1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Synopsys DesignWare Multimedia Card Interface driver 4 * (Based on NXP driver for lpc 31xx) 5 * 6 * Copyright (C) 2009 NXP Semiconductors 7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd. 8 */ 9 10 #include <linux/blkdev.h> 11 #include <linux/clk.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/iopoll.h> 19 #include <linux/ioport.h> 20 #include <linux/ktime.h> 21 #include <linux/module.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/prandom.h> 25 #include <linux/seq_file.h> 26 #include <linux/slab.h> 27 #include <linux/stat.h> 28 #include <linux/delay.h> 29 #include <linux/irq.h> 30 #include <linux/mmc/card.h> 31 #include <linux/mmc/host.h> 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/sd.h> 34 #include <linux/mmc/sdio.h> 35 #include <linux/bitops.h> 36 #include <linux/regulator/consumer.h> 37 #include <linux/of.h> 38 #include <linux/mmc/slot-gpio.h> 39 40 #include "dw_mmc.h" 41 42 /* Common flag combinations */ 43 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \ 44 SDMMC_INT_HTO | SDMMC_INT_SBE | \ 45 SDMMC_INT_EBE | SDMMC_INT_HLE) 46 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \ 47 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE) 48 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \ 49 DW_MCI_CMD_ERROR_FLAGS) 50 #define DW_MCI_SEND_STATUS 1 51 #define DW_MCI_RECV_STATUS 2 52 #define DW_MCI_DMA_THRESHOLD 16 53 54 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */ 55 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */ 56 57 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \ 58 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \ 59 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \ 60 SDMMC_IDMAC_INT_TI) 61 62 #define DESC_RING_BUF_SZ PAGE_SIZE 63 64 struct idmac_desc_64addr { 65 u32 des0; /* Control Descriptor */ 66 #define IDMAC_OWN_CLR64(x) \ 67 !((x) & cpu_to_le32(IDMAC_DES0_OWN)) 68 69 u32 des1; /* Reserved */ 70 71 u32 des2; /*Buffer sizes */ 72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \ 73 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \ 74 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff))) 75 76 u32 des3; /* Reserved */ 77 78 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/ 79 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/ 80 81 u32 des6; /* Lower 32-bits of Next Descriptor Address */ 82 u32 des7; /* Upper 32-bits of Next Descriptor Address */ 83 }; 84 85 struct idmac_desc { 86 __le32 des0; /* Control Descriptor */ 87 #define IDMAC_DES0_DIC BIT(1) 88 #define IDMAC_DES0_LD BIT(2) 89 #define IDMAC_DES0_FD BIT(3) 90 #define IDMAC_DES0_CH BIT(4) 91 #define IDMAC_DES0_ER BIT(5) 92 #define IDMAC_DES0_CES BIT(30) 93 #define IDMAC_DES0_OWN BIT(31) 94 95 __le32 des1; /* Buffer sizes */ 96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \ 97 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff))) 98 99 __le32 des2; /* buffer 1 physical address */ 100 101 __le32 des3; /* buffer 2 physical address */ 102 }; 103 104 /* Each descriptor can transfer up to 4KB of data in chained mode */ 105 #define DW_MCI_DESC_DATA_LENGTH 0x1000 106 107 #if defined(CONFIG_DEBUG_FS) 108 static int dw_mci_req_show(struct seq_file *s, void *v) 109 { 110 struct dw_mci_slot *slot = s->private; 111 struct mmc_request *mrq; 112 struct mmc_command *cmd; 113 struct mmc_command *stop; 114 struct mmc_data *data; 115 116 /* Make sure we get a consistent snapshot */ 117 spin_lock_bh(&slot->host->lock); 118 mrq = slot->mrq; 119 120 if (mrq) { 121 cmd = mrq->cmd; 122 data = mrq->data; 123 stop = mrq->stop; 124 125 if (cmd) 126 seq_printf(s, 127 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 128 cmd->opcode, cmd->arg, cmd->flags, 129 cmd->resp[0], cmd->resp[1], cmd->resp[2], 130 cmd->resp[2], cmd->error); 131 if (data) 132 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n", 133 data->bytes_xfered, data->blocks, 134 data->blksz, data->flags, data->error); 135 if (stop) 136 seq_printf(s, 137 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 138 stop->opcode, stop->arg, stop->flags, 139 stop->resp[0], stop->resp[1], stop->resp[2], 140 stop->resp[2], stop->error); 141 } 142 143 spin_unlock_bh(&slot->host->lock); 144 145 return 0; 146 } 147 DEFINE_SHOW_ATTRIBUTE(dw_mci_req); 148 149 static int dw_mci_regs_show(struct seq_file *s, void *v) 150 { 151 struct dw_mci *host = s->private; 152 153 pm_runtime_get_sync(host->dev); 154 155 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS)); 156 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS)); 157 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD)); 158 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL)); 159 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK)); 160 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA)); 161 162 pm_runtime_put_autosuspend(host->dev); 163 164 return 0; 165 } 166 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs); 167 168 static void dw_mci_init_debugfs(struct dw_mci_slot *slot) 169 { 170 struct mmc_host *mmc = slot->mmc; 171 struct dw_mci *host = slot->host; 172 struct dentry *root; 173 174 root = mmc->debugfs_root; 175 if (!root) 176 return; 177 178 debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops); 179 debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops); 180 debugfs_create_u32("state", S_IRUSR, root, &host->state); 181 debugfs_create_xul("pending_events", S_IRUSR, root, 182 &host->pending_events); 183 debugfs_create_xul("completed_events", S_IRUSR, root, 184 &host->completed_events); 185 #ifdef CONFIG_FAULT_INJECTION 186 fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc); 187 #endif 188 } 189 #endif /* defined(CONFIG_DEBUG_FS) */ 190 191 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset) 192 { 193 u32 ctrl; 194 195 ctrl = mci_readl(host, CTRL); 196 ctrl |= reset; 197 mci_writel(host, CTRL, ctrl); 198 199 /* wait till resets clear */ 200 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl, 201 !(ctrl & reset), 202 1, 500 * USEC_PER_MSEC)) { 203 dev_err(host->dev, 204 "Timeout resetting block (ctrl reset %#x)\n", 205 ctrl & reset); 206 return false; 207 } 208 209 return true; 210 } 211 212 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags) 213 { 214 u32 status; 215 216 /* 217 * Databook says that before issuing a new data transfer command 218 * we need to check to see if the card is busy. Data transfer commands 219 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that. 220 * 221 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is 222 * expected. 223 */ 224 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) && 225 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) { 226 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS, 227 status, 228 !(status & SDMMC_STATUS_BUSY), 229 10, 500 * USEC_PER_MSEC)) 230 dev_err(host->dev, "Busy; trying anyway\n"); 231 } 232 } 233 234 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg) 235 { 236 struct dw_mci *host = slot->host; 237 unsigned int cmd_status = 0; 238 239 mci_writel(host, CMDARG, arg); 240 wmb(); /* drain writebuffer */ 241 dw_mci_wait_while_busy(host, cmd); 242 mci_writel(host, CMD, SDMMC_CMD_START | cmd); 243 244 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status, 245 !(cmd_status & SDMMC_CMD_START), 246 1, 500 * USEC_PER_MSEC)) 247 dev_err(&slot->mmc->class_dev, 248 "Timeout sending command (cmd %#x arg %#x status %#x)\n", 249 cmd, arg, cmd_status); 250 } 251 252 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd) 253 { 254 struct dw_mci_slot *slot = mmc_priv(mmc); 255 struct dw_mci *host = slot->host; 256 u32 cmdr; 257 258 cmd->error = -EINPROGRESS; 259 cmdr = cmd->opcode; 260 261 if (cmd->opcode == MMC_STOP_TRANSMISSION || 262 cmd->opcode == MMC_GO_IDLE_STATE || 263 cmd->opcode == MMC_GO_INACTIVE_STATE || 264 (cmd->opcode == SD_IO_RW_DIRECT && 265 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT)) 266 cmdr |= SDMMC_CMD_STOP; 267 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data) 268 cmdr |= SDMMC_CMD_PRV_DAT_WAIT; 269 270 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 271 u32 clk_en_a; 272 273 /* Special bit makes CMD11 not die */ 274 cmdr |= SDMMC_CMD_VOLT_SWITCH; 275 276 /* Change state to continue to handle CMD11 weirdness */ 277 WARN_ON(slot->host->state != STATE_SENDING_CMD); 278 slot->host->state = STATE_SENDING_CMD11; 279 280 /* 281 * We need to disable low power mode (automatic clock stop) 282 * while doing voltage switch so we don't confuse the card, 283 * since stopping the clock is a specific part of the UHS 284 * voltage change dance. 285 * 286 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be 287 * unconditionally turned back on in dw_mci_setup_bus() if it's 288 * ever called with a non-zero clock. That shouldn't happen 289 * until the voltage change is all done. 290 */ 291 clk_en_a = mci_readl(host, CLKENA); 292 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id); 293 mci_writel(host, CLKENA, clk_en_a); 294 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | 295 SDMMC_CMD_PRV_DAT_WAIT, 0); 296 } 297 298 if (cmd->flags & MMC_RSP_PRESENT) { 299 /* We expect a response, so set this bit */ 300 cmdr |= SDMMC_CMD_RESP_EXP; 301 if (cmd->flags & MMC_RSP_136) 302 cmdr |= SDMMC_CMD_RESP_LONG; 303 } 304 305 if (cmd->flags & MMC_RSP_CRC) 306 cmdr |= SDMMC_CMD_RESP_CRC; 307 308 if (cmd->data) { 309 cmdr |= SDMMC_CMD_DAT_EXP; 310 if (cmd->data->flags & MMC_DATA_WRITE) 311 cmdr |= SDMMC_CMD_DAT_WR; 312 } 313 314 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags)) 315 cmdr |= SDMMC_CMD_USE_HOLD_REG; 316 317 return cmdr; 318 } 319 320 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd) 321 { 322 struct mmc_command *stop; 323 u32 cmdr; 324 325 if (!cmd->data) 326 return 0; 327 328 stop = &host->stop_abort; 329 cmdr = cmd->opcode; 330 memset(stop, 0, sizeof(struct mmc_command)); 331 332 if (cmdr == MMC_READ_SINGLE_BLOCK || 333 cmdr == MMC_READ_MULTIPLE_BLOCK || 334 cmdr == MMC_WRITE_BLOCK || 335 cmdr == MMC_WRITE_MULTIPLE_BLOCK || 336 mmc_op_tuning(cmdr) || 337 cmdr == MMC_GEN_CMD) { 338 stop->opcode = MMC_STOP_TRANSMISSION; 339 stop->arg = 0; 340 stop->flags = MMC_RSP_R1B | MMC_CMD_AC; 341 } else if (cmdr == SD_IO_RW_EXTENDED) { 342 stop->opcode = SD_IO_RW_DIRECT; 343 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | 344 ((cmd->arg >> 28) & 0x7); 345 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC; 346 } else { 347 return 0; 348 } 349 350 cmdr = stop->opcode | SDMMC_CMD_STOP | 351 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP; 352 353 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags)) 354 cmdr |= SDMMC_CMD_USE_HOLD_REG; 355 356 return cmdr; 357 } 358 359 static inline void dw_mci_set_cto(struct dw_mci *host) 360 { 361 unsigned int cto_clks; 362 unsigned int cto_div; 363 unsigned int cto_ms; 364 unsigned long irqflags; 365 366 cto_clks = mci_readl(host, TMOUT) & 0xff; 367 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2; 368 if (cto_div == 0) 369 cto_div = 1; 370 371 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div, 372 host->bus_hz); 373 374 /* add a bit spare time */ 375 cto_ms += 10; 376 377 /* 378 * The durations we're working with are fairly short so we have to be 379 * extra careful about synchronization here. Specifically in hardware a 380 * command timeout is _at most_ 5.1 ms, so that means we expect an 381 * interrupt (either command done or timeout) to come rather quickly 382 * after the mci_writel. ...but just in case we have a long interrupt 383 * latency let's add a bit of paranoia. 384 * 385 * In general we'll assume that at least an interrupt will be asserted 386 * in hardware by the time the cto_timer runs. ...and if it hasn't 387 * been asserted in hardware by that time then we'll assume it'll never 388 * come. 389 */ 390 spin_lock_irqsave(&host->irq_lock, irqflags); 391 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 392 mod_timer(&host->cto_timer, 393 jiffies + msecs_to_jiffies(cto_ms) + 1); 394 spin_unlock_irqrestore(&host->irq_lock, irqflags); 395 } 396 397 static void dw_mci_start_command(struct dw_mci *host, 398 struct mmc_command *cmd, u32 cmd_flags) 399 { 400 host->cmd = cmd; 401 dev_vdbg(host->dev, 402 "start command: ARGR=0x%08x CMDR=0x%08x\n", 403 cmd->arg, cmd_flags); 404 405 mci_writel(host, CMDARG, cmd->arg); 406 wmb(); /* drain writebuffer */ 407 dw_mci_wait_while_busy(host, cmd_flags); 408 409 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START); 410 411 /* response expected command only */ 412 if (cmd_flags & SDMMC_CMD_RESP_EXP) 413 dw_mci_set_cto(host); 414 } 415 416 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data) 417 { 418 struct mmc_command *stop = &host->stop_abort; 419 420 dw_mci_start_command(host, stop, host->stop_cmdr); 421 } 422 423 /* DMA interface functions */ 424 static void dw_mci_stop_dma(struct dw_mci *host) 425 { 426 if (host->using_dma) { 427 host->dma_ops->stop(host); 428 host->dma_ops->cleanup(host); 429 } 430 431 /* Data transfer was stopped by the interrupt handler */ 432 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 433 } 434 435 static void dw_mci_dma_cleanup(struct dw_mci *host) 436 { 437 struct mmc_data *data = host->data; 438 439 if (data && data->host_cookie == COOKIE_MAPPED) { 440 dma_unmap_sg(host->dev, 441 data->sg, 442 data->sg_len, 443 mmc_get_dma_dir(data)); 444 data->host_cookie = COOKIE_UNMAPPED; 445 } 446 } 447 448 static void dw_mci_idmac_reset(struct dw_mci *host) 449 { 450 u32 bmod = mci_readl(host, BMOD); 451 /* Software reset of DMA */ 452 bmod |= SDMMC_IDMAC_SWRESET; 453 mci_writel(host, BMOD, bmod); 454 } 455 456 static void dw_mci_idmac_stop_dma(struct dw_mci *host) 457 { 458 u32 temp; 459 460 /* Disable and reset the IDMAC interface */ 461 temp = mci_readl(host, CTRL); 462 temp &= ~SDMMC_CTRL_USE_IDMAC; 463 temp |= SDMMC_CTRL_DMA_RESET; 464 mci_writel(host, CTRL, temp); 465 466 /* Stop the IDMAC running */ 467 temp = mci_readl(host, BMOD); 468 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB); 469 temp |= SDMMC_IDMAC_SWRESET; 470 mci_writel(host, BMOD, temp); 471 } 472 473 static void dw_mci_dmac_complete_dma(void *arg) 474 { 475 struct dw_mci *host = arg; 476 struct mmc_data *data = host->data; 477 478 dev_vdbg(host->dev, "DMA complete\n"); 479 480 if ((host->use_dma == TRANS_MODE_EDMAC) && 481 data && (data->flags & MMC_DATA_READ)) 482 /* Invalidate cache after read */ 483 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc), 484 data->sg, 485 data->sg_len, 486 DMA_FROM_DEVICE); 487 488 host->dma_ops->cleanup(host); 489 490 /* 491 * If the card was removed, data will be NULL. No point in trying to 492 * send the stop command or waiting for NBUSY in this case. 493 */ 494 if (data) { 495 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 496 queue_work(system_bh_wq, &host->bh_work); 497 } 498 } 499 500 static int dw_mci_idmac_init(struct dw_mci *host) 501 { 502 int i; 503 504 if (host->dma_64bit_address == 1) { 505 struct idmac_desc_64addr *p; 506 /* Number of descriptors in the ring buffer */ 507 host->ring_size = 508 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr); 509 510 /* Forward link the descriptor list */ 511 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1; 512 i++, p++) { 513 p->des6 = (host->sg_dma + 514 (sizeof(struct idmac_desc_64addr) * 515 (i + 1))) & 0xffffffff; 516 517 p->des7 = (u64)(host->sg_dma + 518 (sizeof(struct idmac_desc_64addr) * 519 (i + 1))) >> 32; 520 /* Initialize reserved and buffer size fields to "0" */ 521 p->des0 = 0; 522 p->des1 = 0; 523 p->des2 = 0; 524 p->des3 = 0; 525 } 526 527 /* Set the last descriptor as the end-of-ring descriptor */ 528 p->des6 = host->sg_dma & 0xffffffff; 529 p->des7 = (u64)host->sg_dma >> 32; 530 p->des0 = IDMAC_DES0_ER; 531 532 } else { 533 struct idmac_desc *p; 534 /* Number of descriptors in the ring buffer */ 535 host->ring_size = 536 DESC_RING_BUF_SZ / sizeof(struct idmac_desc); 537 538 /* Forward link the descriptor list */ 539 for (i = 0, p = host->sg_cpu; 540 i < host->ring_size - 1; 541 i++, p++) { 542 p->des3 = cpu_to_le32(host->sg_dma + 543 (sizeof(struct idmac_desc) * (i + 1))); 544 p->des0 = 0; 545 p->des1 = 0; 546 } 547 548 /* Set the last descriptor as the end-of-ring descriptor */ 549 p->des3 = cpu_to_le32(host->sg_dma); 550 p->des0 = cpu_to_le32(IDMAC_DES0_ER); 551 } 552 553 dw_mci_idmac_reset(host); 554 555 if (host->dma_64bit_address == 1) { 556 /* Mask out interrupts - get Tx & Rx complete only */ 557 mci_writel(host, IDSTS64, IDMAC_INT_CLR); 558 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI | 559 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 560 561 /* Set the descriptor base address */ 562 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff); 563 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32); 564 565 } else { 566 /* Mask out interrupts - get Tx & Rx complete only */ 567 mci_writel(host, IDSTS, IDMAC_INT_CLR); 568 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI | 569 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 570 571 /* Set the descriptor base address */ 572 mci_writel(host, DBADDR, host->sg_dma); 573 } 574 575 return 0; 576 } 577 578 static inline int dw_mci_prepare_desc64(struct dw_mci *host, 579 struct mmc_data *data, 580 unsigned int sg_len) 581 { 582 unsigned int desc_len; 583 struct idmac_desc_64addr *desc_first, *desc_last, *desc; 584 u32 val; 585 int i; 586 587 desc_first = desc_last = desc = host->sg_cpu; 588 589 for (i = 0; i < sg_len; i++) { 590 unsigned int length = sg_dma_len(&data->sg[i]); 591 592 u64 mem_addr = sg_dma_address(&data->sg[i]); 593 594 for ( ; length ; desc++) { 595 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? 596 length : DW_MCI_DESC_DATA_LENGTH; 597 598 length -= desc_len; 599 600 /* 601 * Wait for the former clear OWN bit operation 602 * of IDMAC to make sure that this descriptor 603 * isn't still owned by IDMAC as IDMAC's write 604 * ops and CPU's read ops are asynchronous. 605 */ 606 if (readl_poll_timeout_atomic(&desc->des0, val, 607 !(val & IDMAC_DES0_OWN), 608 10, 100 * USEC_PER_MSEC)) 609 goto err_own_bit; 610 611 /* 612 * Set the OWN bit and disable interrupts 613 * for this descriptor 614 */ 615 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC | 616 IDMAC_DES0_CH; 617 618 /* Buffer length */ 619 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len); 620 621 /* Physical address to DMA to/from */ 622 desc->des4 = mem_addr & 0xffffffff; 623 desc->des5 = mem_addr >> 32; 624 625 /* Update physical address for the next desc */ 626 mem_addr += desc_len; 627 628 /* Save pointer to the last descriptor */ 629 desc_last = desc; 630 } 631 } 632 633 /* Set first descriptor */ 634 desc_first->des0 |= IDMAC_DES0_FD; 635 636 /* Set last descriptor */ 637 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC); 638 desc_last->des0 |= IDMAC_DES0_LD; 639 640 return 0; 641 err_own_bit: 642 /* restore the descriptor chain as it's polluted */ 643 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n"); 644 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); 645 dw_mci_idmac_init(host); 646 return -EINVAL; 647 } 648 649 650 static inline int dw_mci_prepare_desc32(struct dw_mci *host, 651 struct mmc_data *data, 652 unsigned int sg_len) 653 { 654 unsigned int desc_len; 655 struct idmac_desc *desc_first, *desc_last, *desc; 656 u32 val; 657 int i; 658 659 desc_first = desc_last = desc = host->sg_cpu; 660 661 for (i = 0; i < sg_len; i++) { 662 unsigned int length = sg_dma_len(&data->sg[i]); 663 664 u32 mem_addr = sg_dma_address(&data->sg[i]); 665 666 for ( ; length ; desc++) { 667 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? 668 length : DW_MCI_DESC_DATA_LENGTH; 669 670 length -= desc_len; 671 672 /* 673 * Wait for the former clear OWN bit operation 674 * of IDMAC to make sure that this descriptor 675 * isn't still owned by IDMAC as IDMAC's write 676 * ops and CPU's read ops are asynchronous. 677 */ 678 if (readl_poll_timeout_atomic(&desc->des0, val, 679 IDMAC_OWN_CLR64(val), 680 10, 681 100 * USEC_PER_MSEC)) 682 goto err_own_bit; 683 684 /* 685 * Set the OWN bit and disable interrupts 686 * for this descriptor 687 */ 688 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN | 689 IDMAC_DES0_DIC | 690 IDMAC_DES0_CH); 691 692 /* Buffer length */ 693 IDMAC_SET_BUFFER1_SIZE(desc, desc_len); 694 695 /* Physical address to DMA to/from */ 696 desc->des2 = cpu_to_le32(mem_addr); 697 698 /* Update physical address for the next desc */ 699 mem_addr += desc_len; 700 701 /* Save pointer to the last descriptor */ 702 desc_last = desc; 703 } 704 } 705 706 /* Set first descriptor */ 707 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD); 708 709 /* Set last descriptor */ 710 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH | 711 IDMAC_DES0_DIC)); 712 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD); 713 714 return 0; 715 err_own_bit: 716 /* restore the descriptor chain as it's polluted */ 717 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n"); 718 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); 719 dw_mci_idmac_init(host); 720 return -EINVAL; 721 } 722 723 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len) 724 { 725 u32 temp; 726 int ret; 727 728 if (host->dma_64bit_address == 1) 729 ret = dw_mci_prepare_desc64(host, host->data, sg_len); 730 else 731 ret = dw_mci_prepare_desc32(host, host->data, sg_len); 732 733 if (ret) 734 goto out; 735 736 /* drain writebuffer */ 737 wmb(); 738 739 /* Make sure to reset DMA in case we did PIO before this */ 740 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET); 741 dw_mci_idmac_reset(host); 742 743 /* Select IDMAC interface */ 744 temp = mci_readl(host, CTRL); 745 temp |= SDMMC_CTRL_USE_IDMAC; 746 mci_writel(host, CTRL, temp); 747 748 /* drain writebuffer */ 749 wmb(); 750 751 /* Enable the IDMAC */ 752 temp = mci_readl(host, BMOD); 753 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB; 754 mci_writel(host, BMOD, temp); 755 756 /* Start it running */ 757 mci_writel(host, PLDMND, 1); 758 759 out: 760 return ret; 761 } 762 763 static const struct dw_mci_dma_ops dw_mci_idmac_ops = { 764 .init = dw_mci_idmac_init, 765 .start = dw_mci_idmac_start_dma, 766 .stop = dw_mci_idmac_stop_dma, 767 .complete = dw_mci_dmac_complete_dma, 768 .cleanup = dw_mci_dma_cleanup, 769 }; 770 771 static void dw_mci_edmac_stop_dma(struct dw_mci *host) 772 { 773 dmaengine_terminate_async(host->dms->ch); 774 } 775 776 static int dw_mci_edmac_start_dma(struct dw_mci *host, 777 unsigned int sg_len) 778 { 779 struct dma_slave_config cfg; 780 struct dma_async_tx_descriptor *desc = NULL; 781 struct scatterlist *sgl = host->data->sg; 782 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 783 u32 sg_elems = host->data->sg_len; 784 u32 fifoth_val; 785 u32 fifo_offset = host->fifo_reg - host->regs; 786 int ret = 0; 787 788 /* Set external dma config: burst size, burst width */ 789 memset(&cfg, 0, sizeof(cfg)); 790 cfg.dst_addr = host->phy_regs + fifo_offset; 791 cfg.src_addr = cfg.dst_addr; 792 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 793 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 794 795 /* Match burst msize with external dma config */ 796 fifoth_val = mci_readl(host, FIFOTH); 797 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7]; 798 cfg.src_maxburst = cfg.dst_maxburst; 799 800 if (host->data->flags & MMC_DATA_WRITE) 801 cfg.direction = DMA_MEM_TO_DEV; 802 else 803 cfg.direction = DMA_DEV_TO_MEM; 804 805 ret = dmaengine_slave_config(host->dms->ch, &cfg); 806 if (ret) { 807 dev_err(host->dev, "Failed to config edmac.\n"); 808 return -EBUSY; 809 } 810 811 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl, 812 sg_len, cfg.direction, 813 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 814 if (!desc) { 815 dev_err(host->dev, "Can't prepare slave sg.\n"); 816 return -EBUSY; 817 } 818 819 /* Set dw_mci_dmac_complete_dma as callback */ 820 desc->callback = dw_mci_dmac_complete_dma; 821 desc->callback_param = (void *)host; 822 dmaengine_submit(desc); 823 824 /* Flush cache before write */ 825 if (host->data->flags & MMC_DATA_WRITE) 826 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl, 827 sg_elems, DMA_TO_DEVICE); 828 829 dma_async_issue_pending(host->dms->ch); 830 831 return 0; 832 } 833 834 static int dw_mci_edmac_init(struct dw_mci *host) 835 { 836 /* Request external dma channel */ 837 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL); 838 if (!host->dms) 839 return -ENOMEM; 840 841 host->dms->ch = dma_request_chan(host->dev, "rx-tx"); 842 if (IS_ERR(host->dms->ch)) { 843 int ret = PTR_ERR(host->dms->ch); 844 845 dev_err(host->dev, "Failed to get external DMA channel.\n"); 846 kfree(host->dms); 847 host->dms = NULL; 848 return ret; 849 } 850 851 return 0; 852 } 853 854 static void dw_mci_edmac_exit(struct dw_mci *host) 855 { 856 if (host->dms) { 857 if (host->dms->ch) { 858 dma_release_channel(host->dms->ch); 859 host->dms->ch = NULL; 860 } 861 kfree(host->dms); 862 host->dms = NULL; 863 } 864 } 865 866 static const struct dw_mci_dma_ops dw_mci_edmac_ops = { 867 .init = dw_mci_edmac_init, 868 .exit = dw_mci_edmac_exit, 869 .start = dw_mci_edmac_start_dma, 870 .stop = dw_mci_edmac_stop_dma, 871 .complete = dw_mci_dmac_complete_dma, 872 .cleanup = dw_mci_dma_cleanup, 873 }; 874 875 static int dw_mci_pre_dma_transfer(struct dw_mci *host, 876 struct mmc_data *data, 877 int cookie) 878 { 879 struct scatterlist *sg; 880 unsigned int i, sg_len; 881 882 if (data->host_cookie == COOKIE_PRE_MAPPED) 883 return data->sg_len; 884 885 /* 886 * We don't do DMA on "complex" transfers, i.e. with 887 * non-word-aligned buffers or lengths. Also, we don't bother 888 * with all the DMA setup overhead for short transfers. 889 */ 890 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD) 891 return -EINVAL; 892 893 if (data->blksz & 3) 894 return -EINVAL; 895 896 for_each_sg(data->sg, sg, data->sg_len, i) { 897 if (sg->offset & 3 || sg->length & 3) 898 return -EINVAL; 899 } 900 901 sg_len = dma_map_sg(host->dev, 902 data->sg, 903 data->sg_len, 904 mmc_get_dma_dir(data)); 905 if (sg_len == 0) 906 return -EINVAL; 907 908 data->host_cookie = cookie; 909 910 return sg_len; 911 } 912 913 static void dw_mci_pre_req(struct mmc_host *mmc, 914 struct mmc_request *mrq) 915 { 916 struct dw_mci_slot *slot = mmc_priv(mmc); 917 struct mmc_data *data = mrq->data; 918 919 if (!slot->host->use_dma || !data) 920 return; 921 922 /* This data might be unmapped at this time */ 923 data->host_cookie = COOKIE_UNMAPPED; 924 925 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 926 COOKIE_PRE_MAPPED) < 0) 927 data->host_cookie = COOKIE_UNMAPPED; 928 } 929 930 static void dw_mci_post_req(struct mmc_host *mmc, 931 struct mmc_request *mrq, 932 int err) 933 { 934 struct dw_mci_slot *slot = mmc_priv(mmc); 935 struct mmc_data *data = mrq->data; 936 937 if (!slot->host->use_dma || !data) 938 return; 939 940 if (data->host_cookie != COOKIE_UNMAPPED) 941 dma_unmap_sg(slot->host->dev, 942 data->sg, 943 data->sg_len, 944 mmc_get_dma_dir(data)); 945 data->host_cookie = COOKIE_UNMAPPED; 946 } 947 948 static int dw_mci_get_cd(struct mmc_host *mmc) 949 { 950 int present; 951 struct dw_mci_slot *slot = mmc_priv(mmc); 952 struct dw_mci *host = slot->host; 953 int gpio_cd = mmc_gpio_get_cd(mmc); 954 955 /* Use platform get_cd function, else try onboard card detect */ 956 if (((mmc->caps & MMC_CAP_NEEDS_POLL) 957 || !mmc_card_is_removable(mmc))) { 958 present = 1; 959 960 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) { 961 if (mmc->caps & MMC_CAP_NEEDS_POLL) { 962 dev_info(&mmc->class_dev, 963 "card is polling.\n"); 964 } else { 965 dev_info(&mmc->class_dev, 966 "card is non-removable.\n"); 967 } 968 set_bit(DW_MMC_CARD_PRESENT, &slot->flags); 969 } 970 971 return present; 972 } else if (gpio_cd >= 0) 973 present = gpio_cd; 974 else 975 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id)) 976 == 0 ? 1 : 0; 977 978 spin_lock_bh(&host->lock); 979 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags)) 980 dev_dbg(&mmc->class_dev, "card is present\n"); 981 else if (!present && 982 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags)) 983 dev_dbg(&mmc->class_dev, "card is not present\n"); 984 spin_unlock_bh(&host->lock); 985 986 return present; 987 } 988 989 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data) 990 { 991 unsigned int blksz = data->blksz; 992 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 993 u32 fifo_width = 1 << host->data_shift; 994 u32 blksz_depth = blksz / fifo_width, fifoth_val; 995 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers; 996 int idx = ARRAY_SIZE(mszs) - 1; 997 998 /* pio should ship this scenario */ 999 if (!host->use_dma) 1000 return; 1001 1002 tx_wmark = (host->fifo_depth) / 2; 1003 tx_wmark_invers = host->fifo_depth - tx_wmark; 1004 1005 /* 1006 * MSIZE is '1', 1007 * if blksz is not a multiple of the FIFO width 1008 */ 1009 if (blksz % fifo_width) 1010 goto done; 1011 1012 do { 1013 if (!((blksz_depth % mszs[idx]) || 1014 (tx_wmark_invers % mszs[idx]))) { 1015 msize = idx; 1016 rx_wmark = mszs[idx] - 1; 1017 break; 1018 } 1019 } while (--idx > 0); 1020 /* 1021 * If idx is '0', it won't be tried 1022 * Thus, initial values are uesed 1023 */ 1024 done: 1025 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark); 1026 mci_writel(host, FIFOTH, fifoth_val); 1027 } 1028 1029 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data) 1030 { 1031 unsigned int blksz = data->blksz; 1032 u32 blksz_depth, fifo_depth; 1033 u16 thld_size; 1034 u8 enable; 1035 1036 /* 1037 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is 1038 * in the FIFO region, so we really shouldn't access it). 1039 */ 1040 if (host->verid < DW_MMC_240A || 1041 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE)) 1042 return; 1043 1044 /* 1045 * Card write Threshold is introduced since 2.80a 1046 * It's used when HS400 mode is enabled. 1047 */ 1048 if (data->flags & MMC_DATA_WRITE && 1049 host->timing != MMC_TIMING_MMC_HS400) 1050 goto disable; 1051 1052 if (data->flags & MMC_DATA_WRITE) 1053 enable = SDMMC_CARD_WR_THR_EN; 1054 else 1055 enable = SDMMC_CARD_RD_THR_EN; 1056 1057 if (host->timing != MMC_TIMING_MMC_HS200 && 1058 host->timing != MMC_TIMING_UHS_SDR104 && 1059 host->timing != MMC_TIMING_MMC_HS400) 1060 goto disable; 1061 1062 blksz_depth = blksz / (1 << host->data_shift); 1063 fifo_depth = host->fifo_depth; 1064 1065 if (blksz_depth > fifo_depth) 1066 goto disable; 1067 1068 /* 1069 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz' 1070 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz 1071 * Currently just choose blksz. 1072 */ 1073 thld_size = blksz; 1074 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable)); 1075 return; 1076 1077 disable: 1078 mci_writel(host, CDTHRCTL, 0); 1079 } 1080 1081 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data) 1082 { 1083 unsigned long irqflags; 1084 int sg_len; 1085 u32 temp; 1086 1087 host->using_dma = 0; 1088 1089 /* If we don't have a channel, we can't do DMA */ 1090 if (!host->use_dma) 1091 return -ENODEV; 1092 1093 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED); 1094 if (sg_len < 0) { 1095 host->dma_ops->stop(host); 1096 return sg_len; 1097 } 1098 1099 host->using_dma = 1; 1100 1101 if (host->use_dma == TRANS_MODE_IDMAC) 1102 dev_vdbg(host->dev, 1103 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n", 1104 (unsigned long)host->sg_cpu, 1105 (unsigned long)host->sg_dma, 1106 sg_len); 1107 1108 /* 1109 * Decide the MSIZE and RX/TX Watermark. 1110 * If current block size is same with previous size, 1111 * no need to update fifoth. 1112 */ 1113 if (host->prev_blksz != data->blksz) 1114 dw_mci_adjust_fifoth(host, data); 1115 1116 /* Enable the DMA interface */ 1117 temp = mci_readl(host, CTRL); 1118 temp |= SDMMC_CTRL_DMA_ENABLE; 1119 mci_writel(host, CTRL, temp); 1120 1121 /* Disable RX/TX IRQs, let DMA handle it */ 1122 spin_lock_irqsave(&host->irq_lock, irqflags); 1123 temp = mci_readl(host, INTMASK); 1124 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR); 1125 mci_writel(host, INTMASK, temp); 1126 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1127 1128 if (host->dma_ops->start(host, sg_len)) { 1129 host->dma_ops->stop(host); 1130 /* We can't do DMA, try PIO for this one */ 1131 dev_dbg(host->dev, 1132 "%s: fall back to PIO mode for current transfer\n", 1133 __func__); 1134 return -ENODEV; 1135 } 1136 1137 return 0; 1138 } 1139 1140 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data) 1141 { 1142 unsigned long irqflags; 1143 int flags = SG_MITER_ATOMIC; 1144 u32 temp; 1145 1146 data->error = -EINPROGRESS; 1147 1148 WARN_ON(host->data); 1149 host->sg = NULL; 1150 host->data = data; 1151 1152 if (data->flags & MMC_DATA_READ) 1153 host->dir_status = DW_MCI_RECV_STATUS; 1154 else 1155 host->dir_status = DW_MCI_SEND_STATUS; 1156 1157 dw_mci_ctrl_thld(host, data); 1158 1159 if (dw_mci_submit_data_dma(host, data)) { 1160 if (host->data->flags & MMC_DATA_READ) 1161 flags |= SG_MITER_TO_SG; 1162 else 1163 flags |= SG_MITER_FROM_SG; 1164 1165 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 1166 host->sg = data->sg; 1167 host->part_buf_start = 0; 1168 host->part_buf_count = 0; 1169 1170 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR); 1171 1172 spin_lock_irqsave(&host->irq_lock, irqflags); 1173 temp = mci_readl(host, INTMASK); 1174 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR; 1175 mci_writel(host, INTMASK, temp); 1176 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1177 1178 temp = mci_readl(host, CTRL); 1179 temp &= ~SDMMC_CTRL_DMA_ENABLE; 1180 mci_writel(host, CTRL, temp); 1181 1182 /* 1183 * Use the initial fifoth_val for PIO mode. If wm_algined 1184 * is set, we set watermark same as data size. 1185 * If next issued data may be transferred by DMA mode, 1186 * prev_blksz should be invalidated. 1187 */ 1188 if (host->wm_aligned) 1189 dw_mci_adjust_fifoth(host, data); 1190 else 1191 mci_writel(host, FIFOTH, host->fifoth_val); 1192 host->prev_blksz = 0; 1193 } else { 1194 /* 1195 * Keep the current block size. 1196 * It will be used to decide whether to update 1197 * fifoth register next time. 1198 */ 1199 host->prev_blksz = data->blksz; 1200 } 1201 } 1202 1203 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit) 1204 { 1205 struct dw_mci *host = slot->host; 1206 unsigned int clock = slot->clock; 1207 u32 div; 1208 u32 clk_en_a; 1209 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT; 1210 1211 /* We must continue to set bit 28 in CMD until the change is complete */ 1212 if (host->state == STATE_WAITING_CMD11_DONE) 1213 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH; 1214 1215 slot->mmc->actual_clock = 0; 1216 1217 if (!clock) { 1218 mci_writel(host, CLKENA, 0); 1219 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1220 } else if (clock != host->current_speed || force_clkinit) { 1221 div = host->bus_hz / clock; 1222 if (host->bus_hz % clock && host->bus_hz > clock) 1223 /* 1224 * move the + 1 after the divide to prevent 1225 * over-clocking the card. 1226 */ 1227 div += 1; 1228 1229 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0; 1230 1231 if ((clock != slot->__clk_old && 1232 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) || 1233 force_clkinit) { 1234 /* Silent the verbose log if calling from PM context */ 1235 if (!force_clkinit) 1236 dev_info(&slot->mmc->class_dev, 1237 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n", 1238 slot->id, host->bus_hz, clock, 1239 div ? ((host->bus_hz / div) >> 1) : 1240 host->bus_hz, div); 1241 1242 /* 1243 * If card is polling, display the message only 1244 * one time at boot time. 1245 */ 1246 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL && 1247 slot->mmc->f_min == clock) 1248 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags); 1249 } 1250 1251 /* disable clock */ 1252 mci_writel(host, CLKENA, 0); 1253 mci_writel(host, CLKSRC, 0); 1254 1255 /* inform CIU */ 1256 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1257 1258 /* set clock to desired speed */ 1259 mci_writel(host, CLKDIV, div); 1260 1261 /* inform CIU */ 1262 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1263 1264 /* enable clock; only low power if no SDIO */ 1265 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id; 1266 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) 1267 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id; 1268 mci_writel(host, CLKENA, clk_en_a); 1269 1270 /* inform CIU */ 1271 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1272 1273 /* keep the last clock value that was requested from core */ 1274 slot->__clk_old = clock; 1275 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) : 1276 host->bus_hz; 1277 } 1278 1279 host->current_speed = clock; 1280 1281 /* Set the current slot bus width */ 1282 mci_writel(host, CTYPE, (slot->ctype << slot->id)); 1283 } 1284 1285 static void dw_mci_set_data_timeout(struct dw_mci *host, 1286 unsigned int timeout_ns) 1287 { 1288 const struct dw_mci_drv_data *drv_data = host->drv_data; 1289 u32 clk_div, tmout; 1290 u64 tmp; 1291 1292 if (drv_data && drv_data->set_data_timeout) 1293 return drv_data->set_data_timeout(host, timeout_ns); 1294 1295 clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2; 1296 if (clk_div == 0) 1297 clk_div = 1; 1298 1299 tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC); 1300 tmp = DIV_ROUND_UP_ULL(tmp, clk_div); 1301 1302 /* TMOUT[7:0] (RESPONSE_TIMEOUT) */ 1303 tmout = 0xFF; /* Set maximum */ 1304 1305 /* TMOUT[31:8] (DATA_TIMEOUT) */ 1306 if (!tmp || tmp > 0xFFFFFF) 1307 tmout |= (0xFFFFFF << 8); 1308 else 1309 tmout |= (tmp & 0xFFFFFF) << 8; 1310 1311 mci_writel(host, TMOUT, tmout); 1312 dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x", 1313 timeout_ns, tmout >> 8); 1314 } 1315 1316 static void __dw_mci_start_request(struct dw_mci *host, 1317 struct dw_mci_slot *slot, 1318 struct mmc_command *cmd) 1319 { 1320 struct mmc_request *mrq; 1321 struct mmc_data *data; 1322 u32 cmdflags; 1323 1324 mrq = slot->mrq; 1325 1326 host->mrq = mrq; 1327 1328 host->pending_events = 0; 1329 host->completed_events = 0; 1330 host->cmd_status = 0; 1331 host->data_status = 0; 1332 host->dir_status = 0; 1333 1334 data = cmd->data; 1335 if (data) { 1336 dw_mci_set_data_timeout(host, data->timeout_ns); 1337 mci_writel(host, BYTCNT, data->blksz*data->blocks); 1338 mci_writel(host, BLKSIZ, data->blksz); 1339 } 1340 1341 cmdflags = dw_mci_prepare_command(slot->mmc, cmd); 1342 1343 /* this is the first command, send the initialization clock */ 1344 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags)) 1345 cmdflags |= SDMMC_CMD_INIT; 1346 1347 if (data) { 1348 dw_mci_submit_data(host, data); 1349 wmb(); /* drain writebuffer */ 1350 } 1351 1352 dw_mci_start_command(host, cmd, cmdflags); 1353 1354 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 1355 unsigned long irqflags; 1356 1357 /* 1358 * Databook says to fail after 2ms w/ no response, but evidence 1359 * shows that sometimes the cmd11 interrupt takes over 130ms. 1360 * We'll set to 500ms, plus an extra jiffy just in case jiffies 1361 * is just about to roll over. 1362 * 1363 * We do this whole thing under spinlock and only if the 1364 * command hasn't already completed (indicating the irq 1365 * already ran so we don't want the timeout). 1366 */ 1367 spin_lock_irqsave(&host->irq_lock, irqflags); 1368 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 1369 mod_timer(&host->cmd11_timer, 1370 jiffies + msecs_to_jiffies(500) + 1); 1371 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1372 } 1373 1374 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd); 1375 } 1376 1377 static void dw_mci_start_request(struct dw_mci *host, 1378 struct dw_mci_slot *slot) 1379 { 1380 struct mmc_request *mrq = slot->mrq; 1381 struct mmc_command *cmd; 1382 1383 cmd = mrq->sbc ? mrq->sbc : mrq->cmd; 1384 __dw_mci_start_request(host, slot, cmd); 1385 } 1386 1387 /* must be called with host->lock held */ 1388 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot, 1389 struct mmc_request *mrq) 1390 { 1391 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n", 1392 host->state); 1393 1394 slot->mrq = mrq; 1395 1396 if (host->state == STATE_WAITING_CMD11_DONE) { 1397 dev_warn(&slot->mmc->class_dev, 1398 "Voltage change didn't complete\n"); 1399 /* 1400 * this case isn't expected to happen, so we can 1401 * either crash here or just try to continue on 1402 * in the closest possible state 1403 */ 1404 host->state = STATE_IDLE; 1405 } 1406 1407 if (host->state == STATE_IDLE) { 1408 host->state = STATE_SENDING_CMD; 1409 dw_mci_start_request(host, slot); 1410 } else { 1411 list_add_tail(&slot->queue_node, &host->queue); 1412 } 1413 } 1414 1415 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1416 { 1417 struct dw_mci_slot *slot = mmc_priv(mmc); 1418 struct dw_mci *host = slot->host; 1419 1420 WARN_ON(slot->mrq); 1421 1422 /* 1423 * The check for card presence and queueing of the request must be 1424 * atomic, otherwise the card could be removed in between and the 1425 * request wouldn't fail until another card was inserted. 1426 */ 1427 1428 if (!dw_mci_get_cd(mmc)) { 1429 mrq->cmd->error = -ENOMEDIUM; 1430 mmc_request_done(mmc, mrq); 1431 return; 1432 } 1433 1434 spin_lock_bh(&host->lock); 1435 1436 dw_mci_queue_request(host, slot, mrq); 1437 1438 spin_unlock_bh(&host->lock); 1439 } 1440 1441 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1442 { 1443 struct dw_mci_slot *slot = mmc_priv(mmc); 1444 const struct dw_mci_drv_data *drv_data = slot->host->drv_data; 1445 u32 regs; 1446 int ret; 1447 1448 switch (ios->bus_width) { 1449 case MMC_BUS_WIDTH_4: 1450 slot->ctype = SDMMC_CTYPE_4BIT; 1451 break; 1452 case MMC_BUS_WIDTH_8: 1453 slot->ctype = SDMMC_CTYPE_8BIT; 1454 break; 1455 default: 1456 /* set default 1 bit mode */ 1457 slot->ctype = SDMMC_CTYPE_1BIT; 1458 } 1459 1460 regs = mci_readl(slot->host, UHS_REG); 1461 1462 /* DDR mode set */ 1463 if (ios->timing == MMC_TIMING_MMC_DDR52 || 1464 ios->timing == MMC_TIMING_UHS_DDR50 || 1465 ios->timing == MMC_TIMING_MMC_HS400) 1466 regs |= ((0x1 << slot->id) << 16); 1467 else 1468 regs &= ~((0x1 << slot->id) << 16); 1469 1470 mci_writel(slot->host, UHS_REG, regs); 1471 slot->host->timing = ios->timing; 1472 1473 /* 1474 * Use mirror of ios->clock to prevent race with mmc 1475 * core ios update when finding the minimum. 1476 */ 1477 slot->clock = ios->clock; 1478 1479 if (drv_data && drv_data->set_ios) 1480 drv_data->set_ios(slot->host, ios); 1481 1482 switch (ios->power_mode) { 1483 case MMC_POWER_UP: 1484 if (!IS_ERR(mmc->supply.vmmc)) { 1485 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 1486 ios->vdd); 1487 if (ret) { 1488 dev_err(slot->host->dev, 1489 "failed to enable vmmc regulator\n"); 1490 /*return, if failed turn on vmmc*/ 1491 return; 1492 } 1493 } 1494 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags); 1495 regs = mci_readl(slot->host, PWREN); 1496 regs |= (1 << slot->id); 1497 mci_writel(slot->host, PWREN, regs); 1498 break; 1499 case MMC_POWER_ON: 1500 if (!slot->host->vqmmc_enabled) { 1501 if (!IS_ERR(mmc->supply.vqmmc)) { 1502 ret = regulator_enable(mmc->supply.vqmmc); 1503 if (ret < 0) 1504 dev_err(slot->host->dev, 1505 "failed to enable vqmmc\n"); 1506 else 1507 slot->host->vqmmc_enabled = true; 1508 1509 } else { 1510 /* Keep track so we don't reset again */ 1511 slot->host->vqmmc_enabled = true; 1512 } 1513 1514 /* Reset our state machine after powering on */ 1515 dw_mci_ctrl_reset(slot->host, 1516 SDMMC_CTRL_ALL_RESET_FLAGS); 1517 } 1518 1519 /* Adjust clock / bus width after power is up */ 1520 dw_mci_setup_bus(slot, false); 1521 1522 break; 1523 case MMC_POWER_OFF: 1524 /* Turn clock off before power goes down */ 1525 dw_mci_setup_bus(slot, false); 1526 1527 if (!IS_ERR(mmc->supply.vmmc)) 1528 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1529 1530 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled) 1531 regulator_disable(mmc->supply.vqmmc); 1532 slot->host->vqmmc_enabled = false; 1533 1534 regs = mci_readl(slot->host, PWREN); 1535 regs &= ~(1 << slot->id); 1536 mci_writel(slot->host, PWREN, regs); 1537 break; 1538 default: 1539 break; 1540 } 1541 1542 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0) 1543 slot->host->state = STATE_IDLE; 1544 } 1545 1546 static int dw_mci_card_busy(struct mmc_host *mmc) 1547 { 1548 struct dw_mci_slot *slot = mmc_priv(mmc); 1549 u32 status; 1550 1551 /* 1552 * Check the busy bit which is low when DAT[3:0] 1553 * (the data lines) are 0000 1554 */ 1555 status = mci_readl(slot->host, STATUS); 1556 1557 return !!(status & SDMMC_STATUS_BUSY); 1558 } 1559 1560 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios) 1561 { 1562 struct dw_mci_slot *slot = mmc_priv(mmc); 1563 struct dw_mci *host = slot->host; 1564 const struct dw_mci_drv_data *drv_data = host->drv_data; 1565 u32 uhs; 1566 u32 v18 = SDMMC_UHS_18V << slot->id; 1567 int ret; 1568 1569 if (drv_data && drv_data->switch_voltage) 1570 return drv_data->switch_voltage(mmc, ios); 1571 1572 /* 1573 * Program the voltage. Note that some instances of dw_mmc may use 1574 * the UHS_REG for this. For other instances (like exynos) the UHS_REG 1575 * does no harm but you need to set the regulator directly. Try both. 1576 */ 1577 uhs = mci_readl(host, UHS_REG); 1578 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1579 uhs &= ~v18; 1580 else 1581 uhs |= v18; 1582 1583 if (!IS_ERR(mmc->supply.vqmmc)) { 1584 ret = mmc_regulator_set_vqmmc(mmc, ios); 1585 if (ret < 0) { 1586 dev_dbg(&mmc->class_dev, 1587 "Regulator set error %d - %s V\n", 1588 ret, uhs & v18 ? "1.8" : "3.3"); 1589 return ret; 1590 } 1591 } 1592 mci_writel(host, UHS_REG, uhs); 1593 1594 return 0; 1595 } 1596 1597 static int dw_mci_get_ro(struct mmc_host *mmc) 1598 { 1599 int read_only; 1600 struct dw_mci_slot *slot = mmc_priv(mmc); 1601 int gpio_ro = mmc_gpio_get_ro(mmc); 1602 1603 /* Use platform get_ro function, else try on board write protect */ 1604 if (gpio_ro >= 0) 1605 read_only = gpio_ro; 1606 else 1607 read_only = 1608 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0; 1609 1610 dev_dbg(&mmc->class_dev, "card is %s\n", 1611 read_only ? "read-only" : "read-write"); 1612 1613 return read_only; 1614 } 1615 1616 static void dw_mci_hw_reset(struct mmc_host *mmc) 1617 { 1618 struct dw_mci_slot *slot = mmc_priv(mmc); 1619 struct dw_mci *host = slot->host; 1620 const struct dw_mci_drv_data *drv_data = host->drv_data; 1621 int reset; 1622 1623 if (host->use_dma == TRANS_MODE_IDMAC) 1624 dw_mci_idmac_reset(host); 1625 1626 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET | 1627 SDMMC_CTRL_FIFO_RESET)) 1628 return; 1629 1630 if (drv_data && drv_data->hw_reset) { 1631 drv_data->hw_reset(host); 1632 return; 1633 } 1634 1635 /* 1636 * According to eMMC spec, card reset procedure: 1637 * tRstW >= 1us: RST_n pulse width 1638 * tRSCA >= 200us: RST_n to Command time 1639 * tRSTH >= 1us: RST_n high period 1640 */ 1641 reset = mci_readl(host, RST_N); 1642 reset &= ~(SDMMC_RST_HWACTIVE << slot->id); 1643 mci_writel(host, RST_N, reset); 1644 usleep_range(1, 2); 1645 reset |= SDMMC_RST_HWACTIVE << slot->id; 1646 mci_writel(host, RST_N, reset); 1647 usleep_range(200, 300); 1648 } 1649 1650 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare) 1651 { 1652 struct dw_mci *host = slot->host; 1653 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id; 1654 u32 clk_en_a_old; 1655 u32 clk_en_a; 1656 1657 /* 1658 * Low power mode will stop the card clock when idle. According to the 1659 * description of the CLKENA register we should disable low power mode 1660 * for SDIO cards if we need SDIO interrupts to work. 1661 */ 1662 1663 clk_en_a_old = mci_readl(host, CLKENA); 1664 if (prepare) { 1665 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1666 clk_en_a = clk_en_a_old & ~clken_low_pwr; 1667 } else { 1668 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1669 clk_en_a = clk_en_a_old | clken_low_pwr; 1670 } 1671 1672 if (clk_en_a != clk_en_a_old) { 1673 mci_writel(host, CLKENA, clk_en_a); 1674 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT, 1675 0); 1676 } 1677 } 1678 1679 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb) 1680 { 1681 struct dw_mci *host = slot->host; 1682 unsigned long irqflags; 1683 u32 int_mask; 1684 1685 spin_lock_irqsave(&host->irq_lock, irqflags); 1686 1687 /* Enable/disable Slot Specific SDIO interrupt */ 1688 int_mask = mci_readl(host, INTMASK); 1689 if (enb) 1690 int_mask |= SDMMC_INT_SDIO(slot->sdio_id); 1691 else 1692 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id); 1693 mci_writel(host, INTMASK, int_mask); 1694 1695 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1696 } 1697 1698 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb) 1699 { 1700 struct dw_mci_slot *slot = mmc_priv(mmc); 1701 struct dw_mci *host = slot->host; 1702 1703 dw_mci_prepare_sdio_irq(slot, enb); 1704 __dw_mci_enable_sdio_irq(slot, enb); 1705 1706 /* Avoid runtime suspending the device when SDIO IRQ is enabled */ 1707 if (enb) 1708 pm_runtime_get_noresume(host->dev); 1709 else 1710 pm_runtime_put_noidle(host->dev); 1711 } 1712 1713 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc) 1714 { 1715 struct dw_mci_slot *slot = mmc_priv(mmc); 1716 1717 __dw_mci_enable_sdio_irq(slot, 1); 1718 } 1719 1720 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode) 1721 { 1722 struct dw_mci_slot *slot = mmc_priv(mmc); 1723 struct dw_mci *host = slot->host; 1724 const struct dw_mci_drv_data *drv_data = host->drv_data; 1725 int err = -EINVAL; 1726 1727 if (drv_data && drv_data->execute_tuning) 1728 err = drv_data->execute_tuning(slot, opcode); 1729 return err; 1730 } 1731 1732 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc, 1733 struct mmc_ios *ios) 1734 { 1735 struct dw_mci_slot *slot = mmc_priv(mmc); 1736 struct dw_mci *host = slot->host; 1737 const struct dw_mci_drv_data *drv_data = host->drv_data; 1738 1739 if (drv_data && drv_data->prepare_hs400_tuning) 1740 return drv_data->prepare_hs400_tuning(host, ios); 1741 1742 return 0; 1743 } 1744 1745 static bool dw_mci_reset(struct dw_mci *host) 1746 { 1747 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET; 1748 bool ret = false; 1749 u32 status = 0; 1750 1751 /* 1752 * Resetting generates a block interrupt, hence setting 1753 * the scatter-gather pointer to NULL. 1754 */ 1755 if (host->sg) { 1756 sg_miter_stop(&host->sg_miter); 1757 host->sg = NULL; 1758 } 1759 1760 if (host->use_dma) 1761 flags |= SDMMC_CTRL_DMA_RESET; 1762 1763 if (dw_mci_ctrl_reset(host, flags)) { 1764 /* 1765 * In all cases we clear the RAWINTS 1766 * register to clear any interrupts. 1767 */ 1768 mci_writel(host, RINTSTS, 0xFFFFFFFF); 1769 1770 if (!host->use_dma) { 1771 ret = true; 1772 goto ciu_out; 1773 } 1774 1775 /* Wait for dma_req to be cleared */ 1776 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS, 1777 status, 1778 !(status & SDMMC_STATUS_DMA_REQ), 1779 1, 500 * USEC_PER_MSEC)) { 1780 dev_err(host->dev, 1781 "%s: Timeout waiting for dma_req to be cleared\n", 1782 __func__); 1783 goto ciu_out; 1784 } 1785 1786 /* when using DMA next we reset the fifo again */ 1787 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET)) 1788 goto ciu_out; 1789 } else { 1790 /* if the controller reset bit did clear, then set clock regs */ 1791 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) { 1792 dev_err(host->dev, 1793 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n", 1794 __func__); 1795 goto ciu_out; 1796 } 1797 } 1798 1799 if (host->use_dma == TRANS_MODE_IDMAC) 1800 /* It is also required that we reinit idmac */ 1801 dw_mci_idmac_init(host); 1802 1803 ret = true; 1804 1805 ciu_out: 1806 /* After a CTRL reset we need to have CIU set clock registers */ 1807 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0); 1808 1809 return ret; 1810 } 1811 1812 static const struct mmc_host_ops dw_mci_ops = { 1813 .request = dw_mci_request, 1814 .pre_req = dw_mci_pre_req, 1815 .post_req = dw_mci_post_req, 1816 .set_ios = dw_mci_set_ios, 1817 .get_ro = dw_mci_get_ro, 1818 .get_cd = dw_mci_get_cd, 1819 .card_hw_reset = dw_mci_hw_reset, 1820 .enable_sdio_irq = dw_mci_enable_sdio_irq, 1821 .ack_sdio_irq = dw_mci_ack_sdio_irq, 1822 .execute_tuning = dw_mci_execute_tuning, 1823 .card_busy = dw_mci_card_busy, 1824 .start_signal_voltage_switch = dw_mci_switch_voltage, 1825 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning, 1826 }; 1827 1828 #ifdef CONFIG_FAULT_INJECTION 1829 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t) 1830 { 1831 struct dw_mci *host = container_of(t, struct dw_mci, fault_timer); 1832 unsigned long flags; 1833 1834 spin_lock_irqsave(&host->irq_lock, flags); 1835 1836 /* 1837 * Only inject an error if we haven't already got an error or data over 1838 * interrupt. 1839 */ 1840 if (!host->data_status) { 1841 host->data_status = SDMMC_INT_DCRC; 1842 set_bit(EVENT_DATA_ERROR, &host->pending_events); 1843 queue_work(system_bh_wq, &host->bh_work); 1844 } 1845 1846 spin_unlock_irqrestore(&host->irq_lock, flags); 1847 1848 return HRTIMER_NORESTART; 1849 } 1850 1851 static void dw_mci_start_fault_timer(struct dw_mci *host) 1852 { 1853 struct mmc_data *data = host->data; 1854 1855 if (!data || data->blocks <= 1) 1856 return; 1857 1858 if (!should_fail(&host->fail_data_crc, 1)) 1859 return; 1860 1861 /* 1862 * Try to inject the error at random points during the data transfer. 1863 */ 1864 hrtimer_start(&host->fault_timer, 1865 ms_to_ktime(get_random_u32_below(25)), 1866 HRTIMER_MODE_REL); 1867 } 1868 1869 static void dw_mci_stop_fault_timer(struct dw_mci *host) 1870 { 1871 hrtimer_cancel(&host->fault_timer); 1872 } 1873 1874 static void dw_mci_init_fault(struct dw_mci *host) 1875 { 1876 host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER; 1877 1878 hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1879 host->fault_timer.function = dw_mci_fault_timer; 1880 } 1881 #else 1882 static void dw_mci_init_fault(struct dw_mci *host) 1883 { 1884 } 1885 1886 static void dw_mci_start_fault_timer(struct dw_mci *host) 1887 { 1888 } 1889 1890 static void dw_mci_stop_fault_timer(struct dw_mci *host) 1891 { 1892 } 1893 #endif 1894 1895 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq) 1896 __releases(&host->lock) 1897 __acquires(&host->lock) 1898 { 1899 struct dw_mci_slot *slot; 1900 struct mmc_host *prev_mmc = host->slot->mmc; 1901 1902 WARN_ON(host->cmd || host->data); 1903 1904 host->slot->mrq = NULL; 1905 host->mrq = NULL; 1906 if (!list_empty(&host->queue)) { 1907 slot = list_entry(host->queue.next, 1908 struct dw_mci_slot, queue_node); 1909 list_del(&slot->queue_node); 1910 dev_vdbg(host->dev, "list not empty: %s is next\n", 1911 mmc_hostname(slot->mmc)); 1912 host->state = STATE_SENDING_CMD; 1913 dw_mci_start_request(host, slot); 1914 } else { 1915 dev_vdbg(host->dev, "list empty\n"); 1916 1917 if (host->state == STATE_SENDING_CMD11) 1918 host->state = STATE_WAITING_CMD11_DONE; 1919 else 1920 host->state = STATE_IDLE; 1921 } 1922 1923 spin_unlock(&host->lock); 1924 mmc_request_done(prev_mmc, mrq); 1925 spin_lock(&host->lock); 1926 } 1927 1928 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd) 1929 { 1930 u32 status = host->cmd_status; 1931 1932 host->cmd_status = 0; 1933 1934 /* Read the response from the card (up to 16 bytes) */ 1935 if (cmd->flags & MMC_RSP_PRESENT) { 1936 if (cmd->flags & MMC_RSP_136) { 1937 cmd->resp[3] = mci_readl(host, RESP0); 1938 cmd->resp[2] = mci_readl(host, RESP1); 1939 cmd->resp[1] = mci_readl(host, RESP2); 1940 cmd->resp[0] = mci_readl(host, RESP3); 1941 } else { 1942 cmd->resp[0] = mci_readl(host, RESP0); 1943 cmd->resp[1] = 0; 1944 cmd->resp[2] = 0; 1945 cmd->resp[3] = 0; 1946 } 1947 } 1948 1949 if (status & SDMMC_INT_RTO) 1950 cmd->error = -ETIMEDOUT; 1951 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC)) 1952 cmd->error = -EILSEQ; 1953 else if (status & SDMMC_INT_RESP_ERR) 1954 cmd->error = -EIO; 1955 else 1956 cmd->error = 0; 1957 1958 return cmd->error; 1959 } 1960 1961 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data) 1962 { 1963 u32 status = host->data_status; 1964 1965 if (status & DW_MCI_DATA_ERROR_FLAGS) { 1966 if (status & SDMMC_INT_DRTO) { 1967 data->error = -ETIMEDOUT; 1968 } else if (status & SDMMC_INT_DCRC) { 1969 data->error = -EILSEQ; 1970 } else if (status & SDMMC_INT_EBE) { 1971 if (host->dir_status == 1972 DW_MCI_SEND_STATUS) { 1973 /* 1974 * No data CRC status was returned. 1975 * The number of bytes transferred 1976 * will be exaggerated in PIO mode. 1977 */ 1978 data->bytes_xfered = 0; 1979 data->error = -ETIMEDOUT; 1980 } else if (host->dir_status == 1981 DW_MCI_RECV_STATUS) { 1982 data->error = -EILSEQ; 1983 } 1984 } else { 1985 /* SDMMC_INT_SBE is included */ 1986 data->error = -EILSEQ; 1987 } 1988 1989 dev_dbg(host->dev, "data error, status 0x%08x\n", status); 1990 1991 /* 1992 * After an error, there may be data lingering 1993 * in the FIFO 1994 */ 1995 dw_mci_reset(host); 1996 } else { 1997 data->bytes_xfered = data->blocks * data->blksz; 1998 data->error = 0; 1999 } 2000 2001 return data->error; 2002 } 2003 2004 static void dw_mci_set_drto(struct dw_mci *host) 2005 { 2006 const struct dw_mci_drv_data *drv_data = host->drv_data; 2007 unsigned int drto_clks; 2008 unsigned int drto_div; 2009 unsigned int drto_ms; 2010 unsigned long irqflags; 2011 2012 if (drv_data && drv_data->get_drto_clks) 2013 drto_clks = drv_data->get_drto_clks(host); 2014 else 2015 drto_clks = mci_readl(host, TMOUT) >> 8; 2016 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2; 2017 if (drto_div == 0) 2018 drto_div = 1; 2019 2020 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div, 2021 host->bus_hz); 2022 2023 dev_dbg(host->dev, "drto_ms: %u\n", drto_ms); 2024 2025 /* add a bit spare time */ 2026 drto_ms += 10; 2027 2028 spin_lock_irqsave(&host->irq_lock, irqflags); 2029 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) 2030 mod_timer(&host->dto_timer, 2031 jiffies + msecs_to_jiffies(drto_ms)); 2032 spin_unlock_irqrestore(&host->irq_lock, irqflags); 2033 } 2034 2035 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host) 2036 { 2037 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 2038 return false; 2039 2040 /* 2041 * Really be certain that the timer has stopped. This is a bit of 2042 * paranoia and could only really happen if we had really bad 2043 * interrupt latency and the interrupt routine and timeout were 2044 * running concurrently so that the del_timer() in the interrupt 2045 * handler couldn't run. 2046 */ 2047 WARN_ON(del_timer_sync(&host->cto_timer)); 2048 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2049 2050 return true; 2051 } 2052 2053 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host) 2054 { 2055 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) 2056 return false; 2057 2058 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */ 2059 WARN_ON(del_timer_sync(&host->dto_timer)); 2060 clear_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2061 2062 return true; 2063 } 2064 2065 static void dw_mci_work_func(struct work_struct *t) 2066 { 2067 struct dw_mci *host = from_work(host, t, bh_work); 2068 struct mmc_data *data; 2069 struct mmc_command *cmd; 2070 struct mmc_request *mrq; 2071 enum dw_mci_state state; 2072 enum dw_mci_state prev_state; 2073 unsigned int err; 2074 2075 spin_lock(&host->lock); 2076 2077 state = host->state; 2078 data = host->data; 2079 mrq = host->mrq; 2080 2081 do { 2082 prev_state = state; 2083 2084 switch (state) { 2085 case STATE_IDLE: 2086 case STATE_WAITING_CMD11_DONE: 2087 break; 2088 2089 case STATE_SENDING_CMD11: 2090 case STATE_SENDING_CMD: 2091 if (!dw_mci_clear_pending_cmd_complete(host)) 2092 break; 2093 2094 cmd = host->cmd; 2095 host->cmd = NULL; 2096 set_bit(EVENT_CMD_COMPLETE, &host->completed_events); 2097 err = dw_mci_command_complete(host, cmd); 2098 if (cmd == mrq->sbc && !err) { 2099 __dw_mci_start_request(host, host->slot, 2100 mrq->cmd); 2101 goto unlock; 2102 } 2103 2104 if (cmd->data && err) { 2105 /* 2106 * During UHS tuning sequence, sending the stop 2107 * command after the response CRC error would 2108 * throw the system into a confused state 2109 * causing all future tuning phases to report 2110 * failure. 2111 * 2112 * In such case controller will move into a data 2113 * transfer state after a response error or 2114 * response CRC error. Let's let that finish 2115 * before trying to send a stop, so we'll go to 2116 * STATE_SENDING_DATA. 2117 * 2118 * Although letting the data transfer take place 2119 * will waste a bit of time (we already know 2120 * the command was bad), it can't cause any 2121 * errors since it's possible it would have 2122 * taken place anyway if this bh work got 2123 * delayed. Allowing the transfer to take place 2124 * avoids races and keeps things simple. 2125 */ 2126 if (err != -ETIMEDOUT && 2127 host->dir_status == DW_MCI_RECV_STATUS) { 2128 state = STATE_SENDING_DATA; 2129 continue; 2130 } 2131 2132 send_stop_abort(host, data); 2133 dw_mci_stop_dma(host); 2134 state = STATE_SENDING_STOP; 2135 break; 2136 } 2137 2138 if (!cmd->data || err) { 2139 dw_mci_request_end(host, mrq); 2140 goto unlock; 2141 } 2142 2143 prev_state = state = STATE_SENDING_DATA; 2144 fallthrough; 2145 2146 case STATE_SENDING_DATA: 2147 /* 2148 * We could get a data error and never a transfer 2149 * complete so we'd better check for it here. 2150 * 2151 * Note that we don't really care if we also got a 2152 * transfer complete; stopping the DMA and sending an 2153 * abort won't hurt. 2154 */ 2155 if (test_and_clear_bit(EVENT_DATA_ERROR, 2156 &host->pending_events)) { 2157 if (!(host->data_status & (SDMMC_INT_DRTO | 2158 SDMMC_INT_EBE))) 2159 send_stop_abort(host, data); 2160 dw_mci_stop_dma(host); 2161 state = STATE_DATA_ERROR; 2162 break; 2163 } 2164 2165 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 2166 &host->pending_events)) { 2167 /* 2168 * If all data-related interrupts don't come 2169 * within the given time in reading data state. 2170 */ 2171 if (host->dir_status == DW_MCI_RECV_STATUS) 2172 dw_mci_set_drto(host); 2173 break; 2174 } 2175 2176 set_bit(EVENT_XFER_COMPLETE, &host->completed_events); 2177 2178 /* 2179 * Handle an EVENT_DATA_ERROR that might have shown up 2180 * before the transfer completed. This might not have 2181 * been caught by the check above because the interrupt 2182 * could have gone off between the previous check and 2183 * the check for transfer complete. 2184 * 2185 * Technically this ought not be needed assuming we 2186 * get a DATA_COMPLETE eventually (we'll notice the 2187 * error and end the request), but it shouldn't hurt. 2188 * 2189 * This has the advantage of sending the stop command. 2190 */ 2191 if (test_and_clear_bit(EVENT_DATA_ERROR, 2192 &host->pending_events)) { 2193 if (!(host->data_status & (SDMMC_INT_DRTO | 2194 SDMMC_INT_EBE))) 2195 send_stop_abort(host, data); 2196 dw_mci_stop_dma(host); 2197 state = STATE_DATA_ERROR; 2198 break; 2199 } 2200 prev_state = state = STATE_DATA_BUSY; 2201 2202 fallthrough; 2203 2204 case STATE_DATA_BUSY: 2205 if (!dw_mci_clear_pending_data_complete(host)) { 2206 /* 2207 * If data error interrupt comes but data over 2208 * interrupt doesn't come within the given time. 2209 * in reading data state. 2210 */ 2211 if (host->dir_status == DW_MCI_RECV_STATUS) 2212 dw_mci_set_drto(host); 2213 break; 2214 } 2215 2216 dw_mci_stop_fault_timer(host); 2217 host->data = NULL; 2218 set_bit(EVENT_DATA_COMPLETE, &host->completed_events); 2219 err = dw_mci_data_complete(host, data); 2220 2221 if (!err) { 2222 if (!data->stop || mrq->sbc) { 2223 if (mrq->sbc && data->stop) 2224 data->stop->error = 0; 2225 dw_mci_request_end(host, mrq); 2226 goto unlock; 2227 } 2228 2229 /* stop command for open-ended transfer*/ 2230 if (data->stop) 2231 send_stop_abort(host, data); 2232 } else { 2233 /* 2234 * If we don't have a command complete now we'll 2235 * never get one since we just reset everything; 2236 * better end the request. 2237 * 2238 * If we do have a command complete we'll fall 2239 * through to the SENDING_STOP command and 2240 * everything will be peachy keen. 2241 */ 2242 if (!test_bit(EVENT_CMD_COMPLETE, 2243 &host->pending_events)) { 2244 host->cmd = NULL; 2245 dw_mci_request_end(host, mrq); 2246 goto unlock; 2247 } 2248 } 2249 2250 /* 2251 * If err has non-zero, 2252 * stop-abort command has been already issued. 2253 */ 2254 prev_state = state = STATE_SENDING_STOP; 2255 2256 fallthrough; 2257 2258 case STATE_SENDING_STOP: 2259 if (!dw_mci_clear_pending_cmd_complete(host)) 2260 break; 2261 2262 /* CMD error in data command */ 2263 if (mrq->cmd->error && mrq->data) 2264 dw_mci_reset(host); 2265 2266 dw_mci_stop_fault_timer(host); 2267 host->cmd = NULL; 2268 host->data = NULL; 2269 2270 if (!mrq->sbc && mrq->stop) 2271 dw_mci_command_complete(host, mrq->stop); 2272 else 2273 host->cmd_status = 0; 2274 2275 dw_mci_request_end(host, mrq); 2276 goto unlock; 2277 2278 case STATE_DATA_ERROR: 2279 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 2280 &host->pending_events)) 2281 break; 2282 2283 state = STATE_DATA_BUSY; 2284 break; 2285 } 2286 } while (state != prev_state); 2287 2288 host->state = state; 2289 unlock: 2290 spin_unlock(&host->lock); 2291 2292 } 2293 2294 /* push final bytes to part_buf, only use during push */ 2295 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt) 2296 { 2297 memcpy((void *)&host->part_buf, buf, cnt); 2298 host->part_buf_count = cnt; 2299 } 2300 2301 /* append bytes to part_buf, only use during push */ 2302 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt) 2303 { 2304 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count); 2305 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt); 2306 host->part_buf_count += cnt; 2307 return cnt; 2308 } 2309 2310 /* pull first bytes from part_buf, only use during pull */ 2311 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt) 2312 { 2313 cnt = min_t(int, cnt, host->part_buf_count); 2314 if (cnt) { 2315 memcpy(buf, (void *)&host->part_buf + host->part_buf_start, 2316 cnt); 2317 host->part_buf_count -= cnt; 2318 host->part_buf_start += cnt; 2319 } 2320 return cnt; 2321 } 2322 2323 /* pull final bytes from the part_buf, assuming it's just been filled */ 2324 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt) 2325 { 2326 memcpy(buf, &host->part_buf, cnt); 2327 host->part_buf_start = cnt; 2328 host->part_buf_count = (1 << host->data_shift) - cnt; 2329 } 2330 2331 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt) 2332 { 2333 struct mmc_data *data = host->data; 2334 int init_cnt = cnt; 2335 2336 /* try and push anything in the part_buf */ 2337 if (unlikely(host->part_buf_count)) { 2338 int len = dw_mci_push_part_bytes(host, buf, cnt); 2339 2340 buf += len; 2341 cnt -= len; 2342 if (host->part_buf_count == 2) { 2343 mci_fifo_writew(host->fifo_reg, host->part_buf16); 2344 host->part_buf_count = 0; 2345 } 2346 } 2347 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2348 if (unlikely((unsigned long)buf & 0x1)) { 2349 while (cnt >= 2) { 2350 u16 aligned_buf[64]; 2351 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 2352 int items = len >> 1; 2353 int i; 2354 /* memcpy from input buffer into aligned buffer */ 2355 memcpy(aligned_buf, buf, len); 2356 buf += len; 2357 cnt -= len; 2358 /* push data from aligned buffer into fifo */ 2359 for (i = 0; i < items; ++i) 2360 mci_fifo_writew(host->fifo_reg, aligned_buf[i]); 2361 } 2362 } else 2363 #endif 2364 { 2365 u16 *pdata = buf; 2366 2367 for (; cnt >= 2; cnt -= 2) 2368 mci_fifo_writew(host->fifo_reg, *pdata++); 2369 buf = pdata; 2370 } 2371 /* put anything remaining in the part_buf */ 2372 if (cnt) { 2373 dw_mci_set_part_bytes(host, buf, cnt); 2374 /* Push data if we have reached the expected data length */ 2375 if ((data->bytes_xfered + init_cnt) == 2376 (data->blksz * data->blocks)) 2377 mci_fifo_writew(host->fifo_reg, host->part_buf16); 2378 } 2379 } 2380 2381 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt) 2382 { 2383 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2384 if (unlikely((unsigned long)buf & 0x1)) { 2385 while (cnt >= 2) { 2386 /* pull data from fifo into aligned buffer */ 2387 u16 aligned_buf[64]; 2388 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 2389 int items = len >> 1; 2390 int i; 2391 2392 for (i = 0; i < items; ++i) 2393 aligned_buf[i] = mci_fifo_readw(host->fifo_reg); 2394 /* memcpy from aligned buffer into output buffer */ 2395 memcpy(buf, aligned_buf, len); 2396 buf += len; 2397 cnt -= len; 2398 } 2399 } else 2400 #endif 2401 { 2402 u16 *pdata = buf; 2403 2404 for (; cnt >= 2; cnt -= 2) 2405 *pdata++ = mci_fifo_readw(host->fifo_reg); 2406 buf = pdata; 2407 } 2408 if (cnt) { 2409 host->part_buf16 = mci_fifo_readw(host->fifo_reg); 2410 dw_mci_pull_final_bytes(host, buf, cnt); 2411 } 2412 } 2413 2414 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt) 2415 { 2416 struct mmc_data *data = host->data; 2417 int init_cnt = cnt; 2418 2419 /* try and push anything in the part_buf */ 2420 if (unlikely(host->part_buf_count)) { 2421 int len = dw_mci_push_part_bytes(host, buf, cnt); 2422 2423 buf += len; 2424 cnt -= len; 2425 if (host->part_buf_count == 4) { 2426 mci_fifo_writel(host->fifo_reg, host->part_buf32); 2427 host->part_buf_count = 0; 2428 } 2429 } 2430 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2431 if (unlikely((unsigned long)buf & 0x3)) { 2432 while (cnt >= 4) { 2433 u32 aligned_buf[32]; 2434 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 2435 int items = len >> 2; 2436 int i; 2437 /* memcpy from input buffer into aligned buffer */ 2438 memcpy(aligned_buf, buf, len); 2439 buf += len; 2440 cnt -= len; 2441 /* push data from aligned buffer into fifo */ 2442 for (i = 0; i < items; ++i) 2443 mci_fifo_writel(host->fifo_reg, aligned_buf[i]); 2444 } 2445 } else 2446 #endif 2447 { 2448 u32 *pdata = buf; 2449 2450 for (; cnt >= 4; cnt -= 4) 2451 mci_fifo_writel(host->fifo_reg, *pdata++); 2452 buf = pdata; 2453 } 2454 /* put anything remaining in the part_buf */ 2455 if (cnt) { 2456 dw_mci_set_part_bytes(host, buf, cnt); 2457 /* Push data if we have reached the expected data length */ 2458 if ((data->bytes_xfered + init_cnt) == 2459 (data->blksz * data->blocks)) 2460 mci_fifo_writel(host->fifo_reg, host->part_buf32); 2461 } 2462 } 2463 2464 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt) 2465 { 2466 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2467 if (unlikely((unsigned long)buf & 0x3)) { 2468 while (cnt >= 4) { 2469 /* pull data from fifo into aligned buffer */ 2470 u32 aligned_buf[32]; 2471 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 2472 int items = len >> 2; 2473 int i; 2474 2475 for (i = 0; i < items; ++i) 2476 aligned_buf[i] = mci_fifo_readl(host->fifo_reg); 2477 /* memcpy from aligned buffer into output buffer */ 2478 memcpy(buf, aligned_buf, len); 2479 buf += len; 2480 cnt -= len; 2481 } 2482 } else 2483 #endif 2484 { 2485 u32 *pdata = buf; 2486 2487 for (; cnt >= 4; cnt -= 4) 2488 *pdata++ = mci_fifo_readl(host->fifo_reg); 2489 buf = pdata; 2490 } 2491 if (cnt) { 2492 host->part_buf32 = mci_fifo_readl(host->fifo_reg); 2493 dw_mci_pull_final_bytes(host, buf, cnt); 2494 } 2495 } 2496 2497 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt) 2498 { 2499 struct mmc_data *data = host->data; 2500 int init_cnt = cnt; 2501 2502 /* try and push anything in the part_buf */ 2503 if (unlikely(host->part_buf_count)) { 2504 int len = dw_mci_push_part_bytes(host, buf, cnt); 2505 2506 buf += len; 2507 cnt -= len; 2508 2509 if (host->part_buf_count == 8) { 2510 mci_fifo_writeq(host->fifo_reg, host->part_buf); 2511 host->part_buf_count = 0; 2512 } 2513 } 2514 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2515 if (unlikely((unsigned long)buf & 0x7)) { 2516 while (cnt >= 8) { 2517 u64 aligned_buf[16]; 2518 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2519 int items = len >> 3; 2520 int i; 2521 /* memcpy from input buffer into aligned buffer */ 2522 memcpy(aligned_buf, buf, len); 2523 buf += len; 2524 cnt -= len; 2525 /* push data from aligned buffer into fifo */ 2526 for (i = 0; i < items; ++i) 2527 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]); 2528 } 2529 } else 2530 #endif 2531 { 2532 u64 *pdata = buf; 2533 2534 for (; cnt >= 8; cnt -= 8) 2535 mci_fifo_writeq(host->fifo_reg, *pdata++); 2536 buf = pdata; 2537 } 2538 /* put anything remaining in the part_buf */ 2539 if (cnt) { 2540 dw_mci_set_part_bytes(host, buf, cnt); 2541 /* Push data if we have reached the expected data length */ 2542 if ((data->bytes_xfered + init_cnt) == 2543 (data->blksz * data->blocks)) 2544 mci_fifo_writeq(host->fifo_reg, host->part_buf); 2545 } 2546 } 2547 2548 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt) 2549 { 2550 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2551 if (unlikely((unsigned long)buf & 0x7)) { 2552 while (cnt >= 8) { 2553 /* pull data from fifo into aligned buffer */ 2554 u64 aligned_buf[16]; 2555 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2556 int items = len >> 3; 2557 int i; 2558 2559 for (i = 0; i < items; ++i) 2560 aligned_buf[i] = mci_fifo_readq(host->fifo_reg); 2561 2562 /* memcpy from aligned buffer into output buffer */ 2563 memcpy(buf, aligned_buf, len); 2564 buf += len; 2565 cnt -= len; 2566 } 2567 } else 2568 #endif 2569 { 2570 u64 *pdata = buf; 2571 2572 for (; cnt >= 8; cnt -= 8) 2573 *pdata++ = mci_fifo_readq(host->fifo_reg); 2574 buf = pdata; 2575 } 2576 if (cnt) { 2577 host->part_buf = mci_fifo_readq(host->fifo_reg); 2578 dw_mci_pull_final_bytes(host, buf, cnt); 2579 } 2580 } 2581 2582 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt) 2583 { 2584 int len; 2585 2586 /* get remaining partial bytes */ 2587 len = dw_mci_pull_part_bytes(host, buf, cnt); 2588 if (unlikely(len == cnt)) 2589 return; 2590 buf += len; 2591 cnt -= len; 2592 2593 /* get the rest of the data */ 2594 host->pull_data(host, buf, cnt); 2595 } 2596 2597 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto) 2598 { 2599 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2600 void *buf; 2601 unsigned int offset; 2602 struct mmc_data *data = host->data; 2603 int shift = host->data_shift; 2604 u32 status; 2605 unsigned int len; 2606 unsigned int remain, fcnt; 2607 2608 do { 2609 if (!sg_miter_next(sg_miter)) 2610 goto done; 2611 2612 host->sg = sg_miter->piter.sg; 2613 buf = sg_miter->addr; 2614 remain = sg_miter->length; 2615 offset = 0; 2616 2617 do { 2618 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS)) 2619 << shift) + host->part_buf_count; 2620 len = min(remain, fcnt); 2621 if (!len) 2622 break; 2623 dw_mci_pull_data(host, (void *)(buf + offset), len); 2624 data->bytes_xfered += len; 2625 offset += len; 2626 remain -= len; 2627 } while (remain); 2628 2629 sg_miter->consumed = offset; 2630 status = mci_readl(host, MINTSTS); 2631 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2632 /* if the RXDR is ready read again */ 2633 } while ((status & SDMMC_INT_RXDR) || 2634 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS)))); 2635 2636 if (!remain) { 2637 if (!sg_miter_next(sg_miter)) 2638 goto done; 2639 sg_miter->consumed = 0; 2640 } 2641 sg_miter_stop(sg_miter); 2642 return; 2643 2644 done: 2645 sg_miter_stop(sg_miter); 2646 host->sg = NULL; 2647 smp_wmb(); /* drain writebuffer */ 2648 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2649 } 2650 2651 static void dw_mci_write_data_pio(struct dw_mci *host) 2652 { 2653 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2654 void *buf; 2655 unsigned int offset; 2656 struct mmc_data *data = host->data; 2657 int shift = host->data_shift; 2658 u32 status; 2659 unsigned int len; 2660 unsigned int fifo_depth = host->fifo_depth; 2661 unsigned int remain, fcnt; 2662 2663 do { 2664 if (!sg_miter_next(sg_miter)) 2665 goto done; 2666 2667 host->sg = sg_miter->piter.sg; 2668 buf = sg_miter->addr; 2669 remain = sg_miter->length; 2670 offset = 0; 2671 2672 do { 2673 fcnt = ((fifo_depth - 2674 SDMMC_GET_FCNT(mci_readl(host, STATUS))) 2675 << shift) - host->part_buf_count; 2676 len = min(remain, fcnt); 2677 if (!len) 2678 break; 2679 host->push_data(host, (void *)(buf + offset), len); 2680 data->bytes_xfered += len; 2681 offset += len; 2682 remain -= len; 2683 } while (remain); 2684 2685 sg_miter->consumed = offset; 2686 status = mci_readl(host, MINTSTS); 2687 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2688 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */ 2689 2690 if (!remain) { 2691 if (!sg_miter_next(sg_miter)) 2692 goto done; 2693 sg_miter->consumed = 0; 2694 } 2695 sg_miter_stop(sg_miter); 2696 return; 2697 2698 done: 2699 sg_miter_stop(sg_miter); 2700 host->sg = NULL; 2701 smp_wmb(); /* drain writebuffer */ 2702 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2703 } 2704 2705 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status) 2706 { 2707 del_timer(&host->cto_timer); 2708 2709 if (!host->cmd_status) 2710 host->cmd_status = status; 2711 2712 smp_wmb(); /* drain writebuffer */ 2713 2714 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2715 queue_work(system_bh_wq, &host->bh_work); 2716 2717 dw_mci_start_fault_timer(host); 2718 } 2719 2720 static void dw_mci_handle_cd(struct dw_mci *host) 2721 { 2722 struct dw_mci_slot *slot = host->slot; 2723 2724 mmc_detect_change(slot->mmc, 2725 msecs_to_jiffies(host->pdata->detect_delay_ms)); 2726 } 2727 2728 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id) 2729 { 2730 struct dw_mci *host = dev_id; 2731 u32 pending; 2732 struct dw_mci_slot *slot = host->slot; 2733 2734 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 2735 2736 if (pending) { 2737 /* Check volt switch first, since it can look like an error */ 2738 if ((host->state == STATE_SENDING_CMD11) && 2739 (pending & SDMMC_INT_VOLT_SWITCH)) { 2740 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH); 2741 pending &= ~SDMMC_INT_VOLT_SWITCH; 2742 2743 /* 2744 * Hold the lock; we know cmd11_timer can't be kicked 2745 * off after the lock is released, so safe to delete. 2746 */ 2747 spin_lock(&host->irq_lock); 2748 dw_mci_cmd_interrupt(host, pending); 2749 spin_unlock(&host->irq_lock); 2750 2751 del_timer(&host->cmd11_timer); 2752 } 2753 2754 if (pending & DW_MCI_CMD_ERROR_FLAGS) { 2755 spin_lock(&host->irq_lock); 2756 2757 del_timer(&host->cto_timer); 2758 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS); 2759 host->cmd_status = pending; 2760 smp_wmb(); /* drain writebuffer */ 2761 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2762 2763 spin_unlock(&host->irq_lock); 2764 } 2765 2766 if (pending & DW_MCI_DATA_ERROR_FLAGS) { 2767 spin_lock(&host->irq_lock); 2768 2769 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT) 2770 del_timer(&host->dto_timer); 2771 2772 /* if there is an error report DATA_ERROR */ 2773 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS); 2774 host->data_status = pending; 2775 smp_wmb(); /* drain writebuffer */ 2776 set_bit(EVENT_DATA_ERROR, &host->pending_events); 2777 2778 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT) 2779 /* In case of error, we cannot expect a DTO */ 2780 set_bit(EVENT_DATA_COMPLETE, 2781 &host->pending_events); 2782 2783 queue_work(system_bh_wq, &host->bh_work); 2784 2785 spin_unlock(&host->irq_lock); 2786 } 2787 2788 if (pending & SDMMC_INT_DATA_OVER) { 2789 spin_lock(&host->irq_lock); 2790 2791 del_timer(&host->dto_timer); 2792 2793 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER); 2794 if (!host->data_status) 2795 host->data_status = pending; 2796 smp_wmb(); /* drain writebuffer */ 2797 if (host->dir_status == DW_MCI_RECV_STATUS) { 2798 if (host->sg != NULL) 2799 dw_mci_read_data_pio(host, true); 2800 } 2801 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2802 queue_work(system_bh_wq, &host->bh_work); 2803 2804 spin_unlock(&host->irq_lock); 2805 } 2806 2807 if (pending & SDMMC_INT_RXDR) { 2808 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2809 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg) 2810 dw_mci_read_data_pio(host, false); 2811 } 2812 2813 if (pending & SDMMC_INT_TXDR) { 2814 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2815 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg) 2816 dw_mci_write_data_pio(host); 2817 } 2818 2819 if (pending & SDMMC_INT_CMD_DONE) { 2820 spin_lock(&host->irq_lock); 2821 2822 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE); 2823 dw_mci_cmd_interrupt(host, pending); 2824 2825 spin_unlock(&host->irq_lock); 2826 } 2827 2828 if (pending & SDMMC_INT_CD) { 2829 mci_writel(host, RINTSTS, SDMMC_INT_CD); 2830 dw_mci_handle_cd(host); 2831 } 2832 2833 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) { 2834 mci_writel(host, RINTSTS, 2835 SDMMC_INT_SDIO(slot->sdio_id)); 2836 __dw_mci_enable_sdio_irq(slot, 0); 2837 sdio_signal_irq(slot->mmc); 2838 } 2839 2840 } 2841 2842 if (host->use_dma != TRANS_MODE_IDMAC) 2843 return IRQ_HANDLED; 2844 2845 /* Handle IDMA interrupts */ 2846 if (host->dma_64bit_address == 1) { 2847 pending = mci_readl(host, IDSTS64); 2848 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2849 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI | 2850 SDMMC_IDMAC_INT_RI); 2851 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI); 2852 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) 2853 host->dma_ops->complete((void *)host); 2854 } 2855 } else { 2856 pending = mci_readl(host, IDSTS); 2857 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2858 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI | 2859 SDMMC_IDMAC_INT_RI); 2860 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI); 2861 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) 2862 host->dma_ops->complete((void *)host); 2863 } 2864 } 2865 2866 return IRQ_HANDLED; 2867 } 2868 2869 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot) 2870 { 2871 struct dw_mci *host = slot->host; 2872 const struct dw_mci_drv_data *drv_data = host->drv_data; 2873 struct mmc_host *mmc = slot->mmc; 2874 int ctrl_id; 2875 2876 if (host->pdata->caps) 2877 mmc->caps = host->pdata->caps; 2878 2879 if (host->pdata->pm_caps) 2880 mmc->pm_caps = host->pdata->pm_caps; 2881 2882 if (drv_data) 2883 mmc->caps |= drv_data->common_caps; 2884 2885 if (host->dev->of_node) { 2886 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc"); 2887 if (ctrl_id < 0) 2888 ctrl_id = 0; 2889 } else { 2890 ctrl_id = to_platform_device(host->dev)->id; 2891 } 2892 2893 if (drv_data && drv_data->caps) { 2894 if (ctrl_id >= drv_data->num_caps) { 2895 dev_err(host->dev, "invalid controller id %d\n", 2896 ctrl_id); 2897 return -EINVAL; 2898 } 2899 mmc->caps |= drv_data->caps[ctrl_id]; 2900 } 2901 2902 if (host->pdata->caps2) 2903 mmc->caps2 = host->pdata->caps2; 2904 2905 /* if host has set a minimum_freq, we should respect it */ 2906 if (host->minimum_speed) 2907 mmc->f_min = host->minimum_speed; 2908 else 2909 mmc->f_min = DW_MCI_FREQ_MIN; 2910 2911 if (!mmc->f_max) 2912 mmc->f_max = DW_MCI_FREQ_MAX; 2913 2914 /* Process SDIO IRQs through the sdio_irq_work. */ 2915 if (mmc->caps & MMC_CAP_SDIO_IRQ) 2916 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; 2917 2918 return 0; 2919 } 2920 2921 static int dw_mci_init_slot(struct dw_mci *host) 2922 { 2923 struct mmc_host *mmc; 2924 struct dw_mci_slot *slot; 2925 int ret; 2926 2927 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev); 2928 if (!mmc) 2929 return -ENOMEM; 2930 2931 slot = mmc_priv(mmc); 2932 slot->id = 0; 2933 slot->sdio_id = host->sdio_id0 + slot->id; 2934 slot->mmc = mmc; 2935 slot->host = host; 2936 host->slot = slot; 2937 2938 mmc->ops = &dw_mci_ops; 2939 2940 /*if there are external regulators, get them*/ 2941 ret = mmc_regulator_get_supply(mmc); 2942 if (ret) 2943 goto err_host_allocated; 2944 2945 if (!mmc->ocr_avail) 2946 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; 2947 2948 ret = mmc_of_parse(mmc); 2949 if (ret) 2950 goto err_host_allocated; 2951 2952 ret = dw_mci_init_slot_caps(slot); 2953 if (ret) 2954 goto err_host_allocated; 2955 2956 /* Useful defaults if platform data is unset. */ 2957 if (host->use_dma == TRANS_MODE_IDMAC) { 2958 mmc->max_segs = host->ring_size; 2959 mmc->max_blk_size = 65535; 2960 mmc->max_seg_size = 0x1000; 2961 mmc->max_req_size = mmc->max_seg_size * host->ring_size; 2962 mmc->max_blk_count = mmc->max_req_size / 512; 2963 } else if (host->use_dma == TRANS_MODE_EDMAC) { 2964 mmc->max_segs = 64; 2965 mmc->max_blk_size = 65535; 2966 mmc->max_blk_count = 65535; 2967 mmc->max_req_size = 2968 mmc->max_blk_size * mmc->max_blk_count; 2969 mmc->max_seg_size = mmc->max_req_size; 2970 } else { 2971 /* TRANS_MODE_PIO */ 2972 mmc->max_segs = 64; 2973 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */ 2974 mmc->max_blk_count = 512; 2975 mmc->max_req_size = mmc->max_blk_size * 2976 mmc->max_blk_count; 2977 mmc->max_seg_size = mmc->max_req_size; 2978 } 2979 2980 dw_mci_get_cd(mmc); 2981 2982 ret = mmc_add_host(mmc); 2983 if (ret) 2984 goto err_host_allocated; 2985 2986 #if defined(CONFIG_DEBUG_FS) 2987 dw_mci_init_debugfs(slot); 2988 #endif 2989 2990 return 0; 2991 2992 err_host_allocated: 2993 mmc_free_host(mmc); 2994 return ret; 2995 } 2996 2997 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot) 2998 { 2999 /* Debugfs stuff is cleaned up by mmc core */ 3000 mmc_remove_host(slot->mmc); 3001 slot->host->slot = NULL; 3002 mmc_free_host(slot->mmc); 3003 } 3004 3005 static void dw_mci_init_dma(struct dw_mci *host) 3006 { 3007 int addr_config; 3008 struct device *dev = host->dev; 3009 3010 /* 3011 * Check tansfer mode from HCON[17:16] 3012 * Clear the ambiguous description of dw_mmc databook: 3013 * 2b'00: No DMA Interface -> Actually means using Internal DMA block 3014 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block 3015 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block 3016 * 2b'11: Non DW DMA Interface -> pio only 3017 * Compared to DesignWare DMA Interface, Generic DMA Interface has a 3018 * simpler request/acknowledge handshake mechanism and both of them 3019 * are regarded as external dma master for dw_mmc. 3020 */ 3021 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON)); 3022 if (host->use_dma == DMA_INTERFACE_IDMA) { 3023 host->use_dma = TRANS_MODE_IDMAC; 3024 } else if (host->use_dma == DMA_INTERFACE_DWDMA || 3025 host->use_dma == DMA_INTERFACE_GDMA) { 3026 host->use_dma = TRANS_MODE_EDMAC; 3027 } else { 3028 goto no_dma; 3029 } 3030 3031 /* Determine which DMA interface to use */ 3032 if (host->use_dma == TRANS_MODE_IDMAC) { 3033 /* 3034 * Check ADDR_CONFIG bit in HCON to find 3035 * IDMAC address bus width 3036 */ 3037 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON)); 3038 3039 if (addr_config == 1) { 3040 /* host supports IDMAC in 64-bit address mode */ 3041 host->dma_64bit_address = 1; 3042 dev_info(host->dev, 3043 "IDMAC supports 64-bit address mode.\n"); 3044 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64))) 3045 dma_set_coherent_mask(host->dev, 3046 DMA_BIT_MASK(64)); 3047 } else { 3048 /* host supports IDMAC in 32-bit address mode */ 3049 host->dma_64bit_address = 0; 3050 dev_info(host->dev, 3051 "IDMAC supports 32-bit address mode.\n"); 3052 } 3053 3054 /* Alloc memory for sg translation */ 3055 host->sg_cpu = dmam_alloc_coherent(host->dev, 3056 DESC_RING_BUF_SZ, 3057 &host->sg_dma, GFP_KERNEL); 3058 if (!host->sg_cpu) { 3059 dev_err(host->dev, 3060 "%s: could not alloc DMA memory\n", 3061 __func__); 3062 goto no_dma; 3063 } 3064 3065 host->dma_ops = &dw_mci_idmac_ops; 3066 dev_info(host->dev, "Using internal DMA controller.\n"); 3067 } else { 3068 /* TRANS_MODE_EDMAC: check dma bindings again */ 3069 if ((device_property_string_array_count(dev, "dma-names") < 0) || 3070 !device_property_present(dev, "dmas")) { 3071 goto no_dma; 3072 } 3073 host->dma_ops = &dw_mci_edmac_ops; 3074 dev_info(host->dev, "Using external DMA controller.\n"); 3075 } 3076 3077 if (host->dma_ops->init && host->dma_ops->start && 3078 host->dma_ops->stop && host->dma_ops->cleanup) { 3079 if (host->dma_ops->init(host)) { 3080 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n", 3081 __func__); 3082 goto no_dma; 3083 } 3084 } else { 3085 dev_err(host->dev, "DMA initialization not found.\n"); 3086 goto no_dma; 3087 } 3088 3089 return; 3090 3091 no_dma: 3092 dev_info(host->dev, "Using PIO mode.\n"); 3093 host->use_dma = TRANS_MODE_PIO; 3094 } 3095 3096 static void dw_mci_cmd11_timer(struct timer_list *t) 3097 { 3098 struct dw_mci *host = from_timer(host, t, cmd11_timer); 3099 3100 if (host->state != STATE_SENDING_CMD11) { 3101 dev_warn(host->dev, "Unexpected CMD11 timeout\n"); 3102 return; 3103 } 3104 3105 host->cmd_status = SDMMC_INT_RTO; 3106 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 3107 queue_work(system_bh_wq, &host->bh_work); 3108 } 3109 3110 static void dw_mci_cto_timer(struct timer_list *t) 3111 { 3112 struct dw_mci *host = from_timer(host, t, cto_timer); 3113 unsigned long irqflags; 3114 u32 pending; 3115 3116 spin_lock_irqsave(&host->irq_lock, irqflags); 3117 3118 /* 3119 * If somehow we have very bad interrupt latency it's remotely possible 3120 * that the timer could fire while the interrupt is still pending or 3121 * while the interrupt is midway through running. Let's be paranoid 3122 * and detect those two cases. Note that this is paranoia is somewhat 3123 * justified because in this function we don't actually cancel the 3124 * pending command in the controller--we just assume it will never come. 3125 */ 3126 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 3127 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) { 3128 /* The interrupt should fire; no need to act but we can warn */ 3129 dev_warn(host->dev, "Unexpected interrupt latency\n"); 3130 goto exit; 3131 } 3132 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) { 3133 /* Presumably interrupt handler couldn't delete the timer */ 3134 dev_warn(host->dev, "CTO timeout when already completed\n"); 3135 goto exit; 3136 } 3137 3138 /* 3139 * Continued paranoia to make sure we're in the state we expect. 3140 * This paranoia isn't really justified but it seems good to be safe. 3141 */ 3142 switch (host->state) { 3143 case STATE_SENDING_CMD11: 3144 case STATE_SENDING_CMD: 3145 case STATE_SENDING_STOP: 3146 /* 3147 * If CMD_DONE interrupt does NOT come in sending command 3148 * state, we should notify the driver to terminate current 3149 * transfer and report a command timeout to the core. 3150 */ 3151 host->cmd_status = SDMMC_INT_RTO; 3152 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 3153 queue_work(system_bh_wq, &host->bh_work); 3154 break; 3155 default: 3156 dev_warn(host->dev, "Unexpected command timeout, state %d\n", 3157 host->state); 3158 break; 3159 } 3160 3161 exit: 3162 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3163 } 3164 3165 static void dw_mci_dto_timer(struct timer_list *t) 3166 { 3167 struct dw_mci *host = from_timer(host, t, dto_timer); 3168 unsigned long irqflags; 3169 u32 pending; 3170 3171 spin_lock_irqsave(&host->irq_lock, irqflags); 3172 3173 /* 3174 * The DTO timer is much longer than the CTO timer, so it's even less 3175 * likely that we'll these cases, but it pays to be paranoid. 3176 */ 3177 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 3178 if (pending & SDMMC_INT_DATA_OVER) { 3179 /* The interrupt should fire; no need to act but we can warn */ 3180 dev_warn(host->dev, "Unexpected data interrupt latency\n"); 3181 goto exit; 3182 } 3183 if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) { 3184 /* Presumably interrupt handler couldn't delete the timer */ 3185 dev_warn(host->dev, "DTO timeout when already completed\n"); 3186 goto exit; 3187 } 3188 3189 /* 3190 * Continued paranoia to make sure we're in the state we expect. 3191 * This paranoia isn't really justified but it seems good to be safe. 3192 */ 3193 switch (host->state) { 3194 case STATE_SENDING_DATA: 3195 case STATE_DATA_BUSY: 3196 /* 3197 * If DTO interrupt does NOT come in sending data state, 3198 * we should notify the driver to terminate current transfer 3199 * and report a data timeout to the core. 3200 */ 3201 host->data_status = SDMMC_INT_DRTO; 3202 set_bit(EVENT_DATA_ERROR, &host->pending_events); 3203 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 3204 queue_work(system_bh_wq, &host->bh_work); 3205 break; 3206 default: 3207 dev_warn(host->dev, "Unexpected data timeout, state %d\n", 3208 host->state); 3209 break; 3210 } 3211 3212 exit: 3213 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3214 } 3215 3216 #ifdef CONFIG_OF 3217 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 3218 { 3219 struct dw_mci_board *pdata; 3220 struct device *dev = host->dev; 3221 const struct dw_mci_drv_data *drv_data = host->drv_data; 3222 int ret; 3223 u32 clock_frequency; 3224 3225 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 3226 if (!pdata) 3227 return ERR_PTR(-ENOMEM); 3228 3229 /* find reset controller when exist */ 3230 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset"); 3231 if (IS_ERR(pdata->rstc)) 3232 return ERR_CAST(pdata->rstc); 3233 3234 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth)) 3235 dev_info(dev, 3236 "fifo-depth property not found, using value of FIFOTH register as default\n"); 3237 3238 device_property_read_u32(dev, "card-detect-delay", 3239 &pdata->detect_delay_ms); 3240 3241 device_property_read_u32(dev, "data-addr", &host->data_addr_override); 3242 3243 if (device_property_present(dev, "fifo-watermark-aligned")) 3244 host->wm_aligned = true; 3245 3246 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency)) 3247 pdata->bus_hz = clock_frequency; 3248 3249 if (drv_data && drv_data->parse_dt) { 3250 ret = drv_data->parse_dt(host); 3251 if (ret) 3252 return ERR_PTR(ret); 3253 } 3254 3255 return pdata; 3256 } 3257 3258 #else /* CONFIG_OF */ 3259 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 3260 { 3261 return ERR_PTR(-EINVAL); 3262 } 3263 #endif /* CONFIG_OF */ 3264 3265 static void dw_mci_enable_cd(struct dw_mci *host) 3266 { 3267 unsigned long irqflags; 3268 u32 temp; 3269 3270 /* 3271 * No need for CD if all slots have a non-error GPIO 3272 * as well as broken card detection is found. 3273 */ 3274 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL) 3275 return; 3276 3277 if (mmc_gpio_get_cd(host->slot->mmc) < 0) { 3278 spin_lock_irqsave(&host->irq_lock, irqflags); 3279 temp = mci_readl(host, INTMASK); 3280 temp |= SDMMC_INT_CD; 3281 mci_writel(host, INTMASK, temp); 3282 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3283 } 3284 } 3285 3286 int dw_mci_probe(struct dw_mci *host) 3287 { 3288 const struct dw_mci_drv_data *drv_data = host->drv_data; 3289 int width, i, ret = 0; 3290 u32 fifo_size; 3291 3292 if (!host->pdata) { 3293 host->pdata = dw_mci_parse_dt(host); 3294 if (IS_ERR(host->pdata)) 3295 return dev_err_probe(host->dev, PTR_ERR(host->pdata), 3296 "platform data not available\n"); 3297 } 3298 3299 host->biu_clk = devm_clk_get(host->dev, "biu"); 3300 if (IS_ERR(host->biu_clk)) { 3301 dev_dbg(host->dev, "biu clock not available\n"); 3302 ret = PTR_ERR(host->biu_clk); 3303 if (ret == -EPROBE_DEFER) 3304 return ret; 3305 3306 } else { 3307 ret = clk_prepare_enable(host->biu_clk); 3308 if (ret) { 3309 dev_err(host->dev, "failed to enable biu clock\n"); 3310 return ret; 3311 } 3312 } 3313 3314 host->ciu_clk = devm_clk_get(host->dev, "ciu"); 3315 if (IS_ERR(host->ciu_clk)) { 3316 dev_dbg(host->dev, "ciu clock not available\n"); 3317 ret = PTR_ERR(host->ciu_clk); 3318 if (ret == -EPROBE_DEFER) 3319 goto err_clk_biu; 3320 3321 host->bus_hz = host->pdata->bus_hz; 3322 } else { 3323 ret = clk_prepare_enable(host->ciu_clk); 3324 if (ret) { 3325 dev_err(host->dev, "failed to enable ciu clock\n"); 3326 goto err_clk_biu; 3327 } 3328 3329 if (host->pdata->bus_hz) { 3330 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz); 3331 if (ret) 3332 dev_warn(host->dev, 3333 "Unable to set bus rate to %uHz\n", 3334 host->pdata->bus_hz); 3335 } 3336 host->bus_hz = clk_get_rate(host->ciu_clk); 3337 } 3338 3339 if (!host->bus_hz) { 3340 dev_err(host->dev, 3341 "Platform data must supply bus speed\n"); 3342 ret = -ENODEV; 3343 goto err_clk_ciu; 3344 } 3345 3346 if (host->pdata->rstc) { 3347 reset_control_assert(host->pdata->rstc); 3348 usleep_range(10, 50); 3349 reset_control_deassert(host->pdata->rstc); 3350 } 3351 3352 if (drv_data && drv_data->init) { 3353 ret = drv_data->init(host); 3354 if (ret) { 3355 dev_err(host->dev, 3356 "implementation specific init failed\n"); 3357 goto err_clk_ciu; 3358 } 3359 } 3360 3361 timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0); 3362 timer_setup(&host->cto_timer, dw_mci_cto_timer, 0); 3363 timer_setup(&host->dto_timer, dw_mci_dto_timer, 0); 3364 3365 spin_lock_init(&host->lock); 3366 spin_lock_init(&host->irq_lock); 3367 INIT_LIST_HEAD(&host->queue); 3368 3369 dw_mci_init_fault(host); 3370 3371 /* 3372 * Get the host data width - this assumes that HCON has been set with 3373 * the correct values. 3374 */ 3375 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON)); 3376 if (!i) { 3377 host->push_data = dw_mci_push_data16; 3378 host->pull_data = dw_mci_pull_data16; 3379 width = 16; 3380 host->data_shift = 1; 3381 } else if (i == 2) { 3382 host->push_data = dw_mci_push_data64; 3383 host->pull_data = dw_mci_pull_data64; 3384 width = 64; 3385 host->data_shift = 3; 3386 } else { 3387 /* Check for a reserved value, and warn if it is */ 3388 WARN((i != 1), 3389 "HCON reports a reserved host data width!\n" 3390 "Defaulting to 32-bit access.\n"); 3391 host->push_data = dw_mci_push_data32; 3392 host->pull_data = dw_mci_pull_data32; 3393 width = 32; 3394 host->data_shift = 2; 3395 } 3396 3397 /* Reset all blocks */ 3398 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 3399 ret = -ENODEV; 3400 goto err_clk_ciu; 3401 } 3402 3403 host->dma_ops = host->pdata->dma_ops; 3404 dw_mci_init_dma(host); 3405 3406 /* Clear the interrupts for the host controller */ 3407 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3408 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 3409 3410 /* Put in max timeout */ 3411 mci_writel(host, TMOUT, 0xFFFFFFFF); 3412 3413 /* 3414 * FIFO threshold settings RxMark = fifo_size / 2 - 1, 3415 * Tx Mark = fifo_size / 2 DMA Size = 8 3416 */ 3417 if (!host->pdata->fifo_depth) { 3418 /* 3419 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may 3420 * have been overwritten by the bootloader, just like we're 3421 * about to do, so if you know the value for your hardware, you 3422 * should put it in the platform data. 3423 */ 3424 fifo_size = mci_readl(host, FIFOTH); 3425 fifo_size = 1 + ((fifo_size >> 16) & 0xfff); 3426 } else { 3427 fifo_size = host->pdata->fifo_depth; 3428 } 3429 host->fifo_depth = fifo_size; 3430 host->fifoth_val = 3431 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2); 3432 mci_writel(host, FIFOTH, host->fifoth_val); 3433 3434 /* disable clock to CIU */ 3435 mci_writel(host, CLKENA, 0); 3436 mci_writel(host, CLKSRC, 0); 3437 3438 /* 3439 * In 2.40a spec, Data offset is changed. 3440 * Need to check the version-id and set data-offset for DATA register. 3441 */ 3442 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID)); 3443 dev_info(host->dev, "Version ID is %04x\n", host->verid); 3444 3445 if (host->data_addr_override) 3446 host->fifo_reg = host->regs + host->data_addr_override; 3447 else if (host->verid < DW_MMC_240A) 3448 host->fifo_reg = host->regs + DATA_OFFSET; 3449 else 3450 host->fifo_reg = host->regs + DATA_240A_OFFSET; 3451 3452 INIT_WORK(&host->bh_work, dw_mci_work_func); 3453 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt, 3454 host->irq_flags, "dw-mci", host); 3455 if (ret) 3456 goto err_dmaunmap; 3457 3458 /* 3459 * Enable interrupts for command done, data over, data empty, 3460 * receive ready and error such as transmit, receive timeout, crc error 3461 */ 3462 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3463 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3464 DW_MCI_ERROR_FLAGS); 3465 /* Enable mci interrupt */ 3466 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3467 3468 dev_info(host->dev, 3469 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n", 3470 host->irq, width, fifo_size); 3471 3472 /* We need at least one slot to succeed */ 3473 ret = dw_mci_init_slot(host); 3474 if (ret) { 3475 dev_dbg(host->dev, "slot %d init failed\n", i); 3476 goto err_dmaunmap; 3477 } 3478 3479 /* Now that slots are all setup, we can enable card detect */ 3480 dw_mci_enable_cd(host); 3481 3482 return 0; 3483 3484 err_dmaunmap: 3485 if (host->use_dma && host->dma_ops->exit) 3486 host->dma_ops->exit(host); 3487 3488 reset_control_assert(host->pdata->rstc); 3489 3490 err_clk_ciu: 3491 clk_disable_unprepare(host->ciu_clk); 3492 3493 err_clk_biu: 3494 clk_disable_unprepare(host->biu_clk); 3495 3496 return ret; 3497 } 3498 EXPORT_SYMBOL(dw_mci_probe); 3499 3500 void dw_mci_remove(struct dw_mci *host) 3501 { 3502 dev_dbg(host->dev, "remove slot\n"); 3503 if (host->slot) 3504 dw_mci_cleanup_slot(host->slot); 3505 3506 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3507 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 3508 3509 /* disable clock to CIU */ 3510 mci_writel(host, CLKENA, 0); 3511 mci_writel(host, CLKSRC, 0); 3512 3513 if (host->use_dma && host->dma_ops->exit) 3514 host->dma_ops->exit(host); 3515 3516 reset_control_assert(host->pdata->rstc); 3517 3518 clk_disable_unprepare(host->ciu_clk); 3519 clk_disable_unprepare(host->biu_clk); 3520 } 3521 EXPORT_SYMBOL(dw_mci_remove); 3522 3523 3524 3525 #ifdef CONFIG_PM 3526 int dw_mci_runtime_suspend(struct device *dev) 3527 { 3528 struct dw_mci *host = dev_get_drvdata(dev); 3529 3530 if (host->use_dma && host->dma_ops->exit) 3531 host->dma_ops->exit(host); 3532 3533 clk_disable_unprepare(host->ciu_clk); 3534 3535 if (host->slot && 3536 (mmc_can_gpio_cd(host->slot->mmc) || 3537 !mmc_card_is_removable(host->slot->mmc))) 3538 clk_disable_unprepare(host->biu_clk); 3539 3540 return 0; 3541 } 3542 EXPORT_SYMBOL(dw_mci_runtime_suspend); 3543 3544 int dw_mci_runtime_resume(struct device *dev) 3545 { 3546 int ret = 0; 3547 struct dw_mci *host = dev_get_drvdata(dev); 3548 3549 if (host->slot && 3550 (mmc_can_gpio_cd(host->slot->mmc) || 3551 !mmc_card_is_removable(host->slot->mmc))) { 3552 ret = clk_prepare_enable(host->biu_clk); 3553 if (ret) 3554 return ret; 3555 } 3556 3557 ret = clk_prepare_enable(host->ciu_clk); 3558 if (ret) 3559 goto err; 3560 3561 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 3562 clk_disable_unprepare(host->ciu_clk); 3563 ret = -ENODEV; 3564 goto err; 3565 } 3566 3567 if (host->use_dma && host->dma_ops->init) 3568 host->dma_ops->init(host); 3569 3570 /* 3571 * Restore the initial value at FIFOTH register 3572 * And Invalidate the prev_blksz with zero 3573 */ 3574 mci_writel(host, FIFOTH, host->fifoth_val); 3575 host->prev_blksz = 0; 3576 3577 /* Put in max timeout */ 3578 mci_writel(host, TMOUT, 0xFFFFFFFF); 3579 3580 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3581 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3582 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3583 DW_MCI_ERROR_FLAGS); 3584 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3585 3586 3587 if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER) 3588 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios); 3589 3590 /* Force setup bus to guarantee available clock output */ 3591 dw_mci_setup_bus(host->slot, true); 3592 3593 /* Re-enable SDIO interrupts. */ 3594 if (sdio_irq_claimed(host->slot->mmc)) 3595 __dw_mci_enable_sdio_irq(host->slot, 1); 3596 3597 /* Now that slots are all setup, we can enable card detect */ 3598 dw_mci_enable_cd(host); 3599 3600 return 0; 3601 3602 err: 3603 if (host->slot && 3604 (mmc_can_gpio_cd(host->slot->mmc) || 3605 !mmc_card_is_removable(host->slot->mmc))) 3606 clk_disable_unprepare(host->biu_clk); 3607 3608 return ret; 3609 } 3610 EXPORT_SYMBOL(dw_mci_runtime_resume); 3611 #endif /* CONFIG_PM */ 3612 3613 static int __init dw_mci_init(void) 3614 { 3615 pr_info("Synopsys Designware Multimedia Card Interface Driver\n"); 3616 return 0; 3617 } 3618 3619 static void __exit dw_mci_exit(void) 3620 { 3621 } 3622 3623 module_init(dw_mci_init); 3624 module_exit(dw_mci_exit); 3625 3626 MODULE_DESCRIPTION("DW Multimedia Card Interface driver"); 3627 MODULE_AUTHOR("NXP Semiconductor VietNam"); 3628 MODULE_AUTHOR("Imagination Technologies Ltd"); 3629 MODULE_LICENSE("GPL v2"); 3630