1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs 4 * 5 * Copyright (c) 2016 BayLibre, SAS. 6 * Author: Kevin Hilman <khilman@baylibre.com> 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/iopoll.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/ioport.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/mmc.h> 20 #include <linux/mmc/sdio.h> 21 #include <linux/mmc/slot-gpio.h> 22 #include <linux/io.h> 23 #include <linux/clk.h> 24 #include <linux/clk-provider.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/reset.h> 27 #include <linux/interrupt.h> 28 #include <linux/bitfield.h> 29 #include <linux/pinctrl/consumer.h> 30 31 #define DRIVER_NAME "meson-gx-mmc" 32 33 #define SD_EMMC_CLOCK 0x0 34 #define CLK_DIV_MASK GENMASK(5, 0) 35 #define CLK_SRC_MASK GENMASK(7, 6) 36 #define CLK_CORE_PHASE_MASK GENMASK(9, 8) 37 #define CLK_TX_PHASE_MASK GENMASK(11, 10) 38 #define CLK_RX_PHASE_MASK GENMASK(13, 12) 39 #define CLK_PHASE_0 0 40 #define CLK_PHASE_180 2 41 #define CLK_V2_TX_DELAY_MASK GENMASK(19, 16) 42 #define CLK_V2_RX_DELAY_MASK GENMASK(23, 20) 43 #define CLK_V2_ALWAYS_ON BIT(24) 44 #define CLK_V2_IRQ_SDIO_SLEEP BIT(25) 45 46 #define CLK_V3_TX_DELAY_MASK GENMASK(21, 16) 47 #define CLK_V3_RX_DELAY_MASK GENMASK(27, 22) 48 #define CLK_V3_ALWAYS_ON BIT(28) 49 #define CLK_V3_IRQ_SDIO_SLEEP BIT(29) 50 51 #define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask) 52 #define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask) 53 #define CLK_ALWAYS_ON(h) (h->data->always_on) 54 #define CLK_IRQ_SDIO_SLEEP(h) (h->data->irq_sdio_sleep) 55 56 #define SD_EMMC_DELAY 0x4 57 #define SD_EMMC_ADJUST 0x8 58 #define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16) 59 #define ADJUST_DS_EN BIT(15) 60 #define ADJUST_ADJ_EN BIT(13) 61 62 #define SD_EMMC_DELAY1 0x4 63 #define SD_EMMC_DELAY2 0x8 64 #define SD_EMMC_V3_ADJUST 0xc 65 66 #define SD_EMMC_CALOUT 0x10 67 #define SD_EMMC_START 0x40 68 #define START_DESC_INIT BIT(0) 69 #define START_DESC_BUSY BIT(1) 70 #define START_DESC_ADDR_MASK GENMASK(31, 2) 71 72 #define SD_EMMC_CFG 0x44 73 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0) 74 #define CFG_BUS_WIDTH_1 0x0 75 #define CFG_BUS_WIDTH_4 0x1 76 #define CFG_BUS_WIDTH_8 0x2 77 #define CFG_DDR BIT(2) 78 #define CFG_BLK_LEN_MASK GENMASK(7, 4) 79 #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8) 80 #define CFG_RC_CC_MASK GENMASK(15, 12) 81 #define CFG_STOP_CLOCK BIT(22) 82 #define CFG_CLK_ALWAYS_ON BIT(18) 83 #define CFG_CHK_DS BIT(20) 84 #define CFG_AUTO_CLK BIT(23) 85 #define CFG_ERR_ABORT BIT(27) 86 87 #define SD_EMMC_STATUS 0x48 88 #define STATUS_BUSY BIT(31) 89 #define STATUS_DESC_BUSY BIT(30) 90 #define STATUS_DATI GENMASK(23, 16) 91 92 #define SD_EMMC_IRQ_EN 0x4c 93 #define IRQ_RXD_ERR_MASK GENMASK(7, 0) 94 #define IRQ_TXD_ERR BIT(8) 95 #define IRQ_DESC_ERR BIT(9) 96 #define IRQ_RESP_ERR BIT(10) 97 #define IRQ_CRC_ERR \ 98 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR) 99 #define IRQ_RESP_TIMEOUT BIT(11) 100 #define IRQ_DESC_TIMEOUT BIT(12) 101 #define IRQ_TIMEOUTS \ 102 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT) 103 #define IRQ_END_OF_CHAIN BIT(13) 104 #define IRQ_RESP_STATUS BIT(14) 105 #define IRQ_SDIO BIT(15) 106 #define IRQ_EN_MASK \ 107 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN) 108 109 #define SD_EMMC_CMD_CFG 0x50 110 #define SD_EMMC_CMD_ARG 0x54 111 #define SD_EMMC_CMD_DAT 0x58 112 #define SD_EMMC_CMD_RSP 0x5c 113 #define SD_EMMC_CMD_RSP1 0x60 114 #define SD_EMMC_CMD_RSP2 0x64 115 #define SD_EMMC_CMD_RSP3 0x68 116 117 #define SD_EMMC_RXD 0x94 118 #define SD_EMMC_TXD 0x94 119 #define SD_EMMC_LAST_REG SD_EMMC_TXD 120 121 #define SD_EMMC_SRAM_DATA_BUF_LEN 1536 122 #define SD_EMMC_SRAM_DATA_BUF_OFF 0x200 123 124 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */ 125 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */ 126 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */ 127 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */ 128 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */ 129 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE 130 131 #define SD_EMMC_PRE_REQ_DONE BIT(0) 132 #define SD_EMMC_DESC_CHAIN_MODE BIT(1) 133 134 #define MUX_CLK_NUM_PARENTS 2 135 136 struct meson_mmc_data { 137 unsigned int tx_delay_mask; 138 unsigned int rx_delay_mask; 139 unsigned int always_on; 140 unsigned int adjust; 141 unsigned int irq_sdio_sleep; 142 }; 143 144 struct sd_emmc_desc { 145 u32 cmd_cfg; 146 u32 cmd_arg; 147 u32 cmd_data; 148 u32 cmd_resp; 149 }; 150 151 struct meson_host { 152 struct device *dev; 153 const struct meson_mmc_data *data; 154 struct mmc_host *mmc; 155 struct mmc_command *cmd; 156 157 void __iomem *regs; 158 struct clk *mux_clk; 159 struct clk *mmc_clk; 160 unsigned long req_rate; 161 bool ddr; 162 163 bool dram_access_quirk; 164 165 struct pinctrl *pinctrl; 166 struct pinctrl_state *pins_clk_gate; 167 168 unsigned int bounce_buf_size; 169 void *bounce_buf; 170 void __iomem *bounce_iomem_buf; 171 dma_addr_t bounce_dma_addr; 172 struct sd_emmc_desc *descs; 173 dma_addr_t descs_dma_addr; 174 175 int irq; 176 177 bool needs_pre_post_req; 178 179 spinlock_t lock; 180 }; 181 182 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0) 183 #define CMD_CFG_BLOCK_MODE BIT(9) 184 #define CMD_CFG_R1B BIT(10) 185 #define CMD_CFG_END_OF_CHAIN BIT(11) 186 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12) 187 #define CMD_CFG_NO_RESP BIT(16) 188 #define CMD_CFG_NO_CMD BIT(17) 189 #define CMD_CFG_DATA_IO BIT(18) 190 #define CMD_CFG_DATA_WR BIT(19) 191 #define CMD_CFG_RESP_NOCRC BIT(20) 192 #define CMD_CFG_RESP_128 BIT(21) 193 #define CMD_CFG_RESP_NUM BIT(22) 194 #define CMD_CFG_DATA_NUM BIT(23) 195 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24) 196 #define CMD_CFG_ERROR BIT(30) 197 #define CMD_CFG_OWNER BIT(31) 198 199 #define CMD_DATA_MASK GENMASK(31, 2) 200 #define CMD_DATA_BIG_ENDIAN BIT(1) 201 #define CMD_DATA_SRAM BIT(0) 202 #define CMD_RESP_MASK GENMASK(31, 1) 203 #define CMD_RESP_SRAM BIT(0) 204 205 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data) 206 { 207 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC; 208 209 if (!timeout) 210 return SD_EMMC_CMD_TIMEOUT_DATA; 211 212 timeout = roundup_pow_of_two(timeout); 213 214 return min(timeout, 32768U); /* max. 2^15 ms */ 215 } 216 217 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd) 218 { 219 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error) 220 return cmd->mrq->cmd; 221 else if (mmc_op_multi(cmd->opcode) && 222 (!cmd->mrq->sbc || cmd->error || cmd->data->error)) 223 return cmd->mrq->stop; 224 else 225 return NULL; 226 } 227 228 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc, 229 struct mmc_request *mrq) 230 { 231 struct meson_host *host = mmc_priv(mmc); 232 struct mmc_data *data = mrq->data; 233 struct scatterlist *sg; 234 int i; 235 236 /* 237 * When Controller DMA cannot directly access DDR memory, disable 238 * support for Chain Mode to directly use the internal SRAM using 239 * the bounce buffer mode. 240 */ 241 if (host->dram_access_quirk) 242 return; 243 244 /* SD_IO_RW_EXTENDED (CMD53) can also use block mode under the hood */ 245 if (data->blocks > 1 || mrq->cmd->opcode == SD_IO_RW_EXTENDED) { 246 /* 247 * In block mode DMA descriptor format, "length" field indicates 248 * number of blocks and there is no way to pass DMA size that 249 * is not multiple of SDIO block size, making it impossible to 250 * tie more than one memory buffer with single SDIO block. 251 * Block mode sg buffer size should be aligned with SDIO block 252 * size, otherwise chain mode could not be used. 253 */ 254 for_each_sg(data->sg, sg, data->sg_len, i) { 255 if (sg->length % data->blksz) { 256 dev_warn_once(mmc_dev(mmc), 257 "unaligned sg len %u blksize %u, disabling descriptor DMA for transfer\n", 258 sg->length, data->blksz); 259 return; 260 } 261 } 262 } 263 264 for_each_sg(data->sg, sg, data->sg_len, i) { 265 /* check for 8 byte alignment */ 266 if (sg->offset % 8) { 267 dev_warn_once(mmc_dev(mmc), 268 "unaligned sg offset %u, disabling descriptor DMA for transfer\n", 269 sg->offset); 270 return; 271 } 272 } 273 274 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE; 275 } 276 277 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data) 278 { 279 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE; 280 } 281 282 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data) 283 { 284 return data && data->flags & MMC_DATA_READ && 285 !meson_mmc_desc_chain_mode(data); 286 } 287 288 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) 289 { 290 struct mmc_data *data = mrq->data; 291 292 if (!data) 293 return; 294 295 meson_mmc_get_transfer_mode(mmc, mrq); 296 data->host_cookie |= SD_EMMC_PRE_REQ_DONE; 297 298 if (!meson_mmc_desc_chain_mode(data)) 299 return; 300 301 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len, 302 mmc_get_dma_dir(data)); 303 if (!data->sg_count) 304 dev_err(mmc_dev(mmc), "dma_map_sg failed"); 305 } 306 307 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, 308 int err) 309 { 310 struct mmc_data *data = mrq->data; 311 312 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count) 313 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len, 314 mmc_get_dma_dir(data)); 315 } 316 317 /* 318 * Gating the clock on this controller is tricky. It seems the mmc clock 319 * is also used by the controller. It may crash during some operation if the 320 * clock is stopped. The safest thing to do, whenever possible, is to keep 321 * clock running at stop it at the pad using the pinmux. 322 */ 323 static void meson_mmc_clk_gate(struct meson_host *host) 324 { 325 u32 cfg; 326 327 if (host->pins_clk_gate) { 328 pinctrl_select_state(host->pinctrl, host->pins_clk_gate); 329 } else { 330 /* 331 * If the pinmux is not provided - default to the classic and 332 * unsafe method 333 */ 334 cfg = readl(host->regs + SD_EMMC_CFG); 335 cfg |= CFG_STOP_CLOCK; 336 writel(cfg, host->regs + SD_EMMC_CFG); 337 } 338 } 339 340 static void meson_mmc_clk_ungate(struct meson_host *host) 341 { 342 u32 cfg; 343 344 if (host->pins_clk_gate) 345 pinctrl_select_default_state(host->dev); 346 347 /* Make sure the clock is not stopped in the controller */ 348 cfg = readl(host->regs + SD_EMMC_CFG); 349 cfg &= ~CFG_STOP_CLOCK; 350 writel(cfg, host->regs + SD_EMMC_CFG); 351 } 352 353 static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate, 354 bool ddr) 355 { 356 struct mmc_host *mmc = host->mmc; 357 int ret; 358 u32 cfg; 359 360 /* Same request - bail-out */ 361 if (host->ddr == ddr && host->req_rate == rate) 362 return 0; 363 364 /* stop clock */ 365 meson_mmc_clk_gate(host); 366 host->req_rate = 0; 367 mmc->actual_clock = 0; 368 369 /* return with clock being stopped */ 370 if (!rate) 371 return 0; 372 373 /* Stop the clock during rate change to avoid glitches */ 374 cfg = readl(host->regs + SD_EMMC_CFG); 375 cfg |= CFG_STOP_CLOCK; 376 writel(cfg, host->regs + SD_EMMC_CFG); 377 378 if (ddr) { 379 /* DDR modes require higher module clock */ 380 rate <<= 1; 381 cfg |= CFG_DDR; 382 } else { 383 cfg &= ~CFG_DDR; 384 } 385 writel(cfg, host->regs + SD_EMMC_CFG); 386 host->ddr = ddr; 387 388 ret = clk_set_rate(host->mmc_clk, rate); 389 if (ret) { 390 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n", 391 rate, ret); 392 return ret; 393 } 394 395 host->req_rate = rate; 396 mmc->actual_clock = clk_get_rate(host->mmc_clk); 397 398 /* We should report the real output frequency of the controller */ 399 if (ddr) { 400 host->req_rate >>= 1; 401 mmc->actual_clock >>= 1; 402 } 403 404 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock); 405 if (rate != mmc->actual_clock) 406 dev_dbg(host->dev, "requested rate was %lu\n", rate); 407 408 /* (re)start clock */ 409 meson_mmc_clk_ungate(host); 410 411 return 0; 412 } 413 414 /* 415 * The SD/eMMC IP block has an internal mux and divider used for 416 * generating the MMC clock. Use the clock framework to create and 417 * manage these clocks. 418 */ 419 static int meson_mmc_clk_init(struct meson_host *host) 420 { 421 struct clk_init_data init; 422 struct clk_mux *mux; 423 struct clk_divider *div; 424 char clk_name[32]; 425 int i, ret = 0; 426 const char *mux_parent_names[MUX_CLK_NUM_PARENTS]; 427 const char *clk_parent[1]; 428 u32 clk_reg; 429 430 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ 431 clk_reg = CLK_ALWAYS_ON(host); 432 clk_reg |= CLK_DIV_MASK; 433 clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180); 434 clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0); 435 clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0); 436 if (host->mmc->caps & MMC_CAP_SDIO_IRQ) 437 clk_reg |= CLK_IRQ_SDIO_SLEEP(host); 438 writel(clk_reg, host->regs + SD_EMMC_CLOCK); 439 440 /* get the mux parents */ 441 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) { 442 struct clk *clk; 443 char name[16]; 444 445 snprintf(name, sizeof(name), "clkin%d", i); 446 clk = devm_clk_get(host->dev, name); 447 if (IS_ERR(clk)) 448 return dev_err_probe(host->dev, PTR_ERR(clk), 449 "Missing clock %s\n", name); 450 451 mux_parent_names[i] = __clk_get_name(clk); 452 } 453 454 /* create the mux */ 455 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL); 456 if (!mux) 457 return -ENOMEM; 458 459 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev)); 460 init.name = clk_name; 461 init.ops = &clk_mux_ops; 462 init.flags = 0; 463 init.parent_names = mux_parent_names; 464 init.num_parents = MUX_CLK_NUM_PARENTS; 465 466 mux->reg = host->regs + SD_EMMC_CLOCK; 467 mux->shift = __ffs(CLK_SRC_MASK); 468 mux->mask = CLK_SRC_MASK >> mux->shift; 469 mux->hw.init = &init; 470 471 host->mux_clk = devm_clk_register(host->dev, &mux->hw); 472 if (WARN_ON(IS_ERR(host->mux_clk))) 473 return PTR_ERR(host->mux_clk); 474 475 /* create the divider */ 476 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL); 477 if (!div) 478 return -ENOMEM; 479 480 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev)); 481 init.name = clk_name; 482 init.ops = &clk_divider_ops; 483 init.flags = CLK_SET_RATE_PARENT; 484 clk_parent[0] = __clk_get_name(host->mux_clk); 485 init.parent_names = clk_parent; 486 init.num_parents = 1; 487 488 div->reg = host->regs + SD_EMMC_CLOCK; 489 div->shift = __ffs(CLK_DIV_MASK); 490 div->width = __builtin_popcountl(CLK_DIV_MASK); 491 div->hw.init = &init; 492 div->flags = CLK_DIVIDER_ONE_BASED; 493 494 host->mmc_clk = devm_clk_register(host->dev, &div->hw); 495 if (WARN_ON(IS_ERR(host->mmc_clk))) 496 return PTR_ERR(host->mmc_clk); 497 498 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ 499 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000); 500 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min); 501 if (ret) 502 return ret; 503 504 return clk_prepare_enable(host->mmc_clk); 505 } 506 507 static void meson_mmc_disable_resampling(struct meson_host *host) 508 { 509 unsigned int val = readl(host->regs + host->data->adjust); 510 511 val &= ~ADJUST_ADJ_EN; 512 writel(val, host->regs + host->data->adjust); 513 } 514 515 static void meson_mmc_reset_resampling(struct meson_host *host) 516 { 517 unsigned int val; 518 519 meson_mmc_disable_resampling(host); 520 521 val = readl(host->regs + host->data->adjust); 522 val &= ~ADJUST_ADJ_DELAY_MASK; 523 writel(val, host->regs + host->data->adjust); 524 } 525 526 static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode) 527 { 528 struct meson_host *host = mmc_priv(mmc); 529 unsigned int val, dly, max_dly, i; 530 int ret; 531 532 /* Resampling is done using the source clock */ 533 max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk), 534 clk_get_rate(host->mmc_clk)); 535 536 val = readl(host->regs + host->data->adjust); 537 val |= ADJUST_ADJ_EN; 538 writel(val, host->regs + host->data->adjust); 539 540 if (mmc_doing_retune(mmc)) 541 dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1; 542 else 543 dly = 0; 544 545 for (i = 0; i < max_dly; i++) { 546 val &= ~ADJUST_ADJ_DELAY_MASK; 547 val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly); 548 writel(val, host->regs + host->data->adjust); 549 550 ret = mmc_send_tuning(mmc, opcode, NULL); 551 if (!ret) { 552 dev_dbg(mmc_dev(mmc), "resampling delay: %u\n", 553 (dly + i) % max_dly); 554 return 0; 555 } 556 } 557 558 meson_mmc_reset_resampling(host); 559 return -EIO; 560 } 561 562 static int meson_mmc_prepare_ios_clock(struct meson_host *host, 563 struct mmc_ios *ios) 564 { 565 bool ddr; 566 567 switch (ios->timing) { 568 case MMC_TIMING_MMC_DDR52: 569 case MMC_TIMING_UHS_DDR50: 570 ddr = true; 571 break; 572 573 default: 574 ddr = false; 575 break; 576 } 577 578 return meson_mmc_clk_set(host, ios->clock, ddr); 579 } 580 581 static void meson_mmc_check_resampling(struct meson_host *host, 582 struct mmc_ios *ios) 583 { 584 switch (ios->timing) { 585 case MMC_TIMING_LEGACY: 586 case MMC_TIMING_MMC_HS: 587 case MMC_TIMING_SD_HS: 588 case MMC_TIMING_MMC_DDR52: 589 meson_mmc_disable_resampling(host); 590 break; 591 } 592 } 593 594 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 595 { 596 struct meson_host *host = mmc_priv(mmc); 597 u32 bus_width, val; 598 int err; 599 600 /* 601 * GPIO regulator, only controls switching between 1v8 and 602 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON. 603 */ 604 switch (ios->power_mode) { 605 case MMC_POWER_OFF: 606 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 607 mmc_regulator_disable_vqmmc(mmc); 608 609 break; 610 611 case MMC_POWER_UP: 612 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 613 614 break; 615 616 case MMC_POWER_ON: 617 mmc_regulator_enable_vqmmc(mmc); 618 619 break; 620 } 621 622 /* Bus width */ 623 switch (ios->bus_width) { 624 case MMC_BUS_WIDTH_1: 625 bus_width = CFG_BUS_WIDTH_1; 626 break; 627 case MMC_BUS_WIDTH_4: 628 bus_width = CFG_BUS_WIDTH_4; 629 break; 630 case MMC_BUS_WIDTH_8: 631 bus_width = CFG_BUS_WIDTH_8; 632 break; 633 default: 634 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n", 635 ios->bus_width); 636 bus_width = CFG_BUS_WIDTH_4; 637 } 638 639 val = readl(host->regs + SD_EMMC_CFG); 640 val &= ~CFG_BUS_WIDTH_MASK; 641 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width); 642 writel(val, host->regs + SD_EMMC_CFG); 643 644 meson_mmc_check_resampling(host, ios); 645 err = meson_mmc_prepare_ios_clock(host, ios); 646 if (err) 647 dev_err(host->dev, "Failed to set clock: %d\n,", err); 648 649 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val); 650 } 651 652 static void meson_mmc_request_done(struct mmc_host *mmc, 653 struct mmc_request *mrq) 654 { 655 struct meson_host *host = mmc_priv(mmc); 656 657 host->cmd = NULL; 658 if (host->needs_pre_post_req) 659 meson_mmc_post_req(mmc, mrq, 0); 660 mmc_request_done(host->mmc, mrq); 661 } 662 663 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz) 664 { 665 struct meson_host *host = mmc_priv(mmc); 666 u32 cfg, blksz_old; 667 668 cfg = readl(host->regs + SD_EMMC_CFG); 669 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg); 670 671 if (!is_power_of_2(blksz)) 672 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz); 673 674 blksz = ilog2(blksz); 675 676 /* check if block-size matches, if not update */ 677 if (blksz == blksz_old) 678 return; 679 680 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__, 681 blksz_old, blksz); 682 683 cfg &= ~CFG_BLK_LEN_MASK; 684 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz); 685 writel(cfg, host->regs + SD_EMMC_CFG); 686 } 687 688 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg) 689 { 690 if (cmd->flags & MMC_RSP_PRESENT) { 691 if (cmd->flags & MMC_RSP_136) 692 *cmd_cfg |= CMD_CFG_RESP_128; 693 *cmd_cfg |= CMD_CFG_RESP_NUM; 694 695 if (!(cmd->flags & MMC_RSP_CRC)) 696 *cmd_cfg |= CMD_CFG_RESP_NOCRC; 697 698 if (cmd->flags & MMC_RSP_BUSY) 699 *cmd_cfg |= CMD_CFG_R1B; 700 } else { 701 *cmd_cfg |= CMD_CFG_NO_RESP; 702 } 703 } 704 705 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg) 706 { 707 struct meson_host *host = mmc_priv(mmc); 708 struct sd_emmc_desc *desc = host->descs; 709 struct mmc_data *data = host->cmd->data; 710 struct scatterlist *sg; 711 u32 start; 712 int i; 713 714 if (data->flags & MMC_DATA_WRITE) 715 cmd_cfg |= CMD_CFG_DATA_WR; 716 717 if (data->blocks > 1) { 718 cmd_cfg |= CMD_CFG_BLOCK_MODE; 719 meson_mmc_set_blksz(mmc, data->blksz); 720 } 721 722 for_each_sg(data->sg, sg, data->sg_count, i) { 723 unsigned int len = sg_dma_len(sg); 724 725 if (data->blocks > 1) 726 len /= data->blksz; 727 728 desc[i].cmd_cfg = cmd_cfg; 729 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len); 730 if (i > 0) 731 desc[i].cmd_cfg |= CMD_CFG_NO_CMD; 732 desc[i].cmd_arg = host->cmd->arg; 733 desc[i].cmd_resp = 0; 734 desc[i].cmd_data = sg_dma_address(sg); 735 } 736 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN; 737 738 dma_wmb(); /* ensure descriptor is written before kicked */ 739 start = host->descs_dma_addr | START_DESC_BUSY; 740 writel(start, host->regs + SD_EMMC_START); 741 } 742 743 /* local sg copy for dram_access_quirk */ 744 static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data, 745 size_t buflen, bool to_buffer) 746 { 747 unsigned int sg_flags = SG_MITER_ATOMIC; 748 struct scatterlist *sgl = data->sg; 749 unsigned int nents = data->sg_len; 750 struct sg_mapping_iter miter; 751 unsigned int offset = 0; 752 753 if (to_buffer) 754 sg_flags |= SG_MITER_FROM_SG; 755 else 756 sg_flags |= SG_MITER_TO_SG; 757 758 sg_miter_start(&miter, sgl, nents, sg_flags); 759 760 while ((offset < buflen) && sg_miter_next(&miter)) { 761 unsigned int buf_offset = 0; 762 unsigned int len, left; 763 u32 *buf = miter.addr; 764 765 len = min(miter.length, buflen - offset); 766 left = len; 767 768 if (to_buffer) { 769 do { 770 writel(*buf++, host->bounce_iomem_buf + offset + buf_offset); 771 772 buf_offset += 4; 773 left -= 4; 774 } while (left); 775 } else { 776 do { 777 *buf++ = readl(host->bounce_iomem_buf + offset + buf_offset); 778 779 buf_offset += 4; 780 left -= 4; 781 } while (left); 782 } 783 784 offset += len; 785 } 786 787 sg_miter_stop(&miter); 788 } 789 790 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd) 791 { 792 struct meson_host *host = mmc_priv(mmc); 793 struct mmc_data *data = cmd->data; 794 u32 cmd_cfg = 0, cmd_data = 0; 795 unsigned int xfer_bytes = 0; 796 797 /* Setup descriptors */ 798 dma_rmb(); 799 800 host->cmd = cmd; 801 802 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode); 803 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */ 804 805 meson_mmc_set_response_bits(cmd, &cmd_cfg); 806 807 /* data? */ 808 if (data) { 809 data->bytes_xfered = 0; 810 cmd_cfg |= CMD_CFG_DATA_IO; 811 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK, 812 ilog2(meson_mmc_get_timeout_msecs(data))); 813 814 if (meson_mmc_desc_chain_mode(data)) { 815 meson_mmc_desc_chain_transfer(mmc, cmd_cfg); 816 return; 817 } 818 819 if (data->blocks > 1) { 820 cmd_cfg |= CMD_CFG_BLOCK_MODE; 821 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, 822 data->blocks); 823 meson_mmc_set_blksz(mmc, data->blksz); 824 } else { 825 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz); 826 } 827 828 xfer_bytes = data->blksz * data->blocks; 829 if (data->flags & MMC_DATA_WRITE) { 830 cmd_cfg |= CMD_CFG_DATA_WR; 831 WARN_ON(xfer_bytes > host->bounce_buf_size); 832 if (host->dram_access_quirk) 833 meson_mmc_copy_buffer(host, data, xfer_bytes, true); 834 else 835 sg_copy_to_buffer(data->sg, data->sg_len, 836 host->bounce_buf, xfer_bytes); 837 dma_wmb(); 838 } 839 840 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK; 841 } else { 842 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK, 843 ilog2(SD_EMMC_CMD_TIMEOUT)); 844 } 845 846 /* Last descriptor */ 847 cmd_cfg |= CMD_CFG_END_OF_CHAIN; 848 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG); 849 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT); 850 writel(0, host->regs + SD_EMMC_CMD_RSP); 851 wmb(); /* ensure descriptor is written before kicked */ 852 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG); 853 } 854 855 static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data) 856 { 857 struct scatterlist *sg; 858 int i; 859 860 /* Reject request if any element offset or size is not 32bit aligned */ 861 for_each_sg(data->sg, sg, data->sg_len, i) { 862 if (!IS_ALIGNED(sg->offset, sizeof(u32)) || 863 !IS_ALIGNED(sg->length, sizeof(u32))) { 864 dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n", 865 data->sg->offset, data->sg->length); 866 return -EINVAL; 867 } 868 } 869 870 return 0; 871 } 872 873 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) 874 { 875 struct meson_host *host = mmc_priv(mmc); 876 host->needs_pre_post_req = mrq->data && 877 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE); 878 879 /* 880 * The memory at the end of the controller used as bounce buffer for 881 * the dram_access_quirk only accepts 32bit read/write access, 882 * check the alignment and length of the data before starting the request. 883 */ 884 if (host->dram_access_quirk && mrq->data) { 885 mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data); 886 if (mrq->cmd->error) { 887 mmc_request_done(mmc, mrq); 888 return; 889 } 890 } 891 892 if (host->needs_pre_post_req) { 893 meson_mmc_get_transfer_mode(mmc, mrq); 894 if (!meson_mmc_desc_chain_mode(mrq->data)) 895 host->needs_pre_post_req = false; 896 } 897 898 if (host->needs_pre_post_req) 899 meson_mmc_pre_req(mmc, mrq); 900 901 /* Stop execution */ 902 writel(0, host->regs + SD_EMMC_START); 903 904 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd); 905 } 906 907 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd) 908 { 909 struct meson_host *host = mmc_priv(mmc); 910 911 if (cmd->flags & MMC_RSP_136) { 912 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3); 913 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2); 914 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1); 915 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP); 916 } else if (cmd->flags & MMC_RSP_PRESENT) { 917 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP); 918 } 919 } 920 921 static void __meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 922 { 923 struct meson_host *host = mmc_priv(mmc); 924 u32 reg_irqen = IRQ_EN_MASK; 925 926 if (enable) 927 reg_irqen |= IRQ_SDIO; 928 writel(reg_irqen, host->regs + SD_EMMC_IRQ_EN); 929 } 930 931 static irqreturn_t meson_mmc_irq(int irq, void *dev_id) 932 { 933 struct meson_host *host = dev_id; 934 struct mmc_command *cmd; 935 u32 status, raw_status, irq_mask = IRQ_EN_MASK; 936 irqreturn_t ret = IRQ_NONE; 937 938 if (host->mmc->caps & MMC_CAP_SDIO_IRQ) 939 irq_mask |= IRQ_SDIO; 940 raw_status = readl(host->regs + SD_EMMC_STATUS); 941 status = raw_status & irq_mask; 942 943 if (!status) { 944 dev_dbg(host->dev, 945 "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n", 946 irq_mask, raw_status); 947 return IRQ_NONE; 948 } 949 950 /* ack all raised interrupts */ 951 writel(status, host->regs + SD_EMMC_STATUS); 952 953 cmd = host->cmd; 954 955 if (status & IRQ_SDIO) { 956 spin_lock(&host->lock); 957 __meson_mmc_enable_sdio_irq(host->mmc, 0); 958 sdio_signal_irq(host->mmc); 959 spin_unlock(&host->lock); 960 status &= ~IRQ_SDIO; 961 if (!status) 962 return IRQ_HANDLED; 963 } 964 965 if (WARN_ON(!cmd)) 966 return IRQ_NONE; 967 968 cmd->error = 0; 969 if (status & IRQ_CRC_ERR) { 970 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status); 971 cmd->error = -EILSEQ; 972 ret = IRQ_WAKE_THREAD; 973 goto out; 974 } 975 976 if (status & IRQ_TIMEOUTS) { 977 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status); 978 cmd->error = -ETIMEDOUT; 979 ret = IRQ_WAKE_THREAD; 980 goto out; 981 } 982 983 meson_mmc_read_resp(host->mmc, cmd); 984 985 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) { 986 struct mmc_data *data = cmd->data; 987 988 if (data && !cmd->error) 989 data->bytes_xfered = data->blksz * data->blocks; 990 991 return IRQ_WAKE_THREAD; 992 } 993 994 out: 995 if (cmd->error) { 996 /* Stop desc in case of errors */ 997 u32 start = readl(host->regs + SD_EMMC_START); 998 999 start &= ~START_DESC_BUSY; 1000 writel(start, host->regs + SD_EMMC_START); 1001 } 1002 1003 return ret; 1004 } 1005 1006 static int meson_mmc_wait_desc_stop(struct meson_host *host) 1007 { 1008 u32 status; 1009 1010 /* 1011 * It may sometimes take a while for it to actually halt. Here, we 1012 * are giving it 5ms to comply 1013 * 1014 * If we don't confirm the descriptor is stopped, it might raise new 1015 * IRQs after we have called mmc_request_done() which is bad. 1016 */ 1017 1018 return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status, 1019 !(status & (STATUS_BUSY | STATUS_DESC_BUSY)), 1020 100, 5000); 1021 } 1022 1023 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id) 1024 { 1025 struct meson_host *host = dev_id; 1026 struct mmc_command *next_cmd, *cmd = host->cmd; 1027 struct mmc_data *data; 1028 unsigned int xfer_bytes; 1029 1030 if (WARN_ON(!cmd)) 1031 return IRQ_NONE; 1032 1033 if (cmd->error) { 1034 meson_mmc_wait_desc_stop(host); 1035 meson_mmc_request_done(host->mmc, cmd->mrq); 1036 1037 return IRQ_HANDLED; 1038 } 1039 1040 data = cmd->data; 1041 if (meson_mmc_bounce_buf_read(data)) { 1042 xfer_bytes = data->blksz * data->blocks; 1043 WARN_ON(xfer_bytes > host->bounce_buf_size); 1044 if (host->dram_access_quirk) 1045 meson_mmc_copy_buffer(host, data, xfer_bytes, false); 1046 else 1047 sg_copy_from_buffer(data->sg, data->sg_len, 1048 host->bounce_buf, xfer_bytes); 1049 } 1050 1051 next_cmd = meson_mmc_get_next_command(cmd); 1052 if (next_cmd) 1053 meson_mmc_start_cmd(host->mmc, next_cmd); 1054 else 1055 meson_mmc_request_done(host->mmc, cmd->mrq); 1056 1057 return IRQ_HANDLED; 1058 } 1059 1060 static void meson_mmc_cfg_init(struct meson_host *host) 1061 { 1062 u32 cfg = 0; 1063 1064 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK, 1065 ilog2(SD_EMMC_CFG_RESP_TIMEOUT)); 1066 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP)); 1067 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE)); 1068 1069 /* abort chain on R/W errors */ 1070 cfg |= CFG_ERR_ABORT; 1071 1072 writel(cfg, host->regs + SD_EMMC_CFG); 1073 } 1074 1075 static int meson_mmc_card_busy(struct mmc_host *mmc) 1076 { 1077 struct meson_host *host = mmc_priv(mmc); 1078 u32 regval; 1079 1080 regval = readl(host->regs + SD_EMMC_STATUS); 1081 1082 /* We are only interrested in lines 0 to 3, so mask the other ones */ 1083 return !(FIELD_GET(STATUS_DATI, regval) & 0xf); 1084 } 1085 1086 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) 1087 { 1088 int ret; 1089 1090 /* vqmmc regulator is available */ 1091 if (!IS_ERR(mmc->supply.vqmmc)) { 1092 /* 1093 * The usual amlogic setup uses a GPIO to switch from one 1094 * regulator to the other. While the voltage ramp up is 1095 * pretty fast, care must be taken when switching from 3.3v 1096 * to 1.8v. Please make sure the regulator framework is aware 1097 * of your own regulator constraints 1098 */ 1099 ret = mmc_regulator_set_vqmmc(mmc, ios); 1100 return ret < 0 ? ret : 0; 1101 } 1102 1103 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */ 1104 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1105 return 0; 1106 1107 return -EINVAL; 1108 } 1109 1110 static void meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 1111 { 1112 struct meson_host *host = mmc_priv(mmc); 1113 unsigned long flags; 1114 1115 spin_lock_irqsave(&host->lock, flags); 1116 __meson_mmc_enable_sdio_irq(mmc, enable); 1117 spin_unlock_irqrestore(&host->lock, flags); 1118 } 1119 1120 static void meson_mmc_ack_sdio_irq(struct mmc_host *mmc) 1121 { 1122 meson_mmc_enable_sdio_irq(mmc, 1); 1123 } 1124 1125 static const struct mmc_host_ops meson_mmc_ops = { 1126 .request = meson_mmc_request, 1127 .set_ios = meson_mmc_set_ios, 1128 .get_cd = mmc_gpio_get_cd, 1129 .pre_req = meson_mmc_pre_req, 1130 .post_req = meson_mmc_post_req, 1131 .execute_tuning = meson_mmc_resampling_tuning, 1132 .card_busy = meson_mmc_card_busy, 1133 .start_signal_voltage_switch = meson_mmc_voltage_switch, 1134 .enable_sdio_irq = meson_mmc_enable_sdio_irq, 1135 .ack_sdio_irq = meson_mmc_ack_sdio_irq, 1136 }; 1137 1138 static int meson_mmc_probe(struct platform_device *pdev) 1139 { 1140 struct resource *res; 1141 struct meson_host *host; 1142 struct mmc_host *mmc; 1143 struct clk *core_clk; 1144 int cd_irq, ret; 1145 1146 mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(struct meson_host)); 1147 if (!mmc) 1148 return -ENOMEM; 1149 host = mmc_priv(mmc); 1150 host->mmc = mmc; 1151 host->dev = &pdev->dev; 1152 dev_set_drvdata(&pdev->dev, host); 1153 1154 /* The G12A SDIO Controller needs an SRAM bounce buffer */ 1155 host->dram_access_quirk = device_property_read_bool(&pdev->dev, 1156 "amlogic,dram-access-quirk"); 1157 1158 /* Get regulators and the supported OCR mask */ 1159 ret = mmc_regulator_get_supply(mmc); 1160 if (ret) 1161 return ret; 1162 1163 ret = mmc_of_parse(mmc); 1164 if (ret) 1165 return dev_err_probe(&pdev->dev, ret, "error parsing DT\n"); 1166 1167 mmc->caps |= MMC_CAP_CMD23; 1168 1169 if (mmc->caps & MMC_CAP_SDIO_IRQ) 1170 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; 1171 1172 host->data = of_device_get_match_data(&pdev->dev); 1173 if (!host->data) 1174 return -EINVAL; 1175 1176 ret = device_reset_optional(&pdev->dev); 1177 if (ret) 1178 return dev_err_probe(&pdev->dev, ret, "device reset failed\n"); 1179 1180 host->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1181 if (IS_ERR(host->regs)) 1182 return PTR_ERR(host->regs); 1183 1184 host->irq = platform_get_irq(pdev, 0); 1185 if (host->irq < 0) 1186 return host->irq; 1187 1188 cd_irq = platform_get_irq_optional(pdev, 1); 1189 mmc_gpio_set_cd_irq(mmc, cd_irq); 1190 1191 host->pinctrl = devm_pinctrl_get(&pdev->dev); 1192 if (IS_ERR(host->pinctrl)) 1193 return PTR_ERR(host->pinctrl); 1194 1195 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl, 1196 "clk-gate"); 1197 if (IS_ERR(host->pins_clk_gate)) { 1198 dev_warn(&pdev->dev, 1199 "can't get clk-gate pinctrl, using clk_stop bit\n"); 1200 host->pins_clk_gate = NULL; 1201 } 1202 1203 core_clk = devm_clk_get_enabled(&pdev->dev, "core"); 1204 if (IS_ERR(core_clk)) 1205 return PTR_ERR(core_clk); 1206 1207 ret = meson_mmc_clk_init(host); 1208 if (ret) 1209 return ret; 1210 1211 /* set config to sane default */ 1212 meson_mmc_cfg_init(host); 1213 1214 /* Stop execution */ 1215 writel(0, host->regs + SD_EMMC_START); 1216 1217 /* clear, ack and enable interrupts */ 1218 writel(0, host->regs + SD_EMMC_IRQ_EN); 1219 writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS); 1220 writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN); 1221 1222 ret = request_threaded_irq(host->irq, meson_mmc_irq, 1223 meson_mmc_irq_thread, IRQF_ONESHOT, 1224 dev_name(&pdev->dev), host); 1225 if (ret) 1226 goto err_init_clk; 1227 1228 spin_lock_init(&host->lock); 1229 1230 if (host->dram_access_quirk) { 1231 /* Limit segments to 1 due to low available sram memory */ 1232 mmc->max_segs = 1; 1233 /* Limit to the available sram memory */ 1234 mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN / 1235 mmc->max_blk_size; 1236 } else { 1237 mmc->max_blk_count = CMD_CFG_LENGTH_MASK; 1238 mmc->max_segs = SD_EMMC_DESC_BUF_LEN / 1239 sizeof(struct sd_emmc_desc); 1240 } 1241 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size; 1242 mmc->max_seg_size = mmc->max_req_size; 1243 1244 /* 1245 * At the moment, we don't know how to reliably enable HS400. 1246 * From the different datasheets, it is not even clear if this mode 1247 * is officially supported by any of the SoCs 1248 */ 1249 mmc->caps2 &= ~MMC_CAP2_HS400; 1250 1251 if (host->dram_access_quirk) { 1252 /* 1253 * The MMC Controller embeds 1,5KiB of internal SRAM 1254 * that can be used to be used as bounce buffer. 1255 * In the case of the G12A SDIO controller, use these 1256 * instead of the DDR memory 1257 */ 1258 host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN; 1259 host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF; 1260 host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF; 1261 } else { 1262 /* data bounce buffer */ 1263 host->bounce_buf_size = mmc->max_req_size; 1264 host->bounce_buf = 1265 dmam_alloc_coherent(host->dev, host->bounce_buf_size, 1266 &host->bounce_dma_addr, GFP_KERNEL); 1267 if (host->bounce_buf == NULL) { 1268 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n"); 1269 ret = -ENOMEM; 1270 goto err_free_irq; 1271 } 1272 } 1273 1274 host->descs = dmam_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN, 1275 &host->descs_dma_addr, GFP_KERNEL); 1276 if (!host->descs) { 1277 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n"); 1278 ret = -ENOMEM; 1279 goto err_free_irq; 1280 } 1281 1282 mmc->ops = &meson_mmc_ops; 1283 ret = mmc_add_host(mmc); 1284 if (ret) 1285 goto err_free_irq; 1286 1287 return 0; 1288 1289 err_free_irq: 1290 free_irq(host->irq, host); 1291 err_init_clk: 1292 clk_disable_unprepare(host->mmc_clk); 1293 return ret; 1294 } 1295 1296 static void meson_mmc_remove(struct platform_device *pdev) 1297 { 1298 struct meson_host *host = dev_get_drvdata(&pdev->dev); 1299 1300 mmc_remove_host(host->mmc); 1301 1302 /* disable interrupts */ 1303 writel(0, host->regs + SD_EMMC_IRQ_EN); 1304 free_irq(host->irq, host); 1305 1306 clk_disable_unprepare(host->mmc_clk); 1307 } 1308 1309 static const struct meson_mmc_data meson_gx_data = { 1310 .tx_delay_mask = CLK_V2_TX_DELAY_MASK, 1311 .rx_delay_mask = CLK_V2_RX_DELAY_MASK, 1312 .always_on = CLK_V2_ALWAYS_ON, 1313 .adjust = SD_EMMC_ADJUST, 1314 .irq_sdio_sleep = CLK_V2_IRQ_SDIO_SLEEP, 1315 }; 1316 1317 static const struct meson_mmc_data meson_axg_data = { 1318 .tx_delay_mask = CLK_V3_TX_DELAY_MASK, 1319 .rx_delay_mask = CLK_V3_RX_DELAY_MASK, 1320 .always_on = CLK_V3_ALWAYS_ON, 1321 .adjust = SD_EMMC_V3_ADJUST, 1322 .irq_sdio_sleep = CLK_V3_IRQ_SDIO_SLEEP, 1323 }; 1324 1325 static const struct of_device_id meson_mmc_of_match[] = { 1326 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data }, 1327 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data }, 1328 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data }, 1329 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data }, 1330 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data }, 1331 {} 1332 }; 1333 MODULE_DEVICE_TABLE(of, meson_mmc_of_match); 1334 1335 static struct platform_driver meson_mmc_driver = { 1336 .probe = meson_mmc_probe, 1337 .remove = meson_mmc_remove, 1338 .driver = { 1339 .name = DRIVER_NAME, 1340 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1341 .of_match_table = meson_mmc_of_match, 1342 }, 1343 }; 1344 1345 module_platform_driver(meson_mmc_driver); 1346 1347 MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver"); 1348 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>"); 1349 MODULE_LICENSE("GPL v2"); 1350