xref: /linux/drivers/mmc/host/dw_mmc.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/stat.h>
26 #include <linux/delay.h>
27 #include <linux/irq.h>
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/bitops.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/of.h>
36 #include <linux/of_gpio.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "dw_mmc.h"
40 
41 /* Common flag combinations */
42 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
43 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
44 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
45 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
46 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
47 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
48 				 DW_MCI_CMD_ERROR_FLAGS)
49 #define DW_MCI_SEND_STATUS	1
50 #define DW_MCI_RECV_STATUS	2
51 #define DW_MCI_DMA_THRESHOLD	16
52 
53 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
54 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
55 
56 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
57 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
58 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
59 				 SDMMC_IDMAC_INT_TI)
60 
61 #define DESC_RING_BUF_SZ	PAGE_SIZE
62 
63 struct idmac_desc_64addr {
64 	u32		des0;	/* Control Descriptor */
65 #define IDMAC_OWN_CLR64(x) \
66 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
67 
68 	u32		des1;	/* Reserved */
69 
70 	u32		des2;	/*Buffer sizes */
71 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
72 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
73 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
74 
75 	u32		des3;	/* Reserved */
76 
77 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
78 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
79 
80 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
81 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
82 };
83 
84 struct idmac_desc {
85 	__le32		des0;	/* Control Descriptor */
86 #define IDMAC_DES0_DIC	BIT(1)
87 #define IDMAC_DES0_LD	BIT(2)
88 #define IDMAC_DES0_FD	BIT(3)
89 #define IDMAC_DES0_CH	BIT(4)
90 #define IDMAC_DES0_ER	BIT(5)
91 #define IDMAC_DES0_CES	BIT(30)
92 #define IDMAC_DES0_OWN	BIT(31)
93 
94 	__le32		des1;	/* Buffer sizes */
95 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
96 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
97 
98 	__le32		des2;	/* buffer 1 physical address */
99 
100 	__le32		des3;	/* buffer 2 physical address */
101 };
102 
103 /* Each descriptor can transfer up to 4KB of data in chained mode */
104 #define DW_MCI_DESC_DATA_LENGTH	0x1000
105 
106 #if defined(CONFIG_DEBUG_FS)
107 static int dw_mci_req_show(struct seq_file *s, void *v)
108 {
109 	struct dw_mci_slot *slot = s->private;
110 	struct mmc_request *mrq;
111 	struct mmc_command *cmd;
112 	struct mmc_command *stop;
113 	struct mmc_data	*data;
114 
115 	/* Make sure we get a consistent snapshot */
116 	spin_lock_bh(&slot->host->lock);
117 	mrq = slot->mrq;
118 
119 	if (mrq) {
120 		cmd = mrq->cmd;
121 		data = mrq->data;
122 		stop = mrq->stop;
123 
124 		if (cmd)
125 			seq_printf(s,
126 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
127 				   cmd->opcode, cmd->arg, cmd->flags,
128 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
129 				   cmd->resp[2], cmd->error);
130 		if (data)
131 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
132 				   data->bytes_xfered, data->blocks,
133 				   data->blksz, data->flags, data->error);
134 		if (stop)
135 			seq_printf(s,
136 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
137 				   stop->opcode, stop->arg, stop->flags,
138 				   stop->resp[0], stop->resp[1], stop->resp[2],
139 				   stop->resp[2], stop->error);
140 	}
141 
142 	spin_unlock_bh(&slot->host->lock);
143 
144 	return 0;
145 }
146 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
147 
148 static int dw_mci_regs_show(struct seq_file *s, void *v)
149 {
150 	struct dw_mci *host = s->private;
151 
152 	pm_runtime_get_sync(host->dev);
153 
154 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
155 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
156 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
157 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
158 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
159 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
160 
161 	pm_runtime_put_autosuspend(host->dev);
162 
163 	return 0;
164 }
165 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
166 
167 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
168 {
169 	struct mmc_host	*mmc = slot->mmc;
170 	struct dw_mci *host = slot->host;
171 	struct dentry *root;
172 
173 	root = mmc->debugfs_root;
174 	if (!root)
175 		return;
176 
177 	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
178 	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
179 	debugfs_create_u32("state", S_IRUSR, root, &host->state);
180 	debugfs_create_xul("pending_events", S_IRUSR, root,
181 			   &host->pending_events);
182 	debugfs_create_xul("completed_events", S_IRUSR, root,
183 			   &host->completed_events);
184 }
185 #endif /* defined(CONFIG_DEBUG_FS) */
186 
187 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
188 {
189 	u32 ctrl;
190 
191 	ctrl = mci_readl(host, CTRL);
192 	ctrl |= reset;
193 	mci_writel(host, CTRL, ctrl);
194 
195 	/* wait till resets clear */
196 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
197 				      !(ctrl & reset),
198 				      1, 500 * USEC_PER_MSEC)) {
199 		dev_err(host->dev,
200 			"Timeout resetting block (ctrl reset %#x)\n",
201 			ctrl & reset);
202 		return false;
203 	}
204 
205 	return true;
206 }
207 
208 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
209 {
210 	u32 status;
211 
212 	/*
213 	 * Databook says that before issuing a new data transfer command
214 	 * we need to check to see if the card is busy.  Data transfer commands
215 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
216 	 *
217 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
218 	 * expected.
219 	 */
220 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
221 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
222 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
223 					      status,
224 					      !(status & SDMMC_STATUS_BUSY),
225 					      10, 500 * USEC_PER_MSEC))
226 			dev_err(host->dev, "Busy; trying anyway\n");
227 	}
228 }
229 
230 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
231 {
232 	struct dw_mci *host = slot->host;
233 	unsigned int cmd_status = 0;
234 
235 	mci_writel(host, CMDARG, arg);
236 	wmb(); /* drain writebuffer */
237 	dw_mci_wait_while_busy(host, cmd);
238 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
239 
240 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
241 				      !(cmd_status & SDMMC_CMD_START),
242 				      1, 500 * USEC_PER_MSEC))
243 		dev_err(&slot->mmc->class_dev,
244 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
245 			cmd, arg, cmd_status);
246 }
247 
248 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
249 {
250 	struct dw_mci_slot *slot = mmc_priv(mmc);
251 	struct dw_mci *host = slot->host;
252 	u32 cmdr;
253 
254 	cmd->error = -EINPROGRESS;
255 	cmdr = cmd->opcode;
256 
257 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
258 	    cmd->opcode == MMC_GO_IDLE_STATE ||
259 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
260 	    (cmd->opcode == SD_IO_RW_DIRECT &&
261 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
262 		cmdr |= SDMMC_CMD_STOP;
263 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
264 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
265 
266 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
267 		u32 clk_en_a;
268 
269 		/* Special bit makes CMD11 not die */
270 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
271 
272 		/* Change state to continue to handle CMD11 weirdness */
273 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
274 		slot->host->state = STATE_SENDING_CMD11;
275 
276 		/*
277 		 * We need to disable low power mode (automatic clock stop)
278 		 * while doing voltage switch so we don't confuse the card,
279 		 * since stopping the clock is a specific part of the UHS
280 		 * voltage change dance.
281 		 *
282 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
283 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
284 		 * ever called with a non-zero clock.  That shouldn't happen
285 		 * until the voltage change is all done.
286 		 */
287 		clk_en_a = mci_readl(host, CLKENA);
288 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
289 		mci_writel(host, CLKENA, clk_en_a);
290 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
291 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
292 	}
293 
294 	if (cmd->flags & MMC_RSP_PRESENT) {
295 		/* We expect a response, so set this bit */
296 		cmdr |= SDMMC_CMD_RESP_EXP;
297 		if (cmd->flags & MMC_RSP_136)
298 			cmdr |= SDMMC_CMD_RESP_LONG;
299 	}
300 
301 	if (cmd->flags & MMC_RSP_CRC)
302 		cmdr |= SDMMC_CMD_RESP_CRC;
303 
304 	if (cmd->data) {
305 		cmdr |= SDMMC_CMD_DAT_EXP;
306 		if (cmd->data->flags & MMC_DATA_WRITE)
307 			cmdr |= SDMMC_CMD_DAT_WR;
308 	}
309 
310 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
311 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
312 
313 	return cmdr;
314 }
315 
316 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
317 {
318 	struct mmc_command *stop;
319 	u32 cmdr;
320 
321 	if (!cmd->data)
322 		return 0;
323 
324 	stop = &host->stop_abort;
325 	cmdr = cmd->opcode;
326 	memset(stop, 0, sizeof(struct mmc_command));
327 
328 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
329 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
330 	    cmdr == MMC_WRITE_BLOCK ||
331 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
332 	    cmdr == MMC_SEND_TUNING_BLOCK ||
333 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
334 		stop->opcode = MMC_STOP_TRANSMISSION;
335 		stop->arg = 0;
336 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
337 	} else if (cmdr == SD_IO_RW_EXTENDED) {
338 		stop->opcode = SD_IO_RW_DIRECT;
339 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
340 			     ((cmd->arg >> 28) & 0x7);
341 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
342 	} else {
343 		return 0;
344 	}
345 
346 	cmdr = stop->opcode | SDMMC_CMD_STOP |
347 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
348 
349 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
350 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
351 
352 	return cmdr;
353 }
354 
355 static inline void dw_mci_set_cto(struct dw_mci *host)
356 {
357 	unsigned int cto_clks;
358 	unsigned int cto_div;
359 	unsigned int cto_ms;
360 	unsigned long irqflags;
361 
362 	cto_clks = mci_readl(host, TMOUT) & 0xff;
363 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
364 	if (cto_div == 0)
365 		cto_div = 1;
366 
367 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
368 				  host->bus_hz);
369 
370 	/* add a bit spare time */
371 	cto_ms += 10;
372 
373 	/*
374 	 * The durations we're working with are fairly short so we have to be
375 	 * extra careful about synchronization here.  Specifically in hardware a
376 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
377 	 * interrupt (either command done or timeout) to come rather quickly
378 	 * after the mci_writel.  ...but just in case we have a long interrupt
379 	 * latency let's add a bit of paranoia.
380 	 *
381 	 * In general we'll assume that at least an interrupt will be asserted
382 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
383 	 * been asserted in hardware by that time then we'll assume it'll never
384 	 * come.
385 	 */
386 	spin_lock_irqsave(&host->irq_lock, irqflags);
387 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
388 		mod_timer(&host->cto_timer,
389 			jiffies + msecs_to_jiffies(cto_ms) + 1);
390 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
391 }
392 
393 static void dw_mci_start_command(struct dw_mci *host,
394 				 struct mmc_command *cmd, u32 cmd_flags)
395 {
396 	host->cmd = cmd;
397 	dev_vdbg(host->dev,
398 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
399 		 cmd->arg, cmd_flags);
400 
401 	mci_writel(host, CMDARG, cmd->arg);
402 	wmb(); /* drain writebuffer */
403 	dw_mci_wait_while_busy(host, cmd_flags);
404 
405 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
406 
407 	/* response expected command only */
408 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
409 		dw_mci_set_cto(host);
410 }
411 
412 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
413 {
414 	struct mmc_command *stop = &host->stop_abort;
415 
416 	dw_mci_start_command(host, stop, host->stop_cmdr);
417 }
418 
419 /* DMA interface functions */
420 static void dw_mci_stop_dma(struct dw_mci *host)
421 {
422 	if (host->using_dma) {
423 		host->dma_ops->stop(host);
424 		host->dma_ops->cleanup(host);
425 	}
426 
427 	/* Data transfer was stopped by the interrupt handler */
428 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
429 }
430 
431 static void dw_mci_dma_cleanup(struct dw_mci *host)
432 {
433 	struct mmc_data *data = host->data;
434 
435 	if (data && data->host_cookie == COOKIE_MAPPED) {
436 		dma_unmap_sg(host->dev,
437 			     data->sg,
438 			     data->sg_len,
439 			     mmc_get_dma_dir(data));
440 		data->host_cookie = COOKIE_UNMAPPED;
441 	}
442 }
443 
444 static void dw_mci_idmac_reset(struct dw_mci *host)
445 {
446 	u32 bmod = mci_readl(host, BMOD);
447 	/* Software reset of DMA */
448 	bmod |= SDMMC_IDMAC_SWRESET;
449 	mci_writel(host, BMOD, bmod);
450 }
451 
452 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
453 {
454 	u32 temp;
455 
456 	/* Disable and reset the IDMAC interface */
457 	temp = mci_readl(host, CTRL);
458 	temp &= ~SDMMC_CTRL_USE_IDMAC;
459 	temp |= SDMMC_CTRL_DMA_RESET;
460 	mci_writel(host, CTRL, temp);
461 
462 	/* Stop the IDMAC running */
463 	temp = mci_readl(host, BMOD);
464 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
465 	temp |= SDMMC_IDMAC_SWRESET;
466 	mci_writel(host, BMOD, temp);
467 }
468 
469 static void dw_mci_dmac_complete_dma(void *arg)
470 {
471 	struct dw_mci *host = arg;
472 	struct mmc_data *data = host->data;
473 
474 	dev_vdbg(host->dev, "DMA complete\n");
475 
476 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
477 	    data && (data->flags & MMC_DATA_READ))
478 		/* Invalidate cache after read */
479 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
480 				    data->sg,
481 				    data->sg_len,
482 				    DMA_FROM_DEVICE);
483 
484 	host->dma_ops->cleanup(host);
485 
486 	/*
487 	 * If the card was removed, data will be NULL. No point in trying to
488 	 * send the stop command or waiting for NBUSY in this case.
489 	 */
490 	if (data) {
491 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
492 		tasklet_schedule(&host->tasklet);
493 	}
494 }
495 
496 static int dw_mci_idmac_init(struct dw_mci *host)
497 {
498 	int i;
499 
500 	if (host->dma_64bit_address == 1) {
501 		struct idmac_desc_64addr *p;
502 		/* Number of descriptors in the ring buffer */
503 		host->ring_size =
504 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
505 
506 		/* Forward link the descriptor list */
507 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
508 								i++, p++) {
509 			p->des6 = (host->sg_dma +
510 					(sizeof(struct idmac_desc_64addr) *
511 							(i + 1))) & 0xffffffff;
512 
513 			p->des7 = (u64)(host->sg_dma +
514 					(sizeof(struct idmac_desc_64addr) *
515 							(i + 1))) >> 32;
516 			/* Initialize reserved and buffer size fields to "0" */
517 			p->des0 = 0;
518 			p->des1 = 0;
519 			p->des2 = 0;
520 			p->des3 = 0;
521 		}
522 
523 		/* Set the last descriptor as the end-of-ring descriptor */
524 		p->des6 = host->sg_dma & 0xffffffff;
525 		p->des7 = (u64)host->sg_dma >> 32;
526 		p->des0 = IDMAC_DES0_ER;
527 
528 	} else {
529 		struct idmac_desc *p;
530 		/* Number of descriptors in the ring buffer */
531 		host->ring_size =
532 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
533 
534 		/* Forward link the descriptor list */
535 		for (i = 0, p = host->sg_cpu;
536 		     i < host->ring_size - 1;
537 		     i++, p++) {
538 			p->des3 = cpu_to_le32(host->sg_dma +
539 					(sizeof(struct idmac_desc) * (i + 1)));
540 			p->des0 = 0;
541 			p->des1 = 0;
542 		}
543 
544 		/* Set the last descriptor as the end-of-ring descriptor */
545 		p->des3 = cpu_to_le32(host->sg_dma);
546 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
547 	}
548 
549 	dw_mci_idmac_reset(host);
550 
551 	if (host->dma_64bit_address == 1) {
552 		/* Mask out interrupts - get Tx & Rx complete only */
553 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
554 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
555 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
556 
557 		/* Set the descriptor base address */
558 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
559 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
560 
561 	} else {
562 		/* Mask out interrupts - get Tx & Rx complete only */
563 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
564 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
565 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
566 
567 		/* Set the descriptor base address */
568 		mci_writel(host, DBADDR, host->sg_dma);
569 	}
570 
571 	return 0;
572 }
573 
574 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
575 					 struct mmc_data *data,
576 					 unsigned int sg_len)
577 {
578 	unsigned int desc_len;
579 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
580 	u32 val;
581 	int i;
582 
583 	desc_first = desc_last = desc = host->sg_cpu;
584 
585 	for (i = 0; i < sg_len; i++) {
586 		unsigned int length = sg_dma_len(&data->sg[i]);
587 
588 		u64 mem_addr = sg_dma_address(&data->sg[i]);
589 
590 		for ( ; length ; desc++) {
591 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
592 				   length : DW_MCI_DESC_DATA_LENGTH;
593 
594 			length -= desc_len;
595 
596 			/*
597 			 * Wait for the former clear OWN bit operation
598 			 * of IDMAC to make sure that this descriptor
599 			 * isn't still owned by IDMAC as IDMAC's write
600 			 * ops and CPU's read ops are asynchronous.
601 			 */
602 			if (readl_poll_timeout_atomic(&desc->des0, val,
603 						!(val & IDMAC_DES0_OWN),
604 						10, 100 * USEC_PER_MSEC))
605 				goto err_own_bit;
606 
607 			/*
608 			 * Set the OWN bit and disable interrupts
609 			 * for this descriptor
610 			 */
611 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
612 						IDMAC_DES0_CH;
613 
614 			/* Buffer length */
615 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
616 
617 			/* Physical address to DMA to/from */
618 			desc->des4 = mem_addr & 0xffffffff;
619 			desc->des5 = mem_addr >> 32;
620 
621 			/* Update physical address for the next desc */
622 			mem_addr += desc_len;
623 
624 			/* Save pointer to the last descriptor */
625 			desc_last = desc;
626 		}
627 	}
628 
629 	/* Set first descriptor */
630 	desc_first->des0 |= IDMAC_DES0_FD;
631 
632 	/* Set last descriptor */
633 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
634 	desc_last->des0 |= IDMAC_DES0_LD;
635 
636 	return 0;
637 err_own_bit:
638 	/* restore the descriptor chain as it's polluted */
639 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
640 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
641 	dw_mci_idmac_init(host);
642 	return -EINVAL;
643 }
644 
645 
646 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
647 					 struct mmc_data *data,
648 					 unsigned int sg_len)
649 {
650 	unsigned int desc_len;
651 	struct idmac_desc *desc_first, *desc_last, *desc;
652 	u32 val;
653 	int i;
654 
655 	desc_first = desc_last = desc = host->sg_cpu;
656 
657 	for (i = 0; i < sg_len; i++) {
658 		unsigned int length = sg_dma_len(&data->sg[i]);
659 
660 		u32 mem_addr = sg_dma_address(&data->sg[i]);
661 
662 		for ( ; length ; desc++) {
663 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
664 				   length : DW_MCI_DESC_DATA_LENGTH;
665 
666 			length -= desc_len;
667 
668 			/*
669 			 * Wait for the former clear OWN bit operation
670 			 * of IDMAC to make sure that this descriptor
671 			 * isn't still owned by IDMAC as IDMAC's write
672 			 * ops and CPU's read ops are asynchronous.
673 			 */
674 			if (readl_poll_timeout_atomic(&desc->des0, val,
675 						      IDMAC_OWN_CLR64(val),
676 						      10,
677 						      100 * USEC_PER_MSEC))
678 				goto err_own_bit;
679 
680 			/*
681 			 * Set the OWN bit and disable interrupts
682 			 * for this descriptor
683 			 */
684 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
685 						 IDMAC_DES0_DIC |
686 						 IDMAC_DES0_CH);
687 
688 			/* Buffer length */
689 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
690 
691 			/* Physical address to DMA to/from */
692 			desc->des2 = cpu_to_le32(mem_addr);
693 
694 			/* Update physical address for the next desc */
695 			mem_addr += desc_len;
696 
697 			/* Save pointer to the last descriptor */
698 			desc_last = desc;
699 		}
700 	}
701 
702 	/* Set first descriptor */
703 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
704 
705 	/* Set last descriptor */
706 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
707 				       IDMAC_DES0_DIC));
708 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
709 
710 	return 0;
711 err_own_bit:
712 	/* restore the descriptor chain as it's polluted */
713 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
714 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
715 	dw_mci_idmac_init(host);
716 	return -EINVAL;
717 }
718 
719 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
720 {
721 	u32 temp;
722 	int ret;
723 
724 	if (host->dma_64bit_address == 1)
725 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
726 	else
727 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
728 
729 	if (ret)
730 		goto out;
731 
732 	/* drain writebuffer */
733 	wmb();
734 
735 	/* Make sure to reset DMA in case we did PIO before this */
736 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
737 	dw_mci_idmac_reset(host);
738 
739 	/* Select IDMAC interface */
740 	temp = mci_readl(host, CTRL);
741 	temp |= SDMMC_CTRL_USE_IDMAC;
742 	mci_writel(host, CTRL, temp);
743 
744 	/* drain writebuffer */
745 	wmb();
746 
747 	/* Enable the IDMAC */
748 	temp = mci_readl(host, BMOD);
749 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
750 	mci_writel(host, BMOD, temp);
751 
752 	/* Start it running */
753 	mci_writel(host, PLDMND, 1);
754 
755 out:
756 	return ret;
757 }
758 
759 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
760 	.init = dw_mci_idmac_init,
761 	.start = dw_mci_idmac_start_dma,
762 	.stop = dw_mci_idmac_stop_dma,
763 	.complete = dw_mci_dmac_complete_dma,
764 	.cleanup = dw_mci_dma_cleanup,
765 };
766 
767 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
768 {
769 	dmaengine_terminate_async(host->dms->ch);
770 }
771 
772 static int dw_mci_edmac_start_dma(struct dw_mci *host,
773 					    unsigned int sg_len)
774 {
775 	struct dma_slave_config cfg;
776 	struct dma_async_tx_descriptor *desc = NULL;
777 	struct scatterlist *sgl = host->data->sg;
778 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
779 	u32 sg_elems = host->data->sg_len;
780 	u32 fifoth_val;
781 	u32 fifo_offset = host->fifo_reg - host->regs;
782 	int ret = 0;
783 
784 	/* Set external dma config: burst size, burst width */
785 	cfg.dst_addr = host->phy_regs + fifo_offset;
786 	cfg.src_addr = cfg.dst_addr;
787 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
788 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
789 
790 	/* Match burst msize with external dma config */
791 	fifoth_val = mci_readl(host, FIFOTH);
792 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
793 	cfg.src_maxburst = cfg.dst_maxburst;
794 
795 	if (host->data->flags & MMC_DATA_WRITE)
796 		cfg.direction = DMA_MEM_TO_DEV;
797 	else
798 		cfg.direction = DMA_DEV_TO_MEM;
799 
800 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
801 	if (ret) {
802 		dev_err(host->dev, "Failed to config edmac.\n");
803 		return -EBUSY;
804 	}
805 
806 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
807 				       sg_len, cfg.direction,
808 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
809 	if (!desc) {
810 		dev_err(host->dev, "Can't prepare slave sg.\n");
811 		return -EBUSY;
812 	}
813 
814 	/* Set dw_mci_dmac_complete_dma as callback */
815 	desc->callback = dw_mci_dmac_complete_dma;
816 	desc->callback_param = (void *)host;
817 	dmaengine_submit(desc);
818 
819 	/* Flush cache before write */
820 	if (host->data->flags & MMC_DATA_WRITE)
821 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
822 				       sg_elems, DMA_TO_DEVICE);
823 
824 	dma_async_issue_pending(host->dms->ch);
825 
826 	return 0;
827 }
828 
829 static int dw_mci_edmac_init(struct dw_mci *host)
830 {
831 	/* Request external dma channel */
832 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
833 	if (!host->dms)
834 		return -ENOMEM;
835 
836 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
837 	if (!host->dms->ch) {
838 		dev_err(host->dev, "Failed to get external DMA channel.\n");
839 		kfree(host->dms);
840 		host->dms = NULL;
841 		return -ENXIO;
842 	}
843 
844 	return 0;
845 }
846 
847 static void dw_mci_edmac_exit(struct dw_mci *host)
848 {
849 	if (host->dms) {
850 		if (host->dms->ch) {
851 			dma_release_channel(host->dms->ch);
852 			host->dms->ch = NULL;
853 		}
854 		kfree(host->dms);
855 		host->dms = NULL;
856 	}
857 }
858 
859 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
860 	.init = dw_mci_edmac_init,
861 	.exit = dw_mci_edmac_exit,
862 	.start = dw_mci_edmac_start_dma,
863 	.stop = dw_mci_edmac_stop_dma,
864 	.complete = dw_mci_dmac_complete_dma,
865 	.cleanup = dw_mci_dma_cleanup,
866 };
867 
868 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
869 				   struct mmc_data *data,
870 				   int cookie)
871 {
872 	struct scatterlist *sg;
873 	unsigned int i, sg_len;
874 
875 	if (data->host_cookie == COOKIE_PRE_MAPPED)
876 		return data->sg_len;
877 
878 	/*
879 	 * We don't do DMA on "complex" transfers, i.e. with
880 	 * non-word-aligned buffers or lengths. Also, we don't bother
881 	 * with all the DMA setup overhead for short transfers.
882 	 */
883 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
884 		return -EINVAL;
885 
886 	if (data->blksz & 3)
887 		return -EINVAL;
888 
889 	for_each_sg(data->sg, sg, data->sg_len, i) {
890 		if (sg->offset & 3 || sg->length & 3)
891 			return -EINVAL;
892 	}
893 
894 	sg_len = dma_map_sg(host->dev,
895 			    data->sg,
896 			    data->sg_len,
897 			    mmc_get_dma_dir(data));
898 	if (sg_len == 0)
899 		return -EINVAL;
900 
901 	data->host_cookie = cookie;
902 
903 	return sg_len;
904 }
905 
906 static void dw_mci_pre_req(struct mmc_host *mmc,
907 			   struct mmc_request *mrq)
908 {
909 	struct dw_mci_slot *slot = mmc_priv(mmc);
910 	struct mmc_data *data = mrq->data;
911 
912 	if (!slot->host->use_dma || !data)
913 		return;
914 
915 	/* This data might be unmapped at this time */
916 	data->host_cookie = COOKIE_UNMAPPED;
917 
918 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
919 				COOKIE_PRE_MAPPED) < 0)
920 		data->host_cookie = COOKIE_UNMAPPED;
921 }
922 
923 static void dw_mci_post_req(struct mmc_host *mmc,
924 			    struct mmc_request *mrq,
925 			    int err)
926 {
927 	struct dw_mci_slot *slot = mmc_priv(mmc);
928 	struct mmc_data *data = mrq->data;
929 
930 	if (!slot->host->use_dma || !data)
931 		return;
932 
933 	if (data->host_cookie != COOKIE_UNMAPPED)
934 		dma_unmap_sg(slot->host->dev,
935 			     data->sg,
936 			     data->sg_len,
937 			     mmc_get_dma_dir(data));
938 	data->host_cookie = COOKIE_UNMAPPED;
939 }
940 
941 static int dw_mci_get_cd(struct mmc_host *mmc)
942 {
943 	int present;
944 	struct dw_mci_slot *slot = mmc_priv(mmc);
945 	struct dw_mci *host = slot->host;
946 	int gpio_cd = mmc_gpio_get_cd(mmc);
947 
948 	/* Use platform get_cd function, else try onboard card detect */
949 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
950 				|| !mmc_card_is_removable(mmc))) {
951 		present = 1;
952 
953 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
954 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
955 				dev_info(&mmc->class_dev,
956 					"card is polling.\n");
957 			} else {
958 				dev_info(&mmc->class_dev,
959 					"card is non-removable.\n");
960 			}
961 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
962 		}
963 
964 		return present;
965 	} else if (gpio_cd >= 0)
966 		present = gpio_cd;
967 	else
968 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
969 			== 0 ? 1 : 0;
970 
971 	spin_lock_bh(&host->lock);
972 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
973 		dev_dbg(&mmc->class_dev, "card is present\n");
974 	else if (!present &&
975 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
976 		dev_dbg(&mmc->class_dev, "card is not present\n");
977 	spin_unlock_bh(&host->lock);
978 
979 	return present;
980 }
981 
982 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
983 {
984 	unsigned int blksz = data->blksz;
985 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
986 	u32 fifo_width = 1 << host->data_shift;
987 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
988 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
989 	int idx = ARRAY_SIZE(mszs) - 1;
990 
991 	/* pio should ship this scenario */
992 	if (!host->use_dma)
993 		return;
994 
995 	tx_wmark = (host->fifo_depth) / 2;
996 	tx_wmark_invers = host->fifo_depth - tx_wmark;
997 
998 	/*
999 	 * MSIZE is '1',
1000 	 * if blksz is not a multiple of the FIFO width
1001 	 */
1002 	if (blksz % fifo_width)
1003 		goto done;
1004 
1005 	do {
1006 		if (!((blksz_depth % mszs[idx]) ||
1007 		     (tx_wmark_invers % mszs[idx]))) {
1008 			msize = idx;
1009 			rx_wmark = mszs[idx] - 1;
1010 			break;
1011 		}
1012 	} while (--idx > 0);
1013 	/*
1014 	 * If idx is '0', it won't be tried
1015 	 * Thus, initial values are uesed
1016 	 */
1017 done:
1018 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1019 	mci_writel(host, FIFOTH, fifoth_val);
1020 }
1021 
1022 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1023 {
1024 	unsigned int blksz = data->blksz;
1025 	u32 blksz_depth, fifo_depth;
1026 	u16 thld_size;
1027 	u8 enable;
1028 
1029 	/*
1030 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1031 	 * in the FIFO region, so we really shouldn't access it).
1032 	 */
1033 	if (host->verid < DW_MMC_240A ||
1034 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1035 		return;
1036 
1037 	/*
1038 	 * Card write Threshold is introduced since 2.80a
1039 	 * It's used when HS400 mode is enabled.
1040 	 */
1041 	if (data->flags & MMC_DATA_WRITE &&
1042 		host->timing != MMC_TIMING_MMC_HS400)
1043 		goto disable;
1044 
1045 	if (data->flags & MMC_DATA_WRITE)
1046 		enable = SDMMC_CARD_WR_THR_EN;
1047 	else
1048 		enable = SDMMC_CARD_RD_THR_EN;
1049 
1050 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1051 	    host->timing != MMC_TIMING_UHS_SDR104 &&
1052 	    host->timing != MMC_TIMING_MMC_HS400)
1053 		goto disable;
1054 
1055 	blksz_depth = blksz / (1 << host->data_shift);
1056 	fifo_depth = host->fifo_depth;
1057 
1058 	if (blksz_depth > fifo_depth)
1059 		goto disable;
1060 
1061 	/*
1062 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1063 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1064 	 * Currently just choose blksz.
1065 	 */
1066 	thld_size = blksz;
1067 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1068 	return;
1069 
1070 disable:
1071 	mci_writel(host, CDTHRCTL, 0);
1072 }
1073 
1074 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1075 {
1076 	unsigned long irqflags;
1077 	int sg_len;
1078 	u32 temp;
1079 
1080 	host->using_dma = 0;
1081 
1082 	/* If we don't have a channel, we can't do DMA */
1083 	if (!host->use_dma)
1084 		return -ENODEV;
1085 
1086 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1087 	if (sg_len < 0) {
1088 		host->dma_ops->stop(host);
1089 		return sg_len;
1090 	}
1091 
1092 	host->using_dma = 1;
1093 
1094 	if (host->use_dma == TRANS_MODE_IDMAC)
1095 		dev_vdbg(host->dev,
1096 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1097 			 (unsigned long)host->sg_cpu,
1098 			 (unsigned long)host->sg_dma,
1099 			 sg_len);
1100 
1101 	/*
1102 	 * Decide the MSIZE and RX/TX Watermark.
1103 	 * If current block size is same with previous size,
1104 	 * no need to update fifoth.
1105 	 */
1106 	if (host->prev_blksz != data->blksz)
1107 		dw_mci_adjust_fifoth(host, data);
1108 
1109 	/* Enable the DMA interface */
1110 	temp = mci_readl(host, CTRL);
1111 	temp |= SDMMC_CTRL_DMA_ENABLE;
1112 	mci_writel(host, CTRL, temp);
1113 
1114 	/* Disable RX/TX IRQs, let DMA handle it */
1115 	spin_lock_irqsave(&host->irq_lock, irqflags);
1116 	temp = mci_readl(host, INTMASK);
1117 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1118 	mci_writel(host, INTMASK, temp);
1119 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1120 
1121 	if (host->dma_ops->start(host, sg_len)) {
1122 		host->dma_ops->stop(host);
1123 		/* We can't do DMA, try PIO for this one */
1124 		dev_dbg(host->dev,
1125 			"%s: fall back to PIO mode for current transfer\n",
1126 			__func__);
1127 		return -ENODEV;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1134 {
1135 	unsigned long irqflags;
1136 	int flags = SG_MITER_ATOMIC;
1137 	u32 temp;
1138 
1139 	data->error = -EINPROGRESS;
1140 
1141 	WARN_ON(host->data);
1142 	host->sg = NULL;
1143 	host->data = data;
1144 
1145 	if (data->flags & MMC_DATA_READ)
1146 		host->dir_status = DW_MCI_RECV_STATUS;
1147 	else
1148 		host->dir_status = DW_MCI_SEND_STATUS;
1149 
1150 	dw_mci_ctrl_thld(host, data);
1151 
1152 	if (dw_mci_submit_data_dma(host, data)) {
1153 		if (host->data->flags & MMC_DATA_READ)
1154 			flags |= SG_MITER_TO_SG;
1155 		else
1156 			flags |= SG_MITER_FROM_SG;
1157 
1158 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1159 		host->sg = data->sg;
1160 		host->part_buf_start = 0;
1161 		host->part_buf_count = 0;
1162 
1163 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1164 
1165 		spin_lock_irqsave(&host->irq_lock, irqflags);
1166 		temp = mci_readl(host, INTMASK);
1167 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1168 		mci_writel(host, INTMASK, temp);
1169 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1170 
1171 		temp = mci_readl(host, CTRL);
1172 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1173 		mci_writel(host, CTRL, temp);
1174 
1175 		/*
1176 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1177 		 * is set, we set watermark same as data size.
1178 		 * If next issued data may be transfered by DMA mode,
1179 		 * prev_blksz should be invalidated.
1180 		 */
1181 		if (host->wm_aligned)
1182 			dw_mci_adjust_fifoth(host, data);
1183 		else
1184 			mci_writel(host, FIFOTH, host->fifoth_val);
1185 		host->prev_blksz = 0;
1186 	} else {
1187 		/*
1188 		 * Keep the current block size.
1189 		 * It will be used to decide whether to update
1190 		 * fifoth register next time.
1191 		 */
1192 		host->prev_blksz = data->blksz;
1193 	}
1194 }
1195 
1196 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1197 {
1198 	struct dw_mci *host = slot->host;
1199 	unsigned int clock = slot->clock;
1200 	u32 div;
1201 	u32 clk_en_a;
1202 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1203 
1204 	/* We must continue to set bit 28 in CMD until the change is complete */
1205 	if (host->state == STATE_WAITING_CMD11_DONE)
1206 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1207 
1208 	slot->mmc->actual_clock = 0;
1209 
1210 	if (!clock) {
1211 		mci_writel(host, CLKENA, 0);
1212 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1213 	} else if (clock != host->current_speed || force_clkinit) {
1214 		div = host->bus_hz / clock;
1215 		if (host->bus_hz % clock && host->bus_hz > clock)
1216 			/*
1217 			 * move the + 1 after the divide to prevent
1218 			 * over-clocking the card.
1219 			 */
1220 			div += 1;
1221 
1222 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1223 
1224 		if ((clock != slot->__clk_old &&
1225 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1226 			force_clkinit) {
1227 			/* Silent the verbose log if calling from PM context */
1228 			if (!force_clkinit)
1229 				dev_info(&slot->mmc->class_dev,
1230 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1231 					 slot->id, host->bus_hz, clock,
1232 					 div ? ((host->bus_hz / div) >> 1) :
1233 					 host->bus_hz, div);
1234 
1235 			/*
1236 			 * If card is polling, display the message only
1237 			 * one time at boot time.
1238 			 */
1239 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1240 					slot->mmc->f_min == clock)
1241 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1242 		}
1243 
1244 		/* disable clock */
1245 		mci_writel(host, CLKENA, 0);
1246 		mci_writel(host, CLKSRC, 0);
1247 
1248 		/* inform CIU */
1249 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1250 
1251 		/* set clock to desired speed */
1252 		mci_writel(host, CLKDIV, div);
1253 
1254 		/* inform CIU */
1255 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1256 
1257 		/* enable clock; only low power if no SDIO */
1258 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1259 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1260 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1261 		mci_writel(host, CLKENA, clk_en_a);
1262 
1263 		/* inform CIU */
1264 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1265 
1266 		/* keep the last clock value that was requested from core */
1267 		slot->__clk_old = clock;
1268 		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1269 					  host->bus_hz;
1270 	}
1271 
1272 	host->current_speed = clock;
1273 
1274 	/* Set the current slot bus width */
1275 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1276 }
1277 
1278 static void __dw_mci_start_request(struct dw_mci *host,
1279 				   struct dw_mci_slot *slot,
1280 				   struct mmc_command *cmd)
1281 {
1282 	struct mmc_request *mrq;
1283 	struct mmc_data	*data;
1284 	u32 cmdflags;
1285 
1286 	mrq = slot->mrq;
1287 
1288 	host->mrq = mrq;
1289 
1290 	host->pending_events = 0;
1291 	host->completed_events = 0;
1292 	host->cmd_status = 0;
1293 	host->data_status = 0;
1294 	host->dir_status = 0;
1295 
1296 	data = cmd->data;
1297 	if (data) {
1298 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1299 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1300 		mci_writel(host, BLKSIZ, data->blksz);
1301 	}
1302 
1303 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1304 
1305 	/* this is the first command, send the initialization clock */
1306 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1307 		cmdflags |= SDMMC_CMD_INIT;
1308 
1309 	if (data) {
1310 		dw_mci_submit_data(host, data);
1311 		wmb(); /* drain writebuffer */
1312 	}
1313 
1314 	dw_mci_start_command(host, cmd, cmdflags);
1315 
1316 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1317 		unsigned long irqflags;
1318 
1319 		/*
1320 		 * Databook says to fail after 2ms w/ no response, but evidence
1321 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1322 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1323 		 * is just about to roll over.
1324 		 *
1325 		 * We do this whole thing under spinlock and only if the
1326 		 * command hasn't already completed (indicating the the irq
1327 		 * already ran so we don't want the timeout).
1328 		 */
1329 		spin_lock_irqsave(&host->irq_lock, irqflags);
1330 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1331 			mod_timer(&host->cmd11_timer,
1332 				jiffies + msecs_to_jiffies(500) + 1);
1333 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1334 	}
1335 
1336 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1337 }
1338 
1339 static void dw_mci_start_request(struct dw_mci *host,
1340 				 struct dw_mci_slot *slot)
1341 {
1342 	struct mmc_request *mrq = slot->mrq;
1343 	struct mmc_command *cmd;
1344 
1345 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1346 	__dw_mci_start_request(host, slot, cmd);
1347 }
1348 
1349 /* must be called with host->lock held */
1350 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1351 				 struct mmc_request *mrq)
1352 {
1353 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1354 		 host->state);
1355 
1356 	slot->mrq = mrq;
1357 
1358 	if (host->state == STATE_WAITING_CMD11_DONE) {
1359 		dev_warn(&slot->mmc->class_dev,
1360 			 "Voltage change didn't complete\n");
1361 		/*
1362 		 * this case isn't expected to happen, so we can
1363 		 * either crash here or just try to continue on
1364 		 * in the closest possible state
1365 		 */
1366 		host->state = STATE_IDLE;
1367 	}
1368 
1369 	if (host->state == STATE_IDLE) {
1370 		host->state = STATE_SENDING_CMD;
1371 		dw_mci_start_request(host, slot);
1372 	} else {
1373 		list_add_tail(&slot->queue_node, &host->queue);
1374 	}
1375 }
1376 
1377 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1378 {
1379 	struct dw_mci_slot *slot = mmc_priv(mmc);
1380 	struct dw_mci *host = slot->host;
1381 
1382 	WARN_ON(slot->mrq);
1383 
1384 	/*
1385 	 * The check for card presence and queueing of the request must be
1386 	 * atomic, otherwise the card could be removed in between and the
1387 	 * request wouldn't fail until another card was inserted.
1388 	 */
1389 
1390 	if (!dw_mci_get_cd(mmc)) {
1391 		mrq->cmd->error = -ENOMEDIUM;
1392 		mmc_request_done(mmc, mrq);
1393 		return;
1394 	}
1395 
1396 	spin_lock_bh(&host->lock);
1397 
1398 	dw_mci_queue_request(host, slot, mrq);
1399 
1400 	spin_unlock_bh(&host->lock);
1401 }
1402 
1403 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1404 {
1405 	struct dw_mci_slot *slot = mmc_priv(mmc);
1406 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1407 	u32 regs;
1408 	int ret;
1409 
1410 	switch (ios->bus_width) {
1411 	case MMC_BUS_WIDTH_4:
1412 		slot->ctype = SDMMC_CTYPE_4BIT;
1413 		break;
1414 	case MMC_BUS_WIDTH_8:
1415 		slot->ctype = SDMMC_CTYPE_8BIT;
1416 		break;
1417 	default:
1418 		/* set default 1 bit mode */
1419 		slot->ctype = SDMMC_CTYPE_1BIT;
1420 	}
1421 
1422 	regs = mci_readl(slot->host, UHS_REG);
1423 
1424 	/* DDR mode set */
1425 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1426 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1427 	    ios->timing == MMC_TIMING_MMC_HS400)
1428 		regs |= ((0x1 << slot->id) << 16);
1429 	else
1430 		regs &= ~((0x1 << slot->id) << 16);
1431 
1432 	mci_writel(slot->host, UHS_REG, regs);
1433 	slot->host->timing = ios->timing;
1434 
1435 	/*
1436 	 * Use mirror of ios->clock to prevent race with mmc
1437 	 * core ios update when finding the minimum.
1438 	 */
1439 	slot->clock = ios->clock;
1440 
1441 	if (drv_data && drv_data->set_ios)
1442 		drv_data->set_ios(slot->host, ios);
1443 
1444 	switch (ios->power_mode) {
1445 	case MMC_POWER_UP:
1446 		if (!IS_ERR(mmc->supply.vmmc)) {
1447 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1448 					ios->vdd);
1449 			if (ret) {
1450 				dev_err(slot->host->dev,
1451 					"failed to enable vmmc regulator\n");
1452 				/*return, if failed turn on vmmc*/
1453 				return;
1454 			}
1455 		}
1456 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1457 		regs = mci_readl(slot->host, PWREN);
1458 		regs |= (1 << slot->id);
1459 		mci_writel(slot->host, PWREN, regs);
1460 		break;
1461 	case MMC_POWER_ON:
1462 		if (!slot->host->vqmmc_enabled) {
1463 			if (!IS_ERR(mmc->supply.vqmmc)) {
1464 				ret = regulator_enable(mmc->supply.vqmmc);
1465 				if (ret < 0)
1466 					dev_err(slot->host->dev,
1467 						"failed to enable vqmmc\n");
1468 				else
1469 					slot->host->vqmmc_enabled = true;
1470 
1471 			} else {
1472 				/* Keep track so we don't reset again */
1473 				slot->host->vqmmc_enabled = true;
1474 			}
1475 
1476 			/* Reset our state machine after powering on */
1477 			dw_mci_ctrl_reset(slot->host,
1478 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1479 		}
1480 
1481 		/* Adjust clock / bus width after power is up */
1482 		dw_mci_setup_bus(slot, false);
1483 
1484 		break;
1485 	case MMC_POWER_OFF:
1486 		/* Turn clock off before power goes down */
1487 		dw_mci_setup_bus(slot, false);
1488 
1489 		if (!IS_ERR(mmc->supply.vmmc))
1490 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1491 
1492 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1493 			regulator_disable(mmc->supply.vqmmc);
1494 		slot->host->vqmmc_enabled = false;
1495 
1496 		regs = mci_readl(slot->host, PWREN);
1497 		regs &= ~(1 << slot->id);
1498 		mci_writel(slot->host, PWREN, regs);
1499 		break;
1500 	default:
1501 		break;
1502 	}
1503 
1504 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1505 		slot->host->state = STATE_IDLE;
1506 }
1507 
1508 static int dw_mci_card_busy(struct mmc_host *mmc)
1509 {
1510 	struct dw_mci_slot *slot = mmc_priv(mmc);
1511 	u32 status;
1512 
1513 	/*
1514 	 * Check the busy bit which is low when DAT[3:0]
1515 	 * (the data lines) are 0000
1516 	 */
1517 	status = mci_readl(slot->host, STATUS);
1518 
1519 	return !!(status & SDMMC_STATUS_BUSY);
1520 }
1521 
1522 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1523 {
1524 	struct dw_mci_slot *slot = mmc_priv(mmc);
1525 	struct dw_mci *host = slot->host;
1526 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1527 	u32 uhs;
1528 	u32 v18 = SDMMC_UHS_18V << slot->id;
1529 	int ret;
1530 
1531 	if (drv_data && drv_data->switch_voltage)
1532 		return drv_data->switch_voltage(mmc, ios);
1533 
1534 	/*
1535 	 * Program the voltage.  Note that some instances of dw_mmc may use
1536 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1537 	 * does no harm but you need to set the regulator directly.  Try both.
1538 	 */
1539 	uhs = mci_readl(host, UHS_REG);
1540 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1541 		uhs &= ~v18;
1542 	else
1543 		uhs |= v18;
1544 
1545 	if (!IS_ERR(mmc->supply.vqmmc)) {
1546 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1547 
1548 		if (ret) {
1549 			dev_dbg(&mmc->class_dev,
1550 					 "Regulator set error %d - %s V\n",
1551 					 ret, uhs & v18 ? "1.8" : "3.3");
1552 			return ret;
1553 		}
1554 	}
1555 	mci_writel(host, UHS_REG, uhs);
1556 
1557 	return 0;
1558 }
1559 
1560 static int dw_mci_get_ro(struct mmc_host *mmc)
1561 {
1562 	int read_only;
1563 	struct dw_mci_slot *slot = mmc_priv(mmc);
1564 	int gpio_ro = mmc_gpio_get_ro(mmc);
1565 
1566 	/* Use platform get_ro function, else try on board write protect */
1567 	if (gpio_ro >= 0)
1568 		read_only = gpio_ro;
1569 	else
1570 		read_only =
1571 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1572 
1573 	dev_dbg(&mmc->class_dev, "card is %s\n",
1574 		read_only ? "read-only" : "read-write");
1575 
1576 	return read_only;
1577 }
1578 
1579 static void dw_mci_hw_reset(struct mmc_host *mmc)
1580 {
1581 	struct dw_mci_slot *slot = mmc_priv(mmc);
1582 	struct dw_mci *host = slot->host;
1583 	int reset;
1584 
1585 	if (host->use_dma == TRANS_MODE_IDMAC)
1586 		dw_mci_idmac_reset(host);
1587 
1588 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1589 				     SDMMC_CTRL_FIFO_RESET))
1590 		return;
1591 
1592 	/*
1593 	 * According to eMMC spec, card reset procedure:
1594 	 * tRstW >= 1us:   RST_n pulse width
1595 	 * tRSCA >= 200us: RST_n to Command time
1596 	 * tRSTH >= 1us:   RST_n high period
1597 	 */
1598 	reset = mci_readl(host, RST_N);
1599 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1600 	mci_writel(host, RST_N, reset);
1601 	usleep_range(1, 2);
1602 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1603 	mci_writel(host, RST_N, reset);
1604 	usleep_range(200, 300);
1605 }
1606 
1607 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1608 {
1609 	struct dw_mci_slot *slot = mmc_priv(mmc);
1610 	struct dw_mci *host = slot->host;
1611 
1612 	/*
1613 	 * Low power mode will stop the card clock when idle.  According to the
1614 	 * description of the CLKENA register we should disable low power mode
1615 	 * for SDIO cards if we need SDIO interrupts to work.
1616 	 */
1617 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1618 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1619 		u32 clk_en_a_old;
1620 		u32 clk_en_a;
1621 
1622 		clk_en_a_old = mci_readl(host, CLKENA);
1623 
1624 		if (card->type == MMC_TYPE_SDIO ||
1625 		    card->type == MMC_TYPE_SD_COMBO) {
1626 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1627 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1628 		} else {
1629 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1630 			clk_en_a = clk_en_a_old | clken_low_pwr;
1631 		}
1632 
1633 		if (clk_en_a != clk_en_a_old) {
1634 			mci_writel(host, CLKENA, clk_en_a);
1635 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1636 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1637 		}
1638 	}
1639 }
1640 
1641 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1642 {
1643 	struct dw_mci *host = slot->host;
1644 	unsigned long irqflags;
1645 	u32 int_mask;
1646 
1647 	spin_lock_irqsave(&host->irq_lock, irqflags);
1648 
1649 	/* Enable/disable Slot Specific SDIO interrupt */
1650 	int_mask = mci_readl(host, INTMASK);
1651 	if (enb)
1652 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1653 	else
1654 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1655 	mci_writel(host, INTMASK, int_mask);
1656 
1657 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1658 }
1659 
1660 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1661 {
1662 	struct dw_mci_slot *slot = mmc_priv(mmc);
1663 	struct dw_mci *host = slot->host;
1664 
1665 	__dw_mci_enable_sdio_irq(slot, enb);
1666 
1667 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1668 	if (enb)
1669 		pm_runtime_get_noresume(host->dev);
1670 	else
1671 		pm_runtime_put_noidle(host->dev);
1672 }
1673 
1674 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1675 {
1676 	struct dw_mci_slot *slot = mmc_priv(mmc);
1677 
1678 	__dw_mci_enable_sdio_irq(slot, 1);
1679 }
1680 
1681 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1682 {
1683 	struct dw_mci_slot *slot = mmc_priv(mmc);
1684 	struct dw_mci *host = slot->host;
1685 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1686 	int err = -EINVAL;
1687 
1688 	if (drv_data && drv_data->execute_tuning)
1689 		err = drv_data->execute_tuning(slot, opcode);
1690 	return err;
1691 }
1692 
1693 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1694 				       struct mmc_ios *ios)
1695 {
1696 	struct dw_mci_slot *slot = mmc_priv(mmc);
1697 	struct dw_mci *host = slot->host;
1698 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1699 
1700 	if (drv_data && drv_data->prepare_hs400_tuning)
1701 		return drv_data->prepare_hs400_tuning(host, ios);
1702 
1703 	return 0;
1704 }
1705 
1706 static bool dw_mci_reset(struct dw_mci *host)
1707 {
1708 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1709 	bool ret = false;
1710 	u32 status = 0;
1711 
1712 	/*
1713 	 * Resetting generates a block interrupt, hence setting
1714 	 * the scatter-gather pointer to NULL.
1715 	 */
1716 	if (host->sg) {
1717 		sg_miter_stop(&host->sg_miter);
1718 		host->sg = NULL;
1719 	}
1720 
1721 	if (host->use_dma)
1722 		flags |= SDMMC_CTRL_DMA_RESET;
1723 
1724 	if (dw_mci_ctrl_reset(host, flags)) {
1725 		/*
1726 		 * In all cases we clear the RAWINTS
1727 		 * register to clear any interrupts.
1728 		 */
1729 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1730 
1731 		if (!host->use_dma) {
1732 			ret = true;
1733 			goto ciu_out;
1734 		}
1735 
1736 		/* Wait for dma_req to be cleared */
1737 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1738 					      status,
1739 					      !(status & SDMMC_STATUS_DMA_REQ),
1740 					      1, 500 * USEC_PER_MSEC)) {
1741 			dev_err(host->dev,
1742 				"%s: Timeout waiting for dma_req to be cleared\n",
1743 				__func__);
1744 			goto ciu_out;
1745 		}
1746 
1747 		/* when using DMA next we reset the fifo again */
1748 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1749 			goto ciu_out;
1750 	} else {
1751 		/* if the controller reset bit did clear, then set clock regs */
1752 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1753 			dev_err(host->dev,
1754 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1755 				__func__);
1756 			goto ciu_out;
1757 		}
1758 	}
1759 
1760 	if (host->use_dma == TRANS_MODE_IDMAC)
1761 		/* It is also required that we reinit idmac */
1762 		dw_mci_idmac_init(host);
1763 
1764 	ret = true;
1765 
1766 ciu_out:
1767 	/* After a CTRL reset we need to have CIU set clock registers  */
1768 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1769 
1770 	return ret;
1771 }
1772 
1773 static const struct mmc_host_ops dw_mci_ops = {
1774 	.request		= dw_mci_request,
1775 	.pre_req		= dw_mci_pre_req,
1776 	.post_req		= dw_mci_post_req,
1777 	.set_ios		= dw_mci_set_ios,
1778 	.get_ro			= dw_mci_get_ro,
1779 	.get_cd			= dw_mci_get_cd,
1780 	.hw_reset               = dw_mci_hw_reset,
1781 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1782 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1783 	.execute_tuning		= dw_mci_execute_tuning,
1784 	.card_busy		= dw_mci_card_busy,
1785 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1786 	.init_card		= dw_mci_init_card,
1787 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1788 };
1789 
1790 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1791 	__releases(&host->lock)
1792 	__acquires(&host->lock)
1793 {
1794 	struct dw_mci_slot *slot;
1795 	struct mmc_host	*prev_mmc = host->slot->mmc;
1796 
1797 	WARN_ON(host->cmd || host->data);
1798 
1799 	host->slot->mrq = NULL;
1800 	host->mrq = NULL;
1801 	if (!list_empty(&host->queue)) {
1802 		slot = list_entry(host->queue.next,
1803 				  struct dw_mci_slot, queue_node);
1804 		list_del(&slot->queue_node);
1805 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1806 			 mmc_hostname(slot->mmc));
1807 		host->state = STATE_SENDING_CMD;
1808 		dw_mci_start_request(host, slot);
1809 	} else {
1810 		dev_vdbg(host->dev, "list empty\n");
1811 
1812 		if (host->state == STATE_SENDING_CMD11)
1813 			host->state = STATE_WAITING_CMD11_DONE;
1814 		else
1815 			host->state = STATE_IDLE;
1816 	}
1817 
1818 	spin_unlock(&host->lock);
1819 	mmc_request_done(prev_mmc, mrq);
1820 	spin_lock(&host->lock);
1821 }
1822 
1823 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1824 {
1825 	u32 status = host->cmd_status;
1826 
1827 	host->cmd_status = 0;
1828 
1829 	/* Read the response from the card (up to 16 bytes) */
1830 	if (cmd->flags & MMC_RSP_PRESENT) {
1831 		if (cmd->flags & MMC_RSP_136) {
1832 			cmd->resp[3] = mci_readl(host, RESP0);
1833 			cmd->resp[2] = mci_readl(host, RESP1);
1834 			cmd->resp[1] = mci_readl(host, RESP2);
1835 			cmd->resp[0] = mci_readl(host, RESP3);
1836 		} else {
1837 			cmd->resp[0] = mci_readl(host, RESP0);
1838 			cmd->resp[1] = 0;
1839 			cmd->resp[2] = 0;
1840 			cmd->resp[3] = 0;
1841 		}
1842 	}
1843 
1844 	if (status & SDMMC_INT_RTO)
1845 		cmd->error = -ETIMEDOUT;
1846 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1847 		cmd->error = -EILSEQ;
1848 	else if (status & SDMMC_INT_RESP_ERR)
1849 		cmd->error = -EIO;
1850 	else
1851 		cmd->error = 0;
1852 
1853 	return cmd->error;
1854 }
1855 
1856 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1857 {
1858 	u32 status = host->data_status;
1859 
1860 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1861 		if (status & SDMMC_INT_DRTO) {
1862 			data->error = -ETIMEDOUT;
1863 		} else if (status & SDMMC_INT_DCRC) {
1864 			data->error = -EILSEQ;
1865 		} else if (status & SDMMC_INT_EBE) {
1866 			if (host->dir_status ==
1867 				DW_MCI_SEND_STATUS) {
1868 				/*
1869 				 * No data CRC status was returned.
1870 				 * The number of bytes transferred
1871 				 * will be exaggerated in PIO mode.
1872 				 */
1873 				data->bytes_xfered = 0;
1874 				data->error = -ETIMEDOUT;
1875 			} else if (host->dir_status ==
1876 					DW_MCI_RECV_STATUS) {
1877 				data->error = -EILSEQ;
1878 			}
1879 		} else {
1880 			/* SDMMC_INT_SBE is included */
1881 			data->error = -EILSEQ;
1882 		}
1883 
1884 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1885 
1886 		/*
1887 		 * After an error, there may be data lingering
1888 		 * in the FIFO
1889 		 */
1890 		dw_mci_reset(host);
1891 	} else {
1892 		data->bytes_xfered = data->blocks * data->blksz;
1893 		data->error = 0;
1894 	}
1895 
1896 	return data->error;
1897 }
1898 
1899 static void dw_mci_set_drto(struct dw_mci *host)
1900 {
1901 	unsigned int drto_clks;
1902 	unsigned int drto_div;
1903 	unsigned int drto_ms;
1904 	unsigned long irqflags;
1905 
1906 	drto_clks = mci_readl(host, TMOUT) >> 8;
1907 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1908 	if (drto_div == 0)
1909 		drto_div = 1;
1910 
1911 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1912 				   host->bus_hz);
1913 
1914 	/* add a bit spare time */
1915 	drto_ms += 10;
1916 
1917 	spin_lock_irqsave(&host->irq_lock, irqflags);
1918 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1919 		mod_timer(&host->dto_timer,
1920 			  jiffies + msecs_to_jiffies(drto_ms));
1921 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1922 }
1923 
1924 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1925 {
1926 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1927 		return false;
1928 
1929 	/*
1930 	 * Really be certain that the timer has stopped.  This is a bit of
1931 	 * paranoia and could only really happen if we had really bad
1932 	 * interrupt latency and the interrupt routine and timeout were
1933 	 * running concurrently so that the del_timer() in the interrupt
1934 	 * handler couldn't run.
1935 	 */
1936 	WARN_ON(del_timer_sync(&host->cto_timer));
1937 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1938 
1939 	return true;
1940 }
1941 
1942 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1943 {
1944 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1945 		return false;
1946 
1947 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1948 	WARN_ON(del_timer_sync(&host->dto_timer));
1949 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1950 
1951 	return true;
1952 }
1953 
1954 static void dw_mci_tasklet_func(unsigned long priv)
1955 {
1956 	struct dw_mci *host = (struct dw_mci *)priv;
1957 	struct mmc_data	*data;
1958 	struct mmc_command *cmd;
1959 	struct mmc_request *mrq;
1960 	enum dw_mci_state state;
1961 	enum dw_mci_state prev_state;
1962 	unsigned int err;
1963 
1964 	spin_lock(&host->lock);
1965 
1966 	state = host->state;
1967 	data = host->data;
1968 	mrq = host->mrq;
1969 
1970 	do {
1971 		prev_state = state;
1972 
1973 		switch (state) {
1974 		case STATE_IDLE:
1975 		case STATE_WAITING_CMD11_DONE:
1976 			break;
1977 
1978 		case STATE_SENDING_CMD11:
1979 		case STATE_SENDING_CMD:
1980 			if (!dw_mci_clear_pending_cmd_complete(host))
1981 				break;
1982 
1983 			cmd = host->cmd;
1984 			host->cmd = NULL;
1985 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1986 			err = dw_mci_command_complete(host, cmd);
1987 			if (cmd == mrq->sbc && !err) {
1988 				__dw_mci_start_request(host, host->slot,
1989 						       mrq->cmd);
1990 				goto unlock;
1991 			}
1992 
1993 			if (cmd->data && err) {
1994 				/*
1995 				 * During UHS tuning sequence, sending the stop
1996 				 * command after the response CRC error would
1997 				 * throw the system into a confused state
1998 				 * causing all future tuning phases to report
1999 				 * failure.
2000 				 *
2001 				 * In such case controller will move into a data
2002 				 * transfer state after a response error or
2003 				 * response CRC error. Let's let that finish
2004 				 * before trying to send a stop, so we'll go to
2005 				 * STATE_SENDING_DATA.
2006 				 *
2007 				 * Although letting the data transfer take place
2008 				 * will waste a bit of time (we already know
2009 				 * the command was bad), it can't cause any
2010 				 * errors since it's possible it would have
2011 				 * taken place anyway if this tasklet got
2012 				 * delayed. Allowing the transfer to take place
2013 				 * avoids races and keeps things simple.
2014 				 */
2015 				if (err != -ETIMEDOUT) {
2016 					state = STATE_SENDING_DATA;
2017 					continue;
2018 				}
2019 
2020 				dw_mci_stop_dma(host);
2021 				send_stop_abort(host, data);
2022 				state = STATE_SENDING_STOP;
2023 				break;
2024 			}
2025 
2026 			if (!cmd->data || err) {
2027 				dw_mci_request_end(host, mrq);
2028 				goto unlock;
2029 			}
2030 
2031 			prev_state = state = STATE_SENDING_DATA;
2032 			/* fall through */
2033 
2034 		case STATE_SENDING_DATA:
2035 			/*
2036 			 * We could get a data error and never a transfer
2037 			 * complete so we'd better check for it here.
2038 			 *
2039 			 * Note that we don't really care if we also got a
2040 			 * transfer complete; stopping the DMA and sending an
2041 			 * abort won't hurt.
2042 			 */
2043 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2044 					       &host->pending_events)) {
2045 				dw_mci_stop_dma(host);
2046 				if (!(host->data_status & (SDMMC_INT_DRTO |
2047 							   SDMMC_INT_EBE)))
2048 					send_stop_abort(host, data);
2049 				state = STATE_DATA_ERROR;
2050 				break;
2051 			}
2052 
2053 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2054 						&host->pending_events)) {
2055 				/*
2056 				 * If all data-related interrupts don't come
2057 				 * within the given time in reading data state.
2058 				 */
2059 				if (host->dir_status == DW_MCI_RECV_STATUS)
2060 					dw_mci_set_drto(host);
2061 				break;
2062 			}
2063 
2064 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2065 
2066 			/*
2067 			 * Handle an EVENT_DATA_ERROR that might have shown up
2068 			 * before the transfer completed.  This might not have
2069 			 * been caught by the check above because the interrupt
2070 			 * could have gone off between the previous check and
2071 			 * the check for transfer complete.
2072 			 *
2073 			 * Technically this ought not be needed assuming we
2074 			 * get a DATA_COMPLETE eventually (we'll notice the
2075 			 * error and end the request), but it shouldn't hurt.
2076 			 *
2077 			 * This has the advantage of sending the stop command.
2078 			 */
2079 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2080 					       &host->pending_events)) {
2081 				dw_mci_stop_dma(host);
2082 				if (!(host->data_status & (SDMMC_INT_DRTO |
2083 							   SDMMC_INT_EBE)))
2084 					send_stop_abort(host, data);
2085 				state = STATE_DATA_ERROR;
2086 				break;
2087 			}
2088 			prev_state = state = STATE_DATA_BUSY;
2089 
2090 			/* fall through */
2091 
2092 		case STATE_DATA_BUSY:
2093 			if (!dw_mci_clear_pending_data_complete(host)) {
2094 				/*
2095 				 * If data error interrupt comes but data over
2096 				 * interrupt doesn't come within the given time.
2097 				 * in reading data state.
2098 				 */
2099 				if (host->dir_status == DW_MCI_RECV_STATUS)
2100 					dw_mci_set_drto(host);
2101 				break;
2102 			}
2103 
2104 			host->data = NULL;
2105 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2106 			err = dw_mci_data_complete(host, data);
2107 
2108 			if (!err) {
2109 				if (!data->stop || mrq->sbc) {
2110 					if (mrq->sbc && data->stop)
2111 						data->stop->error = 0;
2112 					dw_mci_request_end(host, mrq);
2113 					goto unlock;
2114 				}
2115 
2116 				/* stop command for open-ended transfer*/
2117 				if (data->stop)
2118 					send_stop_abort(host, data);
2119 			} else {
2120 				/*
2121 				 * If we don't have a command complete now we'll
2122 				 * never get one since we just reset everything;
2123 				 * better end the request.
2124 				 *
2125 				 * If we do have a command complete we'll fall
2126 				 * through to the SENDING_STOP command and
2127 				 * everything will be peachy keen.
2128 				 */
2129 				if (!test_bit(EVENT_CMD_COMPLETE,
2130 					      &host->pending_events)) {
2131 					host->cmd = NULL;
2132 					dw_mci_request_end(host, mrq);
2133 					goto unlock;
2134 				}
2135 			}
2136 
2137 			/*
2138 			 * If err has non-zero,
2139 			 * stop-abort command has been already issued.
2140 			 */
2141 			prev_state = state = STATE_SENDING_STOP;
2142 
2143 			/* fall through */
2144 
2145 		case STATE_SENDING_STOP:
2146 			if (!dw_mci_clear_pending_cmd_complete(host))
2147 				break;
2148 
2149 			/* CMD error in data command */
2150 			if (mrq->cmd->error && mrq->data)
2151 				dw_mci_reset(host);
2152 
2153 			host->cmd = NULL;
2154 			host->data = NULL;
2155 
2156 			if (!mrq->sbc && mrq->stop)
2157 				dw_mci_command_complete(host, mrq->stop);
2158 			else
2159 				host->cmd_status = 0;
2160 
2161 			dw_mci_request_end(host, mrq);
2162 			goto unlock;
2163 
2164 		case STATE_DATA_ERROR:
2165 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2166 						&host->pending_events))
2167 				break;
2168 
2169 			state = STATE_DATA_BUSY;
2170 			break;
2171 		}
2172 	} while (state != prev_state);
2173 
2174 	host->state = state;
2175 unlock:
2176 	spin_unlock(&host->lock);
2177 
2178 }
2179 
2180 /* push final bytes to part_buf, only use during push */
2181 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2182 {
2183 	memcpy((void *)&host->part_buf, buf, cnt);
2184 	host->part_buf_count = cnt;
2185 }
2186 
2187 /* append bytes to part_buf, only use during push */
2188 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2189 {
2190 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2191 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2192 	host->part_buf_count += cnt;
2193 	return cnt;
2194 }
2195 
2196 /* pull first bytes from part_buf, only use during pull */
2197 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2198 {
2199 	cnt = min_t(int, cnt, host->part_buf_count);
2200 	if (cnt) {
2201 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2202 		       cnt);
2203 		host->part_buf_count -= cnt;
2204 		host->part_buf_start += cnt;
2205 	}
2206 	return cnt;
2207 }
2208 
2209 /* pull final bytes from the part_buf, assuming it's just been filled */
2210 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2211 {
2212 	memcpy(buf, &host->part_buf, cnt);
2213 	host->part_buf_start = cnt;
2214 	host->part_buf_count = (1 << host->data_shift) - cnt;
2215 }
2216 
2217 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2218 {
2219 	struct mmc_data *data = host->data;
2220 	int init_cnt = cnt;
2221 
2222 	/* try and push anything in the part_buf */
2223 	if (unlikely(host->part_buf_count)) {
2224 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2225 
2226 		buf += len;
2227 		cnt -= len;
2228 		if (host->part_buf_count == 2) {
2229 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2230 			host->part_buf_count = 0;
2231 		}
2232 	}
2233 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2234 	if (unlikely((unsigned long)buf & 0x1)) {
2235 		while (cnt >= 2) {
2236 			u16 aligned_buf[64];
2237 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2238 			int items = len >> 1;
2239 			int i;
2240 			/* memcpy from input buffer into aligned buffer */
2241 			memcpy(aligned_buf, buf, len);
2242 			buf += len;
2243 			cnt -= len;
2244 			/* push data from aligned buffer into fifo */
2245 			for (i = 0; i < items; ++i)
2246 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2247 		}
2248 	} else
2249 #endif
2250 	{
2251 		u16 *pdata = buf;
2252 
2253 		for (; cnt >= 2; cnt -= 2)
2254 			mci_fifo_writew(host->fifo_reg, *pdata++);
2255 		buf = pdata;
2256 	}
2257 	/* put anything remaining in the part_buf */
2258 	if (cnt) {
2259 		dw_mci_set_part_bytes(host, buf, cnt);
2260 		 /* Push data if we have reached the expected data length */
2261 		if ((data->bytes_xfered + init_cnt) ==
2262 		    (data->blksz * data->blocks))
2263 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2264 	}
2265 }
2266 
2267 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2268 {
2269 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2270 	if (unlikely((unsigned long)buf & 0x1)) {
2271 		while (cnt >= 2) {
2272 			/* pull data from fifo into aligned buffer */
2273 			u16 aligned_buf[64];
2274 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2275 			int items = len >> 1;
2276 			int i;
2277 
2278 			for (i = 0; i < items; ++i)
2279 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2280 			/* memcpy from aligned buffer into output buffer */
2281 			memcpy(buf, aligned_buf, len);
2282 			buf += len;
2283 			cnt -= len;
2284 		}
2285 	} else
2286 #endif
2287 	{
2288 		u16 *pdata = buf;
2289 
2290 		for (; cnt >= 2; cnt -= 2)
2291 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2292 		buf = pdata;
2293 	}
2294 	if (cnt) {
2295 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2296 		dw_mci_pull_final_bytes(host, buf, cnt);
2297 	}
2298 }
2299 
2300 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2301 {
2302 	struct mmc_data *data = host->data;
2303 	int init_cnt = cnt;
2304 
2305 	/* try and push anything in the part_buf */
2306 	if (unlikely(host->part_buf_count)) {
2307 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2308 
2309 		buf += len;
2310 		cnt -= len;
2311 		if (host->part_buf_count == 4) {
2312 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2313 			host->part_buf_count = 0;
2314 		}
2315 	}
2316 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2317 	if (unlikely((unsigned long)buf & 0x3)) {
2318 		while (cnt >= 4) {
2319 			u32 aligned_buf[32];
2320 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2321 			int items = len >> 2;
2322 			int i;
2323 			/* memcpy from input buffer into aligned buffer */
2324 			memcpy(aligned_buf, buf, len);
2325 			buf += len;
2326 			cnt -= len;
2327 			/* push data from aligned buffer into fifo */
2328 			for (i = 0; i < items; ++i)
2329 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2330 		}
2331 	} else
2332 #endif
2333 	{
2334 		u32 *pdata = buf;
2335 
2336 		for (; cnt >= 4; cnt -= 4)
2337 			mci_fifo_writel(host->fifo_reg, *pdata++);
2338 		buf = pdata;
2339 	}
2340 	/* put anything remaining in the part_buf */
2341 	if (cnt) {
2342 		dw_mci_set_part_bytes(host, buf, cnt);
2343 		 /* Push data if we have reached the expected data length */
2344 		if ((data->bytes_xfered + init_cnt) ==
2345 		    (data->blksz * data->blocks))
2346 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2347 	}
2348 }
2349 
2350 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2351 {
2352 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2353 	if (unlikely((unsigned long)buf & 0x3)) {
2354 		while (cnt >= 4) {
2355 			/* pull data from fifo into aligned buffer */
2356 			u32 aligned_buf[32];
2357 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2358 			int items = len >> 2;
2359 			int i;
2360 
2361 			for (i = 0; i < items; ++i)
2362 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2363 			/* memcpy from aligned buffer into output buffer */
2364 			memcpy(buf, aligned_buf, len);
2365 			buf += len;
2366 			cnt -= len;
2367 		}
2368 	} else
2369 #endif
2370 	{
2371 		u32 *pdata = buf;
2372 
2373 		for (; cnt >= 4; cnt -= 4)
2374 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2375 		buf = pdata;
2376 	}
2377 	if (cnt) {
2378 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2379 		dw_mci_pull_final_bytes(host, buf, cnt);
2380 	}
2381 }
2382 
2383 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2384 {
2385 	struct mmc_data *data = host->data;
2386 	int init_cnt = cnt;
2387 
2388 	/* try and push anything in the part_buf */
2389 	if (unlikely(host->part_buf_count)) {
2390 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2391 
2392 		buf += len;
2393 		cnt -= len;
2394 
2395 		if (host->part_buf_count == 8) {
2396 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2397 			host->part_buf_count = 0;
2398 		}
2399 	}
2400 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2401 	if (unlikely((unsigned long)buf & 0x7)) {
2402 		while (cnt >= 8) {
2403 			u64 aligned_buf[16];
2404 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2405 			int items = len >> 3;
2406 			int i;
2407 			/* memcpy from input buffer into aligned buffer */
2408 			memcpy(aligned_buf, buf, len);
2409 			buf += len;
2410 			cnt -= len;
2411 			/* push data from aligned buffer into fifo */
2412 			for (i = 0; i < items; ++i)
2413 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2414 		}
2415 	} else
2416 #endif
2417 	{
2418 		u64 *pdata = buf;
2419 
2420 		for (; cnt >= 8; cnt -= 8)
2421 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2422 		buf = pdata;
2423 	}
2424 	/* put anything remaining in the part_buf */
2425 	if (cnt) {
2426 		dw_mci_set_part_bytes(host, buf, cnt);
2427 		/* Push data if we have reached the expected data length */
2428 		if ((data->bytes_xfered + init_cnt) ==
2429 		    (data->blksz * data->blocks))
2430 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2431 	}
2432 }
2433 
2434 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2435 {
2436 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2437 	if (unlikely((unsigned long)buf & 0x7)) {
2438 		while (cnt >= 8) {
2439 			/* pull data from fifo into aligned buffer */
2440 			u64 aligned_buf[16];
2441 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2442 			int items = len >> 3;
2443 			int i;
2444 
2445 			for (i = 0; i < items; ++i)
2446 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2447 
2448 			/* memcpy from aligned buffer into output buffer */
2449 			memcpy(buf, aligned_buf, len);
2450 			buf += len;
2451 			cnt -= len;
2452 		}
2453 	} else
2454 #endif
2455 	{
2456 		u64 *pdata = buf;
2457 
2458 		for (; cnt >= 8; cnt -= 8)
2459 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2460 		buf = pdata;
2461 	}
2462 	if (cnt) {
2463 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2464 		dw_mci_pull_final_bytes(host, buf, cnt);
2465 	}
2466 }
2467 
2468 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2469 {
2470 	int len;
2471 
2472 	/* get remaining partial bytes */
2473 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2474 	if (unlikely(len == cnt))
2475 		return;
2476 	buf += len;
2477 	cnt -= len;
2478 
2479 	/* get the rest of the data */
2480 	host->pull_data(host, buf, cnt);
2481 }
2482 
2483 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2484 {
2485 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2486 	void *buf;
2487 	unsigned int offset;
2488 	struct mmc_data	*data = host->data;
2489 	int shift = host->data_shift;
2490 	u32 status;
2491 	unsigned int len;
2492 	unsigned int remain, fcnt;
2493 
2494 	do {
2495 		if (!sg_miter_next(sg_miter))
2496 			goto done;
2497 
2498 		host->sg = sg_miter->piter.sg;
2499 		buf = sg_miter->addr;
2500 		remain = sg_miter->length;
2501 		offset = 0;
2502 
2503 		do {
2504 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2505 					<< shift) + host->part_buf_count;
2506 			len = min(remain, fcnt);
2507 			if (!len)
2508 				break;
2509 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2510 			data->bytes_xfered += len;
2511 			offset += len;
2512 			remain -= len;
2513 		} while (remain);
2514 
2515 		sg_miter->consumed = offset;
2516 		status = mci_readl(host, MINTSTS);
2517 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2518 	/* if the RXDR is ready read again */
2519 	} while ((status & SDMMC_INT_RXDR) ||
2520 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2521 
2522 	if (!remain) {
2523 		if (!sg_miter_next(sg_miter))
2524 			goto done;
2525 		sg_miter->consumed = 0;
2526 	}
2527 	sg_miter_stop(sg_miter);
2528 	return;
2529 
2530 done:
2531 	sg_miter_stop(sg_miter);
2532 	host->sg = NULL;
2533 	smp_wmb(); /* drain writebuffer */
2534 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2535 }
2536 
2537 static void dw_mci_write_data_pio(struct dw_mci *host)
2538 {
2539 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2540 	void *buf;
2541 	unsigned int offset;
2542 	struct mmc_data	*data = host->data;
2543 	int shift = host->data_shift;
2544 	u32 status;
2545 	unsigned int len;
2546 	unsigned int fifo_depth = host->fifo_depth;
2547 	unsigned int remain, fcnt;
2548 
2549 	do {
2550 		if (!sg_miter_next(sg_miter))
2551 			goto done;
2552 
2553 		host->sg = sg_miter->piter.sg;
2554 		buf = sg_miter->addr;
2555 		remain = sg_miter->length;
2556 		offset = 0;
2557 
2558 		do {
2559 			fcnt = ((fifo_depth -
2560 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2561 					<< shift) - host->part_buf_count;
2562 			len = min(remain, fcnt);
2563 			if (!len)
2564 				break;
2565 			host->push_data(host, (void *)(buf + offset), len);
2566 			data->bytes_xfered += len;
2567 			offset += len;
2568 			remain -= len;
2569 		} while (remain);
2570 
2571 		sg_miter->consumed = offset;
2572 		status = mci_readl(host, MINTSTS);
2573 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2574 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2575 
2576 	if (!remain) {
2577 		if (!sg_miter_next(sg_miter))
2578 			goto done;
2579 		sg_miter->consumed = 0;
2580 	}
2581 	sg_miter_stop(sg_miter);
2582 	return;
2583 
2584 done:
2585 	sg_miter_stop(sg_miter);
2586 	host->sg = NULL;
2587 	smp_wmb(); /* drain writebuffer */
2588 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2589 }
2590 
2591 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2592 {
2593 	del_timer(&host->cto_timer);
2594 
2595 	if (!host->cmd_status)
2596 		host->cmd_status = status;
2597 
2598 	smp_wmb(); /* drain writebuffer */
2599 
2600 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2601 	tasklet_schedule(&host->tasklet);
2602 }
2603 
2604 static void dw_mci_handle_cd(struct dw_mci *host)
2605 {
2606 	struct dw_mci_slot *slot = host->slot;
2607 
2608 	if (slot->mmc->ops->card_event)
2609 		slot->mmc->ops->card_event(slot->mmc);
2610 	mmc_detect_change(slot->mmc,
2611 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2612 }
2613 
2614 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2615 {
2616 	struct dw_mci *host = dev_id;
2617 	u32 pending;
2618 	struct dw_mci_slot *slot = host->slot;
2619 	unsigned long irqflags;
2620 
2621 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2622 
2623 	if (pending) {
2624 		/* Check volt switch first, since it can look like an error */
2625 		if ((host->state == STATE_SENDING_CMD11) &&
2626 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2627 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2628 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2629 
2630 			/*
2631 			 * Hold the lock; we know cmd11_timer can't be kicked
2632 			 * off after the lock is released, so safe to delete.
2633 			 */
2634 			spin_lock_irqsave(&host->irq_lock, irqflags);
2635 			dw_mci_cmd_interrupt(host, pending);
2636 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2637 
2638 			del_timer(&host->cmd11_timer);
2639 		}
2640 
2641 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2642 			spin_lock_irqsave(&host->irq_lock, irqflags);
2643 
2644 			del_timer(&host->cto_timer);
2645 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2646 			host->cmd_status = pending;
2647 			smp_wmb(); /* drain writebuffer */
2648 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2649 
2650 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2651 		}
2652 
2653 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2654 			/* if there is an error report DATA_ERROR */
2655 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2656 			host->data_status = pending;
2657 			smp_wmb(); /* drain writebuffer */
2658 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2659 			tasklet_schedule(&host->tasklet);
2660 		}
2661 
2662 		if (pending & SDMMC_INT_DATA_OVER) {
2663 			spin_lock_irqsave(&host->irq_lock, irqflags);
2664 
2665 			del_timer(&host->dto_timer);
2666 
2667 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2668 			if (!host->data_status)
2669 				host->data_status = pending;
2670 			smp_wmb(); /* drain writebuffer */
2671 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2672 				if (host->sg != NULL)
2673 					dw_mci_read_data_pio(host, true);
2674 			}
2675 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2676 			tasklet_schedule(&host->tasklet);
2677 
2678 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2679 		}
2680 
2681 		if (pending & SDMMC_INT_RXDR) {
2682 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2683 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2684 				dw_mci_read_data_pio(host, false);
2685 		}
2686 
2687 		if (pending & SDMMC_INT_TXDR) {
2688 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2689 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2690 				dw_mci_write_data_pio(host);
2691 		}
2692 
2693 		if (pending & SDMMC_INT_CMD_DONE) {
2694 			spin_lock_irqsave(&host->irq_lock, irqflags);
2695 
2696 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2697 			dw_mci_cmd_interrupt(host, pending);
2698 
2699 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2700 		}
2701 
2702 		if (pending & SDMMC_INT_CD) {
2703 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2704 			dw_mci_handle_cd(host);
2705 		}
2706 
2707 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2708 			mci_writel(host, RINTSTS,
2709 				   SDMMC_INT_SDIO(slot->sdio_id));
2710 			__dw_mci_enable_sdio_irq(slot, 0);
2711 			sdio_signal_irq(slot->mmc);
2712 		}
2713 
2714 	}
2715 
2716 	if (host->use_dma != TRANS_MODE_IDMAC)
2717 		return IRQ_HANDLED;
2718 
2719 	/* Handle IDMA interrupts */
2720 	if (host->dma_64bit_address == 1) {
2721 		pending = mci_readl(host, IDSTS64);
2722 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2723 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2724 							SDMMC_IDMAC_INT_RI);
2725 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2726 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2727 				host->dma_ops->complete((void *)host);
2728 		}
2729 	} else {
2730 		pending = mci_readl(host, IDSTS);
2731 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2732 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2733 							SDMMC_IDMAC_INT_RI);
2734 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2735 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2736 				host->dma_ops->complete((void *)host);
2737 		}
2738 	}
2739 
2740 	return IRQ_HANDLED;
2741 }
2742 
2743 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2744 {
2745 	struct dw_mci *host = slot->host;
2746 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2747 	struct mmc_host *mmc = slot->mmc;
2748 	int ctrl_id;
2749 
2750 	if (host->pdata->caps)
2751 		mmc->caps = host->pdata->caps;
2752 
2753 	/*
2754 	 * Support MMC_CAP_ERASE by default.
2755 	 * It needs to use trim/discard/erase commands.
2756 	 */
2757 	mmc->caps |= MMC_CAP_ERASE;
2758 
2759 	if (host->pdata->pm_caps)
2760 		mmc->pm_caps = host->pdata->pm_caps;
2761 
2762 	if (host->dev->of_node) {
2763 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2764 		if (ctrl_id < 0)
2765 			ctrl_id = 0;
2766 	} else {
2767 		ctrl_id = to_platform_device(host->dev)->id;
2768 	}
2769 
2770 	if (drv_data && drv_data->caps) {
2771 		if (ctrl_id >= drv_data->num_caps) {
2772 			dev_err(host->dev, "invalid controller id %d\n",
2773 				ctrl_id);
2774 			return -EINVAL;
2775 		}
2776 		mmc->caps |= drv_data->caps[ctrl_id];
2777 	}
2778 
2779 	if (host->pdata->caps2)
2780 		mmc->caps2 = host->pdata->caps2;
2781 
2782 	mmc->f_min = DW_MCI_FREQ_MIN;
2783 	if (!mmc->f_max)
2784 		mmc->f_max = DW_MCI_FREQ_MAX;
2785 
2786 	/* Process SDIO IRQs through the sdio_irq_work. */
2787 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2788 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2789 
2790 	return 0;
2791 }
2792 
2793 static int dw_mci_init_slot(struct dw_mci *host)
2794 {
2795 	struct mmc_host *mmc;
2796 	struct dw_mci_slot *slot;
2797 	int ret;
2798 
2799 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2800 	if (!mmc)
2801 		return -ENOMEM;
2802 
2803 	slot = mmc_priv(mmc);
2804 	slot->id = 0;
2805 	slot->sdio_id = host->sdio_id0 + slot->id;
2806 	slot->mmc = mmc;
2807 	slot->host = host;
2808 	host->slot = slot;
2809 
2810 	mmc->ops = &dw_mci_ops;
2811 
2812 	/*if there are external regulators, get them*/
2813 	ret = mmc_regulator_get_supply(mmc);
2814 	if (ret)
2815 		goto err_host_allocated;
2816 
2817 	if (!mmc->ocr_avail)
2818 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2819 
2820 	ret = mmc_of_parse(mmc);
2821 	if (ret)
2822 		goto err_host_allocated;
2823 
2824 	ret = dw_mci_init_slot_caps(slot);
2825 	if (ret)
2826 		goto err_host_allocated;
2827 
2828 	/* Useful defaults if platform data is unset. */
2829 	if (host->use_dma == TRANS_MODE_IDMAC) {
2830 		mmc->max_segs = host->ring_size;
2831 		mmc->max_blk_size = 65535;
2832 		mmc->max_seg_size = 0x1000;
2833 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2834 		mmc->max_blk_count = mmc->max_req_size / 512;
2835 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2836 		mmc->max_segs = 64;
2837 		mmc->max_blk_size = 65535;
2838 		mmc->max_blk_count = 65535;
2839 		mmc->max_req_size =
2840 				mmc->max_blk_size * mmc->max_blk_count;
2841 		mmc->max_seg_size = mmc->max_req_size;
2842 	} else {
2843 		/* TRANS_MODE_PIO */
2844 		mmc->max_segs = 64;
2845 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2846 		mmc->max_blk_count = 512;
2847 		mmc->max_req_size = mmc->max_blk_size *
2848 				    mmc->max_blk_count;
2849 		mmc->max_seg_size = mmc->max_req_size;
2850 	}
2851 
2852 	dw_mci_get_cd(mmc);
2853 
2854 	ret = mmc_add_host(mmc);
2855 	if (ret)
2856 		goto err_host_allocated;
2857 
2858 #if defined(CONFIG_DEBUG_FS)
2859 	dw_mci_init_debugfs(slot);
2860 #endif
2861 
2862 	return 0;
2863 
2864 err_host_allocated:
2865 	mmc_free_host(mmc);
2866 	return ret;
2867 }
2868 
2869 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2870 {
2871 	/* Debugfs stuff is cleaned up by mmc core */
2872 	mmc_remove_host(slot->mmc);
2873 	slot->host->slot = NULL;
2874 	mmc_free_host(slot->mmc);
2875 }
2876 
2877 static void dw_mci_init_dma(struct dw_mci *host)
2878 {
2879 	int addr_config;
2880 	struct device *dev = host->dev;
2881 
2882 	/*
2883 	* Check tansfer mode from HCON[17:16]
2884 	* Clear the ambiguous description of dw_mmc databook:
2885 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2886 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2887 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2888 	* 2b'11: Non DW DMA Interface -> pio only
2889 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2890 	* simpler request/acknowledge handshake mechanism and both of them
2891 	* are regarded as external dma master for dw_mmc.
2892 	*/
2893 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2894 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2895 		host->use_dma = TRANS_MODE_IDMAC;
2896 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2897 		   host->use_dma == DMA_INTERFACE_GDMA) {
2898 		host->use_dma = TRANS_MODE_EDMAC;
2899 	} else {
2900 		goto no_dma;
2901 	}
2902 
2903 	/* Determine which DMA interface to use */
2904 	if (host->use_dma == TRANS_MODE_IDMAC) {
2905 		/*
2906 		* Check ADDR_CONFIG bit in HCON to find
2907 		* IDMAC address bus width
2908 		*/
2909 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2910 
2911 		if (addr_config == 1) {
2912 			/* host supports IDMAC in 64-bit address mode */
2913 			host->dma_64bit_address = 1;
2914 			dev_info(host->dev,
2915 				 "IDMAC supports 64-bit address mode.\n");
2916 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2917 				dma_set_coherent_mask(host->dev,
2918 						      DMA_BIT_MASK(64));
2919 		} else {
2920 			/* host supports IDMAC in 32-bit address mode */
2921 			host->dma_64bit_address = 0;
2922 			dev_info(host->dev,
2923 				 "IDMAC supports 32-bit address mode.\n");
2924 		}
2925 
2926 		/* Alloc memory for sg translation */
2927 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2928 						   DESC_RING_BUF_SZ,
2929 						   &host->sg_dma, GFP_KERNEL);
2930 		if (!host->sg_cpu) {
2931 			dev_err(host->dev,
2932 				"%s: could not alloc DMA memory\n",
2933 				__func__);
2934 			goto no_dma;
2935 		}
2936 
2937 		host->dma_ops = &dw_mci_idmac_ops;
2938 		dev_info(host->dev, "Using internal DMA controller.\n");
2939 	} else {
2940 		/* TRANS_MODE_EDMAC: check dma bindings again */
2941 		if ((device_property_read_string_array(dev, "dma-names",
2942 						       NULL, 0) < 0) ||
2943 		    !device_property_present(dev, "dmas")) {
2944 			goto no_dma;
2945 		}
2946 		host->dma_ops = &dw_mci_edmac_ops;
2947 		dev_info(host->dev, "Using external DMA controller.\n");
2948 	}
2949 
2950 	if (host->dma_ops->init && host->dma_ops->start &&
2951 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2952 		if (host->dma_ops->init(host)) {
2953 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2954 				__func__);
2955 			goto no_dma;
2956 		}
2957 	} else {
2958 		dev_err(host->dev, "DMA initialization not found.\n");
2959 		goto no_dma;
2960 	}
2961 
2962 	return;
2963 
2964 no_dma:
2965 	dev_info(host->dev, "Using PIO mode.\n");
2966 	host->use_dma = TRANS_MODE_PIO;
2967 }
2968 
2969 static void dw_mci_cmd11_timer(struct timer_list *t)
2970 {
2971 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
2972 
2973 	if (host->state != STATE_SENDING_CMD11) {
2974 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2975 		return;
2976 	}
2977 
2978 	host->cmd_status = SDMMC_INT_RTO;
2979 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2980 	tasklet_schedule(&host->tasklet);
2981 }
2982 
2983 static void dw_mci_cto_timer(struct timer_list *t)
2984 {
2985 	struct dw_mci *host = from_timer(host, t, cto_timer);
2986 	unsigned long irqflags;
2987 	u32 pending;
2988 
2989 	spin_lock_irqsave(&host->irq_lock, irqflags);
2990 
2991 	/*
2992 	 * If somehow we have very bad interrupt latency it's remotely possible
2993 	 * that the timer could fire while the interrupt is still pending or
2994 	 * while the interrupt is midway through running.  Let's be paranoid
2995 	 * and detect those two cases.  Note that this is paranoia is somewhat
2996 	 * justified because in this function we don't actually cancel the
2997 	 * pending command in the controller--we just assume it will never come.
2998 	 */
2999 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3000 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3001 		/* The interrupt should fire; no need to act but we can warn */
3002 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3003 		goto exit;
3004 	}
3005 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3006 		/* Presumably interrupt handler couldn't delete the timer */
3007 		dev_warn(host->dev, "CTO timeout when already completed\n");
3008 		goto exit;
3009 	}
3010 
3011 	/*
3012 	 * Continued paranoia to make sure we're in the state we expect.
3013 	 * This paranoia isn't really justified but it seems good to be safe.
3014 	 */
3015 	switch (host->state) {
3016 	case STATE_SENDING_CMD11:
3017 	case STATE_SENDING_CMD:
3018 	case STATE_SENDING_STOP:
3019 		/*
3020 		 * If CMD_DONE interrupt does NOT come in sending command
3021 		 * state, we should notify the driver to terminate current
3022 		 * transfer and report a command timeout to the core.
3023 		 */
3024 		host->cmd_status = SDMMC_INT_RTO;
3025 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3026 		tasklet_schedule(&host->tasklet);
3027 		break;
3028 	default:
3029 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3030 			 host->state);
3031 		break;
3032 	}
3033 
3034 exit:
3035 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3036 }
3037 
3038 static void dw_mci_dto_timer(struct timer_list *t)
3039 {
3040 	struct dw_mci *host = from_timer(host, t, dto_timer);
3041 	unsigned long irqflags;
3042 	u32 pending;
3043 
3044 	spin_lock_irqsave(&host->irq_lock, irqflags);
3045 
3046 	/*
3047 	 * The DTO timer is much longer than the CTO timer, so it's even less
3048 	 * likely that we'll these cases, but it pays to be paranoid.
3049 	 */
3050 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3051 	if (pending & SDMMC_INT_DATA_OVER) {
3052 		/* The interrupt should fire; no need to act but we can warn */
3053 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3054 		goto exit;
3055 	}
3056 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3057 		/* Presumably interrupt handler couldn't delete the timer */
3058 		dev_warn(host->dev, "DTO timeout when already completed\n");
3059 		goto exit;
3060 	}
3061 
3062 	/*
3063 	 * Continued paranoia to make sure we're in the state we expect.
3064 	 * This paranoia isn't really justified but it seems good to be safe.
3065 	 */
3066 	switch (host->state) {
3067 	case STATE_SENDING_DATA:
3068 	case STATE_DATA_BUSY:
3069 		/*
3070 		 * If DTO interrupt does NOT come in sending data state,
3071 		 * we should notify the driver to terminate current transfer
3072 		 * and report a data timeout to the core.
3073 		 */
3074 		host->data_status = SDMMC_INT_DRTO;
3075 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3076 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3077 		tasklet_schedule(&host->tasklet);
3078 		break;
3079 	default:
3080 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3081 			 host->state);
3082 		break;
3083 	}
3084 
3085 exit:
3086 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3087 }
3088 
3089 #ifdef CONFIG_OF
3090 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3091 {
3092 	struct dw_mci_board *pdata;
3093 	struct device *dev = host->dev;
3094 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3095 	int ret;
3096 	u32 clock_frequency;
3097 
3098 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3099 	if (!pdata)
3100 		return ERR_PTR(-ENOMEM);
3101 
3102 	/* find reset controller when exist */
3103 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3104 	if (IS_ERR(pdata->rstc)) {
3105 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3106 			return ERR_PTR(-EPROBE_DEFER);
3107 	}
3108 
3109 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3110 		dev_info(dev,
3111 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3112 
3113 	device_property_read_u32(dev, "card-detect-delay",
3114 				 &pdata->detect_delay_ms);
3115 
3116 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3117 
3118 	if (device_property_present(dev, "fifo-watermark-aligned"))
3119 		host->wm_aligned = true;
3120 
3121 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3122 		pdata->bus_hz = clock_frequency;
3123 
3124 	if (drv_data && drv_data->parse_dt) {
3125 		ret = drv_data->parse_dt(host);
3126 		if (ret)
3127 			return ERR_PTR(ret);
3128 	}
3129 
3130 	return pdata;
3131 }
3132 
3133 #else /* CONFIG_OF */
3134 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3135 {
3136 	return ERR_PTR(-EINVAL);
3137 }
3138 #endif /* CONFIG_OF */
3139 
3140 static void dw_mci_enable_cd(struct dw_mci *host)
3141 {
3142 	unsigned long irqflags;
3143 	u32 temp;
3144 
3145 	/*
3146 	 * No need for CD if all slots have a non-error GPIO
3147 	 * as well as broken card detection is found.
3148 	 */
3149 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3150 		return;
3151 
3152 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3153 		spin_lock_irqsave(&host->irq_lock, irqflags);
3154 		temp = mci_readl(host, INTMASK);
3155 		temp  |= SDMMC_INT_CD;
3156 		mci_writel(host, INTMASK, temp);
3157 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3158 	}
3159 }
3160 
3161 int dw_mci_probe(struct dw_mci *host)
3162 {
3163 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3164 	int width, i, ret = 0;
3165 	u32 fifo_size;
3166 
3167 	if (!host->pdata) {
3168 		host->pdata = dw_mci_parse_dt(host);
3169 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3170 			return -EPROBE_DEFER;
3171 		} else if (IS_ERR(host->pdata)) {
3172 			dev_err(host->dev, "platform data not available\n");
3173 			return -EINVAL;
3174 		}
3175 	}
3176 
3177 	host->biu_clk = devm_clk_get(host->dev, "biu");
3178 	if (IS_ERR(host->biu_clk)) {
3179 		dev_dbg(host->dev, "biu clock not available\n");
3180 	} else {
3181 		ret = clk_prepare_enable(host->biu_clk);
3182 		if (ret) {
3183 			dev_err(host->dev, "failed to enable biu clock\n");
3184 			return ret;
3185 		}
3186 	}
3187 
3188 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3189 	if (IS_ERR(host->ciu_clk)) {
3190 		dev_dbg(host->dev, "ciu clock not available\n");
3191 		host->bus_hz = host->pdata->bus_hz;
3192 	} else {
3193 		ret = clk_prepare_enable(host->ciu_clk);
3194 		if (ret) {
3195 			dev_err(host->dev, "failed to enable ciu clock\n");
3196 			goto err_clk_biu;
3197 		}
3198 
3199 		if (host->pdata->bus_hz) {
3200 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3201 			if (ret)
3202 				dev_warn(host->dev,
3203 					 "Unable to set bus rate to %uHz\n",
3204 					 host->pdata->bus_hz);
3205 		}
3206 		host->bus_hz = clk_get_rate(host->ciu_clk);
3207 	}
3208 
3209 	if (!host->bus_hz) {
3210 		dev_err(host->dev,
3211 			"Platform data must supply bus speed\n");
3212 		ret = -ENODEV;
3213 		goto err_clk_ciu;
3214 	}
3215 
3216 	if (!IS_ERR(host->pdata->rstc)) {
3217 		reset_control_assert(host->pdata->rstc);
3218 		usleep_range(10, 50);
3219 		reset_control_deassert(host->pdata->rstc);
3220 	}
3221 
3222 	if (drv_data && drv_data->init) {
3223 		ret = drv_data->init(host);
3224 		if (ret) {
3225 			dev_err(host->dev,
3226 				"implementation specific init failed\n");
3227 			goto err_clk_ciu;
3228 		}
3229 	}
3230 
3231 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3232 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3233 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3234 
3235 	spin_lock_init(&host->lock);
3236 	spin_lock_init(&host->irq_lock);
3237 	INIT_LIST_HEAD(&host->queue);
3238 
3239 	/*
3240 	 * Get the host data width - this assumes that HCON has been set with
3241 	 * the correct values.
3242 	 */
3243 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3244 	if (!i) {
3245 		host->push_data = dw_mci_push_data16;
3246 		host->pull_data = dw_mci_pull_data16;
3247 		width = 16;
3248 		host->data_shift = 1;
3249 	} else if (i == 2) {
3250 		host->push_data = dw_mci_push_data64;
3251 		host->pull_data = dw_mci_pull_data64;
3252 		width = 64;
3253 		host->data_shift = 3;
3254 	} else {
3255 		/* Check for a reserved value, and warn if it is */
3256 		WARN((i != 1),
3257 		     "HCON reports a reserved host data width!\n"
3258 		     "Defaulting to 32-bit access.\n");
3259 		host->push_data = dw_mci_push_data32;
3260 		host->pull_data = dw_mci_pull_data32;
3261 		width = 32;
3262 		host->data_shift = 2;
3263 	}
3264 
3265 	/* Reset all blocks */
3266 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3267 		ret = -ENODEV;
3268 		goto err_clk_ciu;
3269 	}
3270 
3271 	host->dma_ops = host->pdata->dma_ops;
3272 	dw_mci_init_dma(host);
3273 
3274 	/* Clear the interrupts for the host controller */
3275 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3276 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3277 
3278 	/* Put in max timeout */
3279 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3280 
3281 	/*
3282 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3283 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3284 	 */
3285 	if (!host->pdata->fifo_depth) {
3286 		/*
3287 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3288 		 * have been overwritten by the bootloader, just like we're
3289 		 * about to do, so if you know the value for your hardware, you
3290 		 * should put it in the platform data.
3291 		 */
3292 		fifo_size = mci_readl(host, FIFOTH);
3293 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3294 	} else {
3295 		fifo_size = host->pdata->fifo_depth;
3296 	}
3297 	host->fifo_depth = fifo_size;
3298 	host->fifoth_val =
3299 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3300 	mci_writel(host, FIFOTH, host->fifoth_val);
3301 
3302 	/* disable clock to CIU */
3303 	mci_writel(host, CLKENA, 0);
3304 	mci_writel(host, CLKSRC, 0);
3305 
3306 	/*
3307 	 * In 2.40a spec, Data offset is changed.
3308 	 * Need to check the version-id and set data-offset for DATA register.
3309 	 */
3310 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3311 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3312 
3313 	if (host->data_addr_override)
3314 		host->fifo_reg = host->regs + host->data_addr_override;
3315 	else if (host->verid < DW_MMC_240A)
3316 		host->fifo_reg = host->regs + DATA_OFFSET;
3317 	else
3318 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3319 
3320 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3321 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3322 			       host->irq_flags, "dw-mci", host);
3323 	if (ret)
3324 		goto err_dmaunmap;
3325 
3326 	/*
3327 	 * Enable interrupts for command done, data over, data empty,
3328 	 * receive ready and error such as transmit, receive timeout, crc error
3329 	 */
3330 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3331 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3332 		   DW_MCI_ERROR_FLAGS);
3333 	/* Enable mci interrupt */
3334 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3335 
3336 	dev_info(host->dev,
3337 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3338 		 host->irq, width, fifo_size);
3339 
3340 	/* We need at least one slot to succeed */
3341 	ret = dw_mci_init_slot(host);
3342 	if (ret) {
3343 		dev_dbg(host->dev, "slot %d init failed\n", i);
3344 		goto err_dmaunmap;
3345 	}
3346 
3347 	/* Now that slots are all setup, we can enable card detect */
3348 	dw_mci_enable_cd(host);
3349 
3350 	return 0;
3351 
3352 err_dmaunmap:
3353 	if (host->use_dma && host->dma_ops->exit)
3354 		host->dma_ops->exit(host);
3355 
3356 	if (!IS_ERR(host->pdata->rstc))
3357 		reset_control_assert(host->pdata->rstc);
3358 
3359 err_clk_ciu:
3360 	clk_disable_unprepare(host->ciu_clk);
3361 
3362 err_clk_biu:
3363 	clk_disable_unprepare(host->biu_clk);
3364 
3365 	return ret;
3366 }
3367 EXPORT_SYMBOL(dw_mci_probe);
3368 
3369 void dw_mci_remove(struct dw_mci *host)
3370 {
3371 	dev_dbg(host->dev, "remove slot\n");
3372 	if (host->slot)
3373 		dw_mci_cleanup_slot(host->slot);
3374 
3375 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3376 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3377 
3378 	/* disable clock to CIU */
3379 	mci_writel(host, CLKENA, 0);
3380 	mci_writel(host, CLKSRC, 0);
3381 
3382 	if (host->use_dma && host->dma_ops->exit)
3383 		host->dma_ops->exit(host);
3384 
3385 	if (!IS_ERR(host->pdata->rstc))
3386 		reset_control_assert(host->pdata->rstc);
3387 
3388 	clk_disable_unprepare(host->ciu_clk);
3389 	clk_disable_unprepare(host->biu_clk);
3390 }
3391 EXPORT_SYMBOL(dw_mci_remove);
3392 
3393 
3394 
3395 #ifdef CONFIG_PM
3396 int dw_mci_runtime_suspend(struct device *dev)
3397 {
3398 	struct dw_mci *host = dev_get_drvdata(dev);
3399 
3400 	if (host->use_dma && host->dma_ops->exit)
3401 		host->dma_ops->exit(host);
3402 
3403 	clk_disable_unprepare(host->ciu_clk);
3404 
3405 	if (host->slot &&
3406 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3407 	     !mmc_card_is_removable(host->slot->mmc)))
3408 		clk_disable_unprepare(host->biu_clk);
3409 
3410 	return 0;
3411 }
3412 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3413 
3414 int dw_mci_runtime_resume(struct device *dev)
3415 {
3416 	int ret = 0;
3417 	struct dw_mci *host = dev_get_drvdata(dev);
3418 
3419 	if (host->slot &&
3420 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3421 	     !mmc_card_is_removable(host->slot->mmc))) {
3422 		ret = clk_prepare_enable(host->biu_clk);
3423 		if (ret)
3424 			return ret;
3425 	}
3426 
3427 	ret = clk_prepare_enable(host->ciu_clk);
3428 	if (ret)
3429 		goto err;
3430 
3431 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3432 		clk_disable_unprepare(host->ciu_clk);
3433 		ret = -ENODEV;
3434 		goto err;
3435 	}
3436 
3437 	if (host->use_dma && host->dma_ops->init)
3438 		host->dma_ops->init(host);
3439 
3440 	/*
3441 	 * Restore the initial value at FIFOTH register
3442 	 * And Invalidate the prev_blksz with zero
3443 	 */
3444 	mci_writel(host, FIFOTH, host->fifoth_val);
3445 	host->prev_blksz = 0;
3446 
3447 	/* Put in max timeout */
3448 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3449 
3450 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3451 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3452 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3453 		   DW_MCI_ERROR_FLAGS);
3454 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3455 
3456 
3457 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3458 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3459 
3460 	/* Force setup bus to guarantee available clock output */
3461 	dw_mci_setup_bus(host->slot, true);
3462 
3463 	/* Re-enable SDIO interrupts. */
3464 	if (sdio_irq_claimed(host->slot->mmc))
3465 		__dw_mci_enable_sdio_irq(host->slot, 1);
3466 
3467 	/* Now that slots are all setup, we can enable card detect */
3468 	dw_mci_enable_cd(host);
3469 
3470 	return 0;
3471 
3472 err:
3473 	if (host->slot &&
3474 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3475 	     !mmc_card_is_removable(host->slot->mmc)))
3476 		clk_disable_unprepare(host->biu_clk);
3477 
3478 	return ret;
3479 }
3480 EXPORT_SYMBOL(dw_mci_runtime_resume);
3481 #endif /* CONFIG_PM */
3482 
3483 static int __init dw_mci_init(void)
3484 {
3485 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3486 	return 0;
3487 }
3488 
3489 static void __exit dw_mci_exit(void)
3490 {
3491 }
3492 
3493 module_init(dw_mci_init);
3494 module_exit(dw_mci_exit);
3495 
3496 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3497 MODULE_AUTHOR("NXP Semiconductor VietNam");
3498 MODULE_AUTHOR("Imagination Technologies Ltd");
3499 MODULE_LICENSE("GPL v2");
3500