xref: /linux/drivers/mmc/host/dw_mmc.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41 
42 #include "dw_mmc.h"
43 
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
47 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
51 				 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS	1
53 #define DW_MCI_RECV_STATUS	2
54 #define DW_MCI_DMA_THRESHOLD	16
55 
56 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
57 #define DW_MCI_FREQ_MIN	400000		/* unit: HZ */
58 
59 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 				 SDMMC_IDMAC_INT_TI)
63 
64 struct idmac_desc_64addr {
65 	u32		des0;	/* Control Descriptor */
66 
67 	u32		des1;	/* Reserved */
68 
69 	u32		des2;	/*Buffer sizes */
70 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
71 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
72 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
73 
74 	u32		des3;	/* Reserved */
75 
76 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
77 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
78 
79 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
80 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
81 };
82 
83 struct idmac_desc {
84 	__le32		des0;	/* Control Descriptor */
85 #define IDMAC_DES0_DIC	BIT(1)
86 #define IDMAC_DES0_LD	BIT(2)
87 #define IDMAC_DES0_FD	BIT(3)
88 #define IDMAC_DES0_CH	BIT(4)
89 #define IDMAC_DES0_ER	BIT(5)
90 #define IDMAC_DES0_CES	BIT(30)
91 #define IDMAC_DES0_OWN	BIT(31)
92 
93 	__le32		des1;	/* Buffer sizes */
94 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
95 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
96 
97 	__le32		des2;	/* buffer 1 physical address */
98 
99 	__le32		des3;	/* buffer 2 physical address */
100 };
101 
102 /* Each descriptor can transfer up to 4KB of data in chained mode */
103 #define DW_MCI_DESC_DATA_LENGTH	0x1000
104 
105 static bool dw_mci_reset(struct dw_mci *host);
106 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
107 static int dw_mci_card_busy(struct mmc_host *mmc);
108 static int dw_mci_get_cd(struct mmc_host *mmc);
109 
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 	struct dw_mci_slot *slot = s->private;
114 	struct mmc_request *mrq;
115 	struct mmc_command *cmd;
116 	struct mmc_command *stop;
117 	struct mmc_data	*data;
118 
119 	/* Make sure we get a consistent snapshot */
120 	spin_lock_bh(&slot->host->lock);
121 	mrq = slot->mrq;
122 
123 	if (mrq) {
124 		cmd = mrq->cmd;
125 		data = mrq->data;
126 		stop = mrq->stop;
127 
128 		if (cmd)
129 			seq_printf(s,
130 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 				   cmd->opcode, cmd->arg, cmd->flags,
132 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 				   cmd->resp[2], cmd->error);
134 		if (data)
135 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 				   data->bytes_xfered, data->blocks,
137 				   data->blksz, data->flags, data->error);
138 		if (stop)
139 			seq_printf(s,
140 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 				   stop->opcode, stop->arg, stop->flags,
142 				   stop->resp[0], stop->resp[1], stop->resp[2],
143 				   stop->resp[2], stop->error);
144 	}
145 
146 	spin_unlock_bh(&slot->host->lock);
147 
148 	return 0;
149 }
150 
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 	return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155 
156 static const struct file_operations dw_mci_req_fops = {
157 	.owner		= THIS_MODULE,
158 	.open		= dw_mci_req_open,
159 	.read		= seq_read,
160 	.llseek		= seq_lseek,
161 	.release	= single_release,
162 };
163 
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 	seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
167 	seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
168 	seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
169 	seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
170 	seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
171 	seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
172 
173 	return 0;
174 }
175 
176 static int dw_mci_regs_open(struct inode *inode, struct file *file)
177 {
178 	return single_open(file, dw_mci_regs_show, inode->i_private);
179 }
180 
181 static const struct file_operations dw_mci_regs_fops = {
182 	.owner		= THIS_MODULE,
183 	.open		= dw_mci_regs_open,
184 	.read		= seq_read,
185 	.llseek		= seq_lseek,
186 	.release	= single_release,
187 };
188 
189 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
190 {
191 	struct mmc_host	*mmc = slot->mmc;
192 	struct dw_mci *host = slot->host;
193 	struct dentry *root;
194 	struct dentry *node;
195 
196 	root = mmc->debugfs_root;
197 	if (!root)
198 		return;
199 
200 	node = debugfs_create_file("regs", S_IRUSR, root, host,
201 				   &dw_mci_regs_fops);
202 	if (!node)
203 		goto err;
204 
205 	node = debugfs_create_file("req", S_IRUSR, root, slot,
206 				   &dw_mci_req_fops);
207 	if (!node)
208 		goto err;
209 
210 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
211 	if (!node)
212 		goto err;
213 
214 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
215 				  (u32 *)&host->pending_events);
216 	if (!node)
217 		goto err;
218 
219 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
220 				  (u32 *)&host->completed_events);
221 	if (!node)
222 		goto err;
223 
224 	return;
225 
226 err:
227 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
228 }
229 #endif /* defined(CONFIG_DEBUG_FS) */
230 
231 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
232 
233 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
234 {
235 	struct mmc_data	*data;
236 	struct dw_mci_slot *slot = mmc_priv(mmc);
237 	struct dw_mci *host = slot->host;
238 	u32 cmdr;
239 
240 	cmd->error = -EINPROGRESS;
241 	cmdr = cmd->opcode;
242 
243 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
244 	    cmd->opcode == MMC_GO_IDLE_STATE ||
245 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
246 	    (cmd->opcode == SD_IO_RW_DIRECT &&
247 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
248 		cmdr |= SDMMC_CMD_STOP;
249 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
250 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
251 
252 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
253 		u32 clk_en_a;
254 
255 		/* Special bit makes CMD11 not die */
256 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
257 
258 		/* Change state to continue to handle CMD11 weirdness */
259 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
260 		slot->host->state = STATE_SENDING_CMD11;
261 
262 		/*
263 		 * We need to disable low power mode (automatic clock stop)
264 		 * while doing voltage switch so we don't confuse the card,
265 		 * since stopping the clock is a specific part of the UHS
266 		 * voltage change dance.
267 		 *
268 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
269 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
270 		 * ever called with a non-zero clock.  That shouldn't happen
271 		 * until the voltage change is all done.
272 		 */
273 		clk_en_a = mci_readl(host, CLKENA);
274 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
275 		mci_writel(host, CLKENA, clk_en_a);
276 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
277 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
278 	}
279 
280 	if (cmd->flags & MMC_RSP_PRESENT) {
281 		/* We expect a response, so set this bit */
282 		cmdr |= SDMMC_CMD_RESP_EXP;
283 		if (cmd->flags & MMC_RSP_136)
284 			cmdr |= SDMMC_CMD_RESP_LONG;
285 	}
286 
287 	if (cmd->flags & MMC_RSP_CRC)
288 		cmdr |= SDMMC_CMD_RESP_CRC;
289 
290 	data = cmd->data;
291 	if (data) {
292 		cmdr |= SDMMC_CMD_DAT_EXP;
293 		if (data->flags & MMC_DATA_WRITE)
294 			cmdr |= SDMMC_CMD_DAT_WR;
295 	}
296 
297 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
298 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
299 
300 	return cmdr;
301 }
302 
303 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
304 {
305 	struct mmc_command *stop;
306 	u32 cmdr;
307 
308 	if (!cmd->data)
309 		return 0;
310 
311 	stop = &host->stop_abort;
312 	cmdr = cmd->opcode;
313 	memset(stop, 0, sizeof(struct mmc_command));
314 
315 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
316 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
317 	    cmdr == MMC_WRITE_BLOCK ||
318 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
319 	    cmdr == MMC_SEND_TUNING_BLOCK ||
320 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
321 		stop->opcode = MMC_STOP_TRANSMISSION;
322 		stop->arg = 0;
323 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
324 	} else if (cmdr == SD_IO_RW_EXTENDED) {
325 		stop->opcode = SD_IO_RW_DIRECT;
326 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
327 			     ((cmd->arg >> 28) & 0x7);
328 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
329 	} else {
330 		return 0;
331 	}
332 
333 	cmdr = stop->opcode | SDMMC_CMD_STOP |
334 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
335 
336 	return cmdr;
337 }
338 
339 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
340 {
341 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
342 
343 	/*
344 	 * Databook says that before issuing a new data transfer command
345 	 * we need to check to see if the card is busy.  Data transfer commands
346 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
347 	 *
348 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
349 	 * expected.
350 	 */
351 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
352 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
353 		while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
354 			if (time_after(jiffies, timeout)) {
355 				/* Command will fail; we'll pass error then */
356 				dev_err(host->dev, "Busy; trying anyway\n");
357 				break;
358 			}
359 			udelay(10);
360 		}
361 	}
362 }
363 
364 static void dw_mci_start_command(struct dw_mci *host,
365 				 struct mmc_command *cmd, u32 cmd_flags)
366 {
367 	host->cmd = cmd;
368 	dev_vdbg(host->dev,
369 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
370 		 cmd->arg, cmd_flags);
371 
372 	mci_writel(host, CMDARG, cmd->arg);
373 	wmb(); /* drain writebuffer */
374 	dw_mci_wait_while_busy(host, cmd_flags);
375 
376 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
377 }
378 
379 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
380 {
381 	struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
382 
383 	dw_mci_start_command(host, stop, host->stop_cmdr);
384 }
385 
386 /* DMA interface functions */
387 static void dw_mci_stop_dma(struct dw_mci *host)
388 {
389 	if (host->using_dma) {
390 		host->dma_ops->stop(host);
391 		host->dma_ops->cleanup(host);
392 	}
393 
394 	/* Data transfer was stopped by the interrupt handler */
395 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
396 }
397 
398 static int dw_mci_get_dma_dir(struct mmc_data *data)
399 {
400 	if (data->flags & MMC_DATA_WRITE)
401 		return DMA_TO_DEVICE;
402 	else
403 		return DMA_FROM_DEVICE;
404 }
405 
406 static void dw_mci_dma_cleanup(struct dw_mci *host)
407 {
408 	struct mmc_data *data = host->data;
409 
410 	if (data)
411 		if (!data->host_cookie)
412 			dma_unmap_sg(host->dev,
413 				     data->sg,
414 				     data->sg_len,
415 				     dw_mci_get_dma_dir(data));
416 }
417 
418 static void dw_mci_idmac_reset(struct dw_mci *host)
419 {
420 	u32 bmod = mci_readl(host, BMOD);
421 	/* Software reset of DMA */
422 	bmod |= SDMMC_IDMAC_SWRESET;
423 	mci_writel(host, BMOD, bmod);
424 }
425 
426 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
427 {
428 	u32 temp;
429 
430 	/* Disable and reset the IDMAC interface */
431 	temp = mci_readl(host, CTRL);
432 	temp &= ~SDMMC_CTRL_USE_IDMAC;
433 	temp |= SDMMC_CTRL_DMA_RESET;
434 	mci_writel(host, CTRL, temp);
435 
436 	/* Stop the IDMAC running */
437 	temp = mci_readl(host, BMOD);
438 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
439 	temp |= SDMMC_IDMAC_SWRESET;
440 	mci_writel(host, BMOD, temp);
441 }
442 
443 static void dw_mci_dmac_complete_dma(void *arg)
444 {
445 	struct dw_mci *host = arg;
446 	struct mmc_data *data = host->data;
447 
448 	dev_vdbg(host->dev, "DMA complete\n");
449 
450 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
451 	    data && (data->flags & MMC_DATA_READ))
452 		/* Invalidate cache after read */
453 		dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
454 				    data->sg,
455 				    data->sg_len,
456 				    DMA_FROM_DEVICE);
457 
458 	host->dma_ops->cleanup(host);
459 
460 	/*
461 	 * If the card was removed, data will be NULL. No point in trying to
462 	 * send the stop command or waiting for NBUSY in this case.
463 	 */
464 	if (data) {
465 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
466 		tasklet_schedule(&host->tasklet);
467 	}
468 }
469 
470 static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data,
471 				    unsigned int sg_len)
472 {
473 	unsigned int desc_len;
474 	int i;
475 
476 	if (host->dma_64bit_address == 1) {
477 		struct idmac_desc_64addr *desc_first, *desc_last, *desc;
478 
479 		desc_first = desc_last = desc = host->sg_cpu;
480 
481 		for (i = 0; i < sg_len; i++) {
482 			unsigned int length = sg_dma_len(&data->sg[i]);
483 
484 			u64 mem_addr = sg_dma_address(&data->sg[i]);
485 
486 			for ( ; length ; desc++) {
487 				desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
488 					   length : DW_MCI_DESC_DATA_LENGTH;
489 
490 				length -= desc_len;
491 
492 				/*
493 				 * Set the OWN bit and disable interrupts
494 				 * for this descriptor
495 				 */
496 				desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
497 							IDMAC_DES0_CH;
498 
499 				/* Buffer length */
500 				IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
501 
502 				/* Physical address to DMA to/from */
503 				desc->des4 = mem_addr & 0xffffffff;
504 				desc->des5 = mem_addr >> 32;
505 
506 				/* Update physical address for the next desc */
507 				mem_addr += desc_len;
508 
509 				/* Save pointer to the last descriptor */
510 				desc_last = desc;
511 			}
512 		}
513 
514 		/* Set first descriptor */
515 		desc_first->des0 |= IDMAC_DES0_FD;
516 
517 		/* Set last descriptor */
518 		desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
519 		desc_last->des0 |= IDMAC_DES0_LD;
520 
521 	} else {
522 		struct idmac_desc *desc_first, *desc_last, *desc;
523 
524 		desc_first = desc_last = desc = host->sg_cpu;
525 
526 		for (i = 0; i < sg_len; i++) {
527 			unsigned int length = sg_dma_len(&data->sg[i]);
528 
529 			u32 mem_addr = sg_dma_address(&data->sg[i]);
530 
531 			for ( ; length ; desc++) {
532 				desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
533 					   length : DW_MCI_DESC_DATA_LENGTH;
534 
535 				length -= desc_len;
536 
537 				/*
538 				 * Set the OWN bit and disable interrupts
539 				 * for this descriptor
540 				 */
541 				desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
542 							 IDMAC_DES0_DIC |
543 							 IDMAC_DES0_CH);
544 
545 				/* Buffer length */
546 				IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
547 
548 				/* Physical address to DMA to/from */
549 				desc->des2 = cpu_to_le32(mem_addr);
550 
551 				/* Update physical address for the next desc */
552 				mem_addr += desc_len;
553 
554 				/* Save pointer to the last descriptor */
555 				desc_last = desc;
556 			}
557 		}
558 
559 		/* Set first descriptor */
560 		desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
561 
562 		/* Set last descriptor */
563 		desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
564 					       IDMAC_DES0_DIC));
565 		desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
566 	}
567 
568 	wmb(); /* drain writebuffer */
569 }
570 
571 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
572 {
573 	u32 temp;
574 
575 	dw_mci_translate_sglist(host, host->data, sg_len);
576 
577 	/* Make sure to reset DMA in case we did PIO before this */
578 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
579 	dw_mci_idmac_reset(host);
580 
581 	/* Select IDMAC interface */
582 	temp = mci_readl(host, CTRL);
583 	temp |= SDMMC_CTRL_USE_IDMAC;
584 	mci_writel(host, CTRL, temp);
585 
586 	/* drain writebuffer */
587 	wmb();
588 
589 	/* Enable the IDMAC */
590 	temp = mci_readl(host, BMOD);
591 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
592 	mci_writel(host, BMOD, temp);
593 
594 	/* Start it running */
595 	mci_writel(host, PLDMND, 1);
596 
597 	return 0;
598 }
599 
600 static int dw_mci_idmac_init(struct dw_mci *host)
601 {
602 	int i;
603 
604 	if (host->dma_64bit_address == 1) {
605 		struct idmac_desc_64addr *p;
606 		/* Number of descriptors in the ring buffer */
607 		host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc_64addr);
608 
609 		/* Forward link the descriptor list */
610 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
611 								i++, p++) {
612 			p->des6 = (host->sg_dma +
613 					(sizeof(struct idmac_desc_64addr) *
614 							(i + 1))) & 0xffffffff;
615 
616 			p->des7 = (u64)(host->sg_dma +
617 					(sizeof(struct idmac_desc_64addr) *
618 							(i + 1))) >> 32;
619 			/* Initialize reserved and buffer size fields to "0" */
620 			p->des1 = 0;
621 			p->des2 = 0;
622 			p->des3 = 0;
623 		}
624 
625 		/* Set the last descriptor as the end-of-ring descriptor */
626 		p->des6 = host->sg_dma & 0xffffffff;
627 		p->des7 = (u64)host->sg_dma >> 32;
628 		p->des0 = IDMAC_DES0_ER;
629 
630 	} else {
631 		struct idmac_desc *p;
632 		/* Number of descriptors in the ring buffer */
633 		host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc);
634 
635 		/* Forward link the descriptor list */
636 		for (i = 0, p = host->sg_cpu;
637 		     i < host->ring_size - 1;
638 		     i++, p++) {
639 			p->des3 = cpu_to_le32(host->sg_dma +
640 					(sizeof(struct idmac_desc) * (i + 1)));
641 			p->des1 = 0;
642 		}
643 
644 		/* Set the last descriptor as the end-of-ring descriptor */
645 		p->des3 = cpu_to_le32(host->sg_dma);
646 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
647 	}
648 
649 	dw_mci_idmac_reset(host);
650 
651 	if (host->dma_64bit_address == 1) {
652 		/* Mask out interrupts - get Tx & Rx complete only */
653 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
654 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
655 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
656 
657 		/* Set the descriptor base address */
658 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
659 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
660 
661 	} else {
662 		/* Mask out interrupts - get Tx & Rx complete only */
663 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
664 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
665 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
666 
667 		/* Set the descriptor base address */
668 		mci_writel(host, DBADDR, host->sg_dma);
669 	}
670 
671 	return 0;
672 }
673 
674 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
675 	.init = dw_mci_idmac_init,
676 	.start = dw_mci_idmac_start_dma,
677 	.stop = dw_mci_idmac_stop_dma,
678 	.complete = dw_mci_dmac_complete_dma,
679 	.cleanup = dw_mci_dma_cleanup,
680 };
681 
682 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
683 {
684 	dmaengine_terminate_async(host->dms->ch);
685 }
686 
687 static int dw_mci_edmac_start_dma(struct dw_mci *host,
688 					    unsigned int sg_len)
689 {
690 	struct dma_slave_config cfg;
691 	struct dma_async_tx_descriptor *desc = NULL;
692 	struct scatterlist *sgl = host->data->sg;
693 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
694 	u32 sg_elems = host->data->sg_len;
695 	u32 fifoth_val;
696 	u32 fifo_offset = host->fifo_reg - host->regs;
697 	int ret = 0;
698 
699 	/* Set external dma config: burst size, burst width */
700 	cfg.dst_addr = host->phy_regs + fifo_offset;
701 	cfg.src_addr = cfg.dst_addr;
702 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
703 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
704 
705 	/* Match burst msize with external dma config */
706 	fifoth_val = mci_readl(host, FIFOTH);
707 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
708 	cfg.src_maxburst = cfg.dst_maxburst;
709 
710 	if (host->data->flags & MMC_DATA_WRITE)
711 		cfg.direction = DMA_MEM_TO_DEV;
712 	else
713 		cfg.direction = DMA_DEV_TO_MEM;
714 
715 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
716 	if (ret) {
717 		dev_err(host->dev, "Failed to config edmac.\n");
718 		return -EBUSY;
719 	}
720 
721 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
722 				       sg_len, cfg.direction,
723 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
724 	if (!desc) {
725 		dev_err(host->dev, "Can't prepare slave sg.\n");
726 		return -EBUSY;
727 	}
728 
729 	/* Set dw_mci_dmac_complete_dma as callback */
730 	desc->callback = dw_mci_dmac_complete_dma;
731 	desc->callback_param = (void *)host;
732 	dmaengine_submit(desc);
733 
734 	/* Flush cache before write */
735 	if (host->data->flags & MMC_DATA_WRITE)
736 		dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
737 				       sg_elems, DMA_TO_DEVICE);
738 
739 	dma_async_issue_pending(host->dms->ch);
740 
741 	return 0;
742 }
743 
744 static int dw_mci_edmac_init(struct dw_mci *host)
745 {
746 	/* Request external dma channel */
747 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
748 	if (!host->dms)
749 		return -ENOMEM;
750 
751 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
752 	if (!host->dms->ch) {
753 		dev_err(host->dev, "Failed to get external DMA channel.\n");
754 		kfree(host->dms);
755 		host->dms = NULL;
756 		return -ENXIO;
757 	}
758 
759 	return 0;
760 }
761 
762 static void dw_mci_edmac_exit(struct dw_mci *host)
763 {
764 	if (host->dms) {
765 		if (host->dms->ch) {
766 			dma_release_channel(host->dms->ch);
767 			host->dms->ch = NULL;
768 		}
769 		kfree(host->dms);
770 		host->dms = NULL;
771 	}
772 }
773 
774 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
775 	.init = dw_mci_edmac_init,
776 	.exit = dw_mci_edmac_exit,
777 	.start = dw_mci_edmac_start_dma,
778 	.stop = dw_mci_edmac_stop_dma,
779 	.complete = dw_mci_dmac_complete_dma,
780 	.cleanup = dw_mci_dma_cleanup,
781 };
782 
783 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
784 				   struct mmc_data *data,
785 				   bool next)
786 {
787 	struct scatterlist *sg;
788 	unsigned int i, sg_len;
789 
790 	if (!next && data->host_cookie)
791 		return data->host_cookie;
792 
793 	/*
794 	 * We don't do DMA on "complex" transfers, i.e. with
795 	 * non-word-aligned buffers or lengths. Also, we don't bother
796 	 * with all the DMA setup overhead for short transfers.
797 	 */
798 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
799 		return -EINVAL;
800 
801 	if (data->blksz & 3)
802 		return -EINVAL;
803 
804 	for_each_sg(data->sg, sg, data->sg_len, i) {
805 		if (sg->offset & 3 || sg->length & 3)
806 			return -EINVAL;
807 	}
808 
809 	sg_len = dma_map_sg(host->dev,
810 			    data->sg,
811 			    data->sg_len,
812 			    dw_mci_get_dma_dir(data));
813 	if (sg_len == 0)
814 		return -EINVAL;
815 
816 	if (next)
817 		data->host_cookie = sg_len;
818 
819 	return sg_len;
820 }
821 
822 static void dw_mci_pre_req(struct mmc_host *mmc,
823 			   struct mmc_request *mrq,
824 			   bool is_first_req)
825 {
826 	struct dw_mci_slot *slot = mmc_priv(mmc);
827 	struct mmc_data *data = mrq->data;
828 
829 	if (!slot->host->use_dma || !data)
830 		return;
831 
832 	if (data->host_cookie) {
833 		data->host_cookie = 0;
834 		return;
835 	}
836 
837 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
838 		data->host_cookie = 0;
839 }
840 
841 static void dw_mci_post_req(struct mmc_host *mmc,
842 			    struct mmc_request *mrq,
843 			    int err)
844 {
845 	struct dw_mci_slot *slot = mmc_priv(mmc);
846 	struct mmc_data *data = mrq->data;
847 
848 	if (!slot->host->use_dma || !data)
849 		return;
850 
851 	if (data->host_cookie)
852 		dma_unmap_sg(slot->host->dev,
853 			     data->sg,
854 			     data->sg_len,
855 			     dw_mci_get_dma_dir(data));
856 	data->host_cookie = 0;
857 }
858 
859 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
860 {
861 	unsigned int blksz = data->blksz;
862 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
863 	u32 fifo_width = 1 << host->data_shift;
864 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
865 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
866 	int idx = ARRAY_SIZE(mszs) - 1;
867 
868 	/* pio should ship this scenario */
869 	if (!host->use_dma)
870 		return;
871 
872 	tx_wmark = (host->fifo_depth) / 2;
873 	tx_wmark_invers = host->fifo_depth - tx_wmark;
874 
875 	/*
876 	 * MSIZE is '1',
877 	 * if blksz is not a multiple of the FIFO width
878 	 */
879 	if (blksz % fifo_width) {
880 		msize = 0;
881 		rx_wmark = 1;
882 		goto done;
883 	}
884 
885 	do {
886 		if (!((blksz_depth % mszs[idx]) ||
887 		     (tx_wmark_invers % mszs[idx]))) {
888 			msize = idx;
889 			rx_wmark = mszs[idx] - 1;
890 			break;
891 		}
892 	} while (--idx > 0);
893 	/*
894 	 * If idx is '0', it won't be tried
895 	 * Thus, initial values are uesed
896 	 */
897 done:
898 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
899 	mci_writel(host, FIFOTH, fifoth_val);
900 }
901 
902 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
903 {
904 	unsigned int blksz = data->blksz;
905 	u32 blksz_depth, fifo_depth;
906 	u16 thld_size;
907 	u8 enable;
908 
909 	/*
910 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
911 	 * in the FIFO region, so we really shouldn't access it).
912 	 */
913 	if (host->verid < DW_MMC_240A ||
914 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
915 		return;
916 
917 	/*
918 	 * Card write Threshold is introduced since 2.80a
919 	 * It's used when HS400 mode is enabled.
920 	 */
921 	if (data->flags & MMC_DATA_WRITE &&
922 		!(host->timing != MMC_TIMING_MMC_HS400))
923 		return;
924 
925 	if (data->flags & MMC_DATA_WRITE)
926 		enable = SDMMC_CARD_WR_THR_EN;
927 	else
928 		enable = SDMMC_CARD_RD_THR_EN;
929 
930 	if (host->timing != MMC_TIMING_MMC_HS200 &&
931 	    host->timing != MMC_TIMING_UHS_SDR104)
932 		goto disable;
933 
934 	blksz_depth = blksz / (1 << host->data_shift);
935 	fifo_depth = host->fifo_depth;
936 
937 	if (blksz_depth > fifo_depth)
938 		goto disable;
939 
940 	/*
941 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
942 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
943 	 * Currently just choose blksz.
944 	 */
945 	thld_size = blksz;
946 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
947 	return;
948 
949 disable:
950 	mci_writel(host, CDTHRCTL, 0);
951 }
952 
953 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
954 {
955 	unsigned long irqflags;
956 	int sg_len;
957 	u32 temp;
958 
959 	host->using_dma = 0;
960 
961 	/* If we don't have a channel, we can't do DMA */
962 	if (!host->use_dma)
963 		return -ENODEV;
964 
965 	sg_len = dw_mci_pre_dma_transfer(host, data, 0);
966 	if (sg_len < 0) {
967 		host->dma_ops->stop(host);
968 		return sg_len;
969 	}
970 
971 	host->using_dma = 1;
972 
973 	if (host->use_dma == TRANS_MODE_IDMAC)
974 		dev_vdbg(host->dev,
975 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
976 			 (unsigned long)host->sg_cpu,
977 			 (unsigned long)host->sg_dma,
978 			 sg_len);
979 
980 	/*
981 	 * Decide the MSIZE and RX/TX Watermark.
982 	 * If current block size is same with previous size,
983 	 * no need to update fifoth.
984 	 */
985 	if (host->prev_blksz != data->blksz)
986 		dw_mci_adjust_fifoth(host, data);
987 
988 	/* Enable the DMA interface */
989 	temp = mci_readl(host, CTRL);
990 	temp |= SDMMC_CTRL_DMA_ENABLE;
991 	mci_writel(host, CTRL, temp);
992 
993 	/* Disable RX/TX IRQs, let DMA handle it */
994 	spin_lock_irqsave(&host->irq_lock, irqflags);
995 	temp = mci_readl(host, INTMASK);
996 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
997 	mci_writel(host, INTMASK, temp);
998 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
999 
1000 	if (host->dma_ops->start(host, sg_len)) {
1001 		/* We can't do DMA */
1002 		dev_err(host->dev, "%s: failed to start DMA.\n", __func__);
1003 		return -ENODEV;
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1010 {
1011 	unsigned long irqflags;
1012 	int flags = SG_MITER_ATOMIC;
1013 	u32 temp;
1014 
1015 	data->error = -EINPROGRESS;
1016 
1017 	WARN_ON(host->data);
1018 	host->sg = NULL;
1019 	host->data = data;
1020 
1021 	if (data->flags & MMC_DATA_READ)
1022 		host->dir_status = DW_MCI_RECV_STATUS;
1023 	else
1024 		host->dir_status = DW_MCI_SEND_STATUS;
1025 
1026 	dw_mci_ctrl_thld(host, data);
1027 
1028 	if (dw_mci_submit_data_dma(host, data)) {
1029 		if (host->data->flags & MMC_DATA_READ)
1030 			flags |= SG_MITER_TO_SG;
1031 		else
1032 			flags |= SG_MITER_FROM_SG;
1033 
1034 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1035 		host->sg = data->sg;
1036 		host->part_buf_start = 0;
1037 		host->part_buf_count = 0;
1038 
1039 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1040 
1041 		spin_lock_irqsave(&host->irq_lock, irqflags);
1042 		temp = mci_readl(host, INTMASK);
1043 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1044 		mci_writel(host, INTMASK, temp);
1045 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1046 
1047 		temp = mci_readl(host, CTRL);
1048 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1049 		mci_writel(host, CTRL, temp);
1050 
1051 		/*
1052 		 * Use the initial fifoth_val for PIO mode.
1053 		 * If next issued data may be transfered by DMA mode,
1054 		 * prev_blksz should be invalidated.
1055 		 */
1056 		mci_writel(host, FIFOTH, host->fifoth_val);
1057 		host->prev_blksz = 0;
1058 	} else {
1059 		/*
1060 		 * Keep the current block size.
1061 		 * It will be used to decide whether to update
1062 		 * fifoth register next time.
1063 		 */
1064 		host->prev_blksz = data->blksz;
1065 	}
1066 }
1067 
1068 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1069 {
1070 	struct dw_mci *host = slot->host;
1071 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
1072 	unsigned int cmd_status = 0;
1073 
1074 	mci_writel(host, CMDARG, arg);
1075 	wmb(); /* drain writebuffer */
1076 	dw_mci_wait_while_busy(host, cmd);
1077 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1078 
1079 	while (time_before(jiffies, timeout)) {
1080 		cmd_status = mci_readl(host, CMD);
1081 		if (!(cmd_status & SDMMC_CMD_START))
1082 			return;
1083 	}
1084 	dev_err(&slot->mmc->class_dev,
1085 		"Timeout sending command (cmd %#x arg %#x status %#x)\n",
1086 		cmd, arg, cmd_status);
1087 }
1088 
1089 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1090 {
1091 	struct dw_mci *host = slot->host;
1092 	unsigned int clock = slot->clock;
1093 	u32 div;
1094 	u32 clk_en_a;
1095 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1096 
1097 	/* We must continue to set bit 28 in CMD until the change is complete */
1098 	if (host->state == STATE_WAITING_CMD11_DONE)
1099 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1100 
1101 	if (!clock) {
1102 		mci_writel(host, CLKENA, 0);
1103 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1104 	} else if (clock != host->current_speed || force_clkinit) {
1105 		div = host->bus_hz / clock;
1106 		if (host->bus_hz % clock && host->bus_hz > clock)
1107 			/*
1108 			 * move the + 1 after the divide to prevent
1109 			 * over-clocking the card.
1110 			 */
1111 			div += 1;
1112 
1113 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1114 
1115 		if (clock != slot->__clk_old || force_clkinit)
1116 			dev_info(&slot->mmc->class_dev,
1117 				 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1118 				 slot->id, host->bus_hz, clock,
1119 				 div ? ((host->bus_hz / div) >> 1) :
1120 				 host->bus_hz, div);
1121 
1122 		/* disable clock */
1123 		mci_writel(host, CLKENA, 0);
1124 		mci_writel(host, CLKSRC, 0);
1125 
1126 		/* inform CIU */
1127 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1128 
1129 		/* set clock to desired speed */
1130 		mci_writel(host, CLKDIV, div);
1131 
1132 		/* inform CIU */
1133 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1134 
1135 		/* enable clock; only low power if no SDIO */
1136 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1137 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1138 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1139 		mci_writel(host, CLKENA, clk_en_a);
1140 
1141 		/* inform CIU */
1142 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1143 
1144 		/* keep the last clock value that was requested from core */
1145 		slot->__clk_old = clock;
1146 	}
1147 
1148 	host->current_speed = clock;
1149 
1150 	/* Set the current slot bus width */
1151 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1152 }
1153 
1154 static void __dw_mci_start_request(struct dw_mci *host,
1155 				   struct dw_mci_slot *slot,
1156 				   struct mmc_command *cmd)
1157 {
1158 	struct mmc_request *mrq;
1159 	struct mmc_data	*data;
1160 	u32 cmdflags;
1161 
1162 	mrq = slot->mrq;
1163 
1164 	host->cur_slot = slot;
1165 	host->mrq = mrq;
1166 
1167 	host->pending_events = 0;
1168 	host->completed_events = 0;
1169 	host->cmd_status = 0;
1170 	host->data_status = 0;
1171 	host->dir_status = 0;
1172 
1173 	data = cmd->data;
1174 	if (data) {
1175 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1176 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1177 		mci_writel(host, BLKSIZ, data->blksz);
1178 	}
1179 
1180 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1181 
1182 	/* this is the first command, send the initialization clock */
1183 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1184 		cmdflags |= SDMMC_CMD_INIT;
1185 
1186 	if (data) {
1187 		dw_mci_submit_data(host, data);
1188 		wmb(); /* drain writebuffer */
1189 	}
1190 
1191 	dw_mci_start_command(host, cmd, cmdflags);
1192 
1193 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1194 		unsigned long irqflags;
1195 
1196 		/*
1197 		 * Databook says to fail after 2ms w/ no response, but evidence
1198 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1199 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1200 		 * is just about to roll over.
1201 		 *
1202 		 * We do this whole thing under spinlock and only if the
1203 		 * command hasn't already completed (indicating the the irq
1204 		 * already ran so we don't want the timeout).
1205 		 */
1206 		spin_lock_irqsave(&host->irq_lock, irqflags);
1207 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1208 			mod_timer(&host->cmd11_timer,
1209 				jiffies + msecs_to_jiffies(500) + 1);
1210 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1211 	}
1212 
1213 	if (mrq->stop)
1214 		host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1215 	else
1216 		host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1217 }
1218 
1219 static void dw_mci_start_request(struct dw_mci *host,
1220 				 struct dw_mci_slot *slot)
1221 {
1222 	struct mmc_request *mrq = slot->mrq;
1223 	struct mmc_command *cmd;
1224 
1225 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1226 	__dw_mci_start_request(host, slot, cmd);
1227 }
1228 
1229 /* must be called with host->lock held */
1230 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1231 				 struct mmc_request *mrq)
1232 {
1233 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1234 		 host->state);
1235 
1236 	slot->mrq = mrq;
1237 
1238 	if (host->state == STATE_WAITING_CMD11_DONE) {
1239 		dev_warn(&slot->mmc->class_dev,
1240 			 "Voltage change didn't complete\n");
1241 		/*
1242 		 * this case isn't expected to happen, so we can
1243 		 * either crash here or just try to continue on
1244 		 * in the closest possible state
1245 		 */
1246 		host->state = STATE_IDLE;
1247 	}
1248 
1249 	if (host->state == STATE_IDLE) {
1250 		host->state = STATE_SENDING_CMD;
1251 		dw_mci_start_request(host, slot);
1252 	} else {
1253 		list_add_tail(&slot->queue_node, &host->queue);
1254 	}
1255 }
1256 
1257 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1258 {
1259 	struct dw_mci_slot *slot = mmc_priv(mmc);
1260 	struct dw_mci *host = slot->host;
1261 
1262 	WARN_ON(slot->mrq);
1263 
1264 	/*
1265 	 * The check for card presence and queueing of the request must be
1266 	 * atomic, otherwise the card could be removed in between and the
1267 	 * request wouldn't fail until another card was inserted.
1268 	 */
1269 
1270 	if (!dw_mci_get_cd(mmc)) {
1271 		mrq->cmd->error = -ENOMEDIUM;
1272 		mmc_request_done(mmc, mrq);
1273 		return;
1274 	}
1275 
1276 	spin_lock_bh(&host->lock);
1277 
1278 	dw_mci_queue_request(host, slot, mrq);
1279 
1280 	spin_unlock_bh(&host->lock);
1281 }
1282 
1283 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1284 {
1285 	struct dw_mci_slot *slot = mmc_priv(mmc);
1286 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1287 	u32 regs;
1288 	int ret;
1289 
1290 	switch (ios->bus_width) {
1291 	case MMC_BUS_WIDTH_4:
1292 		slot->ctype = SDMMC_CTYPE_4BIT;
1293 		break;
1294 	case MMC_BUS_WIDTH_8:
1295 		slot->ctype = SDMMC_CTYPE_8BIT;
1296 		break;
1297 	default:
1298 		/* set default 1 bit mode */
1299 		slot->ctype = SDMMC_CTYPE_1BIT;
1300 	}
1301 
1302 	regs = mci_readl(slot->host, UHS_REG);
1303 
1304 	/* DDR mode set */
1305 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1306 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1307 	    ios->timing == MMC_TIMING_MMC_HS400)
1308 		regs |= ((0x1 << slot->id) << 16);
1309 	else
1310 		regs &= ~((0x1 << slot->id) << 16);
1311 
1312 	mci_writel(slot->host, UHS_REG, regs);
1313 	slot->host->timing = ios->timing;
1314 
1315 	/*
1316 	 * Use mirror of ios->clock to prevent race with mmc
1317 	 * core ios update when finding the minimum.
1318 	 */
1319 	slot->clock = ios->clock;
1320 
1321 	if (drv_data && drv_data->set_ios)
1322 		drv_data->set_ios(slot->host, ios);
1323 
1324 	switch (ios->power_mode) {
1325 	case MMC_POWER_UP:
1326 		if (!IS_ERR(mmc->supply.vmmc)) {
1327 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1328 					ios->vdd);
1329 			if (ret) {
1330 				dev_err(slot->host->dev,
1331 					"failed to enable vmmc regulator\n");
1332 				/*return, if failed turn on vmmc*/
1333 				return;
1334 			}
1335 		}
1336 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1337 		regs = mci_readl(slot->host, PWREN);
1338 		regs |= (1 << slot->id);
1339 		mci_writel(slot->host, PWREN, regs);
1340 		break;
1341 	case MMC_POWER_ON:
1342 		if (!slot->host->vqmmc_enabled) {
1343 			if (!IS_ERR(mmc->supply.vqmmc)) {
1344 				ret = regulator_enable(mmc->supply.vqmmc);
1345 				if (ret < 0)
1346 					dev_err(slot->host->dev,
1347 						"failed to enable vqmmc\n");
1348 				else
1349 					slot->host->vqmmc_enabled = true;
1350 
1351 			} else {
1352 				/* Keep track so we don't reset again */
1353 				slot->host->vqmmc_enabled = true;
1354 			}
1355 
1356 			/* Reset our state machine after powering on */
1357 			dw_mci_ctrl_reset(slot->host,
1358 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1359 		}
1360 
1361 		/* Adjust clock / bus width after power is up */
1362 		dw_mci_setup_bus(slot, false);
1363 
1364 		break;
1365 	case MMC_POWER_OFF:
1366 		/* Turn clock off before power goes down */
1367 		dw_mci_setup_bus(slot, false);
1368 
1369 		if (!IS_ERR(mmc->supply.vmmc))
1370 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1371 
1372 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1373 			regulator_disable(mmc->supply.vqmmc);
1374 		slot->host->vqmmc_enabled = false;
1375 
1376 		regs = mci_readl(slot->host, PWREN);
1377 		regs &= ~(1 << slot->id);
1378 		mci_writel(slot->host, PWREN, regs);
1379 		break;
1380 	default:
1381 		break;
1382 	}
1383 
1384 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1385 		slot->host->state = STATE_IDLE;
1386 }
1387 
1388 static int dw_mci_card_busy(struct mmc_host *mmc)
1389 {
1390 	struct dw_mci_slot *slot = mmc_priv(mmc);
1391 	u32 status;
1392 
1393 	/*
1394 	 * Check the busy bit which is low when DAT[3:0]
1395 	 * (the data lines) are 0000
1396 	 */
1397 	status = mci_readl(slot->host, STATUS);
1398 
1399 	return !!(status & SDMMC_STATUS_BUSY);
1400 }
1401 
1402 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1403 {
1404 	struct dw_mci_slot *slot = mmc_priv(mmc);
1405 	struct dw_mci *host = slot->host;
1406 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1407 	u32 uhs;
1408 	u32 v18 = SDMMC_UHS_18V << slot->id;
1409 	int ret;
1410 
1411 	if (drv_data && drv_data->switch_voltage)
1412 		return drv_data->switch_voltage(mmc, ios);
1413 
1414 	/*
1415 	 * Program the voltage.  Note that some instances of dw_mmc may use
1416 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1417 	 * does no harm but you need to set the regulator directly.  Try both.
1418 	 */
1419 	uhs = mci_readl(host, UHS_REG);
1420 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1421 		uhs &= ~v18;
1422 	else
1423 		uhs |= v18;
1424 
1425 	if (!IS_ERR(mmc->supply.vqmmc)) {
1426 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1427 
1428 		if (ret) {
1429 			dev_dbg(&mmc->class_dev,
1430 					 "Regulator set error %d - %s V\n",
1431 					 ret, uhs & v18 ? "1.8" : "3.3");
1432 			return ret;
1433 		}
1434 	}
1435 	mci_writel(host, UHS_REG, uhs);
1436 
1437 	return 0;
1438 }
1439 
1440 static int dw_mci_get_ro(struct mmc_host *mmc)
1441 {
1442 	int read_only;
1443 	struct dw_mci_slot *slot = mmc_priv(mmc);
1444 	int gpio_ro = mmc_gpio_get_ro(mmc);
1445 
1446 	/* Use platform get_ro function, else try on board write protect */
1447 	if (gpio_ro >= 0)
1448 		read_only = gpio_ro;
1449 	else
1450 		read_only =
1451 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1452 
1453 	dev_dbg(&mmc->class_dev, "card is %s\n",
1454 		read_only ? "read-only" : "read-write");
1455 
1456 	return read_only;
1457 }
1458 
1459 static int dw_mci_get_cd(struct mmc_host *mmc)
1460 {
1461 	int present;
1462 	struct dw_mci_slot *slot = mmc_priv(mmc);
1463 	struct dw_mci *host = slot->host;
1464 	int gpio_cd = mmc_gpio_get_cd(mmc);
1465 
1466 	/* Use platform get_cd function, else try onboard card detect */
1467 	if ((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc))
1468 		present = 1;
1469 	else if (gpio_cd >= 0)
1470 		present = gpio_cd;
1471 	else
1472 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1473 			== 0 ? 1 : 0;
1474 
1475 	spin_lock_bh(&host->lock);
1476 	if (present) {
1477 		set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1478 		dev_dbg(&mmc->class_dev, "card is present\n");
1479 	} else {
1480 		clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1481 		dev_dbg(&mmc->class_dev, "card is not present\n");
1482 	}
1483 	spin_unlock_bh(&host->lock);
1484 
1485 	return present;
1486 }
1487 
1488 static void dw_mci_hw_reset(struct mmc_host *mmc)
1489 {
1490 	struct dw_mci_slot *slot = mmc_priv(mmc);
1491 	struct dw_mci *host = slot->host;
1492 	int reset;
1493 
1494 	if (host->use_dma == TRANS_MODE_IDMAC)
1495 		dw_mci_idmac_reset(host);
1496 
1497 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1498 				     SDMMC_CTRL_FIFO_RESET))
1499 		return;
1500 
1501 	/*
1502 	 * According to eMMC spec, card reset procedure:
1503 	 * tRstW >= 1us:   RST_n pulse width
1504 	 * tRSCA >= 200us: RST_n to Command time
1505 	 * tRSTH >= 1us:   RST_n high period
1506 	 */
1507 	reset = mci_readl(host, RST_N);
1508 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1509 	mci_writel(host, RST_N, reset);
1510 	usleep_range(1, 2);
1511 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1512 	mci_writel(host, RST_N, reset);
1513 	usleep_range(200, 300);
1514 }
1515 
1516 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1517 {
1518 	struct dw_mci_slot *slot = mmc_priv(mmc);
1519 	struct dw_mci *host = slot->host;
1520 
1521 	/*
1522 	 * Low power mode will stop the card clock when idle.  According to the
1523 	 * description of the CLKENA register we should disable low power mode
1524 	 * for SDIO cards if we need SDIO interrupts to work.
1525 	 */
1526 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1527 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1528 		u32 clk_en_a_old;
1529 		u32 clk_en_a;
1530 
1531 		clk_en_a_old = mci_readl(host, CLKENA);
1532 
1533 		if (card->type == MMC_TYPE_SDIO ||
1534 		    card->type == MMC_TYPE_SD_COMBO) {
1535 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1536 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1537 		} else {
1538 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1539 			clk_en_a = clk_en_a_old | clken_low_pwr;
1540 		}
1541 
1542 		if (clk_en_a != clk_en_a_old) {
1543 			mci_writel(host, CLKENA, clk_en_a);
1544 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1545 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1546 		}
1547 	}
1548 }
1549 
1550 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1551 {
1552 	struct dw_mci_slot *slot = mmc_priv(mmc);
1553 	struct dw_mci *host = slot->host;
1554 	unsigned long irqflags;
1555 	u32 int_mask;
1556 
1557 	spin_lock_irqsave(&host->irq_lock, irqflags);
1558 
1559 	/* Enable/disable Slot Specific SDIO interrupt */
1560 	int_mask = mci_readl(host, INTMASK);
1561 	if (enb)
1562 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1563 	else
1564 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1565 	mci_writel(host, INTMASK, int_mask);
1566 
1567 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1568 }
1569 
1570 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1571 {
1572 	struct dw_mci_slot *slot = mmc_priv(mmc);
1573 	struct dw_mci *host = slot->host;
1574 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1575 	int err = -EINVAL;
1576 
1577 	if (drv_data && drv_data->execute_tuning)
1578 		err = drv_data->execute_tuning(slot, opcode);
1579 	return err;
1580 }
1581 
1582 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1583 				       struct mmc_ios *ios)
1584 {
1585 	struct dw_mci_slot *slot = mmc_priv(mmc);
1586 	struct dw_mci *host = slot->host;
1587 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1588 
1589 	if (drv_data && drv_data->prepare_hs400_tuning)
1590 		return drv_data->prepare_hs400_tuning(host, ios);
1591 
1592 	return 0;
1593 }
1594 
1595 static const struct mmc_host_ops dw_mci_ops = {
1596 	.request		= dw_mci_request,
1597 	.pre_req		= dw_mci_pre_req,
1598 	.post_req		= dw_mci_post_req,
1599 	.set_ios		= dw_mci_set_ios,
1600 	.get_ro			= dw_mci_get_ro,
1601 	.get_cd			= dw_mci_get_cd,
1602 	.hw_reset               = dw_mci_hw_reset,
1603 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1604 	.execute_tuning		= dw_mci_execute_tuning,
1605 	.card_busy		= dw_mci_card_busy,
1606 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1607 	.init_card		= dw_mci_init_card,
1608 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1609 };
1610 
1611 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1612 	__releases(&host->lock)
1613 	__acquires(&host->lock)
1614 {
1615 	struct dw_mci_slot *slot;
1616 	struct mmc_host	*prev_mmc = host->cur_slot->mmc;
1617 
1618 	WARN_ON(host->cmd || host->data);
1619 
1620 	host->cur_slot->mrq = NULL;
1621 	host->mrq = NULL;
1622 	if (!list_empty(&host->queue)) {
1623 		slot = list_entry(host->queue.next,
1624 				  struct dw_mci_slot, queue_node);
1625 		list_del(&slot->queue_node);
1626 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1627 			 mmc_hostname(slot->mmc));
1628 		host->state = STATE_SENDING_CMD;
1629 		dw_mci_start_request(host, slot);
1630 	} else {
1631 		dev_vdbg(host->dev, "list empty\n");
1632 
1633 		if (host->state == STATE_SENDING_CMD11)
1634 			host->state = STATE_WAITING_CMD11_DONE;
1635 		else
1636 			host->state = STATE_IDLE;
1637 	}
1638 
1639 	spin_unlock(&host->lock);
1640 	mmc_request_done(prev_mmc, mrq);
1641 	spin_lock(&host->lock);
1642 }
1643 
1644 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1645 {
1646 	u32 status = host->cmd_status;
1647 
1648 	host->cmd_status = 0;
1649 
1650 	/* Read the response from the card (up to 16 bytes) */
1651 	if (cmd->flags & MMC_RSP_PRESENT) {
1652 		if (cmd->flags & MMC_RSP_136) {
1653 			cmd->resp[3] = mci_readl(host, RESP0);
1654 			cmd->resp[2] = mci_readl(host, RESP1);
1655 			cmd->resp[1] = mci_readl(host, RESP2);
1656 			cmd->resp[0] = mci_readl(host, RESP3);
1657 		} else {
1658 			cmd->resp[0] = mci_readl(host, RESP0);
1659 			cmd->resp[1] = 0;
1660 			cmd->resp[2] = 0;
1661 			cmd->resp[3] = 0;
1662 		}
1663 	}
1664 
1665 	if (status & SDMMC_INT_RTO)
1666 		cmd->error = -ETIMEDOUT;
1667 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1668 		cmd->error = -EILSEQ;
1669 	else if (status & SDMMC_INT_RESP_ERR)
1670 		cmd->error = -EIO;
1671 	else
1672 		cmd->error = 0;
1673 
1674 	return cmd->error;
1675 }
1676 
1677 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1678 {
1679 	u32 status = host->data_status;
1680 
1681 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1682 		if (status & SDMMC_INT_DRTO) {
1683 			data->error = -ETIMEDOUT;
1684 		} else if (status & SDMMC_INT_DCRC) {
1685 			data->error = -EILSEQ;
1686 		} else if (status & SDMMC_INT_EBE) {
1687 			if (host->dir_status ==
1688 				DW_MCI_SEND_STATUS) {
1689 				/*
1690 				 * No data CRC status was returned.
1691 				 * The number of bytes transferred
1692 				 * will be exaggerated in PIO mode.
1693 				 */
1694 				data->bytes_xfered = 0;
1695 				data->error = -ETIMEDOUT;
1696 			} else if (host->dir_status ==
1697 					DW_MCI_RECV_STATUS) {
1698 				data->error = -EIO;
1699 			}
1700 		} else {
1701 			/* SDMMC_INT_SBE is included */
1702 			data->error = -EIO;
1703 		}
1704 
1705 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1706 
1707 		/*
1708 		 * After an error, there may be data lingering
1709 		 * in the FIFO
1710 		 */
1711 		dw_mci_reset(host);
1712 	} else {
1713 		data->bytes_xfered = data->blocks * data->blksz;
1714 		data->error = 0;
1715 	}
1716 
1717 	return data->error;
1718 }
1719 
1720 static void dw_mci_set_drto(struct dw_mci *host)
1721 {
1722 	unsigned int drto_clks;
1723 	unsigned int drto_ms;
1724 
1725 	drto_clks = mci_readl(host, TMOUT) >> 8;
1726 	drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1727 
1728 	/* add a bit spare time */
1729 	drto_ms += 10;
1730 
1731 	mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1732 }
1733 
1734 static void dw_mci_tasklet_func(unsigned long priv)
1735 {
1736 	struct dw_mci *host = (struct dw_mci *)priv;
1737 	struct mmc_data	*data;
1738 	struct mmc_command *cmd;
1739 	struct mmc_request *mrq;
1740 	enum dw_mci_state state;
1741 	enum dw_mci_state prev_state;
1742 	unsigned int err;
1743 
1744 	spin_lock(&host->lock);
1745 
1746 	state = host->state;
1747 	data = host->data;
1748 	mrq = host->mrq;
1749 
1750 	do {
1751 		prev_state = state;
1752 
1753 		switch (state) {
1754 		case STATE_IDLE:
1755 		case STATE_WAITING_CMD11_DONE:
1756 			break;
1757 
1758 		case STATE_SENDING_CMD11:
1759 		case STATE_SENDING_CMD:
1760 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1761 						&host->pending_events))
1762 				break;
1763 
1764 			cmd = host->cmd;
1765 			host->cmd = NULL;
1766 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1767 			err = dw_mci_command_complete(host, cmd);
1768 			if (cmd == mrq->sbc && !err) {
1769 				prev_state = state = STATE_SENDING_CMD;
1770 				__dw_mci_start_request(host, host->cur_slot,
1771 						       mrq->cmd);
1772 				goto unlock;
1773 			}
1774 
1775 			if (cmd->data && err) {
1776 				/*
1777 				 * During UHS tuning sequence, sending the stop
1778 				 * command after the response CRC error would
1779 				 * throw the system into a confused state
1780 				 * causing all future tuning phases to report
1781 				 * failure.
1782 				 *
1783 				 * In such case controller will move into a data
1784 				 * transfer state after a response error or
1785 				 * response CRC error. Let's let that finish
1786 				 * before trying to send a stop, so we'll go to
1787 				 * STATE_SENDING_DATA.
1788 				 *
1789 				 * Although letting the data transfer take place
1790 				 * will waste a bit of time (we already know
1791 				 * the command was bad), it can't cause any
1792 				 * errors since it's possible it would have
1793 				 * taken place anyway if this tasklet got
1794 				 * delayed. Allowing the transfer to take place
1795 				 * avoids races and keeps things simple.
1796 				 */
1797 				if ((err != -ETIMEDOUT) &&
1798 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1799 					state = STATE_SENDING_DATA;
1800 					continue;
1801 				}
1802 
1803 				dw_mci_stop_dma(host);
1804 				send_stop_abort(host, data);
1805 				state = STATE_SENDING_STOP;
1806 				break;
1807 			}
1808 
1809 			if (!cmd->data || err) {
1810 				dw_mci_request_end(host, mrq);
1811 				goto unlock;
1812 			}
1813 
1814 			prev_state = state = STATE_SENDING_DATA;
1815 			/* fall through */
1816 
1817 		case STATE_SENDING_DATA:
1818 			/*
1819 			 * We could get a data error and never a transfer
1820 			 * complete so we'd better check for it here.
1821 			 *
1822 			 * Note that we don't really care if we also got a
1823 			 * transfer complete; stopping the DMA and sending an
1824 			 * abort won't hurt.
1825 			 */
1826 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1827 					       &host->pending_events)) {
1828 				dw_mci_stop_dma(host);
1829 				if (data->stop ||
1830 				    !(host->data_status & (SDMMC_INT_DRTO |
1831 							   SDMMC_INT_EBE)))
1832 					send_stop_abort(host, data);
1833 				state = STATE_DATA_ERROR;
1834 				break;
1835 			}
1836 
1837 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1838 						&host->pending_events)) {
1839 				/*
1840 				 * If all data-related interrupts don't come
1841 				 * within the given time in reading data state.
1842 				 */
1843 				if (host->dir_status == DW_MCI_RECV_STATUS)
1844 					dw_mci_set_drto(host);
1845 				break;
1846 			}
1847 
1848 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1849 
1850 			/*
1851 			 * Handle an EVENT_DATA_ERROR that might have shown up
1852 			 * before the transfer completed.  This might not have
1853 			 * been caught by the check above because the interrupt
1854 			 * could have gone off between the previous check and
1855 			 * the check for transfer complete.
1856 			 *
1857 			 * Technically this ought not be needed assuming we
1858 			 * get a DATA_COMPLETE eventually (we'll notice the
1859 			 * error and end the request), but it shouldn't hurt.
1860 			 *
1861 			 * This has the advantage of sending the stop command.
1862 			 */
1863 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1864 					       &host->pending_events)) {
1865 				dw_mci_stop_dma(host);
1866 				if (data->stop ||
1867 				    !(host->data_status & (SDMMC_INT_DRTO |
1868 							   SDMMC_INT_EBE)))
1869 					send_stop_abort(host, data);
1870 				state = STATE_DATA_ERROR;
1871 				break;
1872 			}
1873 			prev_state = state = STATE_DATA_BUSY;
1874 
1875 			/* fall through */
1876 
1877 		case STATE_DATA_BUSY:
1878 			if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1879 						&host->pending_events)) {
1880 				/*
1881 				 * If data error interrupt comes but data over
1882 				 * interrupt doesn't come within the given time.
1883 				 * in reading data state.
1884 				 */
1885 				if (host->dir_status == DW_MCI_RECV_STATUS)
1886 					dw_mci_set_drto(host);
1887 				break;
1888 			}
1889 
1890 			host->data = NULL;
1891 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1892 			err = dw_mci_data_complete(host, data);
1893 
1894 			if (!err) {
1895 				if (!data->stop || mrq->sbc) {
1896 					if (mrq->sbc && data->stop)
1897 						data->stop->error = 0;
1898 					dw_mci_request_end(host, mrq);
1899 					goto unlock;
1900 				}
1901 
1902 				/* stop command for open-ended transfer*/
1903 				if (data->stop)
1904 					send_stop_abort(host, data);
1905 			} else {
1906 				/*
1907 				 * If we don't have a command complete now we'll
1908 				 * never get one since we just reset everything;
1909 				 * better end the request.
1910 				 *
1911 				 * If we do have a command complete we'll fall
1912 				 * through to the SENDING_STOP command and
1913 				 * everything will be peachy keen.
1914 				 */
1915 				if (!test_bit(EVENT_CMD_COMPLETE,
1916 					      &host->pending_events)) {
1917 					host->cmd = NULL;
1918 					dw_mci_request_end(host, mrq);
1919 					goto unlock;
1920 				}
1921 			}
1922 
1923 			/*
1924 			 * If err has non-zero,
1925 			 * stop-abort command has been already issued.
1926 			 */
1927 			prev_state = state = STATE_SENDING_STOP;
1928 
1929 			/* fall through */
1930 
1931 		case STATE_SENDING_STOP:
1932 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1933 						&host->pending_events))
1934 				break;
1935 
1936 			/* CMD error in data command */
1937 			if (mrq->cmd->error && mrq->data)
1938 				dw_mci_reset(host);
1939 
1940 			host->cmd = NULL;
1941 			host->data = NULL;
1942 
1943 			if (mrq->stop)
1944 				dw_mci_command_complete(host, mrq->stop);
1945 			else
1946 				host->cmd_status = 0;
1947 
1948 			dw_mci_request_end(host, mrq);
1949 			goto unlock;
1950 
1951 		case STATE_DATA_ERROR:
1952 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1953 						&host->pending_events))
1954 				break;
1955 
1956 			state = STATE_DATA_BUSY;
1957 			break;
1958 		}
1959 	} while (state != prev_state);
1960 
1961 	host->state = state;
1962 unlock:
1963 	spin_unlock(&host->lock);
1964 
1965 }
1966 
1967 /* push final bytes to part_buf, only use during push */
1968 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
1969 {
1970 	memcpy((void *)&host->part_buf, buf, cnt);
1971 	host->part_buf_count = cnt;
1972 }
1973 
1974 /* append bytes to part_buf, only use during push */
1975 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
1976 {
1977 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
1978 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
1979 	host->part_buf_count += cnt;
1980 	return cnt;
1981 }
1982 
1983 /* pull first bytes from part_buf, only use during pull */
1984 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
1985 {
1986 	cnt = min_t(int, cnt, host->part_buf_count);
1987 	if (cnt) {
1988 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
1989 		       cnt);
1990 		host->part_buf_count -= cnt;
1991 		host->part_buf_start += cnt;
1992 	}
1993 	return cnt;
1994 }
1995 
1996 /* pull final bytes from the part_buf, assuming it's just been filled */
1997 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
1998 {
1999 	memcpy(buf, &host->part_buf, cnt);
2000 	host->part_buf_start = cnt;
2001 	host->part_buf_count = (1 << host->data_shift) - cnt;
2002 }
2003 
2004 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2005 {
2006 	struct mmc_data *data = host->data;
2007 	int init_cnt = cnt;
2008 
2009 	/* try and push anything in the part_buf */
2010 	if (unlikely(host->part_buf_count)) {
2011 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2012 
2013 		buf += len;
2014 		cnt -= len;
2015 		if (host->part_buf_count == 2) {
2016 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2017 			host->part_buf_count = 0;
2018 		}
2019 	}
2020 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2021 	if (unlikely((unsigned long)buf & 0x1)) {
2022 		while (cnt >= 2) {
2023 			u16 aligned_buf[64];
2024 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2025 			int items = len >> 1;
2026 			int i;
2027 			/* memcpy from input buffer into aligned buffer */
2028 			memcpy(aligned_buf, buf, len);
2029 			buf += len;
2030 			cnt -= len;
2031 			/* push data from aligned buffer into fifo */
2032 			for (i = 0; i < items; ++i)
2033 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2034 		}
2035 	} else
2036 #endif
2037 	{
2038 		u16 *pdata = buf;
2039 
2040 		for (; cnt >= 2; cnt -= 2)
2041 			mci_fifo_writew(host->fifo_reg, *pdata++);
2042 		buf = pdata;
2043 	}
2044 	/* put anything remaining in the part_buf */
2045 	if (cnt) {
2046 		dw_mci_set_part_bytes(host, buf, cnt);
2047 		 /* Push data if we have reached the expected data length */
2048 		if ((data->bytes_xfered + init_cnt) ==
2049 		    (data->blksz * data->blocks))
2050 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2051 	}
2052 }
2053 
2054 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2055 {
2056 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2057 	if (unlikely((unsigned long)buf & 0x1)) {
2058 		while (cnt >= 2) {
2059 			/* pull data from fifo into aligned buffer */
2060 			u16 aligned_buf[64];
2061 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2062 			int items = len >> 1;
2063 			int i;
2064 
2065 			for (i = 0; i < items; ++i)
2066 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2067 			/* memcpy from aligned buffer into output buffer */
2068 			memcpy(buf, aligned_buf, len);
2069 			buf += len;
2070 			cnt -= len;
2071 		}
2072 	} else
2073 #endif
2074 	{
2075 		u16 *pdata = buf;
2076 
2077 		for (; cnt >= 2; cnt -= 2)
2078 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2079 		buf = pdata;
2080 	}
2081 	if (cnt) {
2082 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2083 		dw_mci_pull_final_bytes(host, buf, cnt);
2084 	}
2085 }
2086 
2087 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2088 {
2089 	struct mmc_data *data = host->data;
2090 	int init_cnt = cnt;
2091 
2092 	/* try and push anything in the part_buf */
2093 	if (unlikely(host->part_buf_count)) {
2094 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2095 
2096 		buf += len;
2097 		cnt -= len;
2098 		if (host->part_buf_count == 4) {
2099 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2100 			host->part_buf_count = 0;
2101 		}
2102 	}
2103 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2104 	if (unlikely((unsigned long)buf & 0x3)) {
2105 		while (cnt >= 4) {
2106 			u32 aligned_buf[32];
2107 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2108 			int items = len >> 2;
2109 			int i;
2110 			/* memcpy from input buffer into aligned buffer */
2111 			memcpy(aligned_buf, buf, len);
2112 			buf += len;
2113 			cnt -= len;
2114 			/* push data from aligned buffer into fifo */
2115 			for (i = 0; i < items; ++i)
2116 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2117 		}
2118 	} else
2119 #endif
2120 	{
2121 		u32 *pdata = buf;
2122 
2123 		for (; cnt >= 4; cnt -= 4)
2124 			mci_fifo_writel(host->fifo_reg, *pdata++);
2125 		buf = pdata;
2126 	}
2127 	/* put anything remaining in the part_buf */
2128 	if (cnt) {
2129 		dw_mci_set_part_bytes(host, buf, cnt);
2130 		 /* Push data if we have reached the expected data length */
2131 		if ((data->bytes_xfered + init_cnt) ==
2132 		    (data->blksz * data->blocks))
2133 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2134 	}
2135 }
2136 
2137 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2138 {
2139 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2140 	if (unlikely((unsigned long)buf & 0x3)) {
2141 		while (cnt >= 4) {
2142 			/* pull data from fifo into aligned buffer */
2143 			u32 aligned_buf[32];
2144 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2145 			int items = len >> 2;
2146 			int i;
2147 
2148 			for (i = 0; i < items; ++i)
2149 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2150 			/* memcpy from aligned buffer into output buffer */
2151 			memcpy(buf, aligned_buf, len);
2152 			buf += len;
2153 			cnt -= len;
2154 		}
2155 	} else
2156 #endif
2157 	{
2158 		u32 *pdata = buf;
2159 
2160 		for (; cnt >= 4; cnt -= 4)
2161 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2162 		buf = pdata;
2163 	}
2164 	if (cnt) {
2165 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2166 		dw_mci_pull_final_bytes(host, buf, cnt);
2167 	}
2168 }
2169 
2170 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2171 {
2172 	struct mmc_data *data = host->data;
2173 	int init_cnt = cnt;
2174 
2175 	/* try and push anything in the part_buf */
2176 	if (unlikely(host->part_buf_count)) {
2177 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2178 
2179 		buf += len;
2180 		cnt -= len;
2181 
2182 		if (host->part_buf_count == 8) {
2183 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2184 			host->part_buf_count = 0;
2185 		}
2186 	}
2187 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2188 	if (unlikely((unsigned long)buf & 0x7)) {
2189 		while (cnt >= 8) {
2190 			u64 aligned_buf[16];
2191 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2192 			int items = len >> 3;
2193 			int i;
2194 			/* memcpy from input buffer into aligned buffer */
2195 			memcpy(aligned_buf, buf, len);
2196 			buf += len;
2197 			cnt -= len;
2198 			/* push data from aligned buffer into fifo */
2199 			for (i = 0; i < items; ++i)
2200 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2201 		}
2202 	} else
2203 #endif
2204 	{
2205 		u64 *pdata = buf;
2206 
2207 		for (; cnt >= 8; cnt -= 8)
2208 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2209 		buf = pdata;
2210 	}
2211 	/* put anything remaining in the part_buf */
2212 	if (cnt) {
2213 		dw_mci_set_part_bytes(host, buf, cnt);
2214 		/* Push data if we have reached the expected data length */
2215 		if ((data->bytes_xfered + init_cnt) ==
2216 		    (data->blksz * data->blocks))
2217 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2218 	}
2219 }
2220 
2221 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2222 {
2223 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2224 	if (unlikely((unsigned long)buf & 0x7)) {
2225 		while (cnt >= 8) {
2226 			/* pull data from fifo into aligned buffer */
2227 			u64 aligned_buf[16];
2228 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2229 			int items = len >> 3;
2230 			int i;
2231 
2232 			for (i = 0; i < items; ++i)
2233 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2234 
2235 			/* memcpy from aligned buffer into output buffer */
2236 			memcpy(buf, aligned_buf, len);
2237 			buf += len;
2238 			cnt -= len;
2239 		}
2240 	} else
2241 #endif
2242 	{
2243 		u64 *pdata = buf;
2244 
2245 		for (; cnt >= 8; cnt -= 8)
2246 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2247 		buf = pdata;
2248 	}
2249 	if (cnt) {
2250 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2251 		dw_mci_pull_final_bytes(host, buf, cnt);
2252 	}
2253 }
2254 
2255 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2256 {
2257 	int len;
2258 
2259 	/* get remaining partial bytes */
2260 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2261 	if (unlikely(len == cnt))
2262 		return;
2263 	buf += len;
2264 	cnt -= len;
2265 
2266 	/* get the rest of the data */
2267 	host->pull_data(host, buf, cnt);
2268 }
2269 
2270 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2271 {
2272 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2273 	void *buf;
2274 	unsigned int offset;
2275 	struct mmc_data	*data = host->data;
2276 	int shift = host->data_shift;
2277 	u32 status;
2278 	unsigned int len;
2279 	unsigned int remain, fcnt;
2280 
2281 	do {
2282 		if (!sg_miter_next(sg_miter))
2283 			goto done;
2284 
2285 		host->sg = sg_miter->piter.sg;
2286 		buf = sg_miter->addr;
2287 		remain = sg_miter->length;
2288 		offset = 0;
2289 
2290 		do {
2291 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2292 					<< shift) + host->part_buf_count;
2293 			len = min(remain, fcnt);
2294 			if (!len)
2295 				break;
2296 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2297 			data->bytes_xfered += len;
2298 			offset += len;
2299 			remain -= len;
2300 		} while (remain);
2301 
2302 		sg_miter->consumed = offset;
2303 		status = mci_readl(host, MINTSTS);
2304 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2305 	/* if the RXDR is ready read again */
2306 	} while ((status & SDMMC_INT_RXDR) ||
2307 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2308 
2309 	if (!remain) {
2310 		if (!sg_miter_next(sg_miter))
2311 			goto done;
2312 		sg_miter->consumed = 0;
2313 	}
2314 	sg_miter_stop(sg_miter);
2315 	return;
2316 
2317 done:
2318 	sg_miter_stop(sg_miter);
2319 	host->sg = NULL;
2320 	smp_wmb(); /* drain writebuffer */
2321 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2322 }
2323 
2324 static void dw_mci_write_data_pio(struct dw_mci *host)
2325 {
2326 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2327 	void *buf;
2328 	unsigned int offset;
2329 	struct mmc_data	*data = host->data;
2330 	int shift = host->data_shift;
2331 	u32 status;
2332 	unsigned int len;
2333 	unsigned int fifo_depth = host->fifo_depth;
2334 	unsigned int remain, fcnt;
2335 
2336 	do {
2337 		if (!sg_miter_next(sg_miter))
2338 			goto done;
2339 
2340 		host->sg = sg_miter->piter.sg;
2341 		buf = sg_miter->addr;
2342 		remain = sg_miter->length;
2343 		offset = 0;
2344 
2345 		do {
2346 			fcnt = ((fifo_depth -
2347 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2348 					<< shift) - host->part_buf_count;
2349 			len = min(remain, fcnt);
2350 			if (!len)
2351 				break;
2352 			host->push_data(host, (void *)(buf + offset), len);
2353 			data->bytes_xfered += len;
2354 			offset += len;
2355 			remain -= len;
2356 		} while (remain);
2357 
2358 		sg_miter->consumed = offset;
2359 		status = mci_readl(host, MINTSTS);
2360 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2361 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2362 
2363 	if (!remain) {
2364 		if (!sg_miter_next(sg_miter))
2365 			goto done;
2366 		sg_miter->consumed = 0;
2367 	}
2368 	sg_miter_stop(sg_miter);
2369 	return;
2370 
2371 done:
2372 	sg_miter_stop(sg_miter);
2373 	host->sg = NULL;
2374 	smp_wmb(); /* drain writebuffer */
2375 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2376 }
2377 
2378 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2379 {
2380 	if (!host->cmd_status)
2381 		host->cmd_status = status;
2382 
2383 	smp_wmb(); /* drain writebuffer */
2384 
2385 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2386 	tasklet_schedule(&host->tasklet);
2387 }
2388 
2389 static void dw_mci_handle_cd(struct dw_mci *host)
2390 {
2391 	int i;
2392 
2393 	for (i = 0; i < host->num_slots; i++) {
2394 		struct dw_mci_slot *slot = host->slot[i];
2395 
2396 		if (!slot)
2397 			continue;
2398 
2399 		if (slot->mmc->ops->card_event)
2400 			slot->mmc->ops->card_event(slot->mmc);
2401 		mmc_detect_change(slot->mmc,
2402 			msecs_to_jiffies(host->pdata->detect_delay_ms));
2403 	}
2404 }
2405 
2406 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2407 {
2408 	struct dw_mci *host = dev_id;
2409 	u32 pending;
2410 	int i;
2411 
2412 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2413 
2414 	if (pending) {
2415 		/* Check volt switch first, since it can look like an error */
2416 		if ((host->state == STATE_SENDING_CMD11) &&
2417 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2418 			unsigned long irqflags;
2419 
2420 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2421 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2422 
2423 			/*
2424 			 * Hold the lock; we know cmd11_timer can't be kicked
2425 			 * off after the lock is released, so safe to delete.
2426 			 */
2427 			spin_lock_irqsave(&host->irq_lock, irqflags);
2428 			dw_mci_cmd_interrupt(host, pending);
2429 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2430 
2431 			del_timer(&host->cmd11_timer);
2432 		}
2433 
2434 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2435 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2436 			host->cmd_status = pending;
2437 			smp_wmb(); /* drain writebuffer */
2438 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2439 		}
2440 
2441 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2442 			/* if there is an error report DATA_ERROR */
2443 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2444 			host->data_status = pending;
2445 			smp_wmb(); /* drain writebuffer */
2446 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2447 			tasklet_schedule(&host->tasklet);
2448 		}
2449 
2450 		if (pending & SDMMC_INT_DATA_OVER) {
2451 			del_timer(&host->dto_timer);
2452 
2453 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2454 			if (!host->data_status)
2455 				host->data_status = pending;
2456 			smp_wmb(); /* drain writebuffer */
2457 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2458 				if (host->sg != NULL)
2459 					dw_mci_read_data_pio(host, true);
2460 			}
2461 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2462 			tasklet_schedule(&host->tasklet);
2463 		}
2464 
2465 		if (pending & SDMMC_INT_RXDR) {
2466 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2467 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2468 				dw_mci_read_data_pio(host, false);
2469 		}
2470 
2471 		if (pending & SDMMC_INT_TXDR) {
2472 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2473 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2474 				dw_mci_write_data_pio(host);
2475 		}
2476 
2477 		if (pending & SDMMC_INT_CMD_DONE) {
2478 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2479 			dw_mci_cmd_interrupt(host, pending);
2480 		}
2481 
2482 		if (pending & SDMMC_INT_CD) {
2483 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2484 			dw_mci_handle_cd(host);
2485 		}
2486 
2487 		/* Handle SDIO Interrupts */
2488 		for (i = 0; i < host->num_slots; i++) {
2489 			struct dw_mci_slot *slot = host->slot[i];
2490 
2491 			if (!slot)
2492 				continue;
2493 
2494 			if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2495 				mci_writel(host, RINTSTS,
2496 					   SDMMC_INT_SDIO(slot->sdio_id));
2497 				mmc_signal_sdio_irq(slot->mmc);
2498 			}
2499 		}
2500 
2501 	}
2502 
2503 	if (host->use_dma != TRANS_MODE_IDMAC)
2504 		return IRQ_HANDLED;
2505 
2506 	/* Handle IDMA interrupts */
2507 	if (host->dma_64bit_address == 1) {
2508 		pending = mci_readl(host, IDSTS64);
2509 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2510 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2511 							SDMMC_IDMAC_INT_RI);
2512 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2513 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2514 				host->dma_ops->complete((void *)host);
2515 		}
2516 	} else {
2517 		pending = mci_readl(host, IDSTS);
2518 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2519 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2520 							SDMMC_IDMAC_INT_RI);
2521 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2522 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2523 				host->dma_ops->complete((void *)host);
2524 		}
2525 	}
2526 
2527 	return IRQ_HANDLED;
2528 }
2529 
2530 #ifdef CONFIG_OF
2531 /* given a slot, find out the device node representing that slot */
2532 static struct device_node *dw_mci_of_find_slot_node(struct dw_mci_slot *slot)
2533 {
2534 	struct device *dev = slot->mmc->parent;
2535 	struct device_node *np;
2536 	const __be32 *addr;
2537 	int len;
2538 
2539 	if (!dev || !dev->of_node)
2540 		return NULL;
2541 
2542 	for_each_child_of_node(dev->of_node, np) {
2543 		addr = of_get_property(np, "reg", &len);
2544 		if (!addr || (len < sizeof(int)))
2545 			continue;
2546 		if (be32_to_cpup(addr) == slot->id)
2547 			return np;
2548 	}
2549 	return NULL;
2550 }
2551 
2552 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2553 {
2554 	struct device_node *np = dw_mci_of_find_slot_node(slot);
2555 
2556 	if (!np)
2557 		return;
2558 
2559 	if (of_property_read_bool(np, "disable-wp")) {
2560 		slot->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
2561 		dev_warn(slot->mmc->parent,
2562 			"Slot quirk 'disable-wp' is deprecated\n");
2563 	}
2564 }
2565 #else /* CONFIG_OF */
2566 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2567 {
2568 }
2569 #endif /* CONFIG_OF */
2570 
2571 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2572 {
2573 	struct mmc_host *mmc;
2574 	struct dw_mci_slot *slot;
2575 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2576 	int ctrl_id, ret;
2577 	u32 freq[2];
2578 
2579 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2580 	if (!mmc)
2581 		return -ENOMEM;
2582 
2583 	slot = mmc_priv(mmc);
2584 	slot->id = id;
2585 	slot->sdio_id = host->sdio_id0 + id;
2586 	slot->mmc = mmc;
2587 	slot->host = host;
2588 	host->slot[id] = slot;
2589 
2590 	mmc->ops = &dw_mci_ops;
2591 	if (of_property_read_u32_array(host->dev->of_node,
2592 				       "clock-freq-min-max", freq, 2)) {
2593 		mmc->f_min = DW_MCI_FREQ_MIN;
2594 		mmc->f_max = DW_MCI_FREQ_MAX;
2595 	} else {
2596 		mmc->f_min = freq[0];
2597 		mmc->f_max = freq[1];
2598 	}
2599 
2600 	/*if there are external regulators, get them*/
2601 	ret = mmc_regulator_get_supply(mmc);
2602 	if (ret == -EPROBE_DEFER)
2603 		goto err_host_allocated;
2604 
2605 	if (!mmc->ocr_avail)
2606 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2607 
2608 	if (host->pdata->caps)
2609 		mmc->caps = host->pdata->caps;
2610 
2611 	/*
2612 	 * Support MMC_CAP_ERASE by default.
2613 	 * It needs to use trim/discard/erase commands.
2614 	 */
2615 	mmc->caps |= MMC_CAP_ERASE;
2616 
2617 	if (host->pdata->pm_caps)
2618 		mmc->pm_caps = host->pdata->pm_caps;
2619 
2620 	if (host->dev->of_node) {
2621 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2622 		if (ctrl_id < 0)
2623 			ctrl_id = 0;
2624 	} else {
2625 		ctrl_id = to_platform_device(host->dev)->id;
2626 	}
2627 	if (drv_data && drv_data->caps)
2628 		mmc->caps |= drv_data->caps[ctrl_id];
2629 
2630 	if (host->pdata->caps2)
2631 		mmc->caps2 = host->pdata->caps2;
2632 
2633 	dw_mci_slot_of_parse(slot);
2634 
2635 	ret = mmc_of_parse(mmc);
2636 	if (ret)
2637 		goto err_host_allocated;
2638 
2639 	/* Useful defaults if platform data is unset. */
2640 	if (host->use_dma == TRANS_MODE_IDMAC) {
2641 		mmc->max_segs = host->ring_size;
2642 		mmc->max_blk_size = 65535;
2643 		mmc->max_seg_size = 0x1000;
2644 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2645 		mmc->max_blk_count = mmc->max_req_size / 512;
2646 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2647 		mmc->max_segs = 64;
2648 		mmc->max_blk_size = 65535;
2649 		mmc->max_blk_count = 65535;
2650 		mmc->max_req_size =
2651 				mmc->max_blk_size * mmc->max_blk_count;
2652 		mmc->max_seg_size = mmc->max_req_size;
2653 	} else {
2654 		/* TRANS_MODE_PIO */
2655 		mmc->max_segs = 64;
2656 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2657 		mmc->max_blk_count = 512;
2658 		mmc->max_req_size = mmc->max_blk_size *
2659 				    mmc->max_blk_count;
2660 		mmc->max_seg_size = mmc->max_req_size;
2661 	}
2662 
2663 	dw_mci_get_cd(mmc);
2664 
2665 	ret = mmc_add_host(mmc);
2666 	if (ret)
2667 		goto err_host_allocated;
2668 
2669 #if defined(CONFIG_DEBUG_FS)
2670 	dw_mci_init_debugfs(slot);
2671 #endif
2672 
2673 	return 0;
2674 
2675 err_host_allocated:
2676 	mmc_free_host(mmc);
2677 	return ret;
2678 }
2679 
2680 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2681 {
2682 	/* Debugfs stuff is cleaned up by mmc core */
2683 	mmc_remove_host(slot->mmc);
2684 	slot->host->slot[id] = NULL;
2685 	mmc_free_host(slot->mmc);
2686 }
2687 
2688 static void dw_mci_init_dma(struct dw_mci *host)
2689 {
2690 	int addr_config;
2691 	struct device *dev = host->dev;
2692 	struct device_node *np = dev->of_node;
2693 
2694 	/*
2695 	* Check tansfer mode from HCON[17:16]
2696 	* Clear the ambiguous description of dw_mmc databook:
2697 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2698 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2699 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2700 	* 2b'11: Non DW DMA Interface -> pio only
2701 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2702 	* simpler request/acknowledge handshake mechanism and both of them
2703 	* are regarded as external dma master for dw_mmc.
2704 	*/
2705 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2706 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2707 		host->use_dma = TRANS_MODE_IDMAC;
2708 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2709 		   host->use_dma == DMA_INTERFACE_GDMA) {
2710 		host->use_dma = TRANS_MODE_EDMAC;
2711 	} else {
2712 		goto no_dma;
2713 	}
2714 
2715 	/* Determine which DMA interface to use */
2716 	if (host->use_dma == TRANS_MODE_IDMAC) {
2717 		/*
2718 		* Check ADDR_CONFIG bit in HCON to find
2719 		* IDMAC address bus width
2720 		*/
2721 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2722 
2723 		if (addr_config == 1) {
2724 			/* host supports IDMAC in 64-bit address mode */
2725 			host->dma_64bit_address = 1;
2726 			dev_info(host->dev,
2727 				 "IDMAC supports 64-bit address mode.\n");
2728 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2729 				dma_set_coherent_mask(host->dev,
2730 						      DMA_BIT_MASK(64));
2731 		} else {
2732 			/* host supports IDMAC in 32-bit address mode */
2733 			host->dma_64bit_address = 0;
2734 			dev_info(host->dev,
2735 				 "IDMAC supports 32-bit address mode.\n");
2736 		}
2737 
2738 		/* Alloc memory for sg translation */
2739 		host->sg_cpu = dmam_alloc_coherent(host->dev, PAGE_SIZE,
2740 						   &host->sg_dma, GFP_KERNEL);
2741 		if (!host->sg_cpu) {
2742 			dev_err(host->dev,
2743 				"%s: could not alloc DMA memory\n",
2744 				__func__);
2745 			goto no_dma;
2746 		}
2747 
2748 		host->dma_ops = &dw_mci_idmac_ops;
2749 		dev_info(host->dev, "Using internal DMA controller.\n");
2750 	} else {
2751 		/* TRANS_MODE_EDMAC: check dma bindings again */
2752 		if ((of_property_count_strings(np, "dma-names") < 0) ||
2753 		    (!of_find_property(np, "dmas", NULL))) {
2754 			goto no_dma;
2755 		}
2756 		host->dma_ops = &dw_mci_edmac_ops;
2757 		dev_info(host->dev, "Using external DMA controller.\n");
2758 	}
2759 
2760 	if (host->dma_ops->init && host->dma_ops->start &&
2761 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2762 		if (host->dma_ops->init(host)) {
2763 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2764 				__func__);
2765 			goto no_dma;
2766 		}
2767 	} else {
2768 		dev_err(host->dev, "DMA initialization not found.\n");
2769 		goto no_dma;
2770 	}
2771 
2772 	return;
2773 
2774 no_dma:
2775 	dev_info(host->dev, "Using PIO mode.\n");
2776 	host->use_dma = TRANS_MODE_PIO;
2777 }
2778 
2779 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2780 {
2781 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
2782 	u32 ctrl;
2783 
2784 	ctrl = mci_readl(host, CTRL);
2785 	ctrl |= reset;
2786 	mci_writel(host, CTRL, ctrl);
2787 
2788 	/* wait till resets clear */
2789 	do {
2790 		ctrl = mci_readl(host, CTRL);
2791 		if (!(ctrl & reset))
2792 			return true;
2793 	} while (time_before(jiffies, timeout));
2794 
2795 	dev_err(host->dev,
2796 		"Timeout resetting block (ctrl reset %#x)\n",
2797 		ctrl & reset);
2798 
2799 	return false;
2800 }
2801 
2802 static bool dw_mci_reset(struct dw_mci *host)
2803 {
2804 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2805 	bool ret = false;
2806 
2807 	/*
2808 	 * Reseting generates a block interrupt, hence setting
2809 	 * the scatter-gather pointer to NULL.
2810 	 */
2811 	if (host->sg) {
2812 		sg_miter_stop(&host->sg_miter);
2813 		host->sg = NULL;
2814 	}
2815 
2816 	if (host->use_dma)
2817 		flags |= SDMMC_CTRL_DMA_RESET;
2818 
2819 	if (dw_mci_ctrl_reset(host, flags)) {
2820 		/*
2821 		 * In all cases we clear the RAWINTS register to clear any
2822 		 * interrupts.
2823 		 */
2824 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
2825 
2826 		/* if using dma we wait for dma_req to clear */
2827 		if (host->use_dma) {
2828 			unsigned long timeout = jiffies + msecs_to_jiffies(500);
2829 			u32 status;
2830 
2831 			do {
2832 				status = mci_readl(host, STATUS);
2833 				if (!(status & SDMMC_STATUS_DMA_REQ))
2834 					break;
2835 				cpu_relax();
2836 			} while (time_before(jiffies, timeout));
2837 
2838 			if (status & SDMMC_STATUS_DMA_REQ) {
2839 				dev_err(host->dev,
2840 					"%s: Timeout waiting for dma_req to clear during reset\n",
2841 					__func__);
2842 				goto ciu_out;
2843 			}
2844 
2845 			/* when using DMA next we reset the fifo again */
2846 			if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2847 				goto ciu_out;
2848 		}
2849 	} else {
2850 		/* if the controller reset bit did clear, then set clock regs */
2851 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2852 			dev_err(host->dev,
2853 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2854 				__func__);
2855 			goto ciu_out;
2856 		}
2857 	}
2858 
2859 	if (host->use_dma == TRANS_MODE_IDMAC)
2860 		/* It is also recommended that we reset and reprogram idmac */
2861 		dw_mci_idmac_reset(host);
2862 
2863 	ret = true;
2864 
2865 ciu_out:
2866 	/* After a CTRL reset we need to have CIU set clock registers  */
2867 	mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2868 
2869 	return ret;
2870 }
2871 
2872 static void dw_mci_cmd11_timer(unsigned long arg)
2873 {
2874 	struct dw_mci *host = (struct dw_mci *)arg;
2875 
2876 	if (host->state != STATE_SENDING_CMD11) {
2877 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2878 		return;
2879 	}
2880 
2881 	host->cmd_status = SDMMC_INT_RTO;
2882 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2883 	tasklet_schedule(&host->tasklet);
2884 }
2885 
2886 static void dw_mci_dto_timer(unsigned long arg)
2887 {
2888 	struct dw_mci *host = (struct dw_mci *)arg;
2889 
2890 	switch (host->state) {
2891 	case STATE_SENDING_DATA:
2892 	case STATE_DATA_BUSY:
2893 		/*
2894 		 * If DTO interrupt does NOT come in sending data state,
2895 		 * we should notify the driver to terminate current transfer
2896 		 * and report a data timeout to the core.
2897 		 */
2898 		host->data_status = SDMMC_INT_DRTO;
2899 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
2900 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2901 		tasklet_schedule(&host->tasklet);
2902 		break;
2903 	default:
2904 		break;
2905 	}
2906 }
2907 
2908 #ifdef CONFIG_OF
2909 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2910 {
2911 	struct dw_mci_board *pdata;
2912 	struct device *dev = host->dev;
2913 	struct device_node *np = dev->of_node;
2914 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2915 	int ret;
2916 	u32 clock_frequency;
2917 
2918 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2919 	if (!pdata)
2920 		return ERR_PTR(-ENOMEM);
2921 
2922 	/* find out number of slots supported */
2923 	of_property_read_u32(np, "num-slots", &pdata->num_slots);
2924 
2925 	if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2926 		dev_info(dev,
2927 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
2928 
2929 	of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2930 
2931 	if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2932 		pdata->bus_hz = clock_frequency;
2933 
2934 	if (drv_data && drv_data->parse_dt) {
2935 		ret = drv_data->parse_dt(host);
2936 		if (ret)
2937 			return ERR_PTR(ret);
2938 	}
2939 
2940 	if (of_find_property(np, "supports-highspeed", NULL)) {
2941 		dev_info(dev, "supports-highspeed property is deprecated.\n");
2942 		pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
2943 	}
2944 
2945 	return pdata;
2946 }
2947 
2948 #else /* CONFIG_OF */
2949 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2950 {
2951 	return ERR_PTR(-EINVAL);
2952 }
2953 #endif /* CONFIG_OF */
2954 
2955 static void dw_mci_enable_cd(struct dw_mci *host)
2956 {
2957 	unsigned long irqflags;
2958 	u32 temp;
2959 	int i;
2960 	struct dw_mci_slot *slot;
2961 
2962 	/*
2963 	 * No need for CD if all slots have a non-error GPIO
2964 	 * as well as broken card detection is found.
2965 	 */
2966 	for (i = 0; i < host->num_slots; i++) {
2967 		slot = host->slot[i];
2968 		if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
2969 			return;
2970 
2971 		if (mmc_gpio_get_cd(slot->mmc) < 0)
2972 			break;
2973 	}
2974 	if (i == host->num_slots)
2975 		return;
2976 
2977 	spin_lock_irqsave(&host->irq_lock, irqflags);
2978 	temp = mci_readl(host, INTMASK);
2979 	temp  |= SDMMC_INT_CD;
2980 	mci_writel(host, INTMASK, temp);
2981 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
2982 }
2983 
2984 int dw_mci_probe(struct dw_mci *host)
2985 {
2986 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2987 	int width, i, ret = 0;
2988 	u32 fifo_size;
2989 	int init_slots = 0;
2990 
2991 	if (!host->pdata) {
2992 		host->pdata = dw_mci_parse_dt(host);
2993 		if (IS_ERR(host->pdata)) {
2994 			dev_err(host->dev, "platform data not available\n");
2995 			return -EINVAL;
2996 		}
2997 	}
2998 
2999 	host->biu_clk = devm_clk_get(host->dev, "biu");
3000 	if (IS_ERR(host->biu_clk)) {
3001 		dev_dbg(host->dev, "biu clock not available\n");
3002 	} else {
3003 		ret = clk_prepare_enable(host->biu_clk);
3004 		if (ret) {
3005 			dev_err(host->dev, "failed to enable biu clock\n");
3006 			return ret;
3007 		}
3008 	}
3009 
3010 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3011 	if (IS_ERR(host->ciu_clk)) {
3012 		dev_dbg(host->dev, "ciu clock not available\n");
3013 		host->bus_hz = host->pdata->bus_hz;
3014 	} else {
3015 		ret = clk_prepare_enable(host->ciu_clk);
3016 		if (ret) {
3017 			dev_err(host->dev, "failed to enable ciu clock\n");
3018 			goto err_clk_biu;
3019 		}
3020 
3021 		if (host->pdata->bus_hz) {
3022 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3023 			if (ret)
3024 				dev_warn(host->dev,
3025 					 "Unable to set bus rate to %uHz\n",
3026 					 host->pdata->bus_hz);
3027 		}
3028 		host->bus_hz = clk_get_rate(host->ciu_clk);
3029 	}
3030 
3031 	if (!host->bus_hz) {
3032 		dev_err(host->dev,
3033 			"Platform data must supply bus speed\n");
3034 		ret = -ENODEV;
3035 		goto err_clk_ciu;
3036 	}
3037 
3038 	if (drv_data && drv_data->init) {
3039 		ret = drv_data->init(host);
3040 		if (ret) {
3041 			dev_err(host->dev,
3042 				"implementation specific init failed\n");
3043 			goto err_clk_ciu;
3044 		}
3045 	}
3046 
3047 	setup_timer(&host->cmd11_timer,
3048 		    dw_mci_cmd11_timer, (unsigned long)host);
3049 
3050 	setup_timer(&host->dto_timer,
3051 		    dw_mci_dto_timer, (unsigned long)host);
3052 
3053 	spin_lock_init(&host->lock);
3054 	spin_lock_init(&host->irq_lock);
3055 	INIT_LIST_HEAD(&host->queue);
3056 
3057 	/*
3058 	 * Get the host data width - this assumes that HCON has been set with
3059 	 * the correct values.
3060 	 */
3061 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3062 	if (!i) {
3063 		host->push_data = dw_mci_push_data16;
3064 		host->pull_data = dw_mci_pull_data16;
3065 		width = 16;
3066 		host->data_shift = 1;
3067 	} else if (i == 2) {
3068 		host->push_data = dw_mci_push_data64;
3069 		host->pull_data = dw_mci_pull_data64;
3070 		width = 64;
3071 		host->data_shift = 3;
3072 	} else {
3073 		/* Check for a reserved value, and warn if it is */
3074 		WARN((i != 1),
3075 		     "HCON reports a reserved host data width!\n"
3076 		     "Defaulting to 32-bit access.\n");
3077 		host->push_data = dw_mci_push_data32;
3078 		host->pull_data = dw_mci_pull_data32;
3079 		width = 32;
3080 		host->data_shift = 2;
3081 	}
3082 
3083 	/* Reset all blocks */
3084 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3085 		ret = -ENODEV;
3086 		goto err_clk_ciu;
3087 	}
3088 
3089 	host->dma_ops = host->pdata->dma_ops;
3090 	dw_mci_init_dma(host);
3091 
3092 	/* Clear the interrupts for the host controller */
3093 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3094 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3095 
3096 	/* Put in max timeout */
3097 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3098 
3099 	/*
3100 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3101 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3102 	 */
3103 	if (!host->pdata->fifo_depth) {
3104 		/*
3105 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3106 		 * have been overwritten by the bootloader, just like we're
3107 		 * about to do, so if you know the value for your hardware, you
3108 		 * should put it in the platform data.
3109 		 */
3110 		fifo_size = mci_readl(host, FIFOTH);
3111 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3112 	} else {
3113 		fifo_size = host->pdata->fifo_depth;
3114 	}
3115 	host->fifo_depth = fifo_size;
3116 	host->fifoth_val =
3117 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3118 	mci_writel(host, FIFOTH, host->fifoth_val);
3119 
3120 	/* disable clock to CIU */
3121 	mci_writel(host, CLKENA, 0);
3122 	mci_writel(host, CLKSRC, 0);
3123 
3124 	/*
3125 	 * In 2.40a spec, Data offset is changed.
3126 	 * Need to check the version-id and set data-offset for DATA register.
3127 	 */
3128 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3129 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3130 
3131 	if (host->verid < DW_MMC_240A)
3132 		host->fifo_reg = host->regs + DATA_OFFSET;
3133 	else
3134 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3135 
3136 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3137 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3138 			       host->irq_flags, "dw-mci", host);
3139 	if (ret)
3140 		goto err_dmaunmap;
3141 
3142 	if (host->pdata->num_slots)
3143 		host->num_slots = host->pdata->num_slots;
3144 	else
3145 		host->num_slots = 1;
3146 
3147 	if (host->num_slots < 1 ||
3148 	    host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3149 		dev_err(host->dev,
3150 			"Platform data must supply correct num_slots.\n");
3151 		ret = -ENODEV;
3152 		goto err_clk_ciu;
3153 	}
3154 
3155 	/*
3156 	 * Enable interrupts for command done, data over, data empty,
3157 	 * receive ready and error such as transmit, receive timeout, crc error
3158 	 */
3159 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3160 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3161 		   DW_MCI_ERROR_FLAGS);
3162 	/* Enable mci interrupt */
3163 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3164 
3165 	dev_info(host->dev,
3166 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3167 		 host->irq, width, fifo_size);
3168 
3169 	/* We need at least one slot to succeed */
3170 	for (i = 0; i < host->num_slots; i++) {
3171 		ret = dw_mci_init_slot(host, i);
3172 		if (ret)
3173 			dev_dbg(host->dev, "slot %d init failed\n", i);
3174 		else
3175 			init_slots++;
3176 	}
3177 
3178 	if (init_slots) {
3179 		dev_info(host->dev, "%d slots initialized\n", init_slots);
3180 	} else {
3181 		dev_dbg(host->dev,
3182 			"attempted to initialize %d slots, but failed on all\n",
3183 			host->num_slots);
3184 		goto err_dmaunmap;
3185 	}
3186 
3187 	/* Now that slots are all setup, we can enable card detect */
3188 	dw_mci_enable_cd(host);
3189 
3190 	return 0;
3191 
3192 err_dmaunmap:
3193 	if (host->use_dma && host->dma_ops->exit)
3194 		host->dma_ops->exit(host);
3195 
3196 err_clk_ciu:
3197 	if (!IS_ERR(host->ciu_clk))
3198 		clk_disable_unprepare(host->ciu_clk);
3199 
3200 err_clk_biu:
3201 	if (!IS_ERR(host->biu_clk))
3202 		clk_disable_unprepare(host->biu_clk);
3203 
3204 	return ret;
3205 }
3206 EXPORT_SYMBOL(dw_mci_probe);
3207 
3208 void dw_mci_remove(struct dw_mci *host)
3209 {
3210 	int i;
3211 
3212 	for (i = 0; i < host->num_slots; i++) {
3213 		dev_dbg(host->dev, "remove slot %d\n", i);
3214 		if (host->slot[i])
3215 			dw_mci_cleanup_slot(host->slot[i], i);
3216 	}
3217 
3218 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3219 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3220 
3221 	/* disable clock to CIU */
3222 	mci_writel(host, CLKENA, 0);
3223 	mci_writel(host, CLKSRC, 0);
3224 
3225 	if (host->use_dma && host->dma_ops->exit)
3226 		host->dma_ops->exit(host);
3227 
3228 	if (!IS_ERR(host->ciu_clk))
3229 		clk_disable_unprepare(host->ciu_clk);
3230 
3231 	if (!IS_ERR(host->biu_clk))
3232 		clk_disable_unprepare(host->biu_clk);
3233 }
3234 EXPORT_SYMBOL(dw_mci_remove);
3235 
3236 
3237 
3238 #ifdef CONFIG_PM_SLEEP
3239 /*
3240  * TODO: we should probably disable the clock to the card in the suspend path.
3241  */
3242 int dw_mci_suspend(struct dw_mci *host)
3243 {
3244 	if (host->use_dma && host->dma_ops->exit)
3245 		host->dma_ops->exit(host);
3246 
3247 	return 0;
3248 }
3249 EXPORT_SYMBOL(dw_mci_suspend);
3250 
3251 int dw_mci_resume(struct dw_mci *host)
3252 {
3253 	int i, ret;
3254 
3255 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3256 		ret = -ENODEV;
3257 		return ret;
3258 	}
3259 
3260 	if (host->use_dma && host->dma_ops->init)
3261 		host->dma_ops->init(host);
3262 
3263 	/*
3264 	 * Restore the initial value at FIFOTH register
3265 	 * And Invalidate the prev_blksz with zero
3266 	 */
3267 	mci_writel(host, FIFOTH, host->fifoth_val);
3268 	host->prev_blksz = 0;
3269 
3270 	/* Put in max timeout */
3271 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3272 
3273 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3274 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3275 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3276 		   DW_MCI_ERROR_FLAGS);
3277 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3278 
3279 	for (i = 0; i < host->num_slots; i++) {
3280 		struct dw_mci_slot *slot = host->slot[i];
3281 
3282 		if (!slot)
3283 			continue;
3284 		if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3285 			dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3286 			dw_mci_setup_bus(slot, true);
3287 		}
3288 	}
3289 
3290 	/* Now that slots are all setup, we can enable card detect */
3291 	dw_mci_enable_cd(host);
3292 
3293 	return 0;
3294 }
3295 EXPORT_SYMBOL(dw_mci_resume);
3296 #endif /* CONFIG_PM_SLEEP */
3297 
3298 static int __init dw_mci_init(void)
3299 {
3300 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3301 	return 0;
3302 }
3303 
3304 static void __exit dw_mci_exit(void)
3305 {
3306 }
3307 
3308 module_init(dw_mci_init);
3309 module_exit(dw_mci_exit);
3310 
3311 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3312 MODULE_AUTHOR("NXP Semiconductor VietNam");
3313 MODULE_AUTHOR("Imagination Technologies Ltd");
3314 MODULE_LICENSE("GPL v2");
3315