xref: /linux/drivers/mmc/host/dw_mmc.c (revision 4b911a9690d72641879ea6d13cce1de31d346d79)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/ktime.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/prandom.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/mmc/slot-gpio.h>
39 
40 #include "dw_mmc.h"
41 
42 /* Common flag combinations */
43 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
44 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
45 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
46 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
47 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
48 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
49 				 DW_MCI_CMD_ERROR_FLAGS)
50 #define DW_MCI_SEND_STATUS	1
51 #define DW_MCI_RECV_STATUS	2
52 #define DW_MCI_DMA_THRESHOLD	16
53 
54 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
55 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
56 
57 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
58 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
59 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
60 				 SDMMC_IDMAC_INT_TI)
61 
62 #define DESC_RING_BUF_SZ	PAGE_SIZE
63 
64 struct idmac_desc_64addr {
65 	u32		des0;	/* Control Descriptor */
66 #define IDMAC_OWN_CLR64(x) \
67 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
68 
69 	u32		des1;	/* Reserved */
70 
71 	u32		des2;	/*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
75 
76 	u32		des3;	/* Reserved */
77 
78 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
79 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
80 
81 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
82 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
83 };
84 
85 struct idmac_desc {
86 	__le32		des0;	/* Control Descriptor */
87 #define IDMAC_DES0_DIC	BIT(1)
88 #define IDMAC_DES0_LD	BIT(2)
89 #define IDMAC_DES0_FD	BIT(3)
90 #define IDMAC_DES0_CH	BIT(4)
91 #define IDMAC_DES0_ER	BIT(5)
92 #define IDMAC_DES0_CES	BIT(30)
93 #define IDMAC_DES0_OWN	BIT(31)
94 
95 	__le32		des1;	/* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
98 
99 	__le32		des2;	/* buffer 1 physical address */
100 
101 	__le32		des3;	/* buffer 2 physical address */
102 };
103 
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH	0x1000
106 
107 #if defined(CONFIG_DEBUG_FS)
108 static int dw_mci_req_show(struct seq_file *s, void *v)
109 {
110 	struct dw_mci_slot *slot = s->private;
111 	struct mmc_request *mrq;
112 	struct mmc_command *cmd;
113 	struct mmc_command *stop;
114 	struct mmc_data	*data;
115 
116 	/* Make sure we get a consistent snapshot */
117 	spin_lock_bh(&slot->host->lock);
118 	mrq = slot->mrq;
119 
120 	if (mrq) {
121 		cmd = mrq->cmd;
122 		data = mrq->data;
123 		stop = mrq->stop;
124 
125 		if (cmd)
126 			seq_printf(s,
127 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
128 				   cmd->opcode, cmd->arg, cmd->flags,
129 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
130 				   cmd->resp[2], cmd->error);
131 		if (data)
132 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
133 				   data->bytes_xfered, data->blocks,
134 				   data->blksz, data->flags, data->error);
135 		if (stop)
136 			seq_printf(s,
137 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
138 				   stop->opcode, stop->arg, stop->flags,
139 				   stop->resp[0], stop->resp[1], stop->resp[2],
140 				   stop->resp[2], stop->error);
141 	}
142 
143 	spin_unlock_bh(&slot->host->lock);
144 
145 	return 0;
146 }
147 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
148 
149 static int dw_mci_regs_show(struct seq_file *s, void *v)
150 {
151 	struct dw_mci *host = s->private;
152 
153 	pm_runtime_get_sync(host->dev);
154 
155 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
156 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
157 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
158 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
159 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
160 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
161 
162 	pm_runtime_put_autosuspend(host->dev);
163 
164 	return 0;
165 }
166 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
167 
168 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
169 {
170 	struct mmc_host	*mmc = slot->mmc;
171 	struct dw_mci *host = slot->host;
172 	struct dentry *root;
173 
174 	root = mmc->debugfs_root;
175 	if (!root)
176 		return;
177 
178 	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
179 	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
180 	debugfs_create_u32("state", S_IRUSR, root, &host->state);
181 	debugfs_create_xul("pending_events", S_IRUSR, root,
182 			   &host->pending_events);
183 	debugfs_create_xul("completed_events", S_IRUSR, root,
184 			   &host->completed_events);
185 #ifdef CONFIG_FAULT_INJECTION
186 	fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
187 #endif
188 }
189 #endif /* defined(CONFIG_DEBUG_FS) */
190 
191 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
192 {
193 	u32 ctrl;
194 
195 	ctrl = mci_readl(host, CTRL);
196 	ctrl |= reset;
197 	mci_writel(host, CTRL, ctrl);
198 
199 	/* wait till resets clear */
200 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
201 				      !(ctrl & reset),
202 				      1, 500 * USEC_PER_MSEC)) {
203 		dev_err(host->dev,
204 			"Timeout resetting block (ctrl reset %#x)\n",
205 			ctrl & reset);
206 		return false;
207 	}
208 
209 	return true;
210 }
211 
212 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
213 {
214 	u32 status;
215 
216 	/*
217 	 * Databook says that before issuing a new data transfer command
218 	 * we need to check to see if the card is busy.  Data transfer commands
219 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
220 	 *
221 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
222 	 * expected.
223 	 */
224 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
225 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
226 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
227 					      status,
228 					      !(status & SDMMC_STATUS_BUSY),
229 					      10, 500 * USEC_PER_MSEC))
230 			dev_err(host->dev, "Busy; trying anyway\n");
231 	}
232 }
233 
234 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
235 {
236 	struct dw_mci *host = slot->host;
237 	unsigned int cmd_status = 0;
238 
239 	mci_writel(host, CMDARG, arg);
240 	wmb(); /* drain writebuffer */
241 	dw_mci_wait_while_busy(host, cmd);
242 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
243 
244 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
245 				      !(cmd_status & SDMMC_CMD_START),
246 				      1, 500 * USEC_PER_MSEC))
247 		dev_err(&slot->mmc->class_dev,
248 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
249 			cmd, arg, cmd_status);
250 }
251 
252 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
253 {
254 	struct dw_mci_slot *slot = mmc_priv(mmc);
255 	struct dw_mci *host = slot->host;
256 	u32 cmdr;
257 
258 	cmd->error = -EINPROGRESS;
259 	cmdr = cmd->opcode;
260 
261 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
262 	    cmd->opcode == MMC_GO_IDLE_STATE ||
263 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
264 	    (cmd->opcode == SD_IO_RW_DIRECT &&
265 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
266 		cmdr |= SDMMC_CMD_STOP;
267 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
268 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
269 
270 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
271 		u32 clk_en_a;
272 
273 		/* Special bit makes CMD11 not die */
274 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
275 
276 		/* Change state to continue to handle CMD11 weirdness */
277 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
278 		slot->host->state = STATE_SENDING_CMD11;
279 
280 		/*
281 		 * We need to disable low power mode (automatic clock stop)
282 		 * while doing voltage switch so we don't confuse the card,
283 		 * since stopping the clock is a specific part of the UHS
284 		 * voltage change dance.
285 		 *
286 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
287 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
288 		 * ever called with a non-zero clock.  That shouldn't happen
289 		 * until the voltage change is all done.
290 		 */
291 		clk_en_a = mci_readl(host, CLKENA);
292 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
293 		mci_writel(host, CLKENA, clk_en_a);
294 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
295 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
296 	}
297 
298 	if (cmd->flags & MMC_RSP_PRESENT) {
299 		/* We expect a response, so set this bit */
300 		cmdr |= SDMMC_CMD_RESP_EXP;
301 		if (cmd->flags & MMC_RSP_136)
302 			cmdr |= SDMMC_CMD_RESP_LONG;
303 	}
304 
305 	if (cmd->flags & MMC_RSP_CRC)
306 		cmdr |= SDMMC_CMD_RESP_CRC;
307 
308 	if (cmd->data) {
309 		cmdr |= SDMMC_CMD_DAT_EXP;
310 		if (cmd->data->flags & MMC_DATA_WRITE)
311 			cmdr |= SDMMC_CMD_DAT_WR;
312 	}
313 
314 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
315 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
316 
317 	return cmdr;
318 }
319 
320 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
321 {
322 	struct mmc_command *stop;
323 	u32 cmdr;
324 
325 	if (!cmd->data)
326 		return 0;
327 
328 	stop = &host->stop_abort;
329 	cmdr = cmd->opcode;
330 	memset(stop, 0, sizeof(struct mmc_command));
331 
332 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
333 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
334 	    cmdr == MMC_WRITE_BLOCK ||
335 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
336 	    mmc_op_tuning(cmdr) ||
337 	    cmdr == MMC_GEN_CMD) {
338 		stop->opcode = MMC_STOP_TRANSMISSION;
339 		stop->arg = 0;
340 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
341 	} else if (cmdr == SD_IO_RW_EXTENDED) {
342 		stop->opcode = SD_IO_RW_DIRECT;
343 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
344 			     ((cmd->arg >> 28) & 0x7);
345 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
346 	} else {
347 		return 0;
348 	}
349 
350 	cmdr = stop->opcode | SDMMC_CMD_STOP |
351 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
352 
353 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
354 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
355 
356 	return cmdr;
357 }
358 
359 static inline void dw_mci_set_cto(struct dw_mci *host)
360 {
361 	unsigned int cto_clks;
362 	unsigned int cto_div;
363 	unsigned int cto_ms;
364 	unsigned long irqflags;
365 
366 	cto_clks = mci_readl(host, TMOUT) & 0xff;
367 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
368 	if (cto_div == 0)
369 		cto_div = 1;
370 
371 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
372 				  host->bus_hz);
373 
374 	/* add a bit spare time */
375 	cto_ms += 10;
376 
377 	/*
378 	 * The durations we're working with are fairly short so we have to be
379 	 * extra careful about synchronization here.  Specifically in hardware a
380 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
381 	 * interrupt (either command done or timeout) to come rather quickly
382 	 * after the mci_writel.  ...but just in case we have a long interrupt
383 	 * latency let's add a bit of paranoia.
384 	 *
385 	 * In general we'll assume that at least an interrupt will be asserted
386 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
387 	 * been asserted in hardware by that time then we'll assume it'll never
388 	 * come.
389 	 */
390 	spin_lock_irqsave(&host->irq_lock, irqflags);
391 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
392 		mod_timer(&host->cto_timer,
393 			jiffies + msecs_to_jiffies(cto_ms) + 1);
394 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
395 }
396 
397 static void dw_mci_start_command(struct dw_mci *host,
398 				 struct mmc_command *cmd, u32 cmd_flags)
399 {
400 	host->cmd = cmd;
401 	dev_vdbg(host->dev,
402 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
403 		 cmd->arg, cmd_flags);
404 
405 	mci_writel(host, CMDARG, cmd->arg);
406 	wmb(); /* drain writebuffer */
407 	dw_mci_wait_while_busy(host, cmd_flags);
408 
409 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
410 
411 	/* response expected command only */
412 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
413 		dw_mci_set_cto(host);
414 }
415 
416 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
417 {
418 	struct mmc_command *stop = &host->stop_abort;
419 
420 	dw_mci_start_command(host, stop, host->stop_cmdr);
421 }
422 
423 /* DMA interface functions */
424 static void dw_mci_stop_dma(struct dw_mci *host)
425 {
426 	if (host->using_dma) {
427 		host->dma_ops->stop(host);
428 		host->dma_ops->cleanup(host);
429 	}
430 
431 	/* Data transfer was stopped by the interrupt handler */
432 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
433 }
434 
435 static void dw_mci_dma_cleanup(struct dw_mci *host)
436 {
437 	struct mmc_data *data = host->data;
438 
439 	if (data && data->host_cookie == COOKIE_MAPPED) {
440 		dma_unmap_sg(host->dev,
441 			     data->sg,
442 			     data->sg_len,
443 			     mmc_get_dma_dir(data));
444 		data->host_cookie = COOKIE_UNMAPPED;
445 	}
446 }
447 
448 static void dw_mci_idmac_reset(struct dw_mci *host)
449 {
450 	u32 bmod = mci_readl(host, BMOD);
451 	/* Software reset of DMA */
452 	bmod |= SDMMC_IDMAC_SWRESET;
453 	mci_writel(host, BMOD, bmod);
454 }
455 
456 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
457 {
458 	u32 temp;
459 
460 	/* Disable and reset the IDMAC interface */
461 	temp = mci_readl(host, CTRL);
462 	temp &= ~SDMMC_CTRL_USE_IDMAC;
463 	temp |= SDMMC_CTRL_DMA_RESET;
464 	mci_writel(host, CTRL, temp);
465 
466 	/* Stop the IDMAC running */
467 	temp = mci_readl(host, BMOD);
468 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
469 	temp |= SDMMC_IDMAC_SWRESET;
470 	mci_writel(host, BMOD, temp);
471 }
472 
473 static void dw_mci_dmac_complete_dma(void *arg)
474 {
475 	struct dw_mci *host = arg;
476 	struct mmc_data *data = host->data;
477 
478 	dev_vdbg(host->dev, "DMA complete\n");
479 
480 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
481 	    data && (data->flags & MMC_DATA_READ))
482 		/* Invalidate cache after read */
483 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
484 				    data->sg,
485 				    data->sg_len,
486 				    DMA_FROM_DEVICE);
487 
488 	host->dma_ops->cleanup(host);
489 
490 	/*
491 	 * If the card was removed, data will be NULL. No point in trying to
492 	 * send the stop command or waiting for NBUSY in this case.
493 	 */
494 	if (data) {
495 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
496 		tasklet_schedule(&host->tasklet);
497 	}
498 }
499 
500 static int dw_mci_idmac_init(struct dw_mci *host)
501 {
502 	int i;
503 
504 	if (host->dma_64bit_address == 1) {
505 		struct idmac_desc_64addr *p;
506 		/* Number of descriptors in the ring buffer */
507 		host->ring_size =
508 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
509 
510 		/* Forward link the descriptor list */
511 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
512 								i++, p++) {
513 			p->des6 = (host->sg_dma +
514 					(sizeof(struct idmac_desc_64addr) *
515 							(i + 1))) & 0xffffffff;
516 
517 			p->des7 = (u64)(host->sg_dma +
518 					(sizeof(struct idmac_desc_64addr) *
519 							(i + 1))) >> 32;
520 			/* Initialize reserved and buffer size fields to "0" */
521 			p->des0 = 0;
522 			p->des1 = 0;
523 			p->des2 = 0;
524 			p->des3 = 0;
525 		}
526 
527 		/* Set the last descriptor as the end-of-ring descriptor */
528 		p->des6 = host->sg_dma & 0xffffffff;
529 		p->des7 = (u64)host->sg_dma >> 32;
530 		p->des0 = IDMAC_DES0_ER;
531 
532 	} else {
533 		struct idmac_desc *p;
534 		/* Number of descriptors in the ring buffer */
535 		host->ring_size =
536 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
537 
538 		/* Forward link the descriptor list */
539 		for (i = 0, p = host->sg_cpu;
540 		     i < host->ring_size - 1;
541 		     i++, p++) {
542 			p->des3 = cpu_to_le32(host->sg_dma +
543 					(sizeof(struct idmac_desc) * (i + 1)));
544 			p->des0 = 0;
545 			p->des1 = 0;
546 		}
547 
548 		/* Set the last descriptor as the end-of-ring descriptor */
549 		p->des3 = cpu_to_le32(host->sg_dma);
550 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
551 	}
552 
553 	dw_mci_idmac_reset(host);
554 
555 	if (host->dma_64bit_address == 1) {
556 		/* Mask out interrupts - get Tx & Rx complete only */
557 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
558 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
559 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
560 
561 		/* Set the descriptor base address */
562 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
563 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
564 
565 	} else {
566 		/* Mask out interrupts - get Tx & Rx complete only */
567 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
568 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
569 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
570 
571 		/* Set the descriptor base address */
572 		mci_writel(host, DBADDR, host->sg_dma);
573 	}
574 
575 	return 0;
576 }
577 
578 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
579 					 struct mmc_data *data,
580 					 unsigned int sg_len)
581 {
582 	unsigned int desc_len;
583 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
584 	u32 val;
585 	int i;
586 
587 	desc_first = desc_last = desc = host->sg_cpu;
588 
589 	for (i = 0; i < sg_len; i++) {
590 		unsigned int length = sg_dma_len(&data->sg[i]);
591 
592 		u64 mem_addr = sg_dma_address(&data->sg[i]);
593 
594 		for ( ; length ; desc++) {
595 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
596 				   length : DW_MCI_DESC_DATA_LENGTH;
597 
598 			length -= desc_len;
599 
600 			/*
601 			 * Wait for the former clear OWN bit operation
602 			 * of IDMAC to make sure that this descriptor
603 			 * isn't still owned by IDMAC as IDMAC's write
604 			 * ops and CPU's read ops are asynchronous.
605 			 */
606 			if (readl_poll_timeout_atomic(&desc->des0, val,
607 						!(val & IDMAC_DES0_OWN),
608 						10, 100 * USEC_PER_MSEC))
609 				goto err_own_bit;
610 
611 			/*
612 			 * Set the OWN bit and disable interrupts
613 			 * for this descriptor
614 			 */
615 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
616 						IDMAC_DES0_CH;
617 
618 			/* Buffer length */
619 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
620 
621 			/* Physical address to DMA to/from */
622 			desc->des4 = mem_addr & 0xffffffff;
623 			desc->des5 = mem_addr >> 32;
624 
625 			/* Update physical address for the next desc */
626 			mem_addr += desc_len;
627 
628 			/* Save pointer to the last descriptor */
629 			desc_last = desc;
630 		}
631 	}
632 
633 	/* Set first descriptor */
634 	desc_first->des0 |= IDMAC_DES0_FD;
635 
636 	/* Set last descriptor */
637 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
638 	desc_last->des0 |= IDMAC_DES0_LD;
639 
640 	return 0;
641 err_own_bit:
642 	/* restore the descriptor chain as it's polluted */
643 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
644 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
645 	dw_mci_idmac_init(host);
646 	return -EINVAL;
647 }
648 
649 
650 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
651 					 struct mmc_data *data,
652 					 unsigned int sg_len)
653 {
654 	unsigned int desc_len;
655 	struct idmac_desc *desc_first, *desc_last, *desc;
656 	u32 val;
657 	int i;
658 
659 	desc_first = desc_last = desc = host->sg_cpu;
660 
661 	for (i = 0; i < sg_len; i++) {
662 		unsigned int length = sg_dma_len(&data->sg[i]);
663 
664 		u32 mem_addr = sg_dma_address(&data->sg[i]);
665 
666 		for ( ; length ; desc++) {
667 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
668 				   length : DW_MCI_DESC_DATA_LENGTH;
669 
670 			length -= desc_len;
671 
672 			/*
673 			 * Wait for the former clear OWN bit operation
674 			 * of IDMAC to make sure that this descriptor
675 			 * isn't still owned by IDMAC as IDMAC's write
676 			 * ops and CPU's read ops are asynchronous.
677 			 */
678 			if (readl_poll_timeout_atomic(&desc->des0, val,
679 						      IDMAC_OWN_CLR64(val),
680 						      10,
681 						      100 * USEC_PER_MSEC))
682 				goto err_own_bit;
683 
684 			/*
685 			 * Set the OWN bit and disable interrupts
686 			 * for this descriptor
687 			 */
688 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
689 						 IDMAC_DES0_DIC |
690 						 IDMAC_DES0_CH);
691 
692 			/* Buffer length */
693 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
694 
695 			/* Physical address to DMA to/from */
696 			desc->des2 = cpu_to_le32(mem_addr);
697 
698 			/* Update physical address for the next desc */
699 			mem_addr += desc_len;
700 
701 			/* Save pointer to the last descriptor */
702 			desc_last = desc;
703 		}
704 	}
705 
706 	/* Set first descriptor */
707 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
708 
709 	/* Set last descriptor */
710 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
711 				       IDMAC_DES0_DIC));
712 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
713 
714 	return 0;
715 err_own_bit:
716 	/* restore the descriptor chain as it's polluted */
717 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
718 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
719 	dw_mci_idmac_init(host);
720 	return -EINVAL;
721 }
722 
723 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
724 {
725 	u32 temp;
726 	int ret;
727 
728 	if (host->dma_64bit_address == 1)
729 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
730 	else
731 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
732 
733 	if (ret)
734 		goto out;
735 
736 	/* drain writebuffer */
737 	wmb();
738 
739 	/* Make sure to reset DMA in case we did PIO before this */
740 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
741 	dw_mci_idmac_reset(host);
742 
743 	/* Select IDMAC interface */
744 	temp = mci_readl(host, CTRL);
745 	temp |= SDMMC_CTRL_USE_IDMAC;
746 	mci_writel(host, CTRL, temp);
747 
748 	/* drain writebuffer */
749 	wmb();
750 
751 	/* Enable the IDMAC */
752 	temp = mci_readl(host, BMOD);
753 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
754 	mci_writel(host, BMOD, temp);
755 
756 	/* Start it running */
757 	mci_writel(host, PLDMND, 1);
758 
759 out:
760 	return ret;
761 }
762 
763 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
764 	.init = dw_mci_idmac_init,
765 	.start = dw_mci_idmac_start_dma,
766 	.stop = dw_mci_idmac_stop_dma,
767 	.complete = dw_mci_dmac_complete_dma,
768 	.cleanup = dw_mci_dma_cleanup,
769 };
770 
771 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
772 {
773 	dmaengine_terminate_async(host->dms->ch);
774 }
775 
776 static int dw_mci_edmac_start_dma(struct dw_mci *host,
777 					    unsigned int sg_len)
778 {
779 	struct dma_slave_config cfg;
780 	struct dma_async_tx_descriptor *desc = NULL;
781 	struct scatterlist *sgl = host->data->sg;
782 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
783 	u32 sg_elems = host->data->sg_len;
784 	u32 fifoth_val;
785 	u32 fifo_offset = host->fifo_reg - host->regs;
786 	int ret = 0;
787 
788 	/* Set external dma config: burst size, burst width */
789 	memset(&cfg, 0, sizeof(cfg));
790 	cfg.dst_addr = host->phy_regs + fifo_offset;
791 	cfg.src_addr = cfg.dst_addr;
792 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
793 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
794 
795 	/* Match burst msize with external dma config */
796 	fifoth_val = mci_readl(host, FIFOTH);
797 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
798 	cfg.src_maxburst = cfg.dst_maxburst;
799 
800 	if (host->data->flags & MMC_DATA_WRITE)
801 		cfg.direction = DMA_MEM_TO_DEV;
802 	else
803 		cfg.direction = DMA_DEV_TO_MEM;
804 
805 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
806 	if (ret) {
807 		dev_err(host->dev, "Failed to config edmac.\n");
808 		return -EBUSY;
809 	}
810 
811 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
812 				       sg_len, cfg.direction,
813 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
814 	if (!desc) {
815 		dev_err(host->dev, "Can't prepare slave sg.\n");
816 		return -EBUSY;
817 	}
818 
819 	/* Set dw_mci_dmac_complete_dma as callback */
820 	desc->callback = dw_mci_dmac_complete_dma;
821 	desc->callback_param = (void *)host;
822 	dmaengine_submit(desc);
823 
824 	/* Flush cache before write */
825 	if (host->data->flags & MMC_DATA_WRITE)
826 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
827 				       sg_elems, DMA_TO_DEVICE);
828 
829 	dma_async_issue_pending(host->dms->ch);
830 
831 	return 0;
832 }
833 
834 static int dw_mci_edmac_init(struct dw_mci *host)
835 {
836 	/* Request external dma channel */
837 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
838 	if (!host->dms)
839 		return -ENOMEM;
840 
841 	host->dms->ch = dma_request_chan(host->dev, "rx-tx");
842 	if (IS_ERR(host->dms->ch)) {
843 		int ret = PTR_ERR(host->dms->ch);
844 
845 		dev_err(host->dev, "Failed to get external DMA channel.\n");
846 		kfree(host->dms);
847 		host->dms = NULL;
848 		return ret;
849 	}
850 
851 	return 0;
852 }
853 
854 static void dw_mci_edmac_exit(struct dw_mci *host)
855 {
856 	if (host->dms) {
857 		if (host->dms->ch) {
858 			dma_release_channel(host->dms->ch);
859 			host->dms->ch = NULL;
860 		}
861 		kfree(host->dms);
862 		host->dms = NULL;
863 	}
864 }
865 
866 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
867 	.init = dw_mci_edmac_init,
868 	.exit = dw_mci_edmac_exit,
869 	.start = dw_mci_edmac_start_dma,
870 	.stop = dw_mci_edmac_stop_dma,
871 	.complete = dw_mci_dmac_complete_dma,
872 	.cleanup = dw_mci_dma_cleanup,
873 };
874 
875 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
876 				   struct mmc_data *data,
877 				   int cookie)
878 {
879 	struct scatterlist *sg;
880 	unsigned int i, sg_len;
881 
882 	if (data->host_cookie == COOKIE_PRE_MAPPED)
883 		return data->sg_len;
884 
885 	/*
886 	 * We don't do DMA on "complex" transfers, i.e. with
887 	 * non-word-aligned buffers or lengths. Also, we don't bother
888 	 * with all the DMA setup overhead for short transfers.
889 	 */
890 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
891 		return -EINVAL;
892 
893 	if (data->blksz & 3)
894 		return -EINVAL;
895 
896 	for_each_sg(data->sg, sg, data->sg_len, i) {
897 		if (sg->offset & 3 || sg->length & 3)
898 			return -EINVAL;
899 	}
900 
901 	sg_len = dma_map_sg(host->dev,
902 			    data->sg,
903 			    data->sg_len,
904 			    mmc_get_dma_dir(data));
905 	if (sg_len == 0)
906 		return -EINVAL;
907 
908 	data->host_cookie = cookie;
909 
910 	return sg_len;
911 }
912 
913 static void dw_mci_pre_req(struct mmc_host *mmc,
914 			   struct mmc_request *mrq)
915 {
916 	struct dw_mci_slot *slot = mmc_priv(mmc);
917 	struct mmc_data *data = mrq->data;
918 
919 	if (!slot->host->use_dma || !data)
920 		return;
921 
922 	/* This data might be unmapped at this time */
923 	data->host_cookie = COOKIE_UNMAPPED;
924 
925 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
926 				COOKIE_PRE_MAPPED) < 0)
927 		data->host_cookie = COOKIE_UNMAPPED;
928 }
929 
930 static void dw_mci_post_req(struct mmc_host *mmc,
931 			    struct mmc_request *mrq,
932 			    int err)
933 {
934 	struct dw_mci_slot *slot = mmc_priv(mmc);
935 	struct mmc_data *data = mrq->data;
936 
937 	if (!slot->host->use_dma || !data)
938 		return;
939 
940 	if (data->host_cookie != COOKIE_UNMAPPED)
941 		dma_unmap_sg(slot->host->dev,
942 			     data->sg,
943 			     data->sg_len,
944 			     mmc_get_dma_dir(data));
945 	data->host_cookie = COOKIE_UNMAPPED;
946 }
947 
948 static int dw_mci_get_cd(struct mmc_host *mmc)
949 {
950 	int present;
951 	struct dw_mci_slot *slot = mmc_priv(mmc);
952 	struct dw_mci *host = slot->host;
953 	int gpio_cd = mmc_gpio_get_cd(mmc);
954 
955 	/* Use platform get_cd function, else try onboard card detect */
956 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
957 				|| !mmc_card_is_removable(mmc))) {
958 		present = 1;
959 
960 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
961 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
962 				dev_info(&mmc->class_dev,
963 					"card is polling.\n");
964 			} else {
965 				dev_info(&mmc->class_dev,
966 					"card is non-removable.\n");
967 			}
968 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
969 		}
970 
971 		return present;
972 	} else if (gpio_cd >= 0)
973 		present = gpio_cd;
974 	else
975 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
976 			== 0 ? 1 : 0;
977 
978 	spin_lock_bh(&host->lock);
979 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
980 		dev_dbg(&mmc->class_dev, "card is present\n");
981 	else if (!present &&
982 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
983 		dev_dbg(&mmc->class_dev, "card is not present\n");
984 	spin_unlock_bh(&host->lock);
985 
986 	return present;
987 }
988 
989 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
990 {
991 	unsigned int blksz = data->blksz;
992 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
993 	u32 fifo_width = 1 << host->data_shift;
994 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
995 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
996 	int idx = ARRAY_SIZE(mszs) - 1;
997 
998 	/* pio should ship this scenario */
999 	if (!host->use_dma)
1000 		return;
1001 
1002 	tx_wmark = (host->fifo_depth) / 2;
1003 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1004 
1005 	/*
1006 	 * MSIZE is '1',
1007 	 * if blksz is not a multiple of the FIFO width
1008 	 */
1009 	if (blksz % fifo_width)
1010 		goto done;
1011 
1012 	do {
1013 		if (!((blksz_depth % mszs[idx]) ||
1014 		     (tx_wmark_invers % mszs[idx]))) {
1015 			msize = idx;
1016 			rx_wmark = mszs[idx] - 1;
1017 			break;
1018 		}
1019 	} while (--idx > 0);
1020 	/*
1021 	 * If idx is '0', it won't be tried
1022 	 * Thus, initial values are uesed
1023 	 */
1024 done:
1025 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1026 	mci_writel(host, FIFOTH, fifoth_val);
1027 }
1028 
1029 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1030 {
1031 	unsigned int blksz = data->blksz;
1032 	u32 blksz_depth, fifo_depth;
1033 	u16 thld_size;
1034 	u8 enable;
1035 
1036 	/*
1037 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1038 	 * in the FIFO region, so we really shouldn't access it).
1039 	 */
1040 	if (host->verid < DW_MMC_240A ||
1041 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1042 		return;
1043 
1044 	/*
1045 	 * Card write Threshold is introduced since 2.80a
1046 	 * It's used when HS400 mode is enabled.
1047 	 */
1048 	if (data->flags & MMC_DATA_WRITE &&
1049 		host->timing != MMC_TIMING_MMC_HS400)
1050 		goto disable;
1051 
1052 	if (data->flags & MMC_DATA_WRITE)
1053 		enable = SDMMC_CARD_WR_THR_EN;
1054 	else
1055 		enable = SDMMC_CARD_RD_THR_EN;
1056 
1057 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1058 	    host->timing != MMC_TIMING_UHS_SDR104 &&
1059 	    host->timing != MMC_TIMING_MMC_HS400)
1060 		goto disable;
1061 
1062 	blksz_depth = blksz / (1 << host->data_shift);
1063 	fifo_depth = host->fifo_depth;
1064 
1065 	if (blksz_depth > fifo_depth)
1066 		goto disable;
1067 
1068 	/*
1069 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1070 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1071 	 * Currently just choose blksz.
1072 	 */
1073 	thld_size = blksz;
1074 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1075 	return;
1076 
1077 disable:
1078 	mci_writel(host, CDTHRCTL, 0);
1079 }
1080 
1081 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1082 {
1083 	unsigned long irqflags;
1084 	int sg_len;
1085 	u32 temp;
1086 
1087 	host->using_dma = 0;
1088 
1089 	/* If we don't have a channel, we can't do DMA */
1090 	if (!host->use_dma)
1091 		return -ENODEV;
1092 
1093 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1094 	if (sg_len < 0) {
1095 		host->dma_ops->stop(host);
1096 		return sg_len;
1097 	}
1098 
1099 	host->using_dma = 1;
1100 
1101 	if (host->use_dma == TRANS_MODE_IDMAC)
1102 		dev_vdbg(host->dev,
1103 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1104 			 (unsigned long)host->sg_cpu,
1105 			 (unsigned long)host->sg_dma,
1106 			 sg_len);
1107 
1108 	/*
1109 	 * Decide the MSIZE and RX/TX Watermark.
1110 	 * If current block size is same with previous size,
1111 	 * no need to update fifoth.
1112 	 */
1113 	if (host->prev_blksz != data->blksz)
1114 		dw_mci_adjust_fifoth(host, data);
1115 
1116 	/* Enable the DMA interface */
1117 	temp = mci_readl(host, CTRL);
1118 	temp |= SDMMC_CTRL_DMA_ENABLE;
1119 	mci_writel(host, CTRL, temp);
1120 
1121 	/* Disable RX/TX IRQs, let DMA handle it */
1122 	spin_lock_irqsave(&host->irq_lock, irqflags);
1123 	temp = mci_readl(host, INTMASK);
1124 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1125 	mci_writel(host, INTMASK, temp);
1126 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1127 
1128 	if (host->dma_ops->start(host, sg_len)) {
1129 		host->dma_ops->stop(host);
1130 		/* We can't do DMA, try PIO for this one */
1131 		dev_dbg(host->dev,
1132 			"%s: fall back to PIO mode for current transfer\n",
1133 			__func__);
1134 		return -ENODEV;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1141 {
1142 	unsigned long irqflags;
1143 	int flags = SG_MITER_ATOMIC;
1144 	u32 temp;
1145 
1146 	data->error = -EINPROGRESS;
1147 
1148 	WARN_ON(host->data);
1149 	host->sg = NULL;
1150 	host->data = data;
1151 
1152 	if (data->flags & MMC_DATA_READ)
1153 		host->dir_status = DW_MCI_RECV_STATUS;
1154 	else
1155 		host->dir_status = DW_MCI_SEND_STATUS;
1156 
1157 	dw_mci_ctrl_thld(host, data);
1158 
1159 	if (dw_mci_submit_data_dma(host, data)) {
1160 		if (host->data->flags & MMC_DATA_READ)
1161 			flags |= SG_MITER_TO_SG;
1162 		else
1163 			flags |= SG_MITER_FROM_SG;
1164 
1165 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1166 		host->sg = data->sg;
1167 		host->part_buf_start = 0;
1168 		host->part_buf_count = 0;
1169 
1170 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1171 
1172 		spin_lock_irqsave(&host->irq_lock, irqflags);
1173 		temp = mci_readl(host, INTMASK);
1174 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1175 		mci_writel(host, INTMASK, temp);
1176 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1177 
1178 		temp = mci_readl(host, CTRL);
1179 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1180 		mci_writel(host, CTRL, temp);
1181 
1182 		/*
1183 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1184 		 * is set, we set watermark same as data size.
1185 		 * If next issued data may be transfered by DMA mode,
1186 		 * prev_blksz should be invalidated.
1187 		 */
1188 		if (host->wm_aligned)
1189 			dw_mci_adjust_fifoth(host, data);
1190 		else
1191 			mci_writel(host, FIFOTH, host->fifoth_val);
1192 		host->prev_blksz = 0;
1193 	} else {
1194 		/*
1195 		 * Keep the current block size.
1196 		 * It will be used to decide whether to update
1197 		 * fifoth register next time.
1198 		 */
1199 		host->prev_blksz = data->blksz;
1200 	}
1201 }
1202 
1203 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1204 {
1205 	struct dw_mci *host = slot->host;
1206 	unsigned int clock = slot->clock;
1207 	u32 div;
1208 	u32 clk_en_a;
1209 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1210 
1211 	/* We must continue to set bit 28 in CMD until the change is complete */
1212 	if (host->state == STATE_WAITING_CMD11_DONE)
1213 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1214 
1215 	slot->mmc->actual_clock = 0;
1216 
1217 	if (!clock) {
1218 		mci_writel(host, CLKENA, 0);
1219 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1220 	} else if (clock != host->current_speed || force_clkinit) {
1221 		div = host->bus_hz / clock;
1222 		if (host->bus_hz % clock && host->bus_hz > clock)
1223 			/*
1224 			 * move the + 1 after the divide to prevent
1225 			 * over-clocking the card.
1226 			 */
1227 			div += 1;
1228 
1229 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1230 
1231 		if ((clock != slot->__clk_old &&
1232 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1233 			force_clkinit) {
1234 			/* Silent the verbose log if calling from PM context */
1235 			if (!force_clkinit)
1236 				dev_info(&slot->mmc->class_dev,
1237 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1238 					 slot->id, host->bus_hz, clock,
1239 					 div ? ((host->bus_hz / div) >> 1) :
1240 					 host->bus_hz, div);
1241 
1242 			/*
1243 			 * If card is polling, display the message only
1244 			 * one time at boot time.
1245 			 */
1246 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1247 					slot->mmc->f_min == clock)
1248 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1249 		}
1250 
1251 		/* disable clock */
1252 		mci_writel(host, CLKENA, 0);
1253 		mci_writel(host, CLKSRC, 0);
1254 
1255 		/* inform CIU */
1256 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1257 
1258 		/* set clock to desired speed */
1259 		mci_writel(host, CLKDIV, div);
1260 
1261 		/* inform CIU */
1262 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1263 
1264 		/* enable clock; only low power if no SDIO */
1265 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1266 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1267 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1268 		mci_writel(host, CLKENA, clk_en_a);
1269 
1270 		/* inform CIU */
1271 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1272 
1273 		/* keep the last clock value that was requested from core */
1274 		slot->__clk_old = clock;
1275 		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1276 					  host->bus_hz;
1277 	}
1278 
1279 	host->current_speed = clock;
1280 
1281 	/* Set the current slot bus width */
1282 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1283 }
1284 
1285 static void dw_mci_set_data_timeout(struct dw_mci *host,
1286 				    unsigned int timeout_ns)
1287 {
1288 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1289 	u32 clk_div, tmout;
1290 	u64 tmp;
1291 
1292 	if (drv_data && drv_data->set_data_timeout)
1293 		return drv_data->set_data_timeout(host, timeout_ns);
1294 
1295 	clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1296 	if (clk_div == 0)
1297 		clk_div = 1;
1298 
1299 	tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1300 	tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1301 
1302 	/* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1303 	tmout = 0xFF; /* Set maximum */
1304 
1305 	/* TMOUT[31:8] (DATA_TIMEOUT) */
1306 	if (!tmp || tmp > 0xFFFFFF)
1307 		tmout |= (0xFFFFFF << 8);
1308 	else
1309 		tmout |= (tmp & 0xFFFFFF) << 8;
1310 
1311 	mci_writel(host, TMOUT, tmout);
1312 	dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1313 		timeout_ns, tmout >> 8);
1314 }
1315 
1316 static void __dw_mci_start_request(struct dw_mci *host,
1317 				   struct dw_mci_slot *slot,
1318 				   struct mmc_command *cmd)
1319 {
1320 	struct mmc_request *mrq;
1321 	struct mmc_data	*data;
1322 	u32 cmdflags;
1323 
1324 	mrq = slot->mrq;
1325 
1326 	host->mrq = mrq;
1327 
1328 	host->pending_events = 0;
1329 	host->completed_events = 0;
1330 	host->cmd_status = 0;
1331 	host->data_status = 0;
1332 	host->dir_status = 0;
1333 
1334 	data = cmd->data;
1335 	if (data) {
1336 		dw_mci_set_data_timeout(host, data->timeout_ns);
1337 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1338 		mci_writel(host, BLKSIZ, data->blksz);
1339 	}
1340 
1341 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1342 
1343 	/* this is the first command, send the initialization clock */
1344 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1345 		cmdflags |= SDMMC_CMD_INIT;
1346 
1347 	if (data) {
1348 		dw_mci_submit_data(host, data);
1349 		wmb(); /* drain writebuffer */
1350 	}
1351 
1352 	dw_mci_start_command(host, cmd, cmdflags);
1353 
1354 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1355 		unsigned long irqflags;
1356 
1357 		/*
1358 		 * Databook says to fail after 2ms w/ no response, but evidence
1359 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1360 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1361 		 * is just about to roll over.
1362 		 *
1363 		 * We do this whole thing under spinlock and only if the
1364 		 * command hasn't already completed (indicating the irq
1365 		 * already ran so we don't want the timeout).
1366 		 */
1367 		spin_lock_irqsave(&host->irq_lock, irqflags);
1368 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1369 			mod_timer(&host->cmd11_timer,
1370 				jiffies + msecs_to_jiffies(500) + 1);
1371 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1372 	}
1373 
1374 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1375 }
1376 
1377 static void dw_mci_start_request(struct dw_mci *host,
1378 				 struct dw_mci_slot *slot)
1379 {
1380 	struct mmc_request *mrq = slot->mrq;
1381 	struct mmc_command *cmd;
1382 
1383 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1384 	__dw_mci_start_request(host, slot, cmd);
1385 }
1386 
1387 /* must be called with host->lock held */
1388 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1389 				 struct mmc_request *mrq)
1390 {
1391 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1392 		 host->state);
1393 
1394 	slot->mrq = mrq;
1395 
1396 	if (host->state == STATE_WAITING_CMD11_DONE) {
1397 		dev_warn(&slot->mmc->class_dev,
1398 			 "Voltage change didn't complete\n");
1399 		/*
1400 		 * this case isn't expected to happen, so we can
1401 		 * either crash here or just try to continue on
1402 		 * in the closest possible state
1403 		 */
1404 		host->state = STATE_IDLE;
1405 	}
1406 
1407 	if (host->state == STATE_IDLE) {
1408 		host->state = STATE_SENDING_CMD;
1409 		dw_mci_start_request(host, slot);
1410 	} else {
1411 		list_add_tail(&slot->queue_node, &host->queue);
1412 	}
1413 }
1414 
1415 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1416 {
1417 	struct dw_mci_slot *slot = mmc_priv(mmc);
1418 	struct dw_mci *host = slot->host;
1419 
1420 	WARN_ON(slot->mrq);
1421 
1422 	/*
1423 	 * The check for card presence and queueing of the request must be
1424 	 * atomic, otherwise the card could be removed in between and the
1425 	 * request wouldn't fail until another card was inserted.
1426 	 */
1427 
1428 	if (!dw_mci_get_cd(mmc)) {
1429 		mrq->cmd->error = -ENOMEDIUM;
1430 		mmc_request_done(mmc, mrq);
1431 		return;
1432 	}
1433 
1434 	spin_lock_bh(&host->lock);
1435 
1436 	dw_mci_queue_request(host, slot, mrq);
1437 
1438 	spin_unlock_bh(&host->lock);
1439 }
1440 
1441 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1442 {
1443 	struct dw_mci_slot *slot = mmc_priv(mmc);
1444 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1445 	u32 regs;
1446 	int ret;
1447 
1448 	switch (ios->bus_width) {
1449 	case MMC_BUS_WIDTH_4:
1450 		slot->ctype = SDMMC_CTYPE_4BIT;
1451 		break;
1452 	case MMC_BUS_WIDTH_8:
1453 		slot->ctype = SDMMC_CTYPE_8BIT;
1454 		break;
1455 	default:
1456 		/* set default 1 bit mode */
1457 		slot->ctype = SDMMC_CTYPE_1BIT;
1458 	}
1459 
1460 	regs = mci_readl(slot->host, UHS_REG);
1461 
1462 	/* DDR mode set */
1463 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1464 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1465 	    ios->timing == MMC_TIMING_MMC_HS400)
1466 		regs |= ((0x1 << slot->id) << 16);
1467 	else
1468 		regs &= ~((0x1 << slot->id) << 16);
1469 
1470 	mci_writel(slot->host, UHS_REG, regs);
1471 	slot->host->timing = ios->timing;
1472 
1473 	/*
1474 	 * Use mirror of ios->clock to prevent race with mmc
1475 	 * core ios update when finding the minimum.
1476 	 */
1477 	slot->clock = ios->clock;
1478 
1479 	if (drv_data && drv_data->set_ios)
1480 		drv_data->set_ios(slot->host, ios);
1481 
1482 	switch (ios->power_mode) {
1483 	case MMC_POWER_UP:
1484 		if (!IS_ERR(mmc->supply.vmmc)) {
1485 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1486 					ios->vdd);
1487 			if (ret) {
1488 				dev_err(slot->host->dev,
1489 					"failed to enable vmmc regulator\n");
1490 				/*return, if failed turn on vmmc*/
1491 				return;
1492 			}
1493 		}
1494 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1495 		regs = mci_readl(slot->host, PWREN);
1496 		regs |= (1 << slot->id);
1497 		mci_writel(slot->host, PWREN, regs);
1498 		break;
1499 	case MMC_POWER_ON:
1500 		if (!slot->host->vqmmc_enabled) {
1501 			if (!IS_ERR(mmc->supply.vqmmc)) {
1502 				ret = regulator_enable(mmc->supply.vqmmc);
1503 				if (ret < 0)
1504 					dev_err(slot->host->dev,
1505 						"failed to enable vqmmc\n");
1506 				else
1507 					slot->host->vqmmc_enabled = true;
1508 
1509 			} else {
1510 				/* Keep track so we don't reset again */
1511 				slot->host->vqmmc_enabled = true;
1512 			}
1513 
1514 			/* Reset our state machine after powering on */
1515 			dw_mci_ctrl_reset(slot->host,
1516 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1517 		}
1518 
1519 		/* Adjust clock / bus width after power is up */
1520 		dw_mci_setup_bus(slot, false);
1521 
1522 		break;
1523 	case MMC_POWER_OFF:
1524 		/* Turn clock off before power goes down */
1525 		dw_mci_setup_bus(slot, false);
1526 
1527 		if (!IS_ERR(mmc->supply.vmmc))
1528 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1529 
1530 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1531 			regulator_disable(mmc->supply.vqmmc);
1532 		slot->host->vqmmc_enabled = false;
1533 
1534 		regs = mci_readl(slot->host, PWREN);
1535 		regs &= ~(1 << slot->id);
1536 		mci_writel(slot->host, PWREN, regs);
1537 		break;
1538 	default:
1539 		break;
1540 	}
1541 
1542 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1543 		slot->host->state = STATE_IDLE;
1544 }
1545 
1546 static int dw_mci_card_busy(struct mmc_host *mmc)
1547 {
1548 	struct dw_mci_slot *slot = mmc_priv(mmc);
1549 	u32 status;
1550 
1551 	/*
1552 	 * Check the busy bit which is low when DAT[3:0]
1553 	 * (the data lines) are 0000
1554 	 */
1555 	status = mci_readl(slot->host, STATUS);
1556 
1557 	return !!(status & SDMMC_STATUS_BUSY);
1558 }
1559 
1560 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1561 {
1562 	struct dw_mci_slot *slot = mmc_priv(mmc);
1563 	struct dw_mci *host = slot->host;
1564 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1565 	u32 uhs;
1566 	u32 v18 = SDMMC_UHS_18V << slot->id;
1567 	int ret;
1568 
1569 	if (drv_data && drv_data->switch_voltage)
1570 		return drv_data->switch_voltage(mmc, ios);
1571 
1572 	/*
1573 	 * Program the voltage.  Note that some instances of dw_mmc may use
1574 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1575 	 * does no harm but you need to set the regulator directly.  Try both.
1576 	 */
1577 	uhs = mci_readl(host, UHS_REG);
1578 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1579 		uhs &= ~v18;
1580 	else
1581 		uhs |= v18;
1582 
1583 	if (!IS_ERR(mmc->supply.vqmmc)) {
1584 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1585 		if (ret < 0) {
1586 			dev_dbg(&mmc->class_dev,
1587 					 "Regulator set error %d - %s V\n",
1588 					 ret, uhs & v18 ? "1.8" : "3.3");
1589 			return ret;
1590 		}
1591 	}
1592 	mci_writel(host, UHS_REG, uhs);
1593 
1594 	return 0;
1595 }
1596 
1597 static int dw_mci_get_ro(struct mmc_host *mmc)
1598 {
1599 	int read_only;
1600 	struct dw_mci_slot *slot = mmc_priv(mmc);
1601 	int gpio_ro = mmc_gpio_get_ro(mmc);
1602 
1603 	/* Use platform get_ro function, else try on board write protect */
1604 	if (gpio_ro >= 0)
1605 		read_only = gpio_ro;
1606 	else
1607 		read_only =
1608 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1609 
1610 	dev_dbg(&mmc->class_dev, "card is %s\n",
1611 		read_only ? "read-only" : "read-write");
1612 
1613 	return read_only;
1614 }
1615 
1616 static void dw_mci_hw_reset(struct mmc_host *mmc)
1617 {
1618 	struct dw_mci_slot *slot = mmc_priv(mmc);
1619 	struct dw_mci *host = slot->host;
1620 	int reset;
1621 
1622 	if (host->use_dma == TRANS_MODE_IDMAC)
1623 		dw_mci_idmac_reset(host);
1624 
1625 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1626 				     SDMMC_CTRL_FIFO_RESET))
1627 		return;
1628 
1629 	/*
1630 	 * According to eMMC spec, card reset procedure:
1631 	 * tRstW >= 1us:   RST_n pulse width
1632 	 * tRSCA >= 200us: RST_n to Command time
1633 	 * tRSTH >= 1us:   RST_n high period
1634 	 */
1635 	reset = mci_readl(host, RST_N);
1636 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1637 	mci_writel(host, RST_N, reset);
1638 	usleep_range(1, 2);
1639 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1640 	mci_writel(host, RST_N, reset);
1641 	usleep_range(200, 300);
1642 }
1643 
1644 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1645 {
1646 	struct dw_mci *host = slot->host;
1647 	const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1648 	u32 clk_en_a_old;
1649 	u32 clk_en_a;
1650 
1651 	/*
1652 	 * Low power mode will stop the card clock when idle.  According to the
1653 	 * description of the CLKENA register we should disable low power mode
1654 	 * for SDIO cards if we need SDIO interrupts to work.
1655 	 */
1656 
1657 	clk_en_a_old = mci_readl(host, CLKENA);
1658 	if (prepare) {
1659 		set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1660 		clk_en_a = clk_en_a_old & ~clken_low_pwr;
1661 	} else {
1662 		clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1663 		clk_en_a = clk_en_a_old | clken_low_pwr;
1664 	}
1665 
1666 	if (clk_en_a != clk_en_a_old) {
1667 		mci_writel(host, CLKENA, clk_en_a);
1668 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1669 			     0);
1670 	}
1671 }
1672 
1673 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1674 {
1675 	struct dw_mci *host = slot->host;
1676 	unsigned long irqflags;
1677 	u32 int_mask;
1678 
1679 	spin_lock_irqsave(&host->irq_lock, irqflags);
1680 
1681 	/* Enable/disable Slot Specific SDIO interrupt */
1682 	int_mask = mci_readl(host, INTMASK);
1683 	if (enb)
1684 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1685 	else
1686 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1687 	mci_writel(host, INTMASK, int_mask);
1688 
1689 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1690 }
1691 
1692 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1693 {
1694 	struct dw_mci_slot *slot = mmc_priv(mmc);
1695 	struct dw_mci *host = slot->host;
1696 
1697 	dw_mci_prepare_sdio_irq(slot, enb);
1698 	__dw_mci_enable_sdio_irq(slot, enb);
1699 
1700 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1701 	if (enb)
1702 		pm_runtime_get_noresume(host->dev);
1703 	else
1704 		pm_runtime_put_noidle(host->dev);
1705 }
1706 
1707 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1708 {
1709 	struct dw_mci_slot *slot = mmc_priv(mmc);
1710 
1711 	__dw_mci_enable_sdio_irq(slot, 1);
1712 }
1713 
1714 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1715 {
1716 	struct dw_mci_slot *slot = mmc_priv(mmc);
1717 	struct dw_mci *host = slot->host;
1718 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1719 	int err = -EINVAL;
1720 
1721 	if (drv_data && drv_data->execute_tuning)
1722 		err = drv_data->execute_tuning(slot, opcode);
1723 	return err;
1724 }
1725 
1726 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1727 				       struct mmc_ios *ios)
1728 {
1729 	struct dw_mci_slot *slot = mmc_priv(mmc);
1730 	struct dw_mci *host = slot->host;
1731 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1732 
1733 	if (drv_data && drv_data->prepare_hs400_tuning)
1734 		return drv_data->prepare_hs400_tuning(host, ios);
1735 
1736 	return 0;
1737 }
1738 
1739 static bool dw_mci_reset(struct dw_mci *host)
1740 {
1741 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1742 	bool ret = false;
1743 	u32 status = 0;
1744 
1745 	/*
1746 	 * Resetting generates a block interrupt, hence setting
1747 	 * the scatter-gather pointer to NULL.
1748 	 */
1749 	if (host->sg) {
1750 		sg_miter_stop(&host->sg_miter);
1751 		host->sg = NULL;
1752 	}
1753 
1754 	if (host->use_dma)
1755 		flags |= SDMMC_CTRL_DMA_RESET;
1756 
1757 	if (dw_mci_ctrl_reset(host, flags)) {
1758 		/*
1759 		 * In all cases we clear the RAWINTS
1760 		 * register to clear any interrupts.
1761 		 */
1762 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1763 
1764 		if (!host->use_dma) {
1765 			ret = true;
1766 			goto ciu_out;
1767 		}
1768 
1769 		/* Wait for dma_req to be cleared */
1770 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1771 					      status,
1772 					      !(status & SDMMC_STATUS_DMA_REQ),
1773 					      1, 500 * USEC_PER_MSEC)) {
1774 			dev_err(host->dev,
1775 				"%s: Timeout waiting for dma_req to be cleared\n",
1776 				__func__);
1777 			goto ciu_out;
1778 		}
1779 
1780 		/* when using DMA next we reset the fifo again */
1781 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1782 			goto ciu_out;
1783 	} else {
1784 		/* if the controller reset bit did clear, then set clock regs */
1785 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1786 			dev_err(host->dev,
1787 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1788 				__func__);
1789 			goto ciu_out;
1790 		}
1791 	}
1792 
1793 	if (host->use_dma == TRANS_MODE_IDMAC)
1794 		/* It is also required that we reinit idmac */
1795 		dw_mci_idmac_init(host);
1796 
1797 	ret = true;
1798 
1799 ciu_out:
1800 	/* After a CTRL reset we need to have CIU set clock registers  */
1801 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1802 
1803 	return ret;
1804 }
1805 
1806 static const struct mmc_host_ops dw_mci_ops = {
1807 	.request		= dw_mci_request,
1808 	.pre_req		= dw_mci_pre_req,
1809 	.post_req		= dw_mci_post_req,
1810 	.set_ios		= dw_mci_set_ios,
1811 	.get_ro			= dw_mci_get_ro,
1812 	.get_cd			= dw_mci_get_cd,
1813 	.card_hw_reset          = dw_mci_hw_reset,
1814 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1815 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1816 	.execute_tuning		= dw_mci_execute_tuning,
1817 	.card_busy		= dw_mci_card_busy,
1818 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1819 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1820 };
1821 
1822 #ifdef CONFIG_FAULT_INJECTION
1823 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1824 {
1825 	struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1826 	unsigned long flags;
1827 
1828 	spin_lock_irqsave(&host->irq_lock, flags);
1829 
1830 	/*
1831 	 * Only inject an error if we haven't already got an error or data over
1832 	 * interrupt.
1833 	 */
1834 	if (!host->data_status) {
1835 		host->data_status = SDMMC_INT_DCRC;
1836 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
1837 		tasklet_schedule(&host->tasklet);
1838 	}
1839 
1840 	spin_unlock_irqrestore(&host->irq_lock, flags);
1841 
1842 	return HRTIMER_NORESTART;
1843 }
1844 
1845 static void dw_mci_start_fault_timer(struct dw_mci *host)
1846 {
1847 	struct mmc_data *data = host->data;
1848 
1849 	if (!data || data->blocks <= 1)
1850 		return;
1851 
1852 	if (!should_fail(&host->fail_data_crc, 1))
1853 		return;
1854 
1855 	/*
1856 	 * Try to inject the error at random points during the data transfer.
1857 	 */
1858 	hrtimer_start(&host->fault_timer,
1859 		      ms_to_ktime(get_random_u32_below(25)),
1860 		      HRTIMER_MODE_REL);
1861 }
1862 
1863 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1864 {
1865 	hrtimer_cancel(&host->fault_timer);
1866 }
1867 
1868 static void dw_mci_init_fault(struct dw_mci *host)
1869 {
1870 	host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1871 
1872 	hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1873 	host->fault_timer.function = dw_mci_fault_timer;
1874 }
1875 #else
1876 static void dw_mci_init_fault(struct dw_mci *host)
1877 {
1878 }
1879 
1880 static void dw_mci_start_fault_timer(struct dw_mci *host)
1881 {
1882 }
1883 
1884 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1885 {
1886 }
1887 #endif
1888 
1889 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1890 	__releases(&host->lock)
1891 	__acquires(&host->lock)
1892 {
1893 	struct dw_mci_slot *slot;
1894 	struct mmc_host	*prev_mmc = host->slot->mmc;
1895 
1896 	WARN_ON(host->cmd || host->data);
1897 
1898 	host->slot->mrq = NULL;
1899 	host->mrq = NULL;
1900 	if (!list_empty(&host->queue)) {
1901 		slot = list_entry(host->queue.next,
1902 				  struct dw_mci_slot, queue_node);
1903 		list_del(&slot->queue_node);
1904 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1905 			 mmc_hostname(slot->mmc));
1906 		host->state = STATE_SENDING_CMD;
1907 		dw_mci_start_request(host, slot);
1908 	} else {
1909 		dev_vdbg(host->dev, "list empty\n");
1910 
1911 		if (host->state == STATE_SENDING_CMD11)
1912 			host->state = STATE_WAITING_CMD11_DONE;
1913 		else
1914 			host->state = STATE_IDLE;
1915 	}
1916 
1917 	spin_unlock(&host->lock);
1918 	mmc_request_done(prev_mmc, mrq);
1919 	spin_lock(&host->lock);
1920 }
1921 
1922 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1923 {
1924 	u32 status = host->cmd_status;
1925 
1926 	host->cmd_status = 0;
1927 
1928 	/* Read the response from the card (up to 16 bytes) */
1929 	if (cmd->flags & MMC_RSP_PRESENT) {
1930 		if (cmd->flags & MMC_RSP_136) {
1931 			cmd->resp[3] = mci_readl(host, RESP0);
1932 			cmd->resp[2] = mci_readl(host, RESP1);
1933 			cmd->resp[1] = mci_readl(host, RESP2);
1934 			cmd->resp[0] = mci_readl(host, RESP3);
1935 		} else {
1936 			cmd->resp[0] = mci_readl(host, RESP0);
1937 			cmd->resp[1] = 0;
1938 			cmd->resp[2] = 0;
1939 			cmd->resp[3] = 0;
1940 		}
1941 	}
1942 
1943 	if (status & SDMMC_INT_RTO)
1944 		cmd->error = -ETIMEDOUT;
1945 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1946 		cmd->error = -EILSEQ;
1947 	else if (status & SDMMC_INT_RESP_ERR)
1948 		cmd->error = -EIO;
1949 	else
1950 		cmd->error = 0;
1951 
1952 	return cmd->error;
1953 }
1954 
1955 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1956 {
1957 	u32 status = host->data_status;
1958 
1959 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1960 		if (status & SDMMC_INT_DRTO) {
1961 			data->error = -ETIMEDOUT;
1962 		} else if (status & SDMMC_INT_DCRC) {
1963 			data->error = -EILSEQ;
1964 		} else if (status & SDMMC_INT_EBE) {
1965 			if (host->dir_status ==
1966 				DW_MCI_SEND_STATUS) {
1967 				/*
1968 				 * No data CRC status was returned.
1969 				 * The number of bytes transferred
1970 				 * will be exaggerated in PIO mode.
1971 				 */
1972 				data->bytes_xfered = 0;
1973 				data->error = -ETIMEDOUT;
1974 			} else if (host->dir_status ==
1975 					DW_MCI_RECV_STATUS) {
1976 				data->error = -EILSEQ;
1977 			}
1978 		} else {
1979 			/* SDMMC_INT_SBE is included */
1980 			data->error = -EILSEQ;
1981 		}
1982 
1983 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1984 
1985 		/*
1986 		 * After an error, there may be data lingering
1987 		 * in the FIFO
1988 		 */
1989 		dw_mci_reset(host);
1990 	} else {
1991 		data->bytes_xfered = data->blocks * data->blksz;
1992 		data->error = 0;
1993 	}
1994 
1995 	return data->error;
1996 }
1997 
1998 static void dw_mci_set_drto(struct dw_mci *host)
1999 {
2000 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2001 	unsigned int drto_clks;
2002 	unsigned int drto_div;
2003 	unsigned int drto_ms;
2004 	unsigned long irqflags;
2005 
2006 	if (drv_data && drv_data->get_drto_clks)
2007 		drto_clks = drv_data->get_drto_clks(host);
2008 	else
2009 		drto_clks = mci_readl(host, TMOUT) >> 8;
2010 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2011 	if (drto_div == 0)
2012 		drto_div = 1;
2013 
2014 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2015 				   host->bus_hz);
2016 
2017 	dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2018 
2019 	/* add a bit spare time */
2020 	drto_ms += 10;
2021 
2022 	spin_lock_irqsave(&host->irq_lock, irqflags);
2023 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2024 		mod_timer(&host->dto_timer,
2025 			  jiffies + msecs_to_jiffies(drto_ms));
2026 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
2027 }
2028 
2029 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2030 {
2031 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2032 		return false;
2033 
2034 	/*
2035 	 * Really be certain that the timer has stopped.  This is a bit of
2036 	 * paranoia and could only really happen if we had really bad
2037 	 * interrupt latency and the interrupt routine and timeout were
2038 	 * running concurrently so that the del_timer() in the interrupt
2039 	 * handler couldn't run.
2040 	 */
2041 	WARN_ON(del_timer_sync(&host->cto_timer));
2042 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2043 
2044 	return true;
2045 }
2046 
2047 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2048 {
2049 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2050 		return false;
2051 
2052 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2053 	WARN_ON(del_timer_sync(&host->dto_timer));
2054 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2055 
2056 	return true;
2057 }
2058 
2059 static void dw_mci_tasklet_func(struct tasklet_struct *t)
2060 {
2061 	struct dw_mci *host = from_tasklet(host, t, tasklet);
2062 	struct mmc_data	*data;
2063 	struct mmc_command *cmd;
2064 	struct mmc_request *mrq;
2065 	enum dw_mci_state state;
2066 	enum dw_mci_state prev_state;
2067 	unsigned int err;
2068 
2069 	spin_lock(&host->lock);
2070 
2071 	state = host->state;
2072 	data = host->data;
2073 	mrq = host->mrq;
2074 
2075 	do {
2076 		prev_state = state;
2077 
2078 		switch (state) {
2079 		case STATE_IDLE:
2080 		case STATE_WAITING_CMD11_DONE:
2081 			break;
2082 
2083 		case STATE_SENDING_CMD11:
2084 		case STATE_SENDING_CMD:
2085 			if (!dw_mci_clear_pending_cmd_complete(host))
2086 				break;
2087 
2088 			cmd = host->cmd;
2089 			host->cmd = NULL;
2090 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2091 			err = dw_mci_command_complete(host, cmd);
2092 			if (cmd == mrq->sbc && !err) {
2093 				__dw_mci_start_request(host, host->slot,
2094 						       mrq->cmd);
2095 				goto unlock;
2096 			}
2097 
2098 			if (cmd->data && err) {
2099 				/*
2100 				 * During UHS tuning sequence, sending the stop
2101 				 * command after the response CRC error would
2102 				 * throw the system into a confused state
2103 				 * causing all future tuning phases to report
2104 				 * failure.
2105 				 *
2106 				 * In such case controller will move into a data
2107 				 * transfer state after a response error or
2108 				 * response CRC error. Let's let that finish
2109 				 * before trying to send a stop, so we'll go to
2110 				 * STATE_SENDING_DATA.
2111 				 *
2112 				 * Although letting the data transfer take place
2113 				 * will waste a bit of time (we already know
2114 				 * the command was bad), it can't cause any
2115 				 * errors since it's possible it would have
2116 				 * taken place anyway if this tasklet got
2117 				 * delayed. Allowing the transfer to take place
2118 				 * avoids races and keeps things simple.
2119 				 */
2120 				if (err != -ETIMEDOUT &&
2121 				    host->dir_status == DW_MCI_RECV_STATUS) {
2122 					state = STATE_SENDING_DATA;
2123 					continue;
2124 				}
2125 
2126 				send_stop_abort(host, data);
2127 				dw_mci_stop_dma(host);
2128 				state = STATE_SENDING_STOP;
2129 				break;
2130 			}
2131 
2132 			if (!cmd->data || err) {
2133 				dw_mci_request_end(host, mrq);
2134 				goto unlock;
2135 			}
2136 
2137 			prev_state = state = STATE_SENDING_DATA;
2138 			fallthrough;
2139 
2140 		case STATE_SENDING_DATA:
2141 			/*
2142 			 * We could get a data error and never a transfer
2143 			 * complete so we'd better check for it here.
2144 			 *
2145 			 * Note that we don't really care if we also got a
2146 			 * transfer complete; stopping the DMA and sending an
2147 			 * abort won't hurt.
2148 			 */
2149 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2150 					       &host->pending_events)) {
2151 				if (!(host->data_status & (SDMMC_INT_DRTO |
2152 							   SDMMC_INT_EBE)))
2153 					send_stop_abort(host, data);
2154 				dw_mci_stop_dma(host);
2155 				state = STATE_DATA_ERROR;
2156 				break;
2157 			}
2158 
2159 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2160 						&host->pending_events)) {
2161 				/*
2162 				 * If all data-related interrupts don't come
2163 				 * within the given time in reading data state.
2164 				 */
2165 				if (host->dir_status == DW_MCI_RECV_STATUS)
2166 					dw_mci_set_drto(host);
2167 				break;
2168 			}
2169 
2170 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2171 
2172 			/*
2173 			 * Handle an EVENT_DATA_ERROR that might have shown up
2174 			 * before the transfer completed.  This might not have
2175 			 * been caught by the check above because the interrupt
2176 			 * could have gone off between the previous check and
2177 			 * the check for transfer complete.
2178 			 *
2179 			 * Technically this ought not be needed assuming we
2180 			 * get a DATA_COMPLETE eventually (we'll notice the
2181 			 * error and end the request), but it shouldn't hurt.
2182 			 *
2183 			 * This has the advantage of sending the stop command.
2184 			 */
2185 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2186 					       &host->pending_events)) {
2187 				if (!(host->data_status & (SDMMC_INT_DRTO |
2188 							   SDMMC_INT_EBE)))
2189 					send_stop_abort(host, data);
2190 				dw_mci_stop_dma(host);
2191 				state = STATE_DATA_ERROR;
2192 				break;
2193 			}
2194 			prev_state = state = STATE_DATA_BUSY;
2195 
2196 			fallthrough;
2197 
2198 		case STATE_DATA_BUSY:
2199 			if (!dw_mci_clear_pending_data_complete(host)) {
2200 				/*
2201 				 * If data error interrupt comes but data over
2202 				 * interrupt doesn't come within the given time.
2203 				 * in reading data state.
2204 				 */
2205 				if (host->dir_status == DW_MCI_RECV_STATUS)
2206 					dw_mci_set_drto(host);
2207 				break;
2208 			}
2209 
2210 			dw_mci_stop_fault_timer(host);
2211 			host->data = NULL;
2212 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2213 			err = dw_mci_data_complete(host, data);
2214 
2215 			if (!err) {
2216 				if (!data->stop || mrq->sbc) {
2217 					if (mrq->sbc && data->stop)
2218 						data->stop->error = 0;
2219 					dw_mci_request_end(host, mrq);
2220 					goto unlock;
2221 				}
2222 
2223 				/* stop command for open-ended transfer*/
2224 				if (data->stop)
2225 					send_stop_abort(host, data);
2226 			} else {
2227 				/*
2228 				 * If we don't have a command complete now we'll
2229 				 * never get one since we just reset everything;
2230 				 * better end the request.
2231 				 *
2232 				 * If we do have a command complete we'll fall
2233 				 * through to the SENDING_STOP command and
2234 				 * everything will be peachy keen.
2235 				 */
2236 				if (!test_bit(EVENT_CMD_COMPLETE,
2237 					      &host->pending_events)) {
2238 					host->cmd = NULL;
2239 					dw_mci_request_end(host, mrq);
2240 					goto unlock;
2241 				}
2242 			}
2243 
2244 			/*
2245 			 * If err has non-zero,
2246 			 * stop-abort command has been already issued.
2247 			 */
2248 			prev_state = state = STATE_SENDING_STOP;
2249 
2250 			fallthrough;
2251 
2252 		case STATE_SENDING_STOP:
2253 			if (!dw_mci_clear_pending_cmd_complete(host))
2254 				break;
2255 
2256 			/* CMD error in data command */
2257 			if (mrq->cmd->error && mrq->data)
2258 				dw_mci_reset(host);
2259 
2260 			dw_mci_stop_fault_timer(host);
2261 			host->cmd = NULL;
2262 			host->data = NULL;
2263 
2264 			if (!mrq->sbc && mrq->stop)
2265 				dw_mci_command_complete(host, mrq->stop);
2266 			else
2267 				host->cmd_status = 0;
2268 
2269 			dw_mci_request_end(host, mrq);
2270 			goto unlock;
2271 
2272 		case STATE_DATA_ERROR:
2273 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2274 						&host->pending_events))
2275 				break;
2276 
2277 			state = STATE_DATA_BUSY;
2278 			break;
2279 		}
2280 	} while (state != prev_state);
2281 
2282 	host->state = state;
2283 unlock:
2284 	spin_unlock(&host->lock);
2285 
2286 }
2287 
2288 /* push final bytes to part_buf, only use during push */
2289 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2290 {
2291 	memcpy((void *)&host->part_buf, buf, cnt);
2292 	host->part_buf_count = cnt;
2293 }
2294 
2295 /* append bytes to part_buf, only use during push */
2296 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2297 {
2298 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2299 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2300 	host->part_buf_count += cnt;
2301 	return cnt;
2302 }
2303 
2304 /* pull first bytes from part_buf, only use during pull */
2305 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2306 {
2307 	cnt = min_t(int, cnt, host->part_buf_count);
2308 	if (cnt) {
2309 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2310 		       cnt);
2311 		host->part_buf_count -= cnt;
2312 		host->part_buf_start += cnt;
2313 	}
2314 	return cnt;
2315 }
2316 
2317 /* pull final bytes from the part_buf, assuming it's just been filled */
2318 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2319 {
2320 	memcpy(buf, &host->part_buf, cnt);
2321 	host->part_buf_start = cnt;
2322 	host->part_buf_count = (1 << host->data_shift) - cnt;
2323 }
2324 
2325 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2326 {
2327 	struct mmc_data *data = host->data;
2328 	int init_cnt = cnt;
2329 
2330 	/* try and push anything in the part_buf */
2331 	if (unlikely(host->part_buf_count)) {
2332 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2333 
2334 		buf += len;
2335 		cnt -= len;
2336 		if (host->part_buf_count == 2) {
2337 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2338 			host->part_buf_count = 0;
2339 		}
2340 	}
2341 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2342 	if (unlikely((unsigned long)buf & 0x1)) {
2343 		while (cnt >= 2) {
2344 			u16 aligned_buf[64];
2345 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2346 			int items = len >> 1;
2347 			int i;
2348 			/* memcpy from input buffer into aligned buffer */
2349 			memcpy(aligned_buf, buf, len);
2350 			buf += len;
2351 			cnt -= len;
2352 			/* push data from aligned buffer into fifo */
2353 			for (i = 0; i < items; ++i)
2354 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2355 		}
2356 	} else
2357 #endif
2358 	{
2359 		u16 *pdata = buf;
2360 
2361 		for (; cnt >= 2; cnt -= 2)
2362 			mci_fifo_writew(host->fifo_reg, *pdata++);
2363 		buf = pdata;
2364 	}
2365 	/* put anything remaining in the part_buf */
2366 	if (cnt) {
2367 		dw_mci_set_part_bytes(host, buf, cnt);
2368 		 /* Push data if we have reached the expected data length */
2369 		if ((data->bytes_xfered + init_cnt) ==
2370 		    (data->blksz * data->blocks))
2371 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2372 	}
2373 }
2374 
2375 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2376 {
2377 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2378 	if (unlikely((unsigned long)buf & 0x1)) {
2379 		while (cnt >= 2) {
2380 			/* pull data from fifo into aligned buffer */
2381 			u16 aligned_buf[64];
2382 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2383 			int items = len >> 1;
2384 			int i;
2385 
2386 			for (i = 0; i < items; ++i)
2387 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2388 			/* memcpy from aligned buffer into output buffer */
2389 			memcpy(buf, aligned_buf, len);
2390 			buf += len;
2391 			cnt -= len;
2392 		}
2393 	} else
2394 #endif
2395 	{
2396 		u16 *pdata = buf;
2397 
2398 		for (; cnt >= 2; cnt -= 2)
2399 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2400 		buf = pdata;
2401 	}
2402 	if (cnt) {
2403 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2404 		dw_mci_pull_final_bytes(host, buf, cnt);
2405 	}
2406 }
2407 
2408 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2409 {
2410 	struct mmc_data *data = host->data;
2411 	int init_cnt = cnt;
2412 
2413 	/* try and push anything in the part_buf */
2414 	if (unlikely(host->part_buf_count)) {
2415 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2416 
2417 		buf += len;
2418 		cnt -= len;
2419 		if (host->part_buf_count == 4) {
2420 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2421 			host->part_buf_count = 0;
2422 		}
2423 	}
2424 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2425 	if (unlikely((unsigned long)buf & 0x3)) {
2426 		while (cnt >= 4) {
2427 			u32 aligned_buf[32];
2428 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2429 			int items = len >> 2;
2430 			int i;
2431 			/* memcpy from input buffer into aligned buffer */
2432 			memcpy(aligned_buf, buf, len);
2433 			buf += len;
2434 			cnt -= len;
2435 			/* push data from aligned buffer into fifo */
2436 			for (i = 0; i < items; ++i)
2437 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2438 		}
2439 	} else
2440 #endif
2441 	{
2442 		u32 *pdata = buf;
2443 
2444 		for (; cnt >= 4; cnt -= 4)
2445 			mci_fifo_writel(host->fifo_reg, *pdata++);
2446 		buf = pdata;
2447 	}
2448 	/* put anything remaining in the part_buf */
2449 	if (cnt) {
2450 		dw_mci_set_part_bytes(host, buf, cnt);
2451 		 /* Push data if we have reached the expected data length */
2452 		if ((data->bytes_xfered + init_cnt) ==
2453 		    (data->blksz * data->blocks))
2454 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2455 	}
2456 }
2457 
2458 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2459 {
2460 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2461 	if (unlikely((unsigned long)buf & 0x3)) {
2462 		while (cnt >= 4) {
2463 			/* pull data from fifo into aligned buffer */
2464 			u32 aligned_buf[32];
2465 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2466 			int items = len >> 2;
2467 			int i;
2468 
2469 			for (i = 0; i < items; ++i)
2470 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2471 			/* memcpy from aligned buffer into output buffer */
2472 			memcpy(buf, aligned_buf, len);
2473 			buf += len;
2474 			cnt -= len;
2475 		}
2476 	} else
2477 #endif
2478 	{
2479 		u32 *pdata = buf;
2480 
2481 		for (; cnt >= 4; cnt -= 4)
2482 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2483 		buf = pdata;
2484 	}
2485 	if (cnt) {
2486 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2487 		dw_mci_pull_final_bytes(host, buf, cnt);
2488 	}
2489 }
2490 
2491 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2492 {
2493 	struct mmc_data *data = host->data;
2494 	int init_cnt = cnt;
2495 
2496 	/* try and push anything in the part_buf */
2497 	if (unlikely(host->part_buf_count)) {
2498 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2499 
2500 		buf += len;
2501 		cnt -= len;
2502 
2503 		if (host->part_buf_count == 8) {
2504 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2505 			host->part_buf_count = 0;
2506 		}
2507 	}
2508 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2509 	if (unlikely((unsigned long)buf & 0x7)) {
2510 		while (cnt >= 8) {
2511 			u64 aligned_buf[16];
2512 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2513 			int items = len >> 3;
2514 			int i;
2515 			/* memcpy from input buffer into aligned buffer */
2516 			memcpy(aligned_buf, buf, len);
2517 			buf += len;
2518 			cnt -= len;
2519 			/* push data from aligned buffer into fifo */
2520 			for (i = 0; i < items; ++i)
2521 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2522 		}
2523 	} else
2524 #endif
2525 	{
2526 		u64 *pdata = buf;
2527 
2528 		for (; cnt >= 8; cnt -= 8)
2529 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2530 		buf = pdata;
2531 	}
2532 	/* put anything remaining in the part_buf */
2533 	if (cnt) {
2534 		dw_mci_set_part_bytes(host, buf, cnt);
2535 		/* Push data if we have reached the expected data length */
2536 		if ((data->bytes_xfered + init_cnt) ==
2537 		    (data->blksz * data->blocks))
2538 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2539 	}
2540 }
2541 
2542 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2543 {
2544 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2545 	if (unlikely((unsigned long)buf & 0x7)) {
2546 		while (cnt >= 8) {
2547 			/* pull data from fifo into aligned buffer */
2548 			u64 aligned_buf[16];
2549 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2550 			int items = len >> 3;
2551 			int i;
2552 
2553 			for (i = 0; i < items; ++i)
2554 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2555 
2556 			/* memcpy from aligned buffer into output buffer */
2557 			memcpy(buf, aligned_buf, len);
2558 			buf += len;
2559 			cnt -= len;
2560 		}
2561 	} else
2562 #endif
2563 	{
2564 		u64 *pdata = buf;
2565 
2566 		for (; cnt >= 8; cnt -= 8)
2567 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2568 		buf = pdata;
2569 	}
2570 	if (cnt) {
2571 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2572 		dw_mci_pull_final_bytes(host, buf, cnt);
2573 	}
2574 }
2575 
2576 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2577 {
2578 	int len;
2579 
2580 	/* get remaining partial bytes */
2581 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2582 	if (unlikely(len == cnt))
2583 		return;
2584 	buf += len;
2585 	cnt -= len;
2586 
2587 	/* get the rest of the data */
2588 	host->pull_data(host, buf, cnt);
2589 }
2590 
2591 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2592 {
2593 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2594 	void *buf;
2595 	unsigned int offset;
2596 	struct mmc_data	*data = host->data;
2597 	int shift = host->data_shift;
2598 	u32 status;
2599 	unsigned int len;
2600 	unsigned int remain, fcnt;
2601 
2602 	do {
2603 		if (!sg_miter_next(sg_miter))
2604 			goto done;
2605 
2606 		host->sg = sg_miter->piter.sg;
2607 		buf = sg_miter->addr;
2608 		remain = sg_miter->length;
2609 		offset = 0;
2610 
2611 		do {
2612 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2613 					<< shift) + host->part_buf_count;
2614 			len = min(remain, fcnt);
2615 			if (!len)
2616 				break;
2617 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2618 			data->bytes_xfered += len;
2619 			offset += len;
2620 			remain -= len;
2621 		} while (remain);
2622 
2623 		sg_miter->consumed = offset;
2624 		status = mci_readl(host, MINTSTS);
2625 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2626 	/* if the RXDR is ready read again */
2627 	} while ((status & SDMMC_INT_RXDR) ||
2628 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2629 
2630 	if (!remain) {
2631 		if (!sg_miter_next(sg_miter))
2632 			goto done;
2633 		sg_miter->consumed = 0;
2634 	}
2635 	sg_miter_stop(sg_miter);
2636 	return;
2637 
2638 done:
2639 	sg_miter_stop(sg_miter);
2640 	host->sg = NULL;
2641 	smp_wmb(); /* drain writebuffer */
2642 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2643 }
2644 
2645 static void dw_mci_write_data_pio(struct dw_mci *host)
2646 {
2647 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2648 	void *buf;
2649 	unsigned int offset;
2650 	struct mmc_data	*data = host->data;
2651 	int shift = host->data_shift;
2652 	u32 status;
2653 	unsigned int len;
2654 	unsigned int fifo_depth = host->fifo_depth;
2655 	unsigned int remain, fcnt;
2656 
2657 	do {
2658 		if (!sg_miter_next(sg_miter))
2659 			goto done;
2660 
2661 		host->sg = sg_miter->piter.sg;
2662 		buf = sg_miter->addr;
2663 		remain = sg_miter->length;
2664 		offset = 0;
2665 
2666 		do {
2667 			fcnt = ((fifo_depth -
2668 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2669 					<< shift) - host->part_buf_count;
2670 			len = min(remain, fcnt);
2671 			if (!len)
2672 				break;
2673 			host->push_data(host, (void *)(buf + offset), len);
2674 			data->bytes_xfered += len;
2675 			offset += len;
2676 			remain -= len;
2677 		} while (remain);
2678 
2679 		sg_miter->consumed = offset;
2680 		status = mci_readl(host, MINTSTS);
2681 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2682 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2683 
2684 	if (!remain) {
2685 		if (!sg_miter_next(sg_miter))
2686 			goto done;
2687 		sg_miter->consumed = 0;
2688 	}
2689 	sg_miter_stop(sg_miter);
2690 	return;
2691 
2692 done:
2693 	sg_miter_stop(sg_miter);
2694 	host->sg = NULL;
2695 	smp_wmb(); /* drain writebuffer */
2696 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2697 }
2698 
2699 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2700 {
2701 	del_timer(&host->cto_timer);
2702 
2703 	if (!host->cmd_status)
2704 		host->cmd_status = status;
2705 
2706 	smp_wmb(); /* drain writebuffer */
2707 
2708 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2709 	tasklet_schedule(&host->tasklet);
2710 
2711 	dw_mci_start_fault_timer(host);
2712 }
2713 
2714 static void dw_mci_handle_cd(struct dw_mci *host)
2715 {
2716 	struct dw_mci_slot *slot = host->slot;
2717 
2718 	mmc_detect_change(slot->mmc,
2719 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2720 }
2721 
2722 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2723 {
2724 	struct dw_mci *host = dev_id;
2725 	u32 pending;
2726 	struct dw_mci_slot *slot = host->slot;
2727 
2728 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2729 
2730 	if (pending) {
2731 		/* Check volt switch first, since it can look like an error */
2732 		if ((host->state == STATE_SENDING_CMD11) &&
2733 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2734 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2735 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2736 
2737 			/*
2738 			 * Hold the lock; we know cmd11_timer can't be kicked
2739 			 * off after the lock is released, so safe to delete.
2740 			 */
2741 			spin_lock(&host->irq_lock);
2742 			dw_mci_cmd_interrupt(host, pending);
2743 			spin_unlock(&host->irq_lock);
2744 
2745 			del_timer(&host->cmd11_timer);
2746 		}
2747 
2748 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2749 			spin_lock(&host->irq_lock);
2750 
2751 			del_timer(&host->cto_timer);
2752 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2753 			host->cmd_status = pending;
2754 			smp_wmb(); /* drain writebuffer */
2755 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2756 
2757 			spin_unlock(&host->irq_lock);
2758 		}
2759 
2760 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2761 			spin_lock(&host->irq_lock);
2762 
2763 			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2764 				del_timer(&host->dto_timer);
2765 
2766 			/* if there is an error report DATA_ERROR */
2767 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2768 			host->data_status = pending;
2769 			smp_wmb(); /* drain writebuffer */
2770 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2771 
2772 			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2773 				/* In case of error, we cannot expect a DTO */
2774 				set_bit(EVENT_DATA_COMPLETE,
2775 					&host->pending_events);
2776 
2777 			tasklet_schedule(&host->tasklet);
2778 
2779 			spin_unlock(&host->irq_lock);
2780 		}
2781 
2782 		if (pending & SDMMC_INT_DATA_OVER) {
2783 			spin_lock(&host->irq_lock);
2784 
2785 			del_timer(&host->dto_timer);
2786 
2787 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2788 			if (!host->data_status)
2789 				host->data_status = pending;
2790 			smp_wmb(); /* drain writebuffer */
2791 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2792 				if (host->sg != NULL)
2793 					dw_mci_read_data_pio(host, true);
2794 			}
2795 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2796 			tasklet_schedule(&host->tasklet);
2797 
2798 			spin_unlock(&host->irq_lock);
2799 		}
2800 
2801 		if (pending & SDMMC_INT_RXDR) {
2802 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2803 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2804 				dw_mci_read_data_pio(host, false);
2805 		}
2806 
2807 		if (pending & SDMMC_INT_TXDR) {
2808 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2809 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2810 				dw_mci_write_data_pio(host);
2811 		}
2812 
2813 		if (pending & SDMMC_INT_CMD_DONE) {
2814 			spin_lock(&host->irq_lock);
2815 
2816 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2817 			dw_mci_cmd_interrupt(host, pending);
2818 
2819 			spin_unlock(&host->irq_lock);
2820 		}
2821 
2822 		if (pending & SDMMC_INT_CD) {
2823 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2824 			dw_mci_handle_cd(host);
2825 		}
2826 
2827 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2828 			mci_writel(host, RINTSTS,
2829 				   SDMMC_INT_SDIO(slot->sdio_id));
2830 			__dw_mci_enable_sdio_irq(slot, 0);
2831 			sdio_signal_irq(slot->mmc);
2832 		}
2833 
2834 	}
2835 
2836 	if (host->use_dma != TRANS_MODE_IDMAC)
2837 		return IRQ_HANDLED;
2838 
2839 	/* Handle IDMA interrupts */
2840 	if (host->dma_64bit_address == 1) {
2841 		pending = mci_readl(host, IDSTS64);
2842 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2843 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2844 							SDMMC_IDMAC_INT_RI);
2845 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2846 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2847 				host->dma_ops->complete((void *)host);
2848 		}
2849 	} else {
2850 		pending = mci_readl(host, IDSTS);
2851 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2852 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2853 							SDMMC_IDMAC_INT_RI);
2854 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2855 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2856 				host->dma_ops->complete((void *)host);
2857 		}
2858 	}
2859 
2860 	return IRQ_HANDLED;
2861 }
2862 
2863 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2864 {
2865 	struct dw_mci *host = slot->host;
2866 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2867 	struct mmc_host *mmc = slot->mmc;
2868 	int ctrl_id;
2869 
2870 	if (host->pdata->caps)
2871 		mmc->caps = host->pdata->caps;
2872 
2873 	if (host->pdata->pm_caps)
2874 		mmc->pm_caps = host->pdata->pm_caps;
2875 
2876 	if (drv_data)
2877 		mmc->caps |= drv_data->common_caps;
2878 
2879 	if (host->dev->of_node) {
2880 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2881 		if (ctrl_id < 0)
2882 			ctrl_id = 0;
2883 	} else {
2884 		ctrl_id = to_platform_device(host->dev)->id;
2885 	}
2886 
2887 	if (drv_data && drv_data->caps) {
2888 		if (ctrl_id >= drv_data->num_caps) {
2889 			dev_err(host->dev, "invalid controller id %d\n",
2890 				ctrl_id);
2891 			return -EINVAL;
2892 		}
2893 		mmc->caps |= drv_data->caps[ctrl_id];
2894 	}
2895 
2896 	if (host->pdata->caps2)
2897 		mmc->caps2 = host->pdata->caps2;
2898 
2899 	/* if host has set a minimum_freq, we should respect it */
2900 	if (host->minimum_speed)
2901 		mmc->f_min = host->minimum_speed;
2902 	else
2903 		mmc->f_min = DW_MCI_FREQ_MIN;
2904 
2905 	if (!mmc->f_max)
2906 		mmc->f_max = DW_MCI_FREQ_MAX;
2907 
2908 	/* Process SDIO IRQs through the sdio_irq_work. */
2909 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2910 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2911 
2912 	return 0;
2913 }
2914 
2915 static int dw_mci_init_slot(struct dw_mci *host)
2916 {
2917 	struct mmc_host *mmc;
2918 	struct dw_mci_slot *slot;
2919 	int ret;
2920 
2921 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2922 	if (!mmc)
2923 		return -ENOMEM;
2924 
2925 	slot = mmc_priv(mmc);
2926 	slot->id = 0;
2927 	slot->sdio_id = host->sdio_id0 + slot->id;
2928 	slot->mmc = mmc;
2929 	slot->host = host;
2930 	host->slot = slot;
2931 
2932 	mmc->ops = &dw_mci_ops;
2933 
2934 	/*if there are external regulators, get them*/
2935 	ret = mmc_regulator_get_supply(mmc);
2936 	if (ret)
2937 		goto err_host_allocated;
2938 
2939 	if (!mmc->ocr_avail)
2940 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2941 
2942 	ret = mmc_of_parse(mmc);
2943 	if (ret)
2944 		goto err_host_allocated;
2945 
2946 	ret = dw_mci_init_slot_caps(slot);
2947 	if (ret)
2948 		goto err_host_allocated;
2949 
2950 	/* Useful defaults if platform data is unset. */
2951 	if (host->use_dma == TRANS_MODE_IDMAC) {
2952 		mmc->max_segs = host->ring_size;
2953 		mmc->max_blk_size = 65535;
2954 		mmc->max_seg_size = 0x1000;
2955 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2956 		mmc->max_blk_count = mmc->max_req_size / 512;
2957 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2958 		mmc->max_segs = 64;
2959 		mmc->max_blk_size = 65535;
2960 		mmc->max_blk_count = 65535;
2961 		mmc->max_req_size =
2962 				mmc->max_blk_size * mmc->max_blk_count;
2963 		mmc->max_seg_size = mmc->max_req_size;
2964 	} else {
2965 		/* TRANS_MODE_PIO */
2966 		mmc->max_segs = 64;
2967 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2968 		mmc->max_blk_count = 512;
2969 		mmc->max_req_size = mmc->max_blk_size *
2970 				    mmc->max_blk_count;
2971 		mmc->max_seg_size = mmc->max_req_size;
2972 	}
2973 
2974 	dw_mci_get_cd(mmc);
2975 
2976 	ret = mmc_add_host(mmc);
2977 	if (ret)
2978 		goto err_host_allocated;
2979 
2980 #if defined(CONFIG_DEBUG_FS)
2981 	dw_mci_init_debugfs(slot);
2982 #endif
2983 
2984 	return 0;
2985 
2986 err_host_allocated:
2987 	mmc_free_host(mmc);
2988 	return ret;
2989 }
2990 
2991 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2992 {
2993 	/* Debugfs stuff is cleaned up by mmc core */
2994 	mmc_remove_host(slot->mmc);
2995 	slot->host->slot = NULL;
2996 	mmc_free_host(slot->mmc);
2997 }
2998 
2999 static void dw_mci_init_dma(struct dw_mci *host)
3000 {
3001 	int addr_config;
3002 	struct device *dev = host->dev;
3003 
3004 	/*
3005 	* Check tansfer mode from HCON[17:16]
3006 	* Clear the ambiguous description of dw_mmc databook:
3007 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
3008 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3009 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3010 	* 2b'11: Non DW DMA Interface -> pio only
3011 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
3012 	* simpler request/acknowledge handshake mechanism and both of them
3013 	* are regarded as external dma master for dw_mmc.
3014 	*/
3015 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3016 	if (host->use_dma == DMA_INTERFACE_IDMA) {
3017 		host->use_dma = TRANS_MODE_IDMAC;
3018 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3019 		   host->use_dma == DMA_INTERFACE_GDMA) {
3020 		host->use_dma = TRANS_MODE_EDMAC;
3021 	} else {
3022 		goto no_dma;
3023 	}
3024 
3025 	/* Determine which DMA interface to use */
3026 	if (host->use_dma == TRANS_MODE_IDMAC) {
3027 		/*
3028 		* Check ADDR_CONFIG bit in HCON to find
3029 		* IDMAC address bus width
3030 		*/
3031 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3032 
3033 		if (addr_config == 1) {
3034 			/* host supports IDMAC in 64-bit address mode */
3035 			host->dma_64bit_address = 1;
3036 			dev_info(host->dev,
3037 				 "IDMAC supports 64-bit address mode.\n");
3038 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3039 				dma_set_coherent_mask(host->dev,
3040 						      DMA_BIT_MASK(64));
3041 		} else {
3042 			/* host supports IDMAC in 32-bit address mode */
3043 			host->dma_64bit_address = 0;
3044 			dev_info(host->dev,
3045 				 "IDMAC supports 32-bit address mode.\n");
3046 		}
3047 
3048 		/* Alloc memory for sg translation */
3049 		host->sg_cpu = dmam_alloc_coherent(host->dev,
3050 						   DESC_RING_BUF_SZ,
3051 						   &host->sg_dma, GFP_KERNEL);
3052 		if (!host->sg_cpu) {
3053 			dev_err(host->dev,
3054 				"%s: could not alloc DMA memory\n",
3055 				__func__);
3056 			goto no_dma;
3057 		}
3058 
3059 		host->dma_ops = &dw_mci_idmac_ops;
3060 		dev_info(host->dev, "Using internal DMA controller.\n");
3061 	} else {
3062 		/* TRANS_MODE_EDMAC: check dma bindings again */
3063 		if ((device_property_string_array_count(dev, "dma-names") < 0) ||
3064 		    !device_property_present(dev, "dmas")) {
3065 			goto no_dma;
3066 		}
3067 		host->dma_ops = &dw_mci_edmac_ops;
3068 		dev_info(host->dev, "Using external DMA controller.\n");
3069 	}
3070 
3071 	if (host->dma_ops->init && host->dma_ops->start &&
3072 	    host->dma_ops->stop && host->dma_ops->cleanup) {
3073 		if (host->dma_ops->init(host)) {
3074 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3075 				__func__);
3076 			goto no_dma;
3077 		}
3078 	} else {
3079 		dev_err(host->dev, "DMA initialization not found.\n");
3080 		goto no_dma;
3081 	}
3082 
3083 	return;
3084 
3085 no_dma:
3086 	dev_info(host->dev, "Using PIO mode.\n");
3087 	host->use_dma = TRANS_MODE_PIO;
3088 }
3089 
3090 static void dw_mci_cmd11_timer(struct timer_list *t)
3091 {
3092 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
3093 
3094 	if (host->state != STATE_SENDING_CMD11) {
3095 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3096 		return;
3097 	}
3098 
3099 	host->cmd_status = SDMMC_INT_RTO;
3100 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3101 	tasklet_schedule(&host->tasklet);
3102 }
3103 
3104 static void dw_mci_cto_timer(struct timer_list *t)
3105 {
3106 	struct dw_mci *host = from_timer(host, t, cto_timer);
3107 	unsigned long irqflags;
3108 	u32 pending;
3109 
3110 	spin_lock_irqsave(&host->irq_lock, irqflags);
3111 
3112 	/*
3113 	 * If somehow we have very bad interrupt latency it's remotely possible
3114 	 * that the timer could fire while the interrupt is still pending or
3115 	 * while the interrupt is midway through running.  Let's be paranoid
3116 	 * and detect those two cases.  Note that this is paranoia is somewhat
3117 	 * justified because in this function we don't actually cancel the
3118 	 * pending command in the controller--we just assume it will never come.
3119 	 */
3120 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3121 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3122 		/* The interrupt should fire; no need to act but we can warn */
3123 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3124 		goto exit;
3125 	}
3126 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3127 		/* Presumably interrupt handler couldn't delete the timer */
3128 		dev_warn(host->dev, "CTO timeout when already completed\n");
3129 		goto exit;
3130 	}
3131 
3132 	/*
3133 	 * Continued paranoia to make sure we're in the state we expect.
3134 	 * This paranoia isn't really justified but it seems good to be safe.
3135 	 */
3136 	switch (host->state) {
3137 	case STATE_SENDING_CMD11:
3138 	case STATE_SENDING_CMD:
3139 	case STATE_SENDING_STOP:
3140 		/*
3141 		 * If CMD_DONE interrupt does NOT come in sending command
3142 		 * state, we should notify the driver to terminate current
3143 		 * transfer and report a command timeout to the core.
3144 		 */
3145 		host->cmd_status = SDMMC_INT_RTO;
3146 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3147 		tasklet_schedule(&host->tasklet);
3148 		break;
3149 	default:
3150 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3151 			 host->state);
3152 		break;
3153 	}
3154 
3155 exit:
3156 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3157 }
3158 
3159 static void dw_mci_dto_timer(struct timer_list *t)
3160 {
3161 	struct dw_mci *host = from_timer(host, t, dto_timer);
3162 	unsigned long irqflags;
3163 	u32 pending;
3164 
3165 	spin_lock_irqsave(&host->irq_lock, irqflags);
3166 
3167 	/*
3168 	 * The DTO timer is much longer than the CTO timer, so it's even less
3169 	 * likely that we'll these cases, but it pays to be paranoid.
3170 	 */
3171 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3172 	if (pending & SDMMC_INT_DATA_OVER) {
3173 		/* The interrupt should fire; no need to act but we can warn */
3174 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3175 		goto exit;
3176 	}
3177 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3178 		/* Presumably interrupt handler couldn't delete the timer */
3179 		dev_warn(host->dev, "DTO timeout when already completed\n");
3180 		goto exit;
3181 	}
3182 
3183 	/*
3184 	 * Continued paranoia to make sure we're in the state we expect.
3185 	 * This paranoia isn't really justified but it seems good to be safe.
3186 	 */
3187 	switch (host->state) {
3188 	case STATE_SENDING_DATA:
3189 	case STATE_DATA_BUSY:
3190 		/*
3191 		 * If DTO interrupt does NOT come in sending data state,
3192 		 * we should notify the driver to terminate current transfer
3193 		 * and report a data timeout to the core.
3194 		 */
3195 		host->data_status = SDMMC_INT_DRTO;
3196 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3197 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3198 		tasklet_schedule(&host->tasklet);
3199 		break;
3200 	default:
3201 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3202 			 host->state);
3203 		break;
3204 	}
3205 
3206 exit:
3207 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3208 }
3209 
3210 #ifdef CONFIG_OF
3211 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3212 {
3213 	struct dw_mci_board *pdata;
3214 	struct device *dev = host->dev;
3215 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3216 	int ret;
3217 	u32 clock_frequency;
3218 
3219 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3220 	if (!pdata)
3221 		return ERR_PTR(-ENOMEM);
3222 
3223 	/* find reset controller when exist */
3224 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3225 	if (IS_ERR(pdata->rstc))
3226 		return ERR_CAST(pdata->rstc);
3227 
3228 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3229 		dev_info(dev,
3230 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3231 
3232 	device_property_read_u32(dev, "card-detect-delay",
3233 				 &pdata->detect_delay_ms);
3234 
3235 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3236 
3237 	if (device_property_present(dev, "fifo-watermark-aligned"))
3238 		host->wm_aligned = true;
3239 
3240 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3241 		pdata->bus_hz = clock_frequency;
3242 
3243 	if (drv_data && drv_data->parse_dt) {
3244 		ret = drv_data->parse_dt(host);
3245 		if (ret)
3246 			return ERR_PTR(ret);
3247 	}
3248 
3249 	return pdata;
3250 }
3251 
3252 #else /* CONFIG_OF */
3253 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3254 {
3255 	return ERR_PTR(-EINVAL);
3256 }
3257 #endif /* CONFIG_OF */
3258 
3259 static void dw_mci_enable_cd(struct dw_mci *host)
3260 {
3261 	unsigned long irqflags;
3262 	u32 temp;
3263 
3264 	/*
3265 	 * No need for CD if all slots have a non-error GPIO
3266 	 * as well as broken card detection is found.
3267 	 */
3268 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3269 		return;
3270 
3271 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3272 		spin_lock_irqsave(&host->irq_lock, irqflags);
3273 		temp = mci_readl(host, INTMASK);
3274 		temp  |= SDMMC_INT_CD;
3275 		mci_writel(host, INTMASK, temp);
3276 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3277 	}
3278 }
3279 
3280 int dw_mci_probe(struct dw_mci *host)
3281 {
3282 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3283 	int width, i, ret = 0;
3284 	u32 fifo_size;
3285 
3286 	if (!host->pdata) {
3287 		host->pdata = dw_mci_parse_dt(host);
3288 		if (IS_ERR(host->pdata))
3289 			return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3290 					     "platform data not available\n");
3291 	}
3292 
3293 	host->biu_clk = devm_clk_get(host->dev, "biu");
3294 	if (IS_ERR(host->biu_clk)) {
3295 		dev_dbg(host->dev, "biu clock not available\n");
3296 	} else {
3297 		ret = clk_prepare_enable(host->biu_clk);
3298 		if (ret) {
3299 			dev_err(host->dev, "failed to enable biu clock\n");
3300 			return ret;
3301 		}
3302 	}
3303 
3304 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3305 	if (IS_ERR(host->ciu_clk)) {
3306 		dev_dbg(host->dev, "ciu clock not available\n");
3307 		host->bus_hz = host->pdata->bus_hz;
3308 	} else {
3309 		ret = clk_prepare_enable(host->ciu_clk);
3310 		if (ret) {
3311 			dev_err(host->dev, "failed to enable ciu clock\n");
3312 			goto err_clk_biu;
3313 		}
3314 
3315 		if (host->pdata->bus_hz) {
3316 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3317 			if (ret)
3318 				dev_warn(host->dev,
3319 					 "Unable to set bus rate to %uHz\n",
3320 					 host->pdata->bus_hz);
3321 		}
3322 		host->bus_hz = clk_get_rate(host->ciu_clk);
3323 	}
3324 
3325 	if (!host->bus_hz) {
3326 		dev_err(host->dev,
3327 			"Platform data must supply bus speed\n");
3328 		ret = -ENODEV;
3329 		goto err_clk_ciu;
3330 	}
3331 
3332 	if (host->pdata->rstc) {
3333 		reset_control_assert(host->pdata->rstc);
3334 		usleep_range(10, 50);
3335 		reset_control_deassert(host->pdata->rstc);
3336 	}
3337 
3338 	if (drv_data && drv_data->init) {
3339 		ret = drv_data->init(host);
3340 		if (ret) {
3341 			dev_err(host->dev,
3342 				"implementation specific init failed\n");
3343 			goto err_clk_ciu;
3344 		}
3345 	}
3346 
3347 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3348 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3349 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3350 
3351 	spin_lock_init(&host->lock);
3352 	spin_lock_init(&host->irq_lock);
3353 	INIT_LIST_HEAD(&host->queue);
3354 
3355 	dw_mci_init_fault(host);
3356 
3357 	/*
3358 	 * Get the host data width - this assumes that HCON has been set with
3359 	 * the correct values.
3360 	 */
3361 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3362 	if (!i) {
3363 		host->push_data = dw_mci_push_data16;
3364 		host->pull_data = dw_mci_pull_data16;
3365 		width = 16;
3366 		host->data_shift = 1;
3367 	} else if (i == 2) {
3368 		host->push_data = dw_mci_push_data64;
3369 		host->pull_data = dw_mci_pull_data64;
3370 		width = 64;
3371 		host->data_shift = 3;
3372 	} else {
3373 		/* Check for a reserved value, and warn if it is */
3374 		WARN((i != 1),
3375 		     "HCON reports a reserved host data width!\n"
3376 		     "Defaulting to 32-bit access.\n");
3377 		host->push_data = dw_mci_push_data32;
3378 		host->pull_data = dw_mci_pull_data32;
3379 		width = 32;
3380 		host->data_shift = 2;
3381 	}
3382 
3383 	/* Reset all blocks */
3384 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3385 		ret = -ENODEV;
3386 		goto err_clk_ciu;
3387 	}
3388 
3389 	host->dma_ops = host->pdata->dma_ops;
3390 	dw_mci_init_dma(host);
3391 
3392 	/* Clear the interrupts for the host controller */
3393 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3394 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3395 
3396 	/* Put in max timeout */
3397 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3398 
3399 	/*
3400 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3401 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3402 	 */
3403 	if (!host->pdata->fifo_depth) {
3404 		/*
3405 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3406 		 * have been overwritten by the bootloader, just like we're
3407 		 * about to do, so if you know the value for your hardware, you
3408 		 * should put it in the platform data.
3409 		 */
3410 		fifo_size = mci_readl(host, FIFOTH);
3411 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3412 	} else {
3413 		fifo_size = host->pdata->fifo_depth;
3414 	}
3415 	host->fifo_depth = fifo_size;
3416 	host->fifoth_val =
3417 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3418 	mci_writel(host, FIFOTH, host->fifoth_val);
3419 
3420 	/* disable clock to CIU */
3421 	mci_writel(host, CLKENA, 0);
3422 	mci_writel(host, CLKSRC, 0);
3423 
3424 	/*
3425 	 * In 2.40a spec, Data offset is changed.
3426 	 * Need to check the version-id and set data-offset for DATA register.
3427 	 */
3428 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3429 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3430 
3431 	if (host->data_addr_override)
3432 		host->fifo_reg = host->regs + host->data_addr_override;
3433 	else if (host->verid < DW_MMC_240A)
3434 		host->fifo_reg = host->regs + DATA_OFFSET;
3435 	else
3436 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3437 
3438 	tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
3439 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3440 			       host->irq_flags, "dw-mci", host);
3441 	if (ret)
3442 		goto err_dmaunmap;
3443 
3444 	/*
3445 	 * Enable interrupts for command done, data over, data empty,
3446 	 * receive ready and error such as transmit, receive timeout, crc error
3447 	 */
3448 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3449 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3450 		   DW_MCI_ERROR_FLAGS);
3451 	/* Enable mci interrupt */
3452 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3453 
3454 	dev_info(host->dev,
3455 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3456 		 host->irq, width, fifo_size);
3457 
3458 	/* We need at least one slot to succeed */
3459 	ret = dw_mci_init_slot(host);
3460 	if (ret) {
3461 		dev_dbg(host->dev, "slot %d init failed\n", i);
3462 		goto err_dmaunmap;
3463 	}
3464 
3465 	/* Now that slots are all setup, we can enable card detect */
3466 	dw_mci_enable_cd(host);
3467 
3468 	return 0;
3469 
3470 err_dmaunmap:
3471 	if (host->use_dma && host->dma_ops->exit)
3472 		host->dma_ops->exit(host);
3473 
3474 	reset_control_assert(host->pdata->rstc);
3475 
3476 err_clk_ciu:
3477 	clk_disable_unprepare(host->ciu_clk);
3478 
3479 err_clk_biu:
3480 	clk_disable_unprepare(host->biu_clk);
3481 
3482 	return ret;
3483 }
3484 EXPORT_SYMBOL(dw_mci_probe);
3485 
3486 void dw_mci_remove(struct dw_mci *host)
3487 {
3488 	dev_dbg(host->dev, "remove slot\n");
3489 	if (host->slot)
3490 		dw_mci_cleanup_slot(host->slot);
3491 
3492 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3493 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3494 
3495 	/* disable clock to CIU */
3496 	mci_writel(host, CLKENA, 0);
3497 	mci_writel(host, CLKSRC, 0);
3498 
3499 	if (host->use_dma && host->dma_ops->exit)
3500 		host->dma_ops->exit(host);
3501 
3502 	reset_control_assert(host->pdata->rstc);
3503 
3504 	clk_disable_unprepare(host->ciu_clk);
3505 	clk_disable_unprepare(host->biu_clk);
3506 }
3507 EXPORT_SYMBOL(dw_mci_remove);
3508 
3509 
3510 
3511 #ifdef CONFIG_PM
3512 int dw_mci_runtime_suspend(struct device *dev)
3513 {
3514 	struct dw_mci *host = dev_get_drvdata(dev);
3515 
3516 	if (host->use_dma && host->dma_ops->exit)
3517 		host->dma_ops->exit(host);
3518 
3519 	clk_disable_unprepare(host->ciu_clk);
3520 
3521 	if (host->slot &&
3522 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3523 	     !mmc_card_is_removable(host->slot->mmc)))
3524 		clk_disable_unprepare(host->biu_clk);
3525 
3526 	return 0;
3527 }
3528 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3529 
3530 int dw_mci_runtime_resume(struct device *dev)
3531 {
3532 	int ret = 0;
3533 	struct dw_mci *host = dev_get_drvdata(dev);
3534 
3535 	if (host->slot &&
3536 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3537 	     !mmc_card_is_removable(host->slot->mmc))) {
3538 		ret = clk_prepare_enable(host->biu_clk);
3539 		if (ret)
3540 			return ret;
3541 	}
3542 
3543 	ret = clk_prepare_enable(host->ciu_clk);
3544 	if (ret)
3545 		goto err;
3546 
3547 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3548 		clk_disable_unprepare(host->ciu_clk);
3549 		ret = -ENODEV;
3550 		goto err;
3551 	}
3552 
3553 	if (host->use_dma && host->dma_ops->init)
3554 		host->dma_ops->init(host);
3555 
3556 	/*
3557 	 * Restore the initial value at FIFOTH register
3558 	 * And Invalidate the prev_blksz with zero
3559 	 */
3560 	mci_writel(host, FIFOTH, host->fifoth_val);
3561 	host->prev_blksz = 0;
3562 
3563 	/* Put in max timeout */
3564 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3565 
3566 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3567 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3568 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3569 		   DW_MCI_ERROR_FLAGS);
3570 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3571 
3572 
3573 	if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3574 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3575 
3576 	/* Force setup bus to guarantee available clock output */
3577 	dw_mci_setup_bus(host->slot, true);
3578 
3579 	/* Re-enable SDIO interrupts. */
3580 	if (sdio_irq_claimed(host->slot->mmc))
3581 		__dw_mci_enable_sdio_irq(host->slot, 1);
3582 
3583 	/* Now that slots are all setup, we can enable card detect */
3584 	dw_mci_enable_cd(host);
3585 
3586 	return 0;
3587 
3588 err:
3589 	if (host->slot &&
3590 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3591 	     !mmc_card_is_removable(host->slot->mmc)))
3592 		clk_disable_unprepare(host->biu_clk);
3593 
3594 	return ret;
3595 }
3596 EXPORT_SYMBOL(dw_mci_runtime_resume);
3597 #endif /* CONFIG_PM */
3598 
3599 static int __init dw_mci_init(void)
3600 {
3601 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3602 	return 0;
3603 }
3604 
3605 static void __exit dw_mci_exit(void)
3606 {
3607 }
3608 
3609 module_init(dw_mci_init);
3610 module_exit(dw_mci_exit);
3611 
3612 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3613 MODULE_AUTHOR("NXP Semiconductor VietNam");
3614 MODULE_AUTHOR("Imagination Technologies Ltd");
3615 MODULE_LICENSE("GPL v2");
3616