xref: /linux/drivers/mmc/host/dw_mmc.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/ktime.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/prandom.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/mmc/slot-gpio.h>
39 
40 #include "dw_mmc.h"
41 
42 /* Common flag combinations */
43 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
44 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
45 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
46 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
47 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
48 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
49 				 DW_MCI_CMD_ERROR_FLAGS)
50 #define DW_MCI_SEND_STATUS	1
51 #define DW_MCI_RECV_STATUS	2
52 #define DW_MCI_DMA_THRESHOLD	16
53 
54 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
55 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
56 
57 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
58 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
59 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
60 				 SDMMC_IDMAC_INT_TI)
61 
62 #define DESC_RING_BUF_SZ	PAGE_SIZE
63 
64 struct idmac_desc_64addr {
65 	u32		des0;	/* Control Descriptor */
66 #define IDMAC_OWN_CLR64(x) \
67 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
68 
69 	u32		des1;	/* Reserved */
70 
71 	u32		des2;	/*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
75 
76 	u32		des3;	/* Reserved */
77 
78 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
79 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
80 
81 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
82 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
83 };
84 
85 struct idmac_desc {
86 	__le32		des0;	/* Control Descriptor */
87 #define IDMAC_DES0_DIC	BIT(1)
88 #define IDMAC_DES0_LD	BIT(2)
89 #define IDMAC_DES0_FD	BIT(3)
90 #define IDMAC_DES0_CH	BIT(4)
91 #define IDMAC_DES0_ER	BIT(5)
92 #define IDMAC_DES0_CES	BIT(30)
93 #define IDMAC_DES0_OWN	BIT(31)
94 
95 	__le32		des1;	/* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
98 
99 	__le32		des2;	/* buffer 1 physical address */
100 
101 	__le32		des3;	/* buffer 2 physical address */
102 };
103 
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH	0x1000
106 
107 #if defined(CONFIG_DEBUG_FS)
108 static int dw_mci_req_show(struct seq_file *s, void *v)
109 {
110 	struct dw_mci_slot *slot = s->private;
111 	struct mmc_request *mrq;
112 	struct mmc_command *cmd;
113 	struct mmc_command *stop;
114 	struct mmc_data	*data;
115 
116 	/* Make sure we get a consistent snapshot */
117 	spin_lock_bh(&slot->host->lock);
118 	mrq = slot->mrq;
119 
120 	if (mrq) {
121 		cmd = mrq->cmd;
122 		data = mrq->data;
123 		stop = mrq->stop;
124 
125 		if (cmd)
126 			seq_printf(s,
127 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
128 				   cmd->opcode, cmd->arg, cmd->flags,
129 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
130 				   cmd->resp[2], cmd->error);
131 		if (data)
132 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
133 				   data->bytes_xfered, data->blocks,
134 				   data->blksz, data->flags, data->error);
135 		if (stop)
136 			seq_printf(s,
137 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
138 				   stop->opcode, stop->arg, stop->flags,
139 				   stop->resp[0], stop->resp[1], stop->resp[2],
140 				   stop->resp[2], stop->error);
141 	}
142 
143 	spin_unlock_bh(&slot->host->lock);
144 
145 	return 0;
146 }
147 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
148 
149 static int dw_mci_regs_show(struct seq_file *s, void *v)
150 {
151 	struct dw_mci *host = s->private;
152 
153 	pm_runtime_get_sync(host->dev);
154 
155 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
156 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
157 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
158 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
159 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
160 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
161 
162 	pm_runtime_put_autosuspend(host->dev);
163 
164 	return 0;
165 }
166 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
167 
168 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
169 {
170 	struct mmc_host	*mmc = slot->mmc;
171 	struct dw_mci *host = slot->host;
172 	struct dentry *root;
173 
174 	root = mmc->debugfs_root;
175 	if (!root)
176 		return;
177 
178 	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
179 	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
180 	debugfs_create_u32("state", S_IRUSR, root, &host->state);
181 	debugfs_create_xul("pending_events", S_IRUSR, root,
182 			   &host->pending_events);
183 	debugfs_create_xul("completed_events", S_IRUSR, root,
184 			   &host->completed_events);
185 #ifdef CONFIG_FAULT_INJECTION
186 	fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
187 #endif
188 }
189 #endif /* defined(CONFIG_DEBUG_FS) */
190 
191 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
192 {
193 	u32 ctrl;
194 
195 	ctrl = mci_readl(host, CTRL);
196 	ctrl |= reset;
197 	mci_writel(host, CTRL, ctrl);
198 
199 	/* wait till resets clear */
200 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
201 				      !(ctrl & reset),
202 				      1, 500 * USEC_PER_MSEC)) {
203 		dev_err(host->dev,
204 			"Timeout resetting block (ctrl reset %#x)\n",
205 			ctrl & reset);
206 		return false;
207 	}
208 
209 	return true;
210 }
211 
212 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
213 {
214 	u32 status;
215 
216 	/*
217 	 * Databook says that before issuing a new data transfer command
218 	 * we need to check to see if the card is busy.  Data transfer commands
219 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
220 	 *
221 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
222 	 * expected.
223 	 */
224 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
225 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
226 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
227 					      status,
228 					      !(status & SDMMC_STATUS_BUSY),
229 					      10, 500 * USEC_PER_MSEC))
230 			dev_err(host->dev, "Busy; trying anyway\n");
231 	}
232 }
233 
234 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
235 {
236 	struct dw_mci *host = slot->host;
237 	unsigned int cmd_status = 0;
238 
239 	mci_writel(host, CMDARG, arg);
240 	wmb(); /* drain writebuffer */
241 	dw_mci_wait_while_busy(host, cmd);
242 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
243 
244 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
245 				      !(cmd_status & SDMMC_CMD_START),
246 				      1, 500 * USEC_PER_MSEC))
247 		dev_err(&slot->mmc->class_dev,
248 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
249 			cmd, arg, cmd_status);
250 }
251 
252 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
253 {
254 	struct dw_mci_slot *slot = mmc_priv(mmc);
255 	struct dw_mci *host = slot->host;
256 	u32 cmdr;
257 
258 	cmd->error = -EINPROGRESS;
259 	cmdr = cmd->opcode;
260 
261 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
262 	    cmd->opcode == MMC_GO_IDLE_STATE ||
263 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
264 	    (cmd->opcode == SD_IO_RW_DIRECT &&
265 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
266 		cmdr |= SDMMC_CMD_STOP;
267 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
268 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
269 
270 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
271 		u32 clk_en_a;
272 
273 		/* Special bit makes CMD11 not die */
274 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
275 
276 		/* Change state to continue to handle CMD11 weirdness */
277 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
278 		slot->host->state = STATE_SENDING_CMD11;
279 
280 		/*
281 		 * We need to disable low power mode (automatic clock stop)
282 		 * while doing voltage switch so we don't confuse the card,
283 		 * since stopping the clock is a specific part of the UHS
284 		 * voltage change dance.
285 		 *
286 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
287 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
288 		 * ever called with a non-zero clock.  That shouldn't happen
289 		 * until the voltage change is all done.
290 		 */
291 		clk_en_a = mci_readl(host, CLKENA);
292 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
293 		mci_writel(host, CLKENA, clk_en_a);
294 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
295 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
296 	}
297 
298 	if (cmd->flags & MMC_RSP_PRESENT) {
299 		/* We expect a response, so set this bit */
300 		cmdr |= SDMMC_CMD_RESP_EXP;
301 		if (cmd->flags & MMC_RSP_136)
302 			cmdr |= SDMMC_CMD_RESP_LONG;
303 	}
304 
305 	if (cmd->flags & MMC_RSP_CRC)
306 		cmdr |= SDMMC_CMD_RESP_CRC;
307 
308 	if (cmd->data) {
309 		cmdr |= SDMMC_CMD_DAT_EXP;
310 		if (cmd->data->flags & MMC_DATA_WRITE)
311 			cmdr |= SDMMC_CMD_DAT_WR;
312 	}
313 
314 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
315 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
316 
317 	return cmdr;
318 }
319 
320 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
321 {
322 	struct mmc_command *stop;
323 	u32 cmdr;
324 
325 	if (!cmd->data)
326 		return 0;
327 
328 	stop = &host->stop_abort;
329 	cmdr = cmd->opcode;
330 	memset(stop, 0, sizeof(struct mmc_command));
331 
332 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
333 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
334 	    cmdr == MMC_WRITE_BLOCK ||
335 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
336 	    mmc_op_tuning(cmdr) ||
337 	    cmdr == MMC_GEN_CMD) {
338 		stop->opcode = MMC_STOP_TRANSMISSION;
339 		stop->arg = 0;
340 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
341 	} else if (cmdr == SD_IO_RW_EXTENDED) {
342 		stop->opcode = SD_IO_RW_DIRECT;
343 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
344 			     ((cmd->arg >> 28) & 0x7);
345 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
346 	} else {
347 		return 0;
348 	}
349 
350 	cmdr = stop->opcode | SDMMC_CMD_STOP |
351 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
352 
353 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
354 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
355 
356 	return cmdr;
357 }
358 
359 static inline void dw_mci_set_cto(struct dw_mci *host)
360 {
361 	unsigned int cto_clks;
362 	unsigned int cto_div;
363 	unsigned int cto_ms;
364 	unsigned long irqflags;
365 
366 	cto_clks = mci_readl(host, TMOUT) & 0xff;
367 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
368 	if (cto_div == 0)
369 		cto_div = 1;
370 
371 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
372 				  host->bus_hz);
373 
374 	/* add a bit spare time */
375 	cto_ms += 10;
376 
377 	/*
378 	 * The durations we're working with are fairly short so we have to be
379 	 * extra careful about synchronization here.  Specifically in hardware a
380 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
381 	 * interrupt (either command done or timeout) to come rather quickly
382 	 * after the mci_writel.  ...but just in case we have a long interrupt
383 	 * latency let's add a bit of paranoia.
384 	 *
385 	 * In general we'll assume that at least an interrupt will be asserted
386 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
387 	 * been asserted in hardware by that time then we'll assume it'll never
388 	 * come.
389 	 */
390 	spin_lock_irqsave(&host->irq_lock, irqflags);
391 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
392 		mod_timer(&host->cto_timer,
393 			jiffies + msecs_to_jiffies(cto_ms) + 1);
394 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
395 }
396 
397 static void dw_mci_start_command(struct dw_mci *host,
398 				 struct mmc_command *cmd, u32 cmd_flags)
399 {
400 	host->cmd = cmd;
401 	dev_vdbg(host->dev,
402 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
403 		 cmd->arg, cmd_flags);
404 
405 	mci_writel(host, CMDARG, cmd->arg);
406 	wmb(); /* drain writebuffer */
407 	dw_mci_wait_while_busy(host, cmd_flags);
408 
409 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
410 
411 	/* response expected command only */
412 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
413 		dw_mci_set_cto(host);
414 }
415 
416 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
417 {
418 	struct mmc_command *stop = &host->stop_abort;
419 
420 	dw_mci_start_command(host, stop, host->stop_cmdr);
421 }
422 
423 /* DMA interface functions */
424 static void dw_mci_stop_dma(struct dw_mci *host)
425 {
426 	if (host->using_dma) {
427 		host->dma_ops->stop(host);
428 		host->dma_ops->cleanup(host);
429 	}
430 
431 	/* Data transfer was stopped by the interrupt handler */
432 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
433 }
434 
435 static void dw_mci_dma_cleanup(struct dw_mci *host)
436 {
437 	struct mmc_data *data = host->data;
438 
439 	if (data && data->host_cookie == COOKIE_MAPPED) {
440 		dma_unmap_sg(host->dev,
441 			     data->sg,
442 			     data->sg_len,
443 			     mmc_get_dma_dir(data));
444 		data->host_cookie = COOKIE_UNMAPPED;
445 	}
446 }
447 
448 static void dw_mci_idmac_reset(struct dw_mci *host)
449 {
450 	u32 bmod = mci_readl(host, BMOD);
451 	/* Software reset of DMA */
452 	bmod |= SDMMC_IDMAC_SWRESET;
453 	mci_writel(host, BMOD, bmod);
454 }
455 
456 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
457 {
458 	u32 temp;
459 
460 	/* Disable and reset the IDMAC interface */
461 	temp = mci_readl(host, CTRL);
462 	temp &= ~SDMMC_CTRL_USE_IDMAC;
463 	temp |= SDMMC_CTRL_DMA_RESET;
464 	mci_writel(host, CTRL, temp);
465 
466 	/* Stop the IDMAC running */
467 	temp = mci_readl(host, BMOD);
468 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
469 	temp |= SDMMC_IDMAC_SWRESET;
470 	mci_writel(host, BMOD, temp);
471 }
472 
473 static void dw_mci_dmac_complete_dma(void *arg)
474 {
475 	struct dw_mci *host = arg;
476 	struct mmc_data *data = host->data;
477 
478 	dev_vdbg(host->dev, "DMA complete\n");
479 
480 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
481 	    data && (data->flags & MMC_DATA_READ))
482 		/* Invalidate cache after read */
483 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
484 				    data->sg,
485 				    data->sg_len,
486 				    DMA_FROM_DEVICE);
487 
488 	host->dma_ops->cleanup(host);
489 
490 	/*
491 	 * If the card was removed, data will be NULL. No point in trying to
492 	 * send the stop command or waiting for NBUSY in this case.
493 	 */
494 	if (data) {
495 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
496 		queue_work(system_bh_wq, &host->bh_work);
497 	}
498 }
499 
500 static int dw_mci_idmac_init(struct dw_mci *host)
501 {
502 	int i;
503 
504 	if (host->dma_64bit_address == 1) {
505 		struct idmac_desc_64addr *p;
506 		/* Number of descriptors in the ring buffer */
507 		host->ring_size =
508 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
509 
510 		/* Forward link the descriptor list */
511 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
512 								i++, p++) {
513 			p->des6 = (host->sg_dma +
514 					(sizeof(struct idmac_desc_64addr) *
515 							(i + 1))) & 0xffffffff;
516 
517 			p->des7 = (u64)(host->sg_dma +
518 					(sizeof(struct idmac_desc_64addr) *
519 							(i + 1))) >> 32;
520 			/* Initialize reserved and buffer size fields to "0" */
521 			p->des0 = 0;
522 			p->des1 = 0;
523 			p->des2 = 0;
524 			p->des3 = 0;
525 		}
526 
527 		/* Set the last descriptor as the end-of-ring descriptor */
528 		p->des6 = host->sg_dma & 0xffffffff;
529 		p->des7 = (u64)host->sg_dma >> 32;
530 		p->des0 = IDMAC_DES0_ER;
531 
532 	} else {
533 		struct idmac_desc *p;
534 		/* Number of descriptors in the ring buffer */
535 		host->ring_size =
536 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
537 
538 		/* Forward link the descriptor list */
539 		for (i = 0, p = host->sg_cpu;
540 		     i < host->ring_size - 1;
541 		     i++, p++) {
542 			p->des3 = cpu_to_le32(host->sg_dma +
543 					(sizeof(struct idmac_desc) * (i + 1)));
544 			p->des0 = 0;
545 			p->des1 = 0;
546 		}
547 
548 		/* Set the last descriptor as the end-of-ring descriptor */
549 		p->des3 = cpu_to_le32(host->sg_dma);
550 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
551 	}
552 
553 	dw_mci_idmac_reset(host);
554 
555 	if (host->dma_64bit_address == 1) {
556 		/* Mask out interrupts - get Tx & Rx complete only */
557 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
558 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
559 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
560 
561 		/* Set the descriptor base address */
562 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
563 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
564 
565 	} else {
566 		/* Mask out interrupts - get Tx & Rx complete only */
567 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
568 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
569 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
570 
571 		/* Set the descriptor base address */
572 		mci_writel(host, DBADDR, host->sg_dma);
573 	}
574 
575 	return 0;
576 }
577 
578 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
579 					 struct mmc_data *data,
580 					 unsigned int sg_len)
581 {
582 	unsigned int desc_len;
583 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
584 	u32 val;
585 	int i;
586 
587 	desc_first = desc_last = desc = host->sg_cpu;
588 
589 	for (i = 0; i < sg_len; i++) {
590 		unsigned int length = sg_dma_len(&data->sg[i]);
591 
592 		u64 mem_addr = sg_dma_address(&data->sg[i]);
593 
594 		for ( ; length ; desc++) {
595 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
596 				   length : DW_MCI_DESC_DATA_LENGTH;
597 
598 			length -= desc_len;
599 
600 			/*
601 			 * Wait for the former clear OWN bit operation
602 			 * of IDMAC to make sure that this descriptor
603 			 * isn't still owned by IDMAC as IDMAC's write
604 			 * ops and CPU's read ops are asynchronous.
605 			 */
606 			if (readl_poll_timeout_atomic(&desc->des0, val,
607 						!(val & IDMAC_DES0_OWN),
608 						10, 100 * USEC_PER_MSEC))
609 				goto err_own_bit;
610 
611 			/*
612 			 * Set the OWN bit and disable interrupts
613 			 * for this descriptor
614 			 */
615 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
616 						IDMAC_DES0_CH;
617 
618 			/* Buffer length */
619 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
620 
621 			/* Physical address to DMA to/from */
622 			desc->des4 = mem_addr & 0xffffffff;
623 			desc->des5 = mem_addr >> 32;
624 
625 			/* Update physical address for the next desc */
626 			mem_addr += desc_len;
627 
628 			/* Save pointer to the last descriptor */
629 			desc_last = desc;
630 		}
631 	}
632 
633 	/* Set first descriptor */
634 	desc_first->des0 |= IDMAC_DES0_FD;
635 
636 	/* Set last descriptor */
637 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
638 	desc_last->des0 |= IDMAC_DES0_LD;
639 
640 	return 0;
641 err_own_bit:
642 	/* restore the descriptor chain as it's polluted */
643 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
644 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
645 	dw_mci_idmac_init(host);
646 	return -EINVAL;
647 }
648 
649 
650 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
651 					 struct mmc_data *data,
652 					 unsigned int sg_len)
653 {
654 	unsigned int desc_len;
655 	struct idmac_desc *desc_first, *desc_last, *desc;
656 	u32 val;
657 	int i;
658 
659 	desc_first = desc_last = desc = host->sg_cpu;
660 
661 	for (i = 0; i < sg_len; i++) {
662 		unsigned int length = sg_dma_len(&data->sg[i]);
663 
664 		u32 mem_addr = sg_dma_address(&data->sg[i]);
665 
666 		for ( ; length ; desc++) {
667 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
668 				   length : DW_MCI_DESC_DATA_LENGTH;
669 
670 			length -= desc_len;
671 
672 			/*
673 			 * Wait for the former clear OWN bit operation
674 			 * of IDMAC to make sure that this descriptor
675 			 * isn't still owned by IDMAC as IDMAC's write
676 			 * ops and CPU's read ops are asynchronous.
677 			 */
678 			if (readl_poll_timeout_atomic(&desc->des0, val,
679 						      IDMAC_OWN_CLR64(val),
680 						      10,
681 						      100 * USEC_PER_MSEC))
682 				goto err_own_bit;
683 
684 			/*
685 			 * Set the OWN bit and disable interrupts
686 			 * for this descriptor
687 			 */
688 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
689 						 IDMAC_DES0_DIC |
690 						 IDMAC_DES0_CH);
691 
692 			/* Buffer length */
693 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
694 
695 			/* Physical address to DMA to/from */
696 			desc->des2 = cpu_to_le32(mem_addr);
697 
698 			/* Update physical address for the next desc */
699 			mem_addr += desc_len;
700 
701 			/* Save pointer to the last descriptor */
702 			desc_last = desc;
703 		}
704 	}
705 
706 	/* Set first descriptor */
707 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
708 
709 	/* Set last descriptor */
710 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
711 				       IDMAC_DES0_DIC));
712 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
713 
714 	return 0;
715 err_own_bit:
716 	/* restore the descriptor chain as it's polluted */
717 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
718 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
719 	dw_mci_idmac_init(host);
720 	return -EINVAL;
721 }
722 
723 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
724 {
725 	u32 temp;
726 	int ret;
727 
728 	if (host->dma_64bit_address == 1)
729 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
730 	else
731 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
732 
733 	if (ret)
734 		goto out;
735 
736 	/* drain writebuffer */
737 	wmb();
738 
739 	/* Make sure to reset DMA in case we did PIO before this */
740 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
741 	dw_mci_idmac_reset(host);
742 
743 	/* Select IDMAC interface */
744 	temp = mci_readl(host, CTRL);
745 	temp |= SDMMC_CTRL_USE_IDMAC;
746 	mci_writel(host, CTRL, temp);
747 
748 	/* drain writebuffer */
749 	wmb();
750 
751 	/* Enable the IDMAC */
752 	temp = mci_readl(host, BMOD);
753 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
754 	mci_writel(host, BMOD, temp);
755 
756 	/* Start it running */
757 	mci_writel(host, PLDMND, 1);
758 
759 out:
760 	return ret;
761 }
762 
763 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
764 	.init = dw_mci_idmac_init,
765 	.start = dw_mci_idmac_start_dma,
766 	.stop = dw_mci_idmac_stop_dma,
767 	.complete = dw_mci_dmac_complete_dma,
768 	.cleanup = dw_mci_dma_cleanup,
769 };
770 
771 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
772 {
773 	dmaengine_terminate_async(host->dms->ch);
774 }
775 
776 static int dw_mci_edmac_start_dma(struct dw_mci *host,
777 					    unsigned int sg_len)
778 {
779 	struct dma_slave_config cfg;
780 	struct dma_async_tx_descriptor *desc = NULL;
781 	struct scatterlist *sgl = host->data->sg;
782 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
783 	u32 sg_elems = host->data->sg_len;
784 	u32 fifoth_val;
785 	u32 fifo_offset = host->fifo_reg - host->regs;
786 	int ret = 0;
787 
788 	/* Set external dma config: burst size, burst width */
789 	memset(&cfg, 0, sizeof(cfg));
790 	cfg.dst_addr = host->phy_regs + fifo_offset;
791 	cfg.src_addr = cfg.dst_addr;
792 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
793 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
794 
795 	/* Match burst msize with external dma config */
796 	fifoth_val = mci_readl(host, FIFOTH);
797 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
798 	cfg.src_maxburst = cfg.dst_maxburst;
799 
800 	if (host->data->flags & MMC_DATA_WRITE)
801 		cfg.direction = DMA_MEM_TO_DEV;
802 	else
803 		cfg.direction = DMA_DEV_TO_MEM;
804 
805 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
806 	if (ret) {
807 		dev_err(host->dev, "Failed to config edmac.\n");
808 		return -EBUSY;
809 	}
810 
811 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
812 				       sg_len, cfg.direction,
813 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
814 	if (!desc) {
815 		dev_err(host->dev, "Can't prepare slave sg.\n");
816 		return -EBUSY;
817 	}
818 
819 	/* Set dw_mci_dmac_complete_dma as callback */
820 	desc->callback = dw_mci_dmac_complete_dma;
821 	desc->callback_param = (void *)host;
822 	dmaengine_submit(desc);
823 
824 	/* Flush cache before write */
825 	if (host->data->flags & MMC_DATA_WRITE)
826 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
827 				       sg_elems, DMA_TO_DEVICE);
828 
829 	dma_async_issue_pending(host->dms->ch);
830 
831 	return 0;
832 }
833 
834 static int dw_mci_edmac_init(struct dw_mci *host)
835 {
836 	/* Request external dma channel */
837 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
838 	if (!host->dms)
839 		return -ENOMEM;
840 
841 	host->dms->ch = dma_request_chan(host->dev, "rx-tx");
842 	if (IS_ERR(host->dms->ch)) {
843 		int ret = PTR_ERR(host->dms->ch);
844 
845 		dev_err(host->dev, "Failed to get external DMA channel.\n");
846 		kfree(host->dms);
847 		host->dms = NULL;
848 		return ret;
849 	}
850 
851 	return 0;
852 }
853 
854 static void dw_mci_edmac_exit(struct dw_mci *host)
855 {
856 	if (host->dms) {
857 		if (host->dms->ch) {
858 			dma_release_channel(host->dms->ch);
859 			host->dms->ch = NULL;
860 		}
861 		kfree(host->dms);
862 		host->dms = NULL;
863 	}
864 }
865 
866 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
867 	.init = dw_mci_edmac_init,
868 	.exit = dw_mci_edmac_exit,
869 	.start = dw_mci_edmac_start_dma,
870 	.stop = dw_mci_edmac_stop_dma,
871 	.complete = dw_mci_dmac_complete_dma,
872 	.cleanup = dw_mci_dma_cleanup,
873 };
874 
875 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
876 				   struct mmc_data *data,
877 				   int cookie)
878 {
879 	struct scatterlist *sg;
880 	unsigned int i, sg_len;
881 
882 	if (data->host_cookie == COOKIE_PRE_MAPPED)
883 		return data->sg_len;
884 
885 	/*
886 	 * We don't do DMA on "complex" transfers, i.e. with
887 	 * non-word-aligned buffers or lengths. Also, we don't bother
888 	 * with all the DMA setup overhead for short transfers.
889 	 */
890 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
891 		return -EINVAL;
892 
893 	if (data->blksz & 3)
894 		return -EINVAL;
895 
896 	for_each_sg(data->sg, sg, data->sg_len, i) {
897 		if (sg->offset & 3 || sg->length & 3)
898 			return -EINVAL;
899 	}
900 
901 	sg_len = dma_map_sg(host->dev,
902 			    data->sg,
903 			    data->sg_len,
904 			    mmc_get_dma_dir(data));
905 	if (sg_len == 0)
906 		return -EINVAL;
907 
908 	data->host_cookie = cookie;
909 
910 	return sg_len;
911 }
912 
913 static void dw_mci_pre_req(struct mmc_host *mmc,
914 			   struct mmc_request *mrq)
915 {
916 	struct dw_mci_slot *slot = mmc_priv(mmc);
917 	struct mmc_data *data = mrq->data;
918 
919 	if (!slot->host->use_dma || !data)
920 		return;
921 
922 	/* This data might be unmapped at this time */
923 	data->host_cookie = COOKIE_UNMAPPED;
924 
925 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
926 				COOKIE_PRE_MAPPED) < 0)
927 		data->host_cookie = COOKIE_UNMAPPED;
928 }
929 
930 static void dw_mci_post_req(struct mmc_host *mmc,
931 			    struct mmc_request *mrq,
932 			    int err)
933 {
934 	struct dw_mci_slot *slot = mmc_priv(mmc);
935 	struct mmc_data *data = mrq->data;
936 
937 	if (!slot->host->use_dma || !data)
938 		return;
939 
940 	if (data->host_cookie != COOKIE_UNMAPPED)
941 		dma_unmap_sg(slot->host->dev,
942 			     data->sg,
943 			     data->sg_len,
944 			     mmc_get_dma_dir(data));
945 	data->host_cookie = COOKIE_UNMAPPED;
946 }
947 
948 static int dw_mci_get_cd(struct mmc_host *mmc)
949 {
950 	int present;
951 	struct dw_mci_slot *slot = mmc_priv(mmc);
952 	struct dw_mci *host = slot->host;
953 	int gpio_cd = mmc_gpio_get_cd(mmc);
954 
955 	/* Use platform get_cd function, else try onboard card detect */
956 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
957 				|| !mmc_card_is_removable(mmc))) {
958 		present = 1;
959 
960 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
961 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
962 				dev_info(&mmc->class_dev,
963 					"card is polling.\n");
964 			} else {
965 				dev_info(&mmc->class_dev,
966 					"card is non-removable.\n");
967 			}
968 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
969 		}
970 
971 		return present;
972 	} else if (gpio_cd >= 0)
973 		present = gpio_cd;
974 	else
975 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
976 			== 0 ? 1 : 0;
977 
978 	spin_lock_bh(&host->lock);
979 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
980 		dev_dbg(&mmc->class_dev, "card is present\n");
981 	else if (!present &&
982 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
983 		dev_dbg(&mmc->class_dev, "card is not present\n");
984 	spin_unlock_bh(&host->lock);
985 
986 	return present;
987 }
988 
989 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
990 {
991 	unsigned int blksz = data->blksz;
992 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
993 	u32 fifo_width = 1 << host->data_shift;
994 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
995 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
996 	int idx = ARRAY_SIZE(mszs) - 1;
997 
998 	/* pio should ship this scenario */
999 	if (!host->use_dma)
1000 		return;
1001 
1002 	tx_wmark = (host->fifo_depth) / 2;
1003 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1004 
1005 	/*
1006 	 * MSIZE is '1',
1007 	 * if blksz is not a multiple of the FIFO width
1008 	 */
1009 	if (blksz % fifo_width)
1010 		goto done;
1011 
1012 	do {
1013 		if (!((blksz_depth % mszs[idx]) ||
1014 		     (tx_wmark_invers % mszs[idx]))) {
1015 			msize = idx;
1016 			rx_wmark = mszs[idx] - 1;
1017 			break;
1018 		}
1019 	} while (--idx > 0);
1020 	/*
1021 	 * If idx is '0', it won't be tried
1022 	 * Thus, initial values are uesed
1023 	 */
1024 done:
1025 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1026 	mci_writel(host, FIFOTH, fifoth_val);
1027 }
1028 
1029 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1030 {
1031 	unsigned int blksz = data->blksz;
1032 	u32 blksz_depth, fifo_depth;
1033 	u16 thld_size;
1034 	u8 enable;
1035 
1036 	/*
1037 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1038 	 * in the FIFO region, so we really shouldn't access it).
1039 	 */
1040 	if (host->verid < DW_MMC_240A ||
1041 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1042 		return;
1043 
1044 	/*
1045 	 * Card write Threshold is introduced since 2.80a
1046 	 * It's used when HS400 mode is enabled.
1047 	 */
1048 	if (data->flags & MMC_DATA_WRITE &&
1049 		host->timing != MMC_TIMING_MMC_HS400)
1050 		goto disable;
1051 
1052 	if (data->flags & MMC_DATA_WRITE)
1053 		enable = SDMMC_CARD_WR_THR_EN;
1054 	else
1055 		enable = SDMMC_CARD_RD_THR_EN;
1056 
1057 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1058 	    host->timing != MMC_TIMING_UHS_SDR104 &&
1059 	    host->timing != MMC_TIMING_MMC_HS400)
1060 		goto disable;
1061 
1062 	blksz_depth = blksz / (1 << host->data_shift);
1063 	fifo_depth = host->fifo_depth;
1064 
1065 	if (blksz_depth > fifo_depth)
1066 		goto disable;
1067 
1068 	/*
1069 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1070 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1071 	 * Currently just choose blksz.
1072 	 */
1073 	thld_size = blksz;
1074 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1075 	return;
1076 
1077 disable:
1078 	mci_writel(host, CDTHRCTL, 0);
1079 }
1080 
1081 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1082 {
1083 	unsigned long irqflags;
1084 	int sg_len;
1085 	u32 temp;
1086 
1087 	host->using_dma = 0;
1088 
1089 	/* If we don't have a channel, we can't do DMA */
1090 	if (!host->use_dma)
1091 		return -ENODEV;
1092 
1093 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1094 	if (sg_len < 0) {
1095 		host->dma_ops->stop(host);
1096 		return sg_len;
1097 	}
1098 
1099 	host->using_dma = 1;
1100 
1101 	if (host->use_dma == TRANS_MODE_IDMAC)
1102 		dev_vdbg(host->dev,
1103 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1104 			 (unsigned long)host->sg_cpu,
1105 			 (unsigned long)host->sg_dma,
1106 			 sg_len);
1107 
1108 	/*
1109 	 * Decide the MSIZE and RX/TX Watermark.
1110 	 * If current block size is same with previous size,
1111 	 * no need to update fifoth.
1112 	 */
1113 	if (host->prev_blksz != data->blksz)
1114 		dw_mci_adjust_fifoth(host, data);
1115 
1116 	/* Enable the DMA interface */
1117 	temp = mci_readl(host, CTRL);
1118 	temp |= SDMMC_CTRL_DMA_ENABLE;
1119 	mci_writel(host, CTRL, temp);
1120 
1121 	/* Disable RX/TX IRQs, let DMA handle it */
1122 	spin_lock_irqsave(&host->irq_lock, irqflags);
1123 	temp = mci_readl(host, INTMASK);
1124 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1125 	mci_writel(host, INTMASK, temp);
1126 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1127 
1128 	if (host->dma_ops->start(host, sg_len)) {
1129 		host->dma_ops->stop(host);
1130 		/* We can't do DMA, try PIO for this one */
1131 		dev_dbg(host->dev,
1132 			"%s: fall back to PIO mode for current transfer\n",
1133 			__func__);
1134 		return -ENODEV;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1141 {
1142 	unsigned long irqflags;
1143 	int flags = SG_MITER_ATOMIC;
1144 	u32 temp;
1145 
1146 	data->error = -EINPROGRESS;
1147 
1148 	WARN_ON(host->data);
1149 	host->sg = NULL;
1150 	host->data = data;
1151 
1152 	if (data->flags & MMC_DATA_READ)
1153 		host->dir_status = DW_MCI_RECV_STATUS;
1154 	else
1155 		host->dir_status = DW_MCI_SEND_STATUS;
1156 
1157 	dw_mci_ctrl_thld(host, data);
1158 
1159 	if (dw_mci_submit_data_dma(host, data)) {
1160 		if (host->data->flags & MMC_DATA_READ)
1161 			flags |= SG_MITER_TO_SG;
1162 		else
1163 			flags |= SG_MITER_FROM_SG;
1164 
1165 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1166 		host->sg = data->sg;
1167 		host->part_buf_start = 0;
1168 		host->part_buf_count = 0;
1169 
1170 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1171 
1172 		spin_lock_irqsave(&host->irq_lock, irqflags);
1173 		temp = mci_readl(host, INTMASK);
1174 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1175 		mci_writel(host, INTMASK, temp);
1176 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1177 
1178 		temp = mci_readl(host, CTRL);
1179 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1180 		mci_writel(host, CTRL, temp);
1181 
1182 		/*
1183 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1184 		 * is set, we set watermark same as data size.
1185 		 * If next issued data may be transfered by DMA mode,
1186 		 * prev_blksz should be invalidated.
1187 		 */
1188 		if (host->wm_aligned)
1189 			dw_mci_adjust_fifoth(host, data);
1190 		else
1191 			mci_writel(host, FIFOTH, host->fifoth_val);
1192 		host->prev_blksz = 0;
1193 	} else {
1194 		/*
1195 		 * Keep the current block size.
1196 		 * It will be used to decide whether to update
1197 		 * fifoth register next time.
1198 		 */
1199 		host->prev_blksz = data->blksz;
1200 	}
1201 }
1202 
1203 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1204 {
1205 	struct dw_mci *host = slot->host;
1206 	unsigned int clock = slot->clock;
1207 	u32 div;
1208 	u32 clk_en_a;
1209 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1210 
1211 	/* We must continue to set bit 28 in CMD until the change is complete */
1212 	if (host->state == STATE_WAITING_CMD11_DONE)
1213 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1214 
1215 	slot->mmc->actual_clock = 0;
1216 
1217 	if (!clock) {
1218 		mci_writel(host, CLKENA, 0);
1219 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1220 	} else if (clock != host->current_speed || force_clkinit) {
1221 		div = host->bus_hz / clock;
1222 		if (host->bus_hz % clock && host->bus_hz > clock)
1223 			/*
1224 			 * move the + 1 after the divide to prevent
1225 			 * over-clocking the card.
1226 			 */
1227 			div += 1;
1228 
1229 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1230 
1231 		if ((clock != slot->__clk_old &&
1232 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1233 			force_clkinit) {
1234 			/* Silent the verbose log if calling from PM context */
1235 			if (!force_clkinit)
1236 				dev_info(&slot->mmc->class_dev,
1237 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1238 					 slot->id, host->bus_hz, clock,
1239 					 div ? ((host->bus_hz / div) >> 1) :
1240 					 host->bus_hz, div);
1241 
1242 			/*
1243 			 * If card is polling, display the message only
1244 			 * one time at boot time.
1245 			 */
1246 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1247 					slot->mmc->f_min == clock)
1248 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1249 		}
1250 
1251 		/* disable clock */
1252 		mci_writel(host, CLKENA, 0);
1253 		mci_writel(host, CLKSRC, 0);
1254 
1255 		/* inform CIU */
1256 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1257 
1258 		/* set clock to desired speed */
1259 		mci_writel(host, CLKDIV, div);
1260 
1261 		/* inform CIU */
1262 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1263 
1264 		/* enable clock; only low power if no SDIO */
1265 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1266 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1267 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1268 		mci_writel(host, CLKENA, clk_en_a);
1269 
1270 		/* inform CIU */
1271 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1272 
1273 		/* keep the last clock value that was requested from core */
1274 		slot->__clk_old = clock;
1275 		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1276 					  host->bus_hz;
1277 	}
1278 
1279 	host->current_speed = clock;
1280 
1281 	/* Set the current slot bus width */
1282 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1283 }
1284 
1285 static void dw_mci_set_data_timeout(struct dw_mci *host,
1286 				    unsigned int timeout_ns)
1287 {
1288 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1289 	u32 clk_div, tmout;
1290 	u64 tmp;
1291 
1292 	if (drv_data && drv_data->set_data_timeout)
1293 		return drv_data->set_data_timeout(host, timeout_ns);
1294 
1295 	clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1296 	if (clk_div == 0)
1297 		clk_div = 1;
1298 
1299 	tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1300 	tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1301 
1302 	/* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1303 	tmout = 0xFF; /* Set maximum */
1304 
1305 	/* TMOUT[31:8] (DATA_TIMEOUT) */
1306 	if (!tmp || tmp > 0xFFFFFF)
1307 		tmout |= (0xFFFFFF << 8);
1308 	else
1309 		tmout |= (tmp & 0xFFFFFF) << 8;
1310 
1311 	mci_writel(host, TMOUT, tmout);
1312 	dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1313 		timeout_ns, tmout >> 8);
1314 }
1315 
1316 static void __dw_mci_start_request(struct dw_mci *host,
1317 				   struct dw_mci_slot *slot,
1318 				   struct mmc_command *cmd)
1319 {
1320 	struct mmc_request *mrq;
1321 	struct mmc_data	*data;
1322 	u32 cmdflags;
1323 
1324 	mrq = slot->mrq;
1325 
1326 	host->mrq = mrq;
1327 
1328 	host->pending_events = 0;
1329 	host->completed_events = 0;
1330 	host->cmd_status = 0;
1331 	host->data_status = 0;
1332 	host->dir_status = 0;
1333 
1334 	data = cmd->data;
1335 	if (data) {
1336 		dw_mci_set_data_timeout(host, data->timeout_ns);
1337 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1338 		mci_writel(host, BLKSIZ, data->blksz);
1339 	}
1340 
1341 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1342 
1343 	/* this is the first command, send the initialization clock */
1344 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1345 		cmdflags |= SDMMC_CMD_INIT;
1346 
1347 	if (data) {
1348 		dw_mci_submit_data(host, data);
1349 		wmb(); /* drain writebuffer */
1350 	}
1351 
1352 	dw_mci_start_command(host, cmd, cmdflags);
1353 
1354 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1355 		unsigned long irqflags;
1356 
1357 		/*
1358 		 * Databook says to fail after 2ms w/ no response, but evidence
1359 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1360 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1361 		 * is just about to roll over.
1362 		 *
1363 		 * We do this whole thing under spinlock and only if the
1364 		 * command hasn't already completed (indicating the irq
1365 		 * already ran so we don't want the timeout).
1366 		 */
1367 		spin_lock_irqsave(&host->irq_lock, irqflags);
1368 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1369 			mod_timer(&host->cmd11_timer,
1370 				jiffies + msecs_to_jiffies(500) + 1);
1371 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1372 	}
1373 
1374 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1375 }
1376 
1377 static void dw_mci_start_request(struct dw_mci *host,
1378 				 struct dw_mci_slot *slot)
1379 {
1380 	struct mmc_request *mrq = slot->mrq;
1381 	struct mmc_command *cmd;
1382 
1383 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1384 	__dw_mci_start_request(host, slot, cmd);
1385 }
1386 
1387 /* must be called with host->lock held */
1388 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1389 				 struct mmc_request *mrq)
1390 {
1391 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1392 		 host->state);
1393 
1394 	slot->mrq = mrq;
1395 
1396 	if (host->state == STATE_WAITING_CMD11_DONE) {
1397 		dev_warn(&slot->mmc->class_dev,
1398 			 "Voltage change didn't complete\n");
1399 		/*
1400 		 * this case isn't expected to happen, so we can
1401 		 * either crash here or just try to continue on
1402 		 * in the closest possible state
1403 		 */
1404 		host->state = STATE_IDLE;
1405 	}
1406 
1407 	if (host->state == STATE_IDLE) {
1408 		host->state = STATE_SENDING_CMD;
1409 		dw_mci_start_request(host, slot);
1410 	} else {
1411 		list_add_tail(&slot->queue_node, &host->queue);
1412 	}
1413 }
1414 
1415 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1416 {
1417 	struct dw_mci_slot *slot = mmc_priv(mmc);
1418 	struct dw_mci *host = slot->host;
1419 
1420 	WARN_ON(slot->mrq);
1421 
1422 	/*
1423 	 * The check for card presence and queueing of the request must be
1424 	 * atomic, otherwise the card could be removed in between and the
1425 	 * request wouldn't fail until another card was inserted.
1426 	 */
1427 
1428 	if (!dw_mci_get_cd(mmc)) {
1429 		mrq->cmd->error = -ENOMEDIUM;
1430 		mmc_request_done(mmc, mrq);
1431 		return;
1432 	}
1433 
1434 	spin_lock_bh(&host->lock);
1435 
1436 	dw_mci_queue_request(host, slot, mrq);
1437 
1438 	spin_unlock_bh(&host->lock);
1439 }
1440 
1441 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1442 {
1443 	struct dw_mci_slot *slot = mmc_priv(mmc);
1444 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1445 	u32 regs;
1446 	int ret;
1447 
1448 	switch (ios->bus_width) {
1449 	case MMC_BUS_WIDTH_4:
1450 		slot->ctype = SDMMC_CTYPE_4BIT;
1451 		break;
1452 	case MMC_BUS_WIDTH_8:
1453 		slot->ctype = SDMMC_CTYPE_8BIT;
1454 		break;
1455 	default:
1456 		/* set default 1 bit mode */
1457 		slot->ctype = SDMMC_CTYPE_1BIT;
1458 	}
1459 
1460 	regs = mci_readl(slot->host, UHS_REG);
1461 
1462 	/* DDR mode set */
1463 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1464 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1465 	    ios->timing == MMC_TIMING_MMC_HS400)
1466 		regs |= ((0x1 << slot->id) << 16);
1467 	else
1468 		regs &= ~((0x1 << slot->id) << 16);
1469 
1470 	mci_writel(slot->host, UHS_REG, regs);
1471 	slot->host->timing = ios->timing;
1472 
1473 	/*
1474 	 * Use mirror of ios->clock to prevent race with mmc
1475 	 * core ios update when finding the minimum.
1476 	 */
1477 	slot->clock = ios->clock;
1478 
1479 	if (drv_data && drv_data->set_ios)
1480 		drv_data->set_ios(slot->host, ios);
1481 
1482 	switch (ios->power_mode) {
1483 	case MMC_POWER_UP:
1484 		if (!IS_ERR(mmc->supply.vmmc)) {
1485 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1486 					ios->vdd);
1487 			if (ret) {
1488 				dev_err(slot->host->dev,
1489 					"failed to enable vmmc regulator\n");
1490 				/*return, if failed turn on vmmc*/
1491 				return;
1492 			}
1493 		}
1494 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1495 		regs = mci_readl(slot->host, PWREN);
1496 		regs |= (1 << slot->id);
1497 		mci_writel(slot->host, PWREN, regs);
1498 		break;
1499 	case MMC_POWER_ON:
1500 		if (!slot->host->vqmmc_enabled) {
1501 			if (!IS_ERR(mmc->supply.vqmmc)) {
1502 				ret = regulator_enable(mmc->supply.vqmmc);
1503 				if (ret < 0)
1504 					dev_err(slot->host->dev,
1505 						"failed to enable vqmmc\n");
1506 				else
1507 					slot->host->vqmmc_enabled = true;
1508 
1509 			} else {
1510 				/* Keep track so we don't reset again */
1511 				slot->host->vqmmc_enabled = true;
1512 			}
1513 
1514 			/* Reset our state machine after powering on */
1515 			dw_mci_ctrl_reset(slot->host,
1516 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1517 		}
1518 
1519 		/* Adjust clock / bus width after power is up */
1520 		dw_mci_setup_bus(slot, false);
1521 
1522 		break;
1523 	case MMC_POWER_OFF:
1524 		/* Turn clock off before power goes down */
1525 		dw_mci_setup_bus(slot, false);
1526 
1527 		if (!IS_ERR(mmc->supply.vmmc))
1528 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1529 
1530 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1531 			regulator_disable(mmc->supply.vqmmc);
1532 		slot->host->vqmmc_enabled = false;
1533 
1534 		regs = mci_readl(slot->host, PWREN);
1535 		regs &= ~(1 << slot->id);
1536 		mci_writel(slot->host, PWREN, regs);
1537 		break;
1538 	default:
1539 		break;
1540 	}
1541 
1542 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1543 		slot->host->state = STATE_IDLE;
1544 }
1545 
1546 static int dw_mci_card_busy(struct mmc_host *mmc)
1547 {
1548 	struct dw_mci_slot *slot = mmc_priv(mmc);
1549 	u32 status;
1550 
1551 	/*
1552 	 * Check the busy bit which is low when DAT[3:0]
1553 	 * (the data lines) are 0000
1554 	 */
1555 	status = mci_readl(slot->host, STATUS);
1556 
1557 	return !!(status & SDMMC_STATUS_BUSY);
1558 }
1559 
1560 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1561 {
1562 	struct dw_mci_slot *slot = mmc_priv(mmc);
1563 	struct dw_mci *host = slot->host;
1564 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1565 	u32 uhs;
1566 	u32 v18 = SDMMC_UHS_18V << slot->id;
1567 	int ret;
1568 
1569 	if (drv_data && drv_data->switch_voltage)
1570 		return drv_data->switch_voltage(mmc, ios);
1571 
1572 	/*
1573 	 * Program the voltage.  Note that some instances of dw_mmc may use
1574 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1575 	 * does no harm but you need to set the regulator directly.  Try both.
1576 	 */
1577 	uhs = mci_readl(host, UHS_REG);
1578 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1579 		uhs &= ~v18;
1580 	else
1581 		uhs |= v18;
1582 
1583 	if (!IS_ERR(mmc->supply.vqmmc)) {
1584 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1585 		if (ret < 0) {
1586 			dev_dbg(&mmc->class_dev,
1587 					 "Regulator set error %d - %s V\n",
1588 					 ret, uhs & v18 ? "1.8" : "3.3");
1589 			return ret;
1590 		}
1591 	}
1592 	mci_writel(host, UHS_REG, uhs);
1593 
1594 	return 0;
1595 }
1596 
1597 static int dw_mci_get_ro(struct mmc_host *mmc)
1598 {
1599 	int read_only;
1600 	struct dw_mci_slot *slot = mmc_priv(mmc);
1601 	int gpio_ro = mmc_gpio_get_ro(mmc);
1602 
1603 	/* Use platform get_ro function, else try on board write protect */
1604 	if (gpio_ro >= 0)
1605 		read_only = gpio_ro;
1606 	else
1607 		read_only =
1608 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1609 
1610 	dev_dbg(&mmc->class_dev, "card is %s\n",
1611 		read_only ? "read-only" : "read-write");
1612 
1613 	return read_only;
1614 }
1615 
1616 static void dw_mci_hw_reset(struct mmc_host *mmc)
1617 {
1618 	struct dw_mci_slot *slot = mmc_priv(mmc);
1619 	struct dw_mci *host = slot->host;
1620 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1621 	int reset;
1622 
1623 	if (host->use_dma == TRANS_MODE_IDMAC)
1624 		dw_mci_idmac_reset(host);
1625 
1626 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1627 				     SDMMC_CTRL_FIFO_RESET))
1628 		return;
1629 
1630 	if (drv_data && drv_data->hw_reset) {
1631 		drv_data->hw_reset(host);
1632 		return;
1633 	}
1634 
1635 	/*
1636 	 * According to eMMC spec, card reset procedure:
1637 	 * tRstW >= 1us:   RST_n pulse width
1638 	 * tRSCA >= 200us: RST_n to Command time
1639 	 * tRSTH >= 1us:   RST_n high period
1640 	 */
1641 	reset = mci_readl(host, RST_N);
1642 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1643 	mci_writel(host, RST_N, reset);
1644 	usleep_range(1, 2);
1645 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1646 	mci_writel(host, RST_N, reset);
1647 	usleep_range(200, 300);
1648 }
1649 
1650 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1651 {
1652 	struct dw_mci *host = slot->host;
1653 	const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1654 	u32 clk_en_a_old;
1655 	u32 clk_en_a;
1656 
1657 	/*
1658 	 * Low power mode will stop the card clock when idle.  According to the
1659 	 * description of the CLKENA register we should disable low power mode
1660 	 * for SDIO cards if we need SDIO interrupts to work.
1661 	 */
1662 
1663 	clk_en_a_old = mci_readl(host, CLKENA);
1664 	if (prepare) {
1665 		set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1666 		clk_en_a = clk_en_a_old & ~clken_low_pwr;
1667 	} else {
1668 		clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1669 		clk_en_a = clk_en_a_old | clken_low_pwr;
1670 	}
1671 
1672 	if (clk_en_a != clk_en_a_old) {
1673 		mci_writel(host, CLKENA, clk_en_a);
1674 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1675 			     0);
1676 	}
1677 }
1678 
1679 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1680 {
1681 	struct dw_mci *host = slot->host;
1682 	unsigned long irqflags;
1683 	u32 int_mask;
1684 
1685 	spin_lock_irqsave(&host->irq_lock, irqflags);
1686 
1687 	/* Enable/disable Slot Specific SDIO interrupt */
1688 	int_mask = mci_readl(host, INTMASK);
1689 	if (enb)
1690 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1691 	else
1692 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1693 	mci_writel(host, INTMASK, int_mask);
1694 
1695 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1696 }
1697 
1698 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1699 {
1700 	struct dw_mci_slot *slot = mmc_priv(mmc);
1701 	struct dw_mci *host = slot->host;
1702 
1703 	dw_mci_prepare_sdio_irq(slot, enb);
1704 	__dw_mci_enable_sdio_irq(slot, enb);
1705 
1706 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1707 	if (enb)
1708 		pm_runtime_get_noresume(host->dev);
1709 	else
1710 		pm_runtime_put_noidle(host->dev);
1711 }
1712 
1713 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1714 {
1715 	struct dw_mci_slot *slot = mmc_priv(mmc);
1716 
1717 	__dw_mci_enable_sdio_irq(slot, 1);
1718 }
1719 
1720 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1721 {
1722 	struct dw_mci_slot *slot = mmc_priv(mmc);
1723 	struct dw_mci *host = slot->host;
1724 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1725 	int err = -EINVAL;
1726 
1727 	if (drv_data && drv_data->execute_tuning)
1728 		err = drv_data->execute_tuning(slot, opcode);
1729 	return err;
1730 }
1731 
1732 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1733 				       struct mmc_ios *ios)
1734 {
1735 	struct dw_mci_slot *slot = mmc_priv(mmc);
1736 	struct dw_mci *host = slot->host;
1737 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1738 
1739 	if (drv_data && drv_data->prepare_hs400_tuning)
1740 		return drv_data->prepare_hs400_tuning(host, ios);
1741 
1742 	return 0;
1743 }
1744 
1745 static bool dw_mci_reset(struct dw_mci *host)
1746 {
1747 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1748 	bool ret = false;
1749 	u32 status = 0;
1750 
1751 	/*
1752 	 * Resetting generates a block interrupt, hence setting
1753 	 * the scatter-gather pointer to NULL.
1754 	 */
1755 	if (host->sg) {
1756 		sg_miter_stop(&host->sg_miter);
1757 		host->sg = NULL;
1758 	}
1759 
1760 	if (host->use_dma)
1761 		flags |= SDMMC_CTRL_DMA_RESET;
1762 
1763 	if (dw_mci_ctrl_reset(host, flags)) {
1764 		/*
1765 		 * In all cases we clear the RAWINTS
1766 		 * register to clear any interrupts.
1767 		 */
1768 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1769 
1770 		if (!host->use_dma) {
1771 			ret = true;
1772 			goto ciu_out;
1773 		}
1774 
1775 		/* Wait for dma_req to be cleared */
1776 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1777 					      status,
1778 					      !(status & SDMMC_STATUS_DMA_REQ),
1779 					      1, 500 * USEC_PER_MSEC)) {
1780 			dev_err(host->dev,
1781 				"%s: Timeout waiting for dma_req to be cleared\n",
1782 				__func__);
1783 			goto ciu_out;
1784 		}
1785 
1786 		/* when using DMA next we reset the fifo again */
1787 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1788 			goto ciu_out;
1789 	} else {
1790 		/* if the controller reset bit did clear, then set clock regs */
1791 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1792 			dev_err(host->dev,
1793 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1794 				__func__);
1795 			goto ciu_out;
1796 		}
1797 	}
1798 
1799 	if (host->use_dma == TRANS_MODE_IDMAC)
1800 		/* It is also required that we reinit idmac */
1801 		dw_mci_idmac_init(host);
1802 
1803 	ret = true;
1804 
1805 ciu_out:
1806 	/* After a CTRL reset we need to have CIU set clock registers  */
1807 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1808 
1809 	return ret;
1810 }
1811 
1812 static const struct mmc_host_ops dw_mci_ops = {
1813 	.request		= dw_mci_request,
1814 	.pre_req		= dw_mci_pre_req,
1815 	.post_req		= dw_mci_post_req,
1816 	.set_ios		= dw_mci_set_ios,
1817 	.get_ro			= dw_mci_get_ro,
1818 	.get_cd			= dw_mci_get_cd,
1819 	.card_hw_reset          = dw_mci_hw_reset,
1820 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1821 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1822 	.execute_tuning		= dw_mci_execute_tuning,
1823 	.card_busy		= dw_mci_card_busy,
1824 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1825 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1826 };
1827 
1828 #ifdef CONFIG_FAULT_INJECTION
1829 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1830 {
1831 	struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1832 	unsigned long flags;
1833 
1834 	spin_lock_irqsave(&host->irq_lock, flags);
1835 
1836 	/*
1837 	 * Only inject an error if we haven't already got an error or data over
1838 	 * interrupt.
1839 	 */
1840 	if (!host->data_status) {
1841 		host->data_status = SDMMC_INT_DCRC;
1842 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
1843 		queue_work(system_bh_wq, &host->bh_work);
1844 	}
1845 
1846 	spin_unlock_irqrestore(&host->irq_lock, flags);
1847 
1848 	return HRTIMER_NORESTART;
1849 }
1850 
1851 static void dw_mci_start_fault_timer(struct dw_mci *host)
1852 {
1853 	struct mmc_data *data = host->data;
1854 
1855 	if (!data || data->blocks <= 1)
1856 		return;
1857 
1858 	if (!should_fail(&host->fail_data_crc, 1))
1859 		return;
1860 
1861 	/*
1862 	 * Try to inject the error at random points during the data transfer.
1863 	 */
1864 	hrtimer_start(&host->fault_timer,
1865 		      ms_to_ktime(get_random_u32_below(25)),
1866 		      HRTIMER_MODE_REL);
1867 }
1868 
1869 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1870 {
1871 	hrtimer_cancel(&host->fault_timer);
1872 }
1873 
1874 static void dw_mci_init_fault(struct dw_mci *host)
1875 {
1876 	host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1877 
1878 	hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1879 	host->fault_timer.function = dw_mci_fault_timer;
1880 }
1881 #else
1882 static void dw_mci_init_fault(struct dw_mci *host)
1883 {
1884 }
1885 
1886 static void dw_mci_start_fault_timer(struct dw_mci *host)
1887 {
1888 }
1889 
1890 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1891 {
1892 }
1893 #endif
1894 
1895 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1896 	__releases(&host->lock)
1897 	__acquires(&host->lock)
1898 {
1899 	struct dw_mci_slot *slot;
1900 	struct mmc_host	*prev_mmc = host->slot->mmc;
1901 
1902 	WARN_ON(host->cmd || host->data);
1903 
1904 	host->slot->mrq = NULL;
1905 	host->mrq = NULL;
1906 	if (!list_empty(&host->queue)) {
1907 		slot = list_entry(host->queue.next,
1908 				  struct dw_mci_slot, queue_node);
1909 		list_del(&slot->queue_node);
1910 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1911 			 mmc_hostname(slot->mmc));
1912 		host->state = STATE_SENDING_CMD;
1913 		dw_mci_start_request(host, slot);
1914 	} else {
1915 		dev_vdbg(host->dev, "list empty\n");
1916 
1917 		if (host->state == STATE_SENDING_CMD11)
1918 			host->state = STATE_WAITING_CMD11_DONE;
1919 		else
1920 			host->state = STATE_IDLE;
1921 	}
1922 
1923 	spin_unlock(&host->lock);
1924 	mmc_request_done(prev_mmc, mrq);
1925 	spin_lock(&host->lock);
1926 }
1927 
1928 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1929 {
1930 	u32 status = host->cmd_status;
1931 
1932 	host->cmd_status = 0;
1933 
1934 	/* Read the response from the card (up to 16 bytes) */
1935 	if (cmd->flags & MMC_RSP_PRESENT) {
1936 		if (cmd->flags & MMC_RSP_136) {
1937 			cmd->resp[3] = mci_readl(host, RESP0);
1938 			cmd->resp[2] = mci_readl(host, RESP1);
1939 			cmd->resp[1] = mci_readl(host, RESP2);
1940 			cmd->resp[0] = mci_readl(host, RESP3);
1941 		} else {
1942 			cmd->resp[0] = mci_readl(host, RESP0);
1943 			cmd->resp[1] = 0;
1944 			cmd->resp[2] = 0;
1945 			cmd->resp[3] = 0;
1946 		}
1947 	}
1948 
1949 	if (status & SDMMC_INT_RTO)
1950 		cmd->error = -ETIMEDOUT;
1951 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1952 		cmd->error = -EILSEQ;
1953 	else if (status & SDMMC_INT_RESP_ERR)
1954 		cmd->error = -EIO;
1955 	else
1956 		cmd->error = 0;
1957 
1958 	return cmd->error;
1959 }
1960 
1961 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1962 {
1963 	u32 status = host->data_status;
1964 
1965 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1966 		if (status & SDMMC_INT_DRTO) {
1967 			data->error = -ETIMEDOUT;
1968 		} else if (status & SDMMC_INT_DCRC) {
1969 			data->error = -EILSEQ;
1970 		} else if (status & SDMMC_INT_EBE) {
1971 			if (host->dir_status ==
1972 				DW_MCI_SEND_STATUS) {
1973 				/*
1974 				 * No data CRC status was returned.
1975 				 * The number of bytes transferred
1976 				 * will be exaggerated in PIO mode.
1977 				 */
1978 				data->bytes_xfered = 0;
1979 				data->error = -ETIMEDOUT;
1980 			} else if (host->dir_status ==
1981 					DW_MCI_RECV_STATUS) {
1982 				data->error = -EILSEQ;
1983 			}
1984 		} else {
1985 			/* SDMMC_INT_SBE is included */
1986 			data->error = -EILSEQ;
1987 		}
1988 
1989 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1990 
1991 		/*
1992 		 * After an error, there may be data lingering
1993 		 * in the FIFO
1994 		 */
1995 		dw_mci_reset(host);
1996 	} else {
1997 		data->bytes_xfered = data->blocks * data->blksz;
1998 		data->error = 0;
1999 	}
2000 
2001 	return data->error;
2002 }
2003 
2004 static void dw_mci_set_drto(struct dw_mci *host)
2005 {
2006 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2007 	unsigned int drto_clks;
2008 	unsigned int drto_div;
2009 	unsigned int drto_ms;
2010 	unsigned long irqflags;
2011 
2012 	if (drv_data && drv_data->get_drto_clks)
2013 		drto_clks = drv_data->get_drto_clks(host);
2014 	else
2015 		drto_clks = mci_readl(host, TMOUT) >> 8;
2016 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2017 	if (drto_div == 0)
2018 		drto_div = 1;
2019 
2020 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2021 				   host->bus_hz);
2022 
2023 	dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2024 
2025 	/* add a bit spare time */
2026 	drto_ms += 10;
2027 
2028 	spin_lock_irqsave(&host->irq_lock, irqflags);
2029 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2030 		mod_timer(&host->dto_timer,
2031 			  jiffies + msecs_to_jiffies(drto_ms));
2032 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
2033 }
2034 
2035 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2036 {
2037 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2038 		return false;
2039 
2040 	/*
2041 	 * Really be certain that the timer has stopped.  This is a bit of
2042 	 * paranoia and could only really happen if we had really bad
2043 	 * interrupt latency and the interrupt routine and timeout were
2044 	 * running concurrently so that the del_timer() in the interrupt
2045 	 * handler couldn't run.
2046 	 */
2047 	WARN_ON(del_timer_sync(&host->cto_timer));
2048 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2049 
2050 	return true;
2051 }
2052 
2053 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2054 {
2055 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2056 		return false;
2057 
2058 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2059 	WARN_ON(del_timer_sync(&host->dto_timer));
2060 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2061 
2062 	return true;
2063 }
2064 
2065 static void dw_mci_work_func(struct work_struct *t)
2066 {
2067 	struct dw_mci *host = from_work(host, t, bh_work);
2068 	struct mmc_data	*data;
2069 	struct mmc_command *cmd;
2070 	struct mmc_request *mrq;
2071 	enum dw_mci_state state;
2072 	enum dw_mci_state prev_state;
2073 	unsigned int err;
2074 
2075 	spin_lock(&host->lock);
2076 
2077 	state = host->state;
2078 	data = host->data;
2079 	mrq = host->mrq;
2080 
2081 	do {
2082 		prev_state = state;
2083 
2084 		switch (state) {
2085 		case STATE_IDLE:
2086 		case STATE_WAITING_CMD11_DONE:
2087 			break;
2088 
2089 		case STATE_SENDING_CMD11:
2090 		case STATE_SENDING_CMD:
2091 			if (!dw_mci_clear_pending_cmd_complete(host))
2092 				break;
2093 
2094 			cmd = host->cmd;
2095 			host->cmd = NULL;
2096 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2097 			err = dw_mci_command_complete(host, cmd);
2098 			if (cmd == mrq->sbc && !err) {
2099 				__dw_mci_start_request(host, host->slot,
2100 						       mrq->cmd);
2101 				goto unlock;
2102 			}
2103 
2104 			if (cmd->data && err) {
2105 				/*
2106 				 * During UHS tuning sequence, sending the stop
2107 				 * command after the response CRC error would
2108 				 * throw the system into a confused state
2109 				 * causing all future tuning phases to report
2110 				 * failure.
2111 				 *
2112 				 * In such case controller will move into a data
2113 				 * transfer state after a response error or
2114 				 * response CRC error. Let's let that finish
2115 				 * before trying to send a stop, so we'll go to
2116 				 * STATE_SENDING_DATA.
2117 				 *
2118 				 * Although letting the data transfer take place
2119 				 * will waste a bit of time (we already know
2120 				 * the command was bad), it can't cause any
2121 				 * errors since it's possible it would have
2122 				 * taken place anyway if this bh work got
2123 				 * delayed. Allowing the transfer to take place
2124 				 * avoids races and keeps things simple.
2125 				 */
2126 				if (err != -ETIMEDOUT &&
2127 				    host->dir_status == DW_MCI_RECV_STATUS) {
2128 					state = STATE_SENDING_DATA;
2129 					continue;
2130 				}
2131 
2132 				send_stop_abort(host, data);
2133 				dw_mci_stop_dma(host);
2134 				state = STATE_SENDING_STOP;
2135 				break;
2136 			}
2137 
2138 			if (!cmd->data || err) {
2139 				dw_mci_request_end(host, mrq);
2140 				goto unlock;
2141 			}
2142 
2143 			prev_state = state = STATE_SENDING_DATA;
2144 			fallthrough;
2145 
2146 		case STATE_SENDING_DATA:
2147 			/*
2148 			 * We could get a data error and never a transfer
2149 			 * complete so we'd better check for it here.
2150 			 *
2151 			 * Note that we don't really care if we also got a
2152 			 * transfer complete; stopping the DMA and sending an
2153 			 * abort won't hurt.
2154 			 */
2155 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2156 					       &host->pending_events)) {
2157 				if (!(host->data_status & (SDMMC_INT_DRTO |
2158 							   SDMMC_INT_EBE)))
2159 					send_stop_abort(host, data);
2160 				dw_mci_stop_dma(host);
2161 				state = STATE_DATA_ERROR;
2162 				break;
2163 			}
2164 
2165 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2166 						&host->pending_events)) {
2167 				/*
2168 				 * If all data-related interrupts don't come
2169 				 * within the given time in reading data state.
2170 				 */
2171 				if (host->dir_status == DW_MCI_RECV_STATUS)
2172 					dw_mci_set_drto(host);
2173 				break;
2174 			}
2175 
2176 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2177 
2178 			/*
2179 			 * Handle an EVENT_DATA_ERROR that might have shown up
2180 			 * before the transfer completed.  This might not have
2181 			 * been caught by the check above because the interrupt
2182 			 * could have gone off between the previous check and
2183 			 * the check for transfer complete.
2184 			 *
2185 			 * Technically this ought not be needed assuming we
2186 			 * get a DATA_COMPLETE eventually (we'll notice the
2187 			 * error and end the request), but it shouldn't hurt.
2188 			 *
2189 			 * This has the advantage of sending the stop command.
2190 			 */
2191 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2192 					       &host->pending_events)) {
2193 				if (!(host->data_status & (SDMMC_INT_DRTO |
2194 							   SDMMC_INT_EBE)))
2195 					send_stop_abort(host, data);
2196 				dw_mci_stop_dma(host);
2197 				state = STATE_DATA_ERROR;
2198 				break;
2199 			}
2200 			prev_state = state = STATE_DATA_BUSY;
2201 
2202 			fallthrough;
2203 
2204 		case STATE_DATA_BUSY:
2205 			if (!dw_mci_clear_pending_data_complete(host)) {
2206 				/*
2207 				 * If data error interrupt comes but data over
2208 				 * interrupt doesn't come within the given time.
2209 				 * in reading data state.
2210 				 */
2211 				if (host->dir_status == DW_MCI_RECV_STATUS)
2212 					dw_mci_set_drto(host);
2213 				break;
2214 			}
2215 
2216 			dw_mci_stop_fault_timer(host);
2217 			host->data = NULL;
2218 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2219 			err = dw_mci_data_complete(host, data);
2220 
2221 			if (!err) {
2222 				if (!data->stop || mrq->sbc) {
2223 					if (mrq->sbc && data->stop)
2224 						data->stop->error = 0;
2225 					dw_mci_request_end(host, mrq);
2226 					goto unlock;
2227 				}
2228 
2229 				/* stop command for open-ended transfer*/
2230 				if (data->stop)
2231 					send_stop_abort(host, data);
2232 			} else {
2233 				/*
2234 				 * If we don't have a command complete now we'll
2235 				 * never get one since we just reset everything;
2236 				 * better end the request.
2237 				 *
2238 				 * If we do have a command complete we'll fall
2239 				 * through to the SENDING_STOP command and
2240 				 * everything will be peachy keen.
2241 				 */
2242 				if (!test_bit(EVENT_CMD_COMPLETE,
2243 					      &host->pending_events)) {
2244 					host->cmd = NULL;
2245 					dw_mci_request_end(host, mrq);
2246 					goto unlock;
2247 				}
2248 			}
2249 
2250 			/*
2251 			 * If err has non-zero,
2252 			 * stop-abort command has been already issued.
2253 			 */
2254 			prev_state = state = STATE_SENDING_STOP;
2255 
2256 			fallthrough;
2257 
2258 		case STATE_SENDING_STOP:
2259 			if (!dw_mci_clear_pending_cmd_complete(host))
2260 				break;
2261 
2262 			/* CMD error in data command */
2263 			if (mrq->cmd->error && mrq->data)
2264 				dw_mci_reset(host);
2265 
2266 			dw_mci_stop_fault_timer(host);
2267 			host->cmd = NULL;
2268 			host->data = NULL;
2269 
2270 			if (!mrq->sbc && mrq->stop)
2271 				dw_mci_command_complete(host, mrq->stop);
2272 			else
2273 				host->cmd_status = 0;
2274 
2275 			dw_mci_request_end(host, mrq);
2276 			goto unlock;
2277 
2278 		case STATE_DATA_ERROR:
2279 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2280 						&host->pending_events))
2281 				break;
2282 
2283 			state = STATE_DATA_BUSY;
2284 			break;
2285 		}
2286 	} while (state != prev_state);
2287 
2288 	host->state = state;
2289 unlock:
2290 	spin_unlock(&host->lock);
2291 
2292 }
2293 
2294 /* push final bytes to part_buf, only use during push */
2295 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2296 {
2297 	memcpy((void *)&host->part_buf, buf, cnt);
2298 	host->part_buf_count = cnt;
2299 }
2300 
2301 /* append bytes to part_buf, only use during push */
2302 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2303 {
2304 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2305 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2306 	host->part_buf_count += cnt;
2307 	return cnt;
2308 }
2309 
2310 /* pull first bytes from part_buf, only use during pull */
2311 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2312 {
2313 	cnt = min_t(int, cnt, host->part_buf_count);
2314 	if (cnt) {
2315 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2316 		       cnt);
2317 		host->part_buf_count -= cnt;
2318 		host->part_buf_start += cnt;
2319 	}
2320 	return cnt;
2321 }
2322 
2323 /* pull final bytes from the part_buf, assuming it's just been filled */
2324 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2325 {
2326 	memcpy(buf, &host->part_buf, cnt);
2327 	host->part_buf_start = cnt;
2328 	host->part_buf_count = (1 << host->data_shift) - cnt;
2329 }
2330 
2331 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2332 {
2333 	struct mmc_data *data = host->data;
2334 	int init_cnt = cnt;
2335 
2336 	/* try and push anything in the part_buf */
2337 	if (unlikely(host->part_buf_count)) {
2338 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2339 
2340 		buf += len;
2341 		cnt -= len;
2342 		if (host->part_buf_count == 2) {
2343 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2344 			host->part_buf_count = 0;
2345 		}
2346 	}
2347 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2348 	if (unlikely((unsigned long)buf & 0x1)) {
2349 		while (cnt >= 2) {
2350 			u16 aligned_buf[64];
2351 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2352 			int items = len >> 1;
2353 			int i;
2354 			/* memcpy from input buffer into aligned buffer */
2355 			memcpy(aligned_buf, buf, len);
2356 			buf += len;
2357 			cnt -= len;
2358 			/* push data from aligned buffer into fifo */
2359 			for (i = 0; i < items; ++i)
2360 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2361 		}
2362 	} else
2363 #endif
2364 	{
2365 		u16 *pdata = buf;
2366 
2367 		for (; cnt >= 2; cnt -= 2)
2368 			mci_fifo_writew(host->fifo_reg, *pdata++);
2369 		buf = pdata;
2370 	}
2371 	/* put anything remaining in the part_buf */
2372 	if (cnt) {
2373 		dw_mci_set_part_bytes(host, buf, cnt);
2374 		 /* Push data if we have reached the expected data length */
2375 		if ((data->bytes_xfered + init_cnt) ==
2376 		    (data->blksz * data->blocks))
2377 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2378 	}
2379 }
2380 
2381 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2382 {
2383 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2384 	if (unlikely((unsigned long)buf & 0x1)) {
2385 		while (cnt >= 2) {
2386 			/* pull data from fifo into aligned buffer */
2387 			u16 aligned_buf[64];
2388 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2389 			int items = len >> 1;
2390 			int i;
2391 
2392 			for (i = 0; i < items; ++i)
2393 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2394 			/* memcpy from aligned buffer into output buffer */
2395 			memcpy(buf, aligned_buf, len);
2396 			buf += len;
2397 			cnt -= len;
2398 		}
2399 	} else
2400 #endif
2401 	{
2402 		u16 *pdata = buf;
2403 
2404 		for (; cnt >= 2; cnt -= 2)
2405 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2406 		buf = pdata;
2407 	}
2408 	if (cnt) {
2409 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2410 		dw_mci_pull_final_bytes(host, buf, cnt);
2411 	}
2412 }
2413 
2414 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2415 {
2416 	struct mmc_data *data = host->data;
2417 	int init_cnt = cnt;
2418 
2419 	/* try and push anything in the part_buf */
2420 	if (unlikely(host->part_buf_count)) {
2421 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2422 
2423 		buf += len;
2424 		cnt -= len;
2425 		if (host->part_buf_count == 4) {
2426 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2427 			host->part_buf_count = 0;
2428 		}
2429 	}
2430 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2431 	if (unlikely((unsigned long)buf & 0x3)) {
2432 		while (cnt >= 4) {
2433 			u32 aligned_buf[32];
2434 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2435 			int items = len >> 2;
2436 			int i;
2437 			/* memcpy from input buffer into aligned buffer */
2438 			memcpy(aligned_buf, buf, len);
2439 			buf += len;
2440 			cnt -= len;
2441 			/* push data from aligned buffer into fifo */
2442 			for (i = 0; i < items; ++i)
2443 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2444 		}
2445 	} else
2446 #endif
2447 	{
2448 		u32 *pdata = buf;
2449 
2450 		for (; cnt >= 4; cnt -= 4)
2451 			mci_fifo_writel(host->fifo_reg, *pdata++);
2452 		buf = pdata;
2453 	}
2454 	/* put anything remaining in the part_buf */
2455 	if (cnt) {
2456 		dw_mci_set_part_bytes(host, buf, cnt);
2457 		 /* Push data if we have reached the expected data length */
2458 		if ((data->bytes_xfered + init_cnt) ==
2459 		    (data->blksz * data->blocks))
2460 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2461 	}
2462 }
2463 
2464 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2465 {
2466 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2467 	if (unlikely((unsigned long)buf & 0x3)) {
2468 		while (cnt >= 4) {
2469 			/* pull data from fifo into aligned buffer */
2470 			u32 aligned_buf[32];
2471 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2472 			int items = len >> 2;
2473 			int i;
2474 
2475 			for (i = 0; i < items; ++i)
2476 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2477 			/* memcpy from aligned buffer into output buffer */
2478 			memcpy(buf, aligned_buf, len);
2479 			buf += len;
2480 			cnt -= len;
2481 		}
2482 	} else
2483 #endif
2484 	{
2485 		u32 *pdata = buf;
2486 
2487 		for (; cnt >= 4; cnt -= 4)
2488 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2489 		buf = pdata;
2490 	}
2491 	if (cnt) {
2492 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2493 		dw_mci_pull_final_bytes(host, buf, cnt);
2494 	}
2495 }
2496 
2497 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2498 {
2499 	struct mmc_data *data = host->data;
2500 	int init_cnt = cnt;
2501 
2502 	/* try and push anything in the part_buf */
2503 	if (unlikely(host->part_buf_count)) {
2504 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2505 
2506 		buf += len;
2507 		cnt -= len;
2508 
2509 		if (host->part_buf_count == 8) {
2510 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2511 			host->part_buf_count = 0;
2512 		}
2513 	}
2514 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2515 	if (unlikely((unsigned long)buf & 0x7)) {
2516 		while (cnt >= 8) {
2517 			u64 aligned_buf[16];
2518 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2519 			int items = len >> 3;
2520 			int i;
2521 			/* memcpy from input buffer into aligned buffer */
2522 			memcpy(aligned_buf, buf, len);
2523 			buf += len;
2524 			cnt -= len;
2525 			/* push data from aligned buffer into fifo */
2526 			for (i = 0; i < items; ++i)
2527 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2528 		}
2529 	} else
2530 #endif
2531 	{
2532 		u64 *pdata = buf;
2533 
2534 		for (; cnt >= 8; cnt -= 8)
2535 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2536 		buf = pdata;
2537 	}
2538 	/* put anything remaining in the part_buf */
2539 	if (cnt) {
2540 		dw_mci_set_part_bytes(host, buf, cnt);
2541 		/* Push data if we have reached the expected data length */
2542 		if ((data->bytes_xfered + init_cnt) ==
2543 		    (data->blksz * data->blocks))
2544 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2545 	}
2546 }
2547 
2548 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2549 {
2550 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2551 	if (unlikely((unsigned long)buf & 0x7)) {
2552 		while (cnt >= 8) {
2553 			/* pull data from fifo into aligned buffer */
2554 			u64 aligned_buf[16];
2555 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2556 			int items = len >> 3;
2557 			int i;
2558 
2559 			for (i = 0; i < items; ++i)
2560 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2561 
2562 			/* memcpy from aligned buffer into output buffer */
2563 			memcpy(buf, aligned_buf, len);
2564 			buf += len;
2565 			cnt -= len;
2566 		}
2567 	} else
2568 #endif
2569 	{
2570 		u64 *pdata = buf;
2571 
2572 		for (; cnt >= 8; cnt -= 8)
2573 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2574 		buf = pdata;
2575 	}
2576 	if (cnt) {
2577 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2578 		dw_mci_pull_final_bytes(host, buf, cnt);
2579 	}
2580 }
2581 
2582 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2583 {
2584 	int len;
2585 
2586 	/* get remaining partial bytes */
2587 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2588 	if (unlikely(len == cnt))
2589 		return;
2590 	buf += len;
2591 	cnt -= len;
2592 
2593 	/* get the rest of the data */
2594 	host->pull_data(host, buf, cnt);
2595 }
2596 
2597 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2598 {
2599 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2600 	void *buf;
2601 	unsigned int offset;
2602 	struct mmc_data	*data = host->data;
2603 	int shift = host->data_shift;
2604 	u32 status;
2605 	unsigned int len;
2606 	unsigned int remain, fcnt;
2607 
2608 	do {
2609 		if (!sg_miter_next(sg_miter))
2610 			goto done;
2611 
2612 		host->sg = sg_miter->piter.sg;
2613 		buf = sg_miter->addr;
2614 		remain = sg_miter->length;
2615 		offset = 0;
2616 
2617 		do {
2618 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2619 					<< shift) + host->part_buf_count;
2620 			len = min(remain, fcnt);
2621 			if (!len)
2622 				break;
2623 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2624 			data->bytes_xfered += len;
2625 			offset += len;
2626 			remain -= len;
2627 		} while (remain);
2628 
2629 		sg_miter->consumed = offset;
2630 		status = mci_readl(host, MINTSTS);
2631 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2632 	/* if the RXDR is ready read again */
2633 	} while ((status & SDMMC_INT_RXDR) ||
2634 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2635 
2636 	if (!remain) {
2637 		if (!sg_miter_next(sg_miter))
2638 			goto done;
2639 		sg_miter->consumed = 0;
2640 	}
2641 	sg_miter_stop(sg_miter);
2642 	return;
2643 
2644 done:
2645 	sg_miter_stop(sg_miter);
2646 	host->sg = NULL;
2647 	smp_wmb(); /* drain writebuffer */
2648 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2649 }
2650 
2651 static void dw_mci_write_data_pio(struct dw_mci *host)
2652 {
2653 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2654 	void *buf;
2655 	unsigned int offset;
2656 	struct mmc_data	*data = host->data;
2657 	int shift = host->data_shift;
2658 	u32 status;
2659 	unsigned int len;
2660 	unsigned int fifo_depth = host->fifo_depth;
2661 	unsigned int remain, fcnt;
2662 
2663 	do {
2664 		if (!sg_miter_next(sg_miter))
2665 			goto done;
2666 
2667 		host->sg = sg_miter->piter.sg;
2668 		buf = sg_miter->addr;
2669 		remain = sg_miter->length;
2670 		offset = 0;
2671 
2672 		do {
2673 			fcnt = ((fifo_depth -
2674 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2675 					<< shift) - host->part_buf_count;
2676 			len = min(remain, fcnt);
2677 			if (!len)
2678 				break;
2679 			host->push_data(host, (void *)(buf + offset), len);
2680 			data->bytes_xfered += len;
2681 			offset += len;
2682 			remain -= len;
2683 		} while (remain);
2684 
2685 		sg_miter->consumed = offset;
2686 		status = mci_readl(host, MINTSTS);
2687 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2688 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2689 
2690 	if (!remain) {
2691 		if (!sg_miter_next(sg_miter))
2692 			goto done;
2693 		sg_miter->consumed = 0;
2694 	}
2695 	sg_miter_stop(sg_miter);
2696 	return;
2697 
2698 done:
2699 	sg_miter_stop(sg_miter);
2700 	host->sg = NULL;
2701 	smp_wmb(); /* drain writebuffer */
2702 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2703 }
2704 
2705 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2706 {
2707 	del_timer(&host->cto_timer);
2708 
2709 	if (!host->cmd_status)
2710 		host->cmd_status = status;
2711 
2712 	smp_wmb(); /* drain writebuffer */
2713 
2714 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2715 	queue_work(system_bh_wq, &host->bh_work);
2716 
2717 	dw_mci_start_fault_timer(host);
2718 }
2719 
2720 static void dw_mci_handle_cd(struct dw_mci *host)
2721 {
2722 	struct dw_mci_slot *slot = host->slot;
2723 
2724 	mmc_detect_change(slot->mmc,
2725 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2726 }
2727 
2728 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2729 {
2730 	struct dw_mci *host = dev_id;
2731 	u32 pending;
2732 	struct dw_mci_slot *slot = host->slot;
2733 
2734 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2735 
2736 	if (pending) {
2737 		/* Check volt switch first, since it can look like an error */
2738 		if ((host->state == STATE_SENDING_CMD11) &&
2739 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2740 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2741 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2742 
2743 			/*
2744 			 * Hold the lock; we know cmd11_timer can't be kicked
2745 			 * off after the lock is released, so safe to delete.
2746 			 */
2747 			spin_lock(&host->irq_lock);
2748 			dw_mci_cmd_interrupt(host, pending);
2749 			spin_unlock(&host->irq_lock);
2750 
2751 			del_timer(&host->cmd11_timer);
2752 		}
2753 
2754 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2755 			spin_lock(&host->irq_lock);
2756 
2757 			del_timer(&host->cto_timer);
2758 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2759 			host->cmd_status = pending;
2760 			smp_wmb(); /* drain writebuffer */
2761 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2762 
2763 			spin_unlock(&host->irq_lock);
2764 		}
2765 
2766 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2767 			spin_lock(&host->irq_lock);
2768 
2769 			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2770 				del_timer(&host->dto_timer);
2771 
2772 			/* if there is an error report DATA_ERROR */
2773 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2774 			host->data_status = pending;
2775 			smp_wmb(); /* drain writebuffer */
2776 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2777 
2778 			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2779 				/* In case of error, we cannot expect a DTO */
2780 				set_bit(EVENT_DATA_COMPLETE,
2781 					&host->pending_events);
2782 
2783 			queue_work(system_bh_wq, &host->bh_work);
2784 
2785 			spin_unlock(&host->irq_lock);
2786 		}
2787 
2788 		if (pending & SDMMC_INT_DATA_OVER) {
2789 			spin_lock(&host->irq_lock);
2790 
2791 			del_timer(&host->dto_timer);
2792 
2793 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2794 			if (!host->data_status)
2795 				host->data_status = pending;
2796 			smp_wmb(); /* drain writebuffer */
2797 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2798 				if (host->sg != NULL)
2799 					dw_mci_read_data_pio(host, true);
2800 			}
2801 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2802 			queue_work(system_bh_wq, &host->bh_work);
2803 
2804 			spin_unlock(&host->irq_lock);
2805 		}
2806 
2807 		if (pending & SDMMC_INT_RXDR) {
2808 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2809 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2810 				dw_mci_read_data_pio(host, false);
2811 		}
2812 
2813 		if (pending & SDMMC_INT_TXDR) {
2814 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2815 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2816 				dw_mci_write_data_pio(host);
2817 		}
2818 
2819 		if (pending & SDMMC_INT_CMD_DONE) {
2820 			spin_lock(&host->irq_lock);
2821 
2822 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2823 			dw_mci_cmd_interrupt(host, pending);
2824 
2825 			spin_unlock(&host->irq_lock);
2826 		}
2827 
2828 		if (pending & SDMMC_INT_CD) {
2829 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2830 			dw_mci_handle_cd(host);
2831 		}
2832 
2833 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2834 			mci_writel(host, RINTSTS,
2835 				   SDMMC_INT_SDIO(slot->sdio_id));
2836 			__dw_mci_enable_sdio_irq(slot, 0);
2837 			sdio_signal_irq(slot->mmc);
2838 		}
2839 
2840 	}
2841 
2842 	if (host->use_dma != TRANS_MODE_IDMAC)
2843 		return IRQ_HANDLED;
2844 
2845 	/* Handle IDMA interrupts */
2846 	if (host->dma_64bit_address == 1) {
2847 		pending = mci_readl(host, IDSTS64);
2848 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2849 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2850 							SDMMC_IDMAC_INT_RI);
2851 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2852 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2853 				host->dma_ops->complete((void *)host);
2854 		}
2855 	} else {
2856 		pending = mci_readl(host, IDSTS);
2857 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2858 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2859 							SDMMC_IDMAC_INT_RI);
2860 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2861 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2862 				host->dma_ops->complete((void *)host);
2863 		}
2864 	}
2865 
2866 	return IRQ_HANDLED;
2867 }
2868 
2869 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2870 {
2871 	struct dw_mci *host = slot->host;
2872 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2873 	struct mmc_host *mmc = slot->mmc;
2874 	int ctrl_id;
2875 
2876 	if (host->pdata->caps)
2877 		mmc->caps = host->pdata->caps;
2878 
2879 	if (host->pdata->pm_caps)
2880 		mmc->pm_caps = host->pdata->pm_caps;
2881 
2882 	if (drv_data)
2883 		mmc->caps |= drv_data->common_caps;
2884 
2885 	if (host->dev->of_node) {
2886 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2887 		if (ctrl_id < 0)
2888 			ctrl_id = 0;
2889 	} else {
2890 		ctrl_id = to_platform_device(host->dev)->id;
2891 	}
2892 
2893 	if (drv_data && drv_data->caps) {
2894 		if (ctrl_id >= drv_data->num_caps) {
2895 			dev_err(host->dev, "invalid controller id %d\n",
2896 				ctrl_id);
2897 			return -EINVAL;
2898 		}
2899 		mmc->caps |= drv_data->caps[ctrl_id];
2900 	}
2901 
2902 	if (host->pdata->caps2)
2903 		mmc->caps2 = host->pdata->caps2;
2904 
2905 	/* if host has set a minimum_freq, we should respect it */
2906 	if (host->minimum_speed)
2907 		mmc->f_min = host->minimum_speed;
2908 	else
2909 		mmc->f_min = DW_MCI_FREQ_MIN;
2910 
2911 	if (!mmc->f_max)
2912 		mmc->f_max = DW_MCI_FREQ_MAX;
2913 
2914 	/* Process SDIO IRQs through the sdio_irq_work. */
2915 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2916 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2917 
2918 	return 0;
2919 }
2920 
2921 static int dw_mci_init_slot(struct dw_mci *host)
2922 {
2923 	struct mmc_host *mmc;
2924 	struct dw_mci_slot *slot;
2925 	int ret;
2926 
2927 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2928 	if (!mmc)
2929 		return -ENOMEM;
2930 
2931 	slot = mmc_priv(mmc);
2932 	slot->id = 0;
2933 	slot->sdio_id = host->sdio_id0 + slot->id;
2934 	slot->mmc = mmc;
2935 	slot->host = host;
2936 	host->slot = slot;
2937 
2938 	mmc->ops = &dw_mci_ops;
2939 
2940 	/*if there are external regulators, get them*/
2941 	ret = mmc_regulator_get_supply(mmc);
2942 	if (ret)
2943 		goto err_host_allocated;
2944 
2945 	if (!mmc->ocr_avail)
2946 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2947 
2948 	ret = mmc_of_parse(mmc);
2949 	if (ret)
2950 		goto err_host_allocated;
2951 
2952 	ret = dw_mci_init_slot_caps(slot);
2953 	if (ret)
2954 		goto err_host_allocated;
2955 
2956 	/* Useful defaults if platform data is unset. */
2957 	if (host->use_dma == TRANS_MODE_IDMAC) {
2958 		mmc->max_segs = host->ring_size;
2959 		mmc->max_blk_size = 65535;
2960 		mmc->max_req_size = DW_MCI_DESC_DATA_LENGTH * host->ring_size;
2961 		mmc->max_seg_size = mmc->max_req_size;
2962 		mmc->max_blk_count = mmc->max_req_size / 512;
2963 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2964 		mmc->max_segs = 64;
2965 		mmc->max_blk_size = 65535;
2966 		mmc->max_blk_count = 65535;
2967 		mmc->max_req_size =
2968 				mmc->max_blk_size * mmc->max_blk_count;
2969 		mmc->max_seg_size = mmc->max_req_size;
2970 	} else {
2971 		/* TRANS_MODE_PIO */
2972 		mmc->max_segs = 64;
2973 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2974 		mmc->max_blk_count = 512;
2975 		mmc->max_req_size = mmc->max_blk_size *
2976 				    mmc->max_blk_count;
2977 		mmc->max_seg_size = mmc->max_req_size;
2978 	}
2979 
2980 	dw_mci_get_cd(mmc);
2981 
2982 	ret = mmc_add_host(mmc);
2983 	if (ret)
2984 		goto err_host_allocated;
2985 
2986 #if defined(CONFIG_DEBUG_FS)
2987 	dw_mci_init_debugfs(slot);
2988 #endif
2989 
2990 	return 0;
2991 
2992 err_host_allocated:
2993 	mmc_free_host(mmc);
2994 	return ret;
2995 }
2996 
2997 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2998 {
2999 	/* Debugfs stuff is cleaned up by mmc core */
3000 	mmc_remove_host(slot->mmc);
3001 	slot->host->slot = NULL;
3002 	mmc_free_host(slot->mmc);
3003 }
3004 
3005 static void dw_mci_init_dma(struct dw_mci *host)
3006 {
3007 	int addr_config;
3008 	struct device *dev = host->dev;
3009 
3010 	/*
3011 	* Check tansfer mode from HCON[17:16]
3012 	* Clear the ambiguous description of dw_mmc databook:
3013 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
3014 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3015 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3016 	* 2b'11: Non DW DMA Interface -> pio only
3017 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
3018 	* simpler request/acknowledge handshake mechanism and both of them
3019 	* are regarded as external dma master for dw_mmc.
3020 	*/
3021 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3022 	if (host->use_dma == DMA_INTERFACE_IDMA) {
3023 		host->use_dma = TRANS_MODE_IDMAC;
3024 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3025 		   host->use_dma == DMA_INTERFACE_GDMA) {
3026 		host->use_dma = TRANS_MODE_EDMAC;
3027 	} else {
3028 		goto no_dma;
3029 	}
3030 
3031 	/* Determine which DMA interface to use */
3032 	if (host->use_dma == TRANS_MODE_IDMAC) {
3033 		/*
3034 		* Check ADDR_CONFIG bit in HCON to find
3035 		* IDMAC address bus width
3036 		*/
3037 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3038 
3039 		if (addr_config == 1) {
3040 			/* host supports IDMAC in 64-bit address mode */
3041 			host->dma_64bit_address = 1;
3042 			dev_info(host->dev,
3043 				 "IDMAC supports 64-bit address mode.\n");
3044 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3045 				dma_set_coherent_mask(host->dev,
3046 						      DMA_BIT_MASK(64));
3047 		} else {
3048 			/* host supports IDMAC in 32-bit address mode */
3049 			host->dma_64bit_address = 0;
3050 			dev_info(host->dev,
3051 				 "IDMAC supports 32-bit address mode.\n");
3052 		}
3053 
3054 		/* Alloc memory for sg translation */
3055 		host->sg_cpu = dmam_alloc_coherent(host->dev,
3056 						   DESC_RING_BUF_SZ,
3057 						   &host->sg_dma, GFP_KERNEL);
3058 		if (!host->sg_cpu) {
3059 			dev_err(host->dev,
3060 				"%s: could not alloc DMA memory\n",
3061 				__func__);
3062 			goto no_dma;
3063 		}
3064 
3065 		host->dma_ops = &dw_mci_idmac_ops;
3066 		dev_info(host->dev, "Using internal DMA controller.\n");
3067 	} else {
3068 		/* TRANS_MODE_EDMAC: check dma bindings again */
3069 		if ((device_property_string_array_count(dev, "dma-names") < 0) ||
3070 		    !device_property_present(dev, "dmas")) {
3071 			goto no_dma;
3072 		}
3073 		host->dma_ops = &dw_mci_edmac_ops;
3074 		dev_info(host->dev, "Using external DMA controller.\n");
3075 	}
3076 
3077 	if (host->dma_ops->init && host->dma_ops->start &&
3078 	    host->dma_ops->stop && host->dma_ops->cleanup) {
3079 		if (host->dma_ops->init(host)) {
3080 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3081 				__func__);
3082 			goto no_dma;
3083 		}
3084 	} else {
3085 		dev_err(host->dev, "DMA initialization not found.\n");
3086 		goto no_dma;
3087 	}
3088 
3089 	return;
3090 
3091 no_dma:
3092 	dev_info(host->dev, "Using PIO mode.\n");
3093 	host->use_dma = TRANS_MODE_PIO;
3094 }
3095 
3096 static void dw_mci_cmd11_timer(struct timer_list *t)
3097 {
3098 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
3099 
3100 	if (host->state != STATE_SENDING_CMD11) {
3101 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3102 		return;
3103 	}
3104 
3105 	host->cmd_status = SDMMC_INT_RTO;
3106 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3107 	queue_work(system_bh_wq, &host->bh_work);
3108 }
3109 
3110 static void dw_mci_cto_timer(struct timer_list *t)
3111 {
3112 	struct dw_mci *host = from_timer(host, t, cto_timer);
3113 	unsigned long irqflags;
3114 	u32 pending;
3115 
3116 	spin_lock_irqsave(&host->irq_lock, irqflags);
3117 
3118 	/*
3119 	 * If somehow we have very bad interrupt latency it's remotely possible
3120 	 * that the timer could fire while the interrupt is still pending or
3121 	 * while the interrupt is midway through running.  Let's be paranoid
3122 	 * and detect those two cases.  Note that this is paranoia is somewhat
3123 	 * justified because in this function we don't actually cancel the
3124 	 * pending command in the controller--we just assume it will never come.
3125 	 */
3126 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3127 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3128 		/* The interrupt should fire; no need to act but we can warn */
3129 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3130 		goto exit;
3131 	}
3132 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3133 		/* Presumably interrupt handler couldn't delete the timer */
3134 		dev_warn(host->dev, "CTO timeout when already completed\n");
3135 		goto exit;
3136 	}
3137 
3138 	/*
3139 	 * Continued paranoia to make sure we're in the state we expect.
3140 	 * This paranoia isn't really justified but it seems good to be safe.
3141 	 */
3142 	switch (host->state) {
3143 	case STATE_SENDING_CMD11:
3144 	case STATE_SENDING_CMD:
3145 	case STATE_SENDING_STOP:
3146 		/*
3147 		 * If CMD_DONE interrupt does NOT come in sending command
3148 		 * state, we should notify the driver to terminate current
3149 		 * transfer and report a command timeout to the core.
3150 		 */
3151 		host->cmd_status = SDMMC_INT_RTO;
3152 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3153 		queue_work(system_bh_wq, &host->bh_work);
3154 		break;
3155 	default:
3156 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3157 			 host->state);
3158 		break;
3159 	}
3160 
3161 exit:
3162 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3163 }
3164 
3165 static void dw_mci_dto_timer(struct timer_list *t)
3166 {
3167 	struct dw_mci *host = from_timer(host, t, dto_timer);
3168 	unsigned long irqflags;
3169 	u32 pending;
3170 
3171 	spin_lock_irqsave(&host->irq_lock, irqflags);
3172 
3173 	/*
3174 	 * The DTO timer is much longer than the CTO timer, so it's even less
3175 	 * likely that we'll these cases, but it pays to be paranoid.
3176 	 */
3177 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3178 	if (pending & SDMMC_INT_DATA_OVER) {
3179 		/* The interrupt should fire; no need to act but we can warn */
3180 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3181 		goto exit;
3182 	}
3183 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3184 		/* Presumably interrupt handler couldn't delete the timer */
3185 		dev_warn(host->dev, "DTO timeout when already completed\n");
3186 		goto exit;
3187 	}
3188 
3189 	/*
3190 	 * Continued paranoia to make sure we're in the state we expect.
3191 	 * This paranoia isn't really justified but it seems good to be safe.
3192 	 */
3193 	switch (host->state) {
3194 	case STATE_SENDING_DATA:
3195 	case STATE_DATA_BUSY:
3196 		/*
3197 		 * If DTO interrupt does NOT come in sending data state,
3198 		 * we should notify the driver to terminate current transfer
3199 		 * and report a data timeout to the core.
3200 		 */
3201 		host->data_status = SDMMC_INT_DRTO;
3202 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3203 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3204 		queue_work(system_bh_wq, &host->bh_work);
3205 		break;
3206 	default:
3207 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3208 			 host->state);
3209 		break;
3210 	}
3211 
3212 exit:
3213 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3214 }
3215 
3216 #ifdef CONFIG_OF
3217 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3218 {
3219 	struct dw_mci_board *pdata;
3220 	struct device *dev = host->dev;
3221 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3222 	int ret;
3223 	u32 clock_frequency;
3224 
3225 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3226 	if (!pdata)
3227 		return ERR_PTR(-ENOMEM);
3228 
3229 	/* find reset controller when exist */
3230 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3231 	if (IS_ERR(pdata->rstc))
3232 		return ERR_CAST(pdata->rstc);
3233 
3234 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3235 		dev_info(dev,
3236 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3237 
3238 	device_property_read_u32(dev, "card-detect-delay",
3239 				 &pdata->detect_delay_ms);
3240 
3241 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3242 
3243 	if (device_property_present(dev, "fifo-watermark-aligned"))
3244 		host->wm_aligned = true;
3245 
3246 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3247 		pdata->bus_hz = clock_frequency;
3248 
3249 	if (drv_data && drv_data->parse_dt) {
3250 		ret = drv_data->parse_dt(host);
3251 		if (ret)
3252 			return ERR_PTR(ret);
3253 	}
3254 
3255 	return pdata;
3256 }
3257 
3258 #else /* CONFIG_OF */
3259 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3260 {
3261 	return ERR_PTR(-EINVAL);
3262 }
3263 #endif /* CONFIG_OF */
3264 
3265 static void dw_mci_enable_cd(struct dw_mci *host)
3266 {
3267 	unsigned long irqflags;
3268 	u32 temp;
3269 
3270 	/*
3271 	 * No need for CD if all slots have a non-error GPIO
3272 	 * as well as broken card detection is found.
3273 	 */
3274 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3275 		return;
3276 
3277 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3278 		spin_lock_irqsave(&host->irq_lock, irqflags);
3279 		temp = mci_readl(host, INTMASK);
3280 		temp  |= SDMMC_INT_CD;
3281 		mci_writel(host, INTMASK, temp);
3282 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3283 	}
3284 }
3285 
3286 int dw_mci_probe(struct dw_mci *host)
3287 {
3288 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3289 	int width, i, ret = 0;
3290 	u32 fifo_size;
3291 
3292 	if (!host->pdata) {
3293 		host->pdata = dw_mci_parse_dt(host);
3294 		if (IS_ERR(host->pdata))
3295 			return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3296 					     "platform data not available\n");
3297 	}
3298 
3299 	host->biu_clk = devm_clk_get(host->dev, "biu");
3300 	if (IS_ERR(host->biu_clk)) {
3301 		dev_dbg(host->dev, "biu clock not available\n");
3302 		ret = PTR_ERR(host->biu_clk);
3303 		if (ret == -EPROBE_DEFER)
3304 			return ret;
3305 
3306 	} else {
3307 		ret = clk_prepare_enable(host->biu_clk);
3308 		if (ret) {
3309 			dev_err(host->dev, "failed to enable biu clock\n");
3310 			return ret;
3311 		}
3312 	}
3313 
3314 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3315 	if (IS_ERR(host->ciu_clk)) {
3316 		dev_dbg(host->dev, "ciu clock not available\n");
3317 		ret = PTR_ERR(host->ciu_clk);
3318 		if (ret == -EPROBE_DEFER)
3319 			goto err_clk_biu;
3320 
3321 		host->bus_hz = host->pdata->bus_hz;
3322 	} else {
3323 		ret = clk_prepare_enable(host->ciu_clk);
3324 		if (ret) {
3325 			dev_err(host->dev, "failed to enable ciu clock\n");
3326 			goto err_clk_biu;
3327 		}
3328 
3329 		if (host->pdata->bus_hz) {
3330 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3331 			if (ret)
3332 				dev_warn(host->dev,
3333 					 "Unable to set bus rate to %uHz\n",
3334 					 host->pdata->bus_hz);
3335 		}
3336 		host->bus_hz = clk_get_rate(host->ciu_clk);
3337 	}
3338 
3339 	if (!host->bus_hz) {
3340 		dev_err(host->dev,
3341 			"Platform data must supply bus speed\n");
3342 		ret = -ENODEV;
3343 		goto err_clk_ciu;
3344 	}
3345 
3346 	if (host->pdata->rstc) {
3347 		reset_control_assert(host->pdata->rstc);
3348 		usleep_range(10, 50);
3349 		reset_control_deassert(host->pdata->rstc);
3350 	}
3351 
3352 	if (drv_data && drv_data->init) {
3353 		ret = drv_data->init(host);
3354 		if (ret) {
3355 			dev_err(host->dev,
3356 				"implementation specific init failed\n");
3357 			goto err_clk_ciu;
3358 		}
3359 	}
3360 
3361 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3362 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3363 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3364 
3365 	spin_lock_init(&host->lock);
3366 	spin_lock_init(&host->irq_lock);
3367 	INIT_LIST_HEAD(&host->queue);
3368 
3369 	dw_mci_init_fault(host);
3370 
3371 	/*
3372 	 * Get the host data width - this assumes that HCON has been set with
3373 	 * the correct values.
3374 	 */
3375 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3376 	if (!i) {
3377 		host->push_data = dw_mci_push_data16;
3378 		host->pull_data = dw_mci_pull_data16;
3379 		width = 16;
3380 		host->data_shift = 1;
3381 	} else if (i == 2) {
3382 		host->push_data = dw_mci_push_data64;
3383 		host->pull_data = dw_mci_pull_data64;
3384 		width = 64;
3385 		host->data_shift = 3;
3386 	} else {
3387 		/* Check for a reserved value, and warn if it is */
3388 		WARN((i != 1),
3389 		     "HCON reports a reserved host data width!\n"
3390 		     "Defaulting to 32-bit access.\n");
3391 		host->push_data = dw_mci_push_data32;
3392 		host->pull_data = dw_mci_pull_data32;
3393 		width = 32;
3394 		host->data_shift = 2;
3395 	}
3396 
3397 	/* Reset all blocks */
3398 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3399 		ret = -ENODEV;
3400 		goto err_clk_ciu;
3401 	}
3402 
3403 	host->dma_ops = host->pdata->dma_ops;
3404 	dw_mci_init_dma(host);
3405 
3406 	/* Clear the interrupts for the host controller */
3407 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3408 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3409 
3410 	/* Put in max timeout */
3411 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3412 
3413 	/*
3414 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3415 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3416 	 */
3417 	if (!host->pdata->fifo_depth) {
3418 		/*
3419 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3420 		 * have been overwritten by the bootloader, just like we're
3421 		 * about to do, so if you know the value for your hardware, you
3422 		 * should put it in the platform data.
3423 		 */
3424 		fifo_size = mci_readl(host, FIFOTH);
3425 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3426 	} else {
3427 		fifo_size = host->pdata->fifo_depth;
3428 	}
3429 	host->fifo_depth = fifo_size;
3430 	host->fifoth_val =
3431 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3432 	mci_writel(host, FIFOTH, host->fifoth_val);
3433 
3434 	/* disable clock to CIU */
3435 	mci_writel(host, CLKENA, 0);
3436 	mci_writel(host, CLKSRC, 0);
3437 
3438 	/*
3439 	 * In 2.40a spec, Data offset is changed.
3440 	 * Need to check the version-id and set data-offset for DATA register.
3441 	 */
3442 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3443 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3444 
3445 	if (host->data_addr_override)
3446 		host->fifo_reg = host->regs + host->data_addr_override;
3447 	else if (host->verid < DW_MMC_240A)
3448 		host->fifo_reg = host->regs + DATA_OFFSET;
3449 	else
3450 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3451 
3452 	INIT_WORK(&host->bh_work, dw_mci_work_func);
3453 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3454 			       host->irq_flags, "dw-mci", host);
3455 	if (ret)
3456 		goto err_dmaunmap;
3457 
3458 	/*
3459 	 * Enable interrupts for command done, data over, data empty,
3460 	 * receive ready and error such as transmit, receive timeout, crc error
3461 	 */
3462 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3463 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3464 		   DW_MCI_ERROR_FLAGS);
3465 	/* Enable mci interrupt */
3466 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3467 
3468 	dev_info(host->dev,
3469 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3470 		 host->irq, width, fifo_size);
3471 
3472 	/* We need at least one slot to succeed */
3473 	ret = dw_mci_init_slot(host);
3474 	if (ret) {
3475 		dev_dbg(host->dev, "slot %d init failed\n", i);
3476 		goto err_dmaunmap;
3477 	}
3478 
3479 	/* Now that slots are all setup, we can enable card detect */
3480 	dw_mci_enable_cd(host);
3481 
3482 	return 0;
3483 
3484 err_dmaunmap:
3485 	if (host->use_dma && host->dma_ops->exit)
3486 		host->dma_ops->exit(host);
3487 
3488 	reset_control_assert(host->pdata->rstc);
3489 
3490 err_clk_ciu:
3491 	clk_disable_unprepare(host->ciu_clk);
3492 
3493 err_clk_biu:
3494 	clk_disable_unprepare(host->biu_clk);
3495 
3496 	return ret;
3497 }
3498 EXPORT_SYMBOL(dw_mci_probe);
3499 
3500 void dw_mci_remove(struct dw_mci *host)
3501 {
3502 	dev_dbg(host->dev, "remove slot\n");
3503 	if (host->slot)
3504 		dw_mci_cleanup_slot(host->slot);
3505 
3506 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3507 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3508 
3509 	/* disable clock to CIU */
3510 	mci_writel(host, CLKENA, 0);
3511 	mci_writel(host, CLKSRC, 0);
3512 
3513 	if (host->use_dma && host->dma_ops->exit)
3514 		host->dma_ops->exit(host);
3515 
3516 	reset_control_assert(host->pdata->rstc);
3517 
3518 	clk_disable_unprepare(host->ciu_clk);
3519 	clk_disable_unprepare(host->biu_clk);
3520 }
3521 EXPORT_SYMBOL(dw_mci_remove);
3522 
3523 
3524 
3525 #ifdef CONFIG_PM
3526 int dw_mci_runtime_suspend(struct device *dev)
3527 {
3528 	struct dw_mci *host = dev_get_drvdata(dev);
3529 
3530 	if (host->use_dma && host->dma_ops->exit)
3531 		host->dma_ops->exit(host);
3532 
3533 	clk_disable_unprepare(host->ciu_clk);
3534 
3535 	if (host->slot &&
3536 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3537 	     !mmc_card_is_removable(host->slot->mmc)))
3538 		clk_disable_unprepare(host->biu_clk);
3539 
3540 	return 0;
3541 }
3542 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3543 
3544 int dw_mci_runtime_resume(struct device *dev)
3545 {
3546 	int ret = 0;
3547 	struct dw_mci *host = dev_get_drvdata(dev);
3548 
3549 	if (host->slot &&
3550 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3551 	     !mmc_card_is_removable(host->slot->mmc))) {
3552 		ret = clk_prepare_enable(host->biu_clk);
3553 		if (ret)
3554 			return ret;
3555 	}
3556 
3557 	ret = clk_prepare_enable(host->ciu_clk);
3558 	if (ret)
3559 		goto err;
3560 
3561 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3562 		clk_disable_unprepare(host->ciu_clk);
3563 		ret = -ENODEV;
3564 		goto err;
3565 	}
3566 
3567 	if (host->use_dma && host->dma_ops->init)
3568 		host->dma_ops->init(host);
3569 
3570 	/*
3571 	 * Restore the initial value at FIFOTH register
3572 	 * And Invalidate the prev_blksz with zero
3573 	 */
3574 	mci_writel(host, FIFOTH, host->fifoth_val);
3575 	host->prev_blksz = 0;
3576 
3577 	/* Put in max timeout */
3578 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3579 
3580 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3581 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3582 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3583 		   DW_MCI_ERROR_FLAGS);
3584 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3585 
3586 
3587 	if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3588 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3589 
3590 	/* Force setup bus to guarantee available clock output */
3591 	dw_mci_setup_bus(host->slot, true);
3592 
3593 	/* Re-enable SDIO interrupts. */
3594 	if (sdio_irq_claimed(host->slot->mmc))
3595 		__dw_mci_enable_sdio_irq(host->slot, 1);
3596 
3597 	/* Now that slots are all setup, we can enable card detect */
3598 	dw_mci_enable_cd(host);
3599 
3600 	return 0;
3601 
3602 err:
3603 	if (host->slot &&
3604 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3605 	     !mmc_card_is_removable(host->slot->mmc)))
3606 		clk_disable_unprepare(host->biu_clk);
3607 
3608 	return ret;
3609 }
3610 EXPORT_SYMBOL(dw_mci_runtime_resume);
3611 #endif /* CONFIG_PM */
3612 
3613 static int __init dw_mci_init(void)
3614 {
3615 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3616 	return 0;
3617 }
3618 
3619 static void __exit dw_mci_exit(void)
3620 {
3621 }
3622 
3623 module_init(dw_mci_init);
3624 module_exit(dw_mci_exit);
3625 
3626 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3627 MODULE_AUTHOR("NXP Semiconductor VietNam");
3628 MODULE_AUTHOR("Imagination Technologies Ltd");
3629 MODULE_LICENSE("GPL v2");
3630