;
1309 
1310 	/* register card detect irq */
1311 	if (host->pdata && host->pdata->init) {
1312 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1313 		if (status != 0)
1314 			goto fail_glue_init;
1315 	}
1316 
1317 	status = mmc_add_host(mmc);
1318 	if (status != 0)
1319 		goto fail_add_host;
1320 
1321 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1322 			mmc->class_dev.bus_id,
1323 			host->dma_dev ? "" : ", no DMA",
1324 			(host->pdata && host->pdata->get_ro)
1325 				? "" : ", no WP",
1326 			(host->pdata && host->pdata->setpower)
1327 				? "" : ", no poweroff");
1328 	return 0;
1329 
1330 fail_add_host:
1331 	mmc_remove_host (mmc);
1332 fail_glue_init:
1333 	if (host->dma_dev)
1334 		dma_unmap_single(host->dma_dev, host->data_dma,
1335 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1336 	kfree(host->data);
1337 
1338 fail_nobuf1:
1339 	mmc_free_host(mmc);
1340 	dev_set_drvdata(&spi->dev, NULL);
1341 
1342 nomem:
1343 	kfree(ones);
1344 	return status;
1345 }
1346 
1347 
1348 static int __devexit mmc_spi_remove(struct spi_device *spi)
1349 {
1350 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1351 	struct mmc_spi_host	*host;
1352 
1353 	if (mmc) {
1354 		host = mmc_priv(mmc);
1355 
1356 		/* prevent new mmc_detect_change() calls */
1357 		if (host->pdata && host->pdata->exit)
1358 			host->pdata->exit(&spi->dev, mmc);
1359 
1360 		mmc_remove_host(mmc);
1361 
1362 		if (host->dma_dev) {
1363 			dma_unmap_single(host->dma_dev, host->ones_dma,
1364 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1365 			dma_unmap_single(host->dma_dev, host->data_dma,
1366 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1367 		}
1368 
1369 		kfree(host->data);
1370 		kfree(host->ones);
1371 
1372 		spi->max_speed_hz = mmc->f_max;
1373 		mmc_free_host(mmc);
1374 		dev_set_drvdata(&spi->dev, NULL);
1375 	}
1376 	return 0;
1377 }
1378 
1379 
1380 static struct spi_driver mmc_spi_driver = {
1381 	.driver = {
1382 		.name =		"mmc_spi",
1383 		.bus =		&spi_bus_type,
1384 		.owner =	THIS_MODULE,
1385 	},
1386 	.probe =	mmc_spi_probe,
1387 	.remove =	__devexit_p(mmc_spi_remove),
1388 };
1389 
1390 
1391 static int __init mmc_spi_init(void)
1392 {
1393 	return spi_register_driver(&mmc_spi_driver);
1394 }
1395 module_init(mmc_spi_init);
1396 
1397 
1398 static void __exit mmc_spi_exit(void)
1399 {
1400 	spi_unregister_driver(&mmc_spi_driver);
1401 }
1402 module_exit(mmc_spi_exit);
1403 
1404 
1405 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1406 		"Hans-Peter Nilsson, Jan Nikitenko");
1407 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1408 MODULE_LICENSE("GPL");
1409