xref: /linux/drivers/mmc/host/dw_mmc.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41 
42 #include "dw_mmc.h"
43 
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
47 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
51 				 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS	1
53 #define DW_MCI_RECV_STATUS	2
54 #define DW_MCI_DMA_THRESHOLD	16
55 
56 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
57 #define DW_MCI_FREQ_MIN	400000		/* unit: HZ */
58 
59 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 				 SDMMC_IDMAC_INT_TI)
63 
64 struct idmac_desc_64addr {
65 	u32		des0;	/* Control Descriptor */
66 
67 	u32		des1;	/* Reserved */
68 
69 	u32		des2;	/*Buffer sizes */
70 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
71 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
72 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
73 
74 	u32		des3;	/* Reserved */
75 
76 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
77 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
78 
79 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
80 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
81 };
82 
83 struct idmac_desc {
84 	__le32		des0;	/* Control Descriptor */
85 #define IDMAC_DES0_DIC	BIT(1)
86 #define IDMAC_DES0_LD	BIT(2)
87 #define IDMAC_DES0_FD	BIT(3)
88 #define IDMAC_DES0_CH	BIT(4)
89 #define IDMAC_DES0_ER	BIT(5)
90 #define IDMAC_DES0_CES	BIT(30)
91 #define IDMAC_DES0_OWN	BIT(31)
92 
93 	__le32		des1;	/* Buffer sizes */
94 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
95 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
96 
97 	__le32		des2;	/* buffer 1 physical address */
98 
99 	__le32		des3;	/* buffer 2 physical address */
100 };
101 
102 /* Each descriptor can transfer up to 4KB of data in chained mode */
103 #define DW_MCI_DESC_DATA_LENGTH	0x1000
104 
105 static bool dw_mci_reset(struct dw_mci *host);
106 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
107 static int dw_mci_card_busy(struct mmc_host *mmc);
108 static int dw_mci_get_cd(struct mmc_host *mmc);
109 
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 	struct dw_mci_slot *slot = s->private;
114 	struct mmc_request *mrq;
115 	struct mmc_command *cmd;
116 	struct mmc_command *stop;
117 	struct mmc_data	*data;
118 
119 	/* Make sure we get a consistent snapshot */
120 	spin_lock_bh(&slot->host->lock);
121 	mrq = slot->mrq;
122 
123 	if (mrq) {
124 		cmd = mrq->cmd;
125 		data = mrq->data;
126 		stop = mrq->stop;
127 
128 		if (cmd)
129 			seq_printf(s,
130 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 				   cmd->opcode, cmd->arg, cmd->flags,
132 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 				   cmd->resp[2], cmd->error);
134 		if (data)
135 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 				   data->bytes_xfered, data->blocks,
137 				   data->blksz, data->flags, data->error);
138 		if (stop)
139 			seq_printf(s,
140 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 				   stop->opcode, stop->arg, stop->flags,
142 				   stop->resp[0], stop->resp[1], stop->resp[2],
143 				   stop->resp[2], stop->error);
144 	}
145 
146 	spin_unlock_bh(&slot->host->lock);
147 
148 	return 0;
149 }
150 
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 	return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155 
156 static const struct file_operations dw_mci_req_fops = {
157 	.owner		= THIS_MODULE,
158 	.open		= dw_mci_req_open,
159 	.read		= seq_read,
160 	.llseek		= seq_lseek,
161 	.release	= single_release,
162 };
163 
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 	seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
167 	seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
168 	seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
169 	seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
170 	seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
171 	seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
172 
173 	return 0;
174 }
175 
176 static int dw_mci_regs_open(struct inode *inode, struct file *file)
177 {
178 	return single_open(file, dw_mci_regs_show, inode->i_private);
179 }
180 
181 static const struct file_operations dw_mci_regs_fops = {
182 	.owner		= THIS_MODULE,
183 	.open		= dw_mci_regs_open,
184 	.read		= seq_read,
185 	.llseek		= seq_lseek,
186 	.release	= single_release,
187 };
188 
189 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
190 {
191 	struct mmc_host	*mmc = slot->mmc;
192 	struct dw_mci *host = slot->host;
193 	struct dentry *root;
194 	struct dentry *node;
195 
196 	root = mmc->debugfs_root;
197 	if (!root)
198 		return;
199 
200 	node = debugfs_create_file("regs", S_IRUSR, root, host,
201 				   &dw_mci_regs_fops);
202 	if (!node)
203 		goto err;
204 
205 	node = debugfs_create_file("req", S_IRUSR, root, slot,
206 				   &dw_mci_req_fops);
207 	if (!node)
208 		goto err;
209 
210 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
211 	if (!node)
212 		goto err;
213 
214 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
215 				  (u32 *)&host->pending_events);
216 	if (!node)
217 		goto err;
218 
219 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
220 				  (u32 *)&host->completed_events);
221 	if (!node)
222 		goto err;
223 
224 	return;
225 
226 err:
227 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
228 }
229 #endif /* defined(CONFIG_DEBUG_FS) */
230 
231 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
232 
233 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
234 {
235 	struct mmc_data	*data;
236 	struct dw_mci_slot *slot = mmc_priv(mmc);
237 	struct dw_mci *host = slot->host;
238 	u32 cmdr;
239 
240 	cmd->error = -EINPROGRESS;
241 	cmdr = cmd->opcode;
242 
243 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
244 	    cmd->opcode == MMC_GO_IDLE_STATE ||
245 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
246 	    (cmd->opcode == SD_IO_RW_DIRECT &&
247 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
248 		cmdr |= SDMMC_CMD_STOP;
249 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
250 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
251 
252 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
253 		u32 clk_en_a;
254 
255 		/* Special bit makes CMD11 not die */
256 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
257 
258 		/* Change state to continue to handle CMD11 weirdness */
259 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
260 		slot->host->state = STATE_SENDING_CMD11;
261 
262 		/*
263 		 * We need to disable low power mode (automatic clock stop)
264 		 * while doing voltage switch so we don't confuse the card,
265 		 * since stopping the clock is a specific part of the UHS
266 		 * voltage change dance.
267 		 *
268 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
269 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
270 		 * ever called with a non-zero clock.  That shouldn't happen
271 		 * until the voltage change is all done.
272 		 */
273 		clk_en_a = mci_readl(host, CLKENA);
274 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
275 		mci_writel(host, CLKENA, clk_en_a);
276 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
277 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
278 	}
279 
280 	if (cmd->flags & MMC_RSP_PRESENT) {
281 		/* We expect a response, so set this bit */
282 		cmdr |= SDMMC_CMD_RESP_EXP;
283 		if (cmd->flags & MMC_RSP_136)
284 			cmdr |= SDMMC_CMD_RESP_LONG;
285 	}
286 
287 	if (cmd->flags & MMC_RSP_CRC)
288 		cmdr |= SDMMC_CMD_RESP_CRC;
289 
290 	data = cmd->data;
291 	if (data) {
292 		cmdr |= SDMMC_CMD_DAT_EXP;
293 		if (data->flags & MMC_DATA_WRITE)
294 			cmdr |= SDMMC_CMD_DAT_WR;
295 	}
296 
297 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
298 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
299 
300 	return cmdr;
301 }
302 
303 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
304 {
305 	struct mmc_command *stop;
306 	u32 cmdr;
307 
308 	if (!cmd->data)
309 		return 0;
310 
311 	stop = &host->stop_abort;
312 	cmdr = cmd->opcode;
313 	memset(stop, 0, sizeof(struct mmc_command));
314 
315 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
316 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
317 	    cmdr == MMC_WRITE_BLOCK ||
318 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
319 	    cmdr == MMC_SEND_TUNING_BLOCK ||
320 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
321 		stop->opcode = MMC_STOP_TRANSMISSION;
322 		stop->arg = 0;
323 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
324 	} else if (cmdr == SD_IO_RW_EXTENDED) {
325 		stop->opcode = SD_IO_RW_DIRECT;
326 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
327 			     ((cmd->arg >> 28) & 0x7);
328 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
329 	} else {
330 		return 0;
331 	}
332 
333 	cmdr = stop->opcode | SDMMC_CMD_STOP |
334 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
335 
336 	return cmdr;
337 }
338 
339 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
340 {
341 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
342 
343 	/*
344 	 * Databook says that before issuing a new data transfer command
345 	 * we need to check to see if the card is busy.  Data transfer commands
346 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
347 	 *
348 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
349 	 * expected.
350 	 */
351 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
352 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
353 		while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
354 			if (time_after(jiffies, timeout)) {
355 				/* Command will fail; we'll pass error then */
356 				dev_err(host->dev, "Busy; trying anyway\n");
357 				break;
358 			}
359 			udelay(10);
360 		}
361 	}
362 }
363 
364 static void dw_mci_start_command(struct dw_mci *host,
365 				 struct mmc_command *cmd, u32 cmd_flags)
366 {
367 	host->cmd = cmd;
368 	dev_vdbg(host->dev,
369 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
370 		 cmd->arg, cmd_flags);
371 
372 	mci_writel(host, CMDARG, cmd->arg);
373 	wmb(); /* drain writebuffer */
374 	dw_mci_wait_while_busy(host, cmd_flags);
375 
376 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
377 }
378 
379 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
380 {
381 	struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
382 
383 	dw_mci_start_command(host, stop, host->stop_cmdr);
384 }
385 
386 /* DMA interface functions */
387 static void dw_mci_stop_dma(struct dw_mci *host)
388 {
389 	if (host->using_dma) {
390 		host->dma_ops->stop(host);
391 		host->dma_ops->cleanup(host);
392 	}
393 
394 	/* Data transfer was stopped by the interrupt handler */
395 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
396 }
397 
398 static int dw_mci_get_dma_dir(struct mmc_data *data)
399 {
400 	if (data->flags & MMC_DATA_WRITE)
401 		return DMA_TO_DEVICE;
402 	else
403 		return DMA_FROM_DEVICE;
404 }
405 
406 static void dw_mci_dma_cleanup(struct dw_mci *host)
407 {
408 	struct mmc_data *data = host->data;
409 
410 	if (data)
411 		if (!data->host_cookie)
412 			dma_unmap_sg(host->dev,
413 				     data->sg,
414 				     data->sg_len,
415 				     dw_mci_get_dma_dir(data));
416 }
417 
418 static void dw_mci_idmac_reset(struct dw_mci *host)
419 {
420 	u32 bmod = mci_readl(host, BMOD);
421 	/* Software reset of DMA */
422 	bmod |= SDMMC_IDMAC_SWRESET;
423 	mci_writel(host, BMOD, bmod);
424 }
425 
426 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
427 {
428 	u32 temp;
429 
430 	/* Disable and reset the IDMAC interface */
431 	temp = mci_readl(host, CTRL);
432 	temp &= ~SDMMC_CTRL_USE_IDMAC;
433 	temp |= SDMMC_CTRL_DMA_RESET;
434 	mci_writel(host, CTRL, temp);
435 
436 	/* Stop the IDMAC running */
437 	temp = mci_readl(host, BMOD);
438 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
439 	temp |= SDMMC_IDMAC_SWRESET;
440 	mci_writel(host, BMOD, temp);
441 }
442 
443 static void dw_mci_dmac_complete_dma(void *arg)
444 {
445 	struct dw_mci *host = arg;
446 	struct mmc_data *data = host->data;
447 
448 	dev_vdbg(host->dev, "DMA complete\n");
449 
450 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
451 	    data && (data->flags & MMC_DATA_READ))
452 		/* Invalidate cache after read */
453 		dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
454 				    data->sg,
455 				    data->sg_len,
456 				    DMA_FROM_DEVICE);
457 
458 	host->dma_ops->cleanup(host);
459 
460 	/*
461 	 * If the card was removed, data will be NULL. No point in trying to
462 	 * send the stop command or waiting for NBUSY in this case.
463 	 */
464 	if (data) {
465 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
466 		tasklet_schedule(&host->tasklet);
467 	}
468 }
469 
470 static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data,
471 				    unsigned int sg_len)
472 {
473 	unsigned int desc_len;
474 	int i;
475 
476 	if (host->dma_64bit_address == 1) {
477 		struct idmac_desc_64addr *desc_first, *desc_last, *desc;
478 
479 		desc_first = desc_last = desc = host->sg_cpu;
480 
481 		for (i = 0; i < sg_len; i++) {
482 			unsigned int length = sg_dma_len(&data->sg[i]);
483 
484 			u64 mem_addr = sg_dma_address(&data->sg[i]);
485 
486 			for ( ; length ; desc++) {
487 				desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
488 					   length : DW_MCI_DESC_DATA_LENGTH;
489 
490 				length -= desc_len;
491 
492 				/*
493 				 * Set the OWN bit and disable interrupts
494 				 * for this descriptor
495 				 */
496 				desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
497 							IDMAC_DES0_CH;
498 
499 				/* Buffer length */
500 				IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
501 
502 				/* Physical address to DMA to/from */
503 				desc->des4 = mem_addr & 0xffffffff;
504 				desc->des5 = mem_addr >> 32;
505 
506 				/* Update physical address for the next desc */
507 				mem_addr += desc_len;
508 
509 				/* Save pointer to the last descriptor */
510 				desc_last = desc;
511 			}
512 		}
513 
514 		/* Set first descriptor */
515 		desc_first->des0 |= IDMAC_DES0_FD;
516 
517 		/* Set last descriptor */
518 		desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
519 		desc_last->des0 |= IDMAC_DES0_LD;
520 
521 	} else {
522 		struct idmac_desc *desc_first, *desc_last, *desc;
523 
524 		desc_first = desc_last = desc = host->sg_cpu;
525 
526 		for (i = 0; i < sg_len; i++) {
527 			unsigned int length = sg_dma_len(&data->sg[i]);
528 
529 			u32 mem_addr = sg_dma_address(&data->sg[i]);
530 
531 			for ( ; length ; desc++) {
532 				desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
533 					   length : DW_MCI_DESC_DATA_LENGTH;
534 
535 				length -= desc_len;
536 
537 				/*
538 				 * Set the OWN bit and disable interrupts
539 				 * for this descriptor
540 				 */
541 				desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
542 							 IDMAC_DES0_DIC |
543 							 IDMAC_DES0_CH);
544 
545 				/* Buffer length */
546 				IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
547 
548 				/* Physical address to DMA to/from */
549 				desc->des2 = cpu_to_le32(mem_addr);
550 
551 				/* Update physical address for the next desc */
552 				mem_addr += desc_len;
553 
554 				/* Save pointer to the last descriptor */
555 				desc_last = desc;
556 			}
557 		}
558 
559 		/* Set first descriptor */
560 		desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
561 
562 		/* Set last descriptor */
563 		desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
564 					       IDMAC_DES0_DIC));
565 		desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
566 	}
567 
568 	wmb(); /* drain writebuffer */
569 }
570 
571 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
572 {
573 	u32 temp;
574 
575 	dw_mci_translate_sglist(host, host->data, sg_len);
576 
577 	/* Make sure to reset DMA in case we did PIO before this */
578 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
579 	dw_mci_idmac_reset(host);
580 
581 	/* Select IDMAC interface */
582 	temp = mci_readl(host, CTRL);
583 	temp |= SDMMC_CTRL_USE_IDMAC;
584 	mci_writel(host, CTRL, temp);
585 
586 	/* drain writebuffer */
587 	wmb();
588 
589 	/* Enable the IDMAC */
590 	temp = mci_readl(host, BMOD);
591 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
592 	mci_writel(host, BMOD, temp);
593 
594 	/* Start it running */
595 	mci_writel(host, PLDMND, 1);
596 
597 	return 0;
598 }
599 
600 static int dw_mci_idmac_init(struct dw_mci *host)
601 {
602 	int i;
603 
604 	if (host->dma_64bit_address == 1) {
605 		struct idmac_desc_64addr *p;
606 		/* Number of descriptors in the ring buffer */
607 		host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc_64addr);
608 
609 		/* Forward link the descriptor list */
610 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
611 								i++, p++) {
612 			p->des6 = (host->sg_dma +
613 					(sizeof(struct idmac_desc_64addr) *
614 							(i + 1))) & 0xffffffff;
615 
616 			p->des7 = (u64)(host->sg_dma +
617 					(sizeof(struct idmac_desc_64addr) *
618 							(i + 1))) >> 32;
619 			/* Initialize reserved and buffer size fields to "0" */
620 			p->des1 = 0;
621 			p->des2 = 0;
622 			p->des3 = 0;
623 		}
624 
625 		/* Set the last descriptor as the end-of-ring descriptor */
626 		p->des6 = host->sg_dma & 0xffffffff;
627 		p->des7 = (u64)host->sg_dma >> 32;
628 		p->des0 = IDMAC_DES0_ER;
629 
630 	} else {
631 		struct idmac_desc *p;
632 		/* Number of descriptors in the ring buffer */
633 		host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc);
634 
635 		/* Forward link the descriptor list */
636 		for (i = 0, p = host->sg_cpu;
637 		     i < host->ring_size - 1;
638 		     i++, p++) {
639 			p->des3 = cpu_to_le32(host->sg_dma +
640 					(sizeof(struct idmac_desc) * (i + 1)));
641 			p->des1 = 0;
642 		}
643 
644 		/* Set the last descriptor as the end-of-ring descriptor */
645 		p->des3 = cpu_to_le32(host->sg_dma);
646 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
647 	}
648 
649 	dw_mci_idmac_reset(host);
650 
651 	if (host->dma_64bit_address == 1) {
652 		/* Mask out interrupts - get Tx & Rx complete only */
653 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
654 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
655 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
656 
657 		/* Set the descriptor base address */
658 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
659 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
660 
661 	} else {
662 		/* Mask out interrupts - get Tx & Rx complete only */
663 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
664 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
665 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
666 
667 		/* Set the descriptor base address */
668 		mci_writel(host, DBADDR, host->sg_dma);
669 	}
670 
671 	return 0;
672 }
673 
674 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
675 	.init = dw_mci_idmac_init,
676 	.start = dw_mci_idmac_start_dma,
677 	.stop = dw_mci_idmac_stop_dma,
678 	.complete = dw_mci_dmac_complete_dma,
679 	.cleanup = dw_mci_dma_cleanup,
680 };
681 
682 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
683 {
684 	dmaengine_terminate_async(host->dms->ch);
685 }
686 
687 static int dw_mci_edmac_start_dma(struct dw_mci *host,
688 					    unsigned int sg_len)
689 {
690 	struct dma_slave_config cfg;
691 	struct dma_async_tx_descriptor *desc = NULL;
692 	struct scatterlist *sgl = host->data->sg;
693 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
694 	u32 sg_elems = host->data->sg_len;
695 	u32 fifoth_val;
696 	u32 fifo_offset = host->fifo_reg - host->regs;
697 	int ret = 0;
698 
699 	/* Set external dma config: burst size, burst width */
700 	cfg.dst_addr = host->phy_regs + fifo_offset;
701 	cfg.src_addr = cfg.dst_addr;
702 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
703 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
704 
705 	/* Match burst msize with external dma config */
706 	fifoth_val = mci_readl(host, FIFOTH);
707 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
708 	cfg.src_maxburst = cfg.dst_maxburst;
709 
710 	if (host->data->flags & MMC_DATA_WRITE)
711 		cfg.direction = DMA_MEM_TO_DEV;
712 	else
713 		cfg.direction = DMA_DEV_TO_MEM;
714 
715 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
716 	if (ret) {
717 		dev_err(host->dev, "Failed to config edmac.\n");
718 		return -EBUSY;
719 	}
720 
721 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
722 				       sg_len, cfg.direction,
723 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
724 	if (!desc) {
725 		dev_err(host->dev, "Can't prepare slave sg.\n");
726 		return -EBUSY;
727 	}
728 
729 	/* Set dw_mci_dmac_complete_dma as callback */
730 	desc->callback = dw_mci_dmac_complete_dma;
731 	desc->callback_param = (void *)host;
732 	dmaengine_submit(desc);
733 
734 	/* Flush cache before write */
735 	if (host->data->flags & MMC_DATA_WRITE)
736 		dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
737 				       sg_elems, DMA_TO_DEVICE);
738 
739 	dma_async_issue_pending(host->dms->ch);
740 
741 	return 0;
742 }
743 
744 static int dw_mci_edmac_init(struct dw_mci *host)
745 {
746 	/* Request external dma channel */
747 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
748 	if (!host->dms)
749 		return -ENOMEM;
750 
751 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
752 	if (!host->dms->ch) {
753 		dev_err(host->dev, "Failed to get external DMA channel.\n");
754 		kfree(host->dms);
755 		host->dms = NULL;
756 		return -ENXIO;
757 	}
758 
759 	return 0;
760 }
761 
762 static void dw_mci_edmac_exit(struct dw_mci *host)
763 {
764 	if (host->dms) {
765 		if (host->dms->ch) {
766 			dma_release_channel(host->dms->ch);
767 			host->dms->ch = NULL;
768 		}
769 		kfree(host->dms);
770 		host->dms = NULL;
771 	}
772 }
773 
774 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
775 	.init = dw_mci_edmac_init,
776 	.exit = dw_mci_edmac_exit,
777 	.start = dw_mci_edmac_start_dma,
778 	.stop = dw_mci_edmac_stop_dma,
779 	.complete = dw_mci_dmac_complete_dma,
780 	.cleanup = dw_mci_dma_cleanup,
781 };
782 
783 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
784 				   struct mmc_data *data,
785 				   bool next)
786 {
787 	struct scatterlist *sg;
788 	unsigned int i, sg_len;
789 
790 	if (!next && data->host_cookie)
791 		return data->host_cookie;
792 
793 	/*
794 	 * We don't do DMA on "complex" transfers, i.e. with
795 	 * non-word-aligned buffers or lengths. Also, we don't bother
796 	 * with all the DMA setup overhead for short transfers.
797 	 */
798 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
799 		return -EINVAL;
800 
801 	if (data->blksz & 3)
802 		return -EINVAL;
803 
804 	for_each_sg(data->sg, sg, data->sg_len, i) {
805 		if (sg->offset & 3 || sg->length & 3)
806 			return -EINVAL;
807 	}
808 
809 	sg_len = dma_map_sg(host->dev,
810 			    data->sg,
811 			    data->sg_len,
812 			    dw_mci_get_dma_dir(data));
813 	if (sg_len == 0)
814 		return -EINVAL;
815 
816 	if (next)
817 		data->host_cookie = sg_len;
818 
819 	return sg_len;
820 }
821 
822 static void dw_mci_pre_req(struct mmc_host *mmc,
823 			   struct mmc_request *mrq,
824 			   bool is_first_req)
825 {
826 	struct dw_mci_slot *slot = mmc_priv(mmc);
827 	struct mmc_data *data = mrq->data;
828 
829 	if (!slot->host->use_dma || !data)
830 		return;
831 
832 	if (data->host_cookie) {
833 		data->host_cookie = 0;
834 		return;
835 	}
836 
837 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
838 		data->host_cookie = 0;
839 }
840 
841 static void dw_mci_post_req(struct mmc_host *mmc,
842 			    struct mmc_request *mrq,
843 			    int err)
844 {
845 	struct dw_mci_slot *slot = mmc_priv(mmc);
846 	struct mmc_data *data = mrq->data;
847 
848 	if (!slot->host->use_dma || !data)
849 		return;
850 
851 	if (data->host_cookie)
852 		dma_unmap_sg(slot->host->dev,
853 			     data->sg,
854 			     data->sg_len,
855 			     dw_mci_get_dma_dir(data));
856 	data->host_cookie = 0;
857 }
858 
859 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
860 {
861 	unsigned int blksz = data->blksz;
862 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
863 	u32 fifo_width = 1 << host->data_shift;
864 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
865 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
866 	int idx = ARRAY_SIZE(mszs) - 1;
867 
868 	/* pio should ship this scenario */
869 	if (!host->use_dma)
870 		return;
871 
872 	tx_wmark = (host->fifo_depth) / 2;
873 	tx_wmark_invers = host->fifo_depth - tx_wmark;
874 
875 	/*
876 	 * MSIZE is '1',
877 	 * if blksz is not a multiple of the FIFO width
878 	 */
879 	if (blksz % fifo_width) {
880 		msize = 0;
881 		rx_wmark = 1;
882 		goto done;
883 	}
884 
885 	do {
886 		if (!((blksz_depth % mszs[idx]) ||
887 		     (tx_wmark_invers % mszs[idx]))) {
888 			msize = idx;
889 			rx_wmark = mszs[idx] - 1;
890 			break;
891 		}
892 	} while (--idx > 0);
893 	/*
894 	 * If idx is '0', it won't be tried
895 	 * Thus, initial values are uesed
896 	 */
897 done:
898 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
899 	mci_writel(host, FIFOTH, fifoth_val);
900 }
901 
902 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
903 {
904 	unsigned int blksz = data->blksz;
905 	u32 blksz_depth, fifo_depth;
906 	u16 thld_size;
907 	u8 enable;
908 
909 	/*
910 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
911 	 * in the FIFO region, so we really shouldn't access it).
912 	 */
913 	if (host->verid < DW_MMC_240A ||
914 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
915 		return;
916 
917 	/*
918 	 * Card write Threshold is introduced since 2.80a
919 	 * It's used when HS400 mode is enabled.
920 	 */
921 	if (data->flags & MMC_DATA_WRITE &&
922 		!(host->timing != MMC_TIMING_MMC_HS400))
923 		return;
924 
925 	if (data->flags & MMC_DATA_WRITE)
926 		enable = SDMMC_CARD_WR_THR_EN;
927 	else
928 		enable = SDMMC_CARD_RD_THR_EN;
929 
930 	if (host->timing != MMC_TIMING_MMC_HS200 &&
931 	    host->timing != MMC_TIMING_UHS_SDR104)
932 		goto disable;
933 
934 	blksz_depth = blksz / (1 << host->data_shift);
935 	fifo_depth = host->fifo_depth;
936 
937 	if (blksz_depth > fifo_depth)
938 		goto disable;
939 
940 	/*
941 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
942 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
943 	 * Currently just choose blksz.
944 	 */
945 	thld_size = blksz;
946 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
947 	return;
948 
949 disable:
950 	mci_writel(host, CDTHRCTL, 0);
951 }
952 
953 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
954 {
955 	unsigned long irqflags;
956 	int sg_len;
957 	u32 temp;
958 
959 	host->using_dma = 0;
960 
961 	/* If we don't have a channel, we can't do DMA */
962 	if (!host->use_dma)
963 		return -ENODEV;
964 
965 	sg_len = dw_mci_pre_dma_transfer(host, data, 0);
966 	if (sg_len < 0) {
967 		host->dma_ops->stop(host);
968 		return sg_len;
969 	}
970 
971 	host->using_dma = 1;
972 
973 	if (host->use_dma == TRANS_MODE_IDMAC)
974 		dev_vdbg(host->dev,
975 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
976 			 (unsigned long)host->sg_cpu,
977 			 (unsigned long)host->sg_dma,
978 			 sg_len);
979 
980 	/*
981 	 * Decide the MSIZE and RX/TX Watermark.
982 	 * If current block size is same with previous size,
983 	 * no need to update fifoth.
984 	 */
985 	if (host->prev_blksz != data->blksz)
986 		dw_mci_adjust_fifoth(host, data);
987 
988 	/* Enable the DMA interface */
989 	temp = mci_readl(host, CTRL);
990 	temp |= SDMMC_CTRL_DMA_ENABLE;
991 	mci_writel(host, CTRL, temp);
992 
993 	/* Disable RX/TX IRQs, let DMA handle it */
994 	spin_lock_irqsave(&host->irq_lock, irqflags);
995 	temp = mci_readl(host, INTMASK);
996 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
997 	mci_writel(host, INTMASK, temp);
998 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
999 
1000 	if (host->dma_ops->start(host, sg_len)) {
1001 		/* We can't do DMA */
1002 		dev_err(host->dev, "%s: failed to start DMA.\n", __func__);
1003 		return -ENODEV;
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1010 {
1011 	unsigned long irqflags;
1012 	int flags = SG_MITER_ATOMIC;
1013 	u32 temp;
1014 
1015 	data->error = -EINPROGRESS;
1016 
1017 	WARN_ON(host->data);
1018 	host->sg = NULL;
1019 	host->data = data;
1020 
1021 	if (data->flags & MMC_DATA_READ)
1022 		host->dir_status = DW_MCI_RECV_STATUS;
1023 	else
1024 		host->dir_status = DW_MCI_SEND_STATUS;
1025 
1026 	dw_mci_ctrl_thld(host, data);
1027 
1028 	if (dw_mci_submit_data_dma(host, data)) {
1029 		if (host->data->flags & MMC_DATA_READ)
1030 			flags |= SG_MITER_TO_SG;
1031 		else
1032 			flags |= SG_MITER_FROM_SG;
1033 
1034 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1035 		host->sg = data->sg;
1036 		host->part_buf_start = 0;
1037 		host->part_buf_count = 0;
1038 
1039 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1040 
1041 		spin_lock_irqsave(&host->irq_lock, irqflags);
1042 		temp = mci_readl(host, INTMASK);
1043 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1044 		mci_writel(host, INTMASK, temp);
1045 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1046 
1047 		temp = mci_readl(host, CTRL);
1048 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1049 		mci_writel(host, CTRL, temp);
1050 
1051 		/*
1052 		 * Use the initial fifoth_val for PIO mode.
1053 		 * If next issued data may be transfered by DMA mode,
1054 		 * prev_blksz should be invalidated.
1055 		 */
1056 		mci_writel(host, FIFOTH, host->fifoth_val);
1057 		host->prev_blksz = 0;
1058 	} else {
1059 		/*
1060 		 * Keep the current block size.
1061 		 * It will be used to decide whether to update
1062 		 * fifoth register next time.
1063 		 */
1064 		host->prev_blksz = data->blksz;
1065 	}
1066 }
1067 
1068 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1069 {
1070 	struct dw_mci *host = slot->host;
1071 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
1072 	unsigned int cmd_status = 0;
1073 
1074 	mci_writel(host, CMDARG, arg);
1075 	wmb(); /* drain writebuffer */
1076 	dw_mci_wait_while_busy(host, cmd);
1077 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1078 
1079 	while (time_before(jiffies, timeout)) {
1080 		cmd_status = mci_readl(host, CMD);
1081 		if (!(cmd_status & SDMMC_CMD_START))
1082 			return;
1083 	}
1084 	dev_err(&slot->mmc->class_dev,
1085 		"Timeout sending command (cmd %#x arg %#x status %#x)\n",
1086 		cmd, arg, cmd_status);
1087 }
1088 
1089 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1090 {
1091 	struct dw_mci *host = slot->host;
1092 	unsigned int clock = slot->clock;
1093 	u32 div;
1094 	u32 clk_en_a;
1095 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1096 
1097 	/* We must continue to set bit 28 in CMD until the change is complete */
1098 	if (host->state == STATE_WAITING_CMD11_DONE)
1099 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1100 
1101 	if (!clock) {
1102 		mci_writel(host, CLKENA, 0);
1103 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1104 	} else if (clock != host->current_speed || force_clkinit) {
1105 		div = host->bus_hz / clock;
1106 		if (host->bus_hz % clock && host->bus_hz > clock)
1107 			/*
1108 			 * move the + 1 after the divide to prevent
1109 			 * over-clocking the card.
1110 			 */
1111 			div += 1;
1112 
1113 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1114 
1115 		dev_info(&slot->mmc->class_dev,
1116 			 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1117 			 slot->id, host->bus_hz, clock,
1118 			 div ? ((host->bus_hz / div) >> 1) :
1119 			 host->bus_hz, div);
1120 
1121 		/* disable clock */
1122 		mci_writel(host, CLKENA, 0);
1123 		mci_writel(host, CLKSRC, 0);
1124 
1125 		/* inform CIU */
1126 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1127 
1128 		/* set clock to desired speed */
1129 		mci_writel(host, CLKDIV, div);
1130 
1131 		/* inform CIU */
1132 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1133 
1134 		/* enable clock; only low power if no SDIO */
1135 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1136 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1137 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1138 		mci_writel(host, CLKENA, clk_en_a);
1139 
1140 		/* inform CIU */
1141 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1142 	}
1143 
1144 	host->current_speed = clock;
1145 
1146 	/* Set the current slot bus width */
1147 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1148 }
1149 
1150 static void __dw_mci_start_request(struct dw_mci *host,
1151 				   struct dw_mci_slot *slot,
1152 				   struct mmc_command *cmd)
1153 {
1154 	struct mmc_request *mrq;
1155 	struct mmc_data	*data;
1156 	u32 cmdflags;
1157 
1158 	mrq = slot->mrq;
1159 
1160 	host->cur_slot = slot;
1161 	host->mrq = mrq;
1162 
1163 	host->pending_events = 0;
1164 	host->completed_events = 0;
1165 	host->cmd_status = 0;
1166 	host->data_status = 0;
1167 	host->dir_status = 0;
1168 
1169 	data = cmd->data;
1170 	if (data) {
1171 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1172 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1173 		mci_writel(host, BLKSIZ, data->blksz);
1174 	}
1175 
1176 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1177 
1178 	/* this is the first command, send the initialization clock */
1179 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1180 		cmdflags |= SDMMC_CMD_INIT;
1181 
1182 	if (data) {
1183 		dw_mci_submit_data(host, data);
1184 		wmb(); /* drain writebuffer */
1185 	}
1186 
1187 	dw_mci_start_command(host, cmd, cmdflags);
1188 
1189 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1190 		unsigned long irqflags;
1191 
1192 		/*
1193 		 * Databook says to fail after 2ms w/ no response, but evidence
1194 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1195 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1196 		 * is just about to roll over.
1197 		 *
1198 		 * We do this whole thing under spinlock and only if the
1199 		 * command hasn't already completed (indicating the the irq
1200 		 * already ran so we don't want the timeout).
1201 		 */
1202 		spin_lock_irqsave(&host->irq_lock, irqflags);
1203 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1204 			mod_timer(&host->cmd11_timer,
1205 				jiffies + msecs_to_jiffies(500) + 1);
1206 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1207 	}
1208 
1209 	if (mrq->stop)
1210 		host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1211 	else
1212 		host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1213 }
1214 
1215 static void dw_mci_start_request(struct dw_mci *host,
1216 				 struct dw_mci_slot *slot)
1217 {
1218 	struct mmc_request *mrq = slot->mrq;
1219 	struct mmc_command *cmd;
1220 
1221 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1222 	__dw_mci_start_request(host, slot, cmd);
1223 }
1224 
1225 /* must be called with host->lock held */
1226 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1227 				 struct mmc_request *mrq)
1228 {
1229 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1230 		 host->state);
1231 
1232 	slot->mrq = mrq;
1233 
1234 	if (host->state == STATE_WAITING_CMD11_DONE) {
1235 		dev_warn(&slot->mmc->class_dev,
1236 			 "Voltage change didn't complete\n");
1237 		/*
1238 		 * this case isn't expected to happen, so we can
1239 		 * either crash here or just try to continue on
1240 		 * in the closest possible state
1241 		 */
1242 		host->state = STATE_IDLE;
1243 	}
1244 
1245 	if (host->state == STATE_IDLE) {
1246 		host->state = STATE_SENDING_CMD;
1247 		dw_mci_start_request(host, slot);
1248 	} else {
1249 		list_add_tail(&slot->queue_node, &host->queue);
1250 	}
1251 }
1252 
1253 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1254 {
1255 	struct dw_mci_slot *slot = mmc_priv(mmc);
1256 	struct dw_mci *host = slot->host;
1257 
1258 	WARN_ON(slot->mrq);
1259 
1260 	/*
1261 	 * The check for card presence and queueing of the request must be
1262 	 * atomic, otherwise the card could be removed in between and the
1263 	 * request wouldn't fail until another card was inserted.
1264 	 */
1265 
1266 	if (!dw_mci_get_cd(mmc)) {
1267 		mrq->cmd->error = -ENOMEDIUM;
1268 		mmc_request_done(mmc, mrq);
1269 		return;
1270 	}
1271 
1272 	spin_lock_bh(&host->lock);
1273 
1274 	dw_mci_queue_request(host, slot, mrq);
1275 
1276 	spin_unlock_bh(&host->lock);
1277 }
1278 
1279 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1280 {
1281 	struct dw_mci_slot *slot = mmc_priv(mmc);
1282 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1283 	u32 regs;
1284 	int ret;
1285 
1286 	switch (ios->bus_width) {
1287 	case MMC_BUS_WIDTH_4:
1288 		slot->ctype = SDMMC_CTYPE_4BIT;
1289 		break;
1290 	case MMC_BUS_WIDTH_8:
1291 		slot->ctype = SDMMC_CTYPE_8BIT;
1292 		break;
1293 	default:
1294 		/* set default 1 bit mode */
1295 		slot->ctype = SDMMC_CTYPE_1BIT;
1296 	}
1297 
1298 	regs = mci_readl(slot->host, UHS_REG);
1299 
1300 	/* DDR mode set */
1301 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1302 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1303 	    ios->timing == MMC_TIMING_MMC_HS400)
1304 		regs |= ((0x1 << slot->id) << 16);
1305 	else
1306 		regs &= ~((0x1 << slot->id) << 16);
1307 
1308 	mci_writel(slot->host, UHS_REG, regs);
1309 	slot->host->timing = ios->timing;
1310 
1311 	/*
1312 	 * Use mirror of ios->clock to prevent race with mmc
1313 	 * core ios update when finding the minimum.
1314 	 */
1315 	slot->clock = ios->clock;
1316 
1317 	if (drv_data && drv_data->set_ios)
1318 		drv_data->set_ios(slot->host, ios);
1319 
1320 	switch (ios->power_mode) {
1321 	case MMC_POWER_UP:
1322 		if (!IS_ERR(mmc->supply.vmmc)) {
1323 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1324 					ios->vdd);
1325 			if (ret) {
1326 				dev_err(slot->host->dev,
1327 					"failed to enable vmmc regulator\n");
1328 				/*return, if failed turn on vmmc*/
1329 				return;
1330 			}
1331 		}
1332 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1333 		regs = mci_readl(slot->host, PWREN);
1334 		regs |= (1 << slot->id);
1335 		mci_writel(slot->host, PWREN, regs);
1336 		break;
1337 	case MMC_POWER_ON:
1338 		if (!slot->host->vqmmc_enabled) {
1339 			if (!IS_ERR(mmc->supply.vqmmc)) {
1340 				ret = regulator_enable(mmc->supply.vqmmc);
1341 				if (ret < 0)
1342 					dev_err(slot->host->dev,
1343 						"failed to enable vqmmc\n");
1344 				else
1345 					slot->host->vqmmc_enabled = true;
1346 
1347 			} else {
1348 				/* Keep track so we don't reset again */
1349 				slot->host->vqmmc_enabled = true;
1350 			}
1351 
1352 			/* Reset our state machine after powering on */
1353 			dw_mci_ctrl_reset(slot->host,
1354 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1355 		}
1356 
1357 		/* Adjust clock / bus width after power is up */
1358 		dw_mci_setup_bus(slot, false);
1359 
1360 		break;
1361 	case MMC_POWER_OFF:
1362 		/* Turn clock off before power goes down */
1363 		dw_mci_setup_bus(slot, false);
1364 
1365 		if (!IS_ERR(mmc->supply.vmmc))
1366 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1367 
1368 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1369 			regulator_disable(mmc->supply.vqmmc);
1370 		slot->host->vqmmc_enabled = false;
1371 
1372 		regs = mci_readl(slot->host, PWREN);
1373 		regs &= ~(1 << slot->id);
1374 		mci_writel(slot->host, PWREN, regs);
1375 		break;
1376 	default:
1377 		break;
1378 	}
1379 
1380 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1381 		slot->host->state = STATE_IDLE;
1382 }
1383 
1384 static int dw_mci_card_busy(struct mmc_host *mmc)
1385 {
1386 	struct dw_mci_slot *slot = mmc_priv(mmc);
1387 	u32 status;
1388 
1389 	/*
1390 	 * Check the busy bit which is low when DAT[3:0]
1391 	 * (the data lines) are 0000
1392 	 */
1393 	status = mci_readl(slot->host, STATUS);
1394 
1395 	return !!(status & SDMMC_STATUS_BUSY);
1396 }
1397 
1398 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1399 {
1400 	struct dw_mci_slot *slot = mmc_priv(mmc);
1401 	struct dw_mci *host = slot->host;
1402 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1403 	u32 uhs;
1404 	u32 v18 = SDMMC_UHS_18V << slot->id;
1405 	int ret;
1406 
1407 	if (drv_data && drv_data->switch_voltage)
1408 		return drv_data->switch_voltage(mmc, ios);
1409 
1410 	/*
1411 	 * Program the voltage.  Note that some instances of dw_mmc may use
1412 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1413 	 * does no harm but you need to set the regulator directly.  Try both.
1414 	 */
1415 	uhs = mci_readl(host, UHS_REG);
1416 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1417 		uhs &= ~v18;
1418 	else
1419 		uhs |= v18;
1420 
1421 	if (!IS_ERR(mmc->supply.vqmmc)) {
1422 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1423 
1424 		if (ret) {
1425 			dev_dbg(&mmc->class_dev,
1426 					 "Regulator set error %d - %s V\n",
1427 					 ret, uhs & v18 ? "1.8" : "3.3");
1428 			return ret;
1429 		}
1430 	}
1431 	mci_writel(host, UHS_REG, uhs);
1432 
1433 	return 0;
1434 }
1435 
1436 static int dw_mci_get_ro(struct mmc_host *mmc)
1437 {
1438 	int read_only;
1439 	struct dw_mci_slot *slot = mmc_priv(mmc);
1440 	int gpio_ro = mmc_gpio_get_ro(mmc);
1441 
1442 	/* Use platform get_ro function, else try on board write protect */
1443 	if (gpio_ro >= 0)
1444 		read_only = gpio_ro;
1445 	else
1446 		read_only =
1447 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1448 
1449 	dev_dbg(&mmc->class_dev, "card is %s\n",
1450 		read_only ? "read-only" : "read-write");
1451 
1452 	return read_only;
1453 }
1454 
1455 static int dw_mci_get_cd(struct mmc_host *mmc)
1456 {
1457 	int present;
1458 	struct dw_mci_slot *slot = mmc_priv(mmc);
1459 	struct dw_mci *host = slot->host;
1460 	int gpio_cd = mmc_gpio_get_cd(mmc);
1461 
1462 	/* Use platform get_cd function, else try onboard card detect */
1463 	if ((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc))
1464 		present = 1;
1465 	else if (gpio_cd >= 0)
1466 		present = gpio_cd;
1467 	else
1468 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1469 			== 0 ? 1 : 0;
1470 
1471 	spin_lock_bh(&host->lock);
1472 	if (present) {
1473 		set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1474 		dev_dbg(&mmc->class_dev, "card is present\n");
1475 	} else {
1476 		clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1477 		dev_dbg(&mmc->class_dev, "card is not present\n");
1478 	}
1479 	spin_unlock_bh(&host->lock);
1480 
1481 	return present;
1482 }
1483 
1484 static void dw_mci_hw_reset(struct mmc_host *mmc)
1485 {
1486 	struct dw_mci_slot *slot = mmc_priv(mmc);
1487 	struct dw_mci *host = slot->host;
1488 	int reset;
1489 
1490 	if (host->use_dma == TRANS_MODE_IDMAC)
1491 		dw_mci_idmac_reset(host);
1492 
1493 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1494 				     SDMMC_CTRL_FIFO_RESET))
1495 		return;
1496 
1497 	/*
1498 	 * According to eMMC spec, card reset procedure:
1499 	 * tRstW >= 1us:   RST_n pulse width
1500 	 * tRSCA >= 200us: RST_n to Command time
1501 	 * tRSTH >= 1us:   RST_n high period
1502 	 */
1503 	reset = mci_readl(host, RST_N);
1504 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1505 	mci_writel(host, RST_N, reset);
1506 	usleep_range(1, 2);
1507 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1508 	mci_writel(host, RST_N, reset);
1509 	usleep_range(200, 300);
1510 }
1511 
1512 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1513 {
1514 	struct dw_mci_slot *slot = mmc_priv(mmc);
1515 	struct dw_mci *host = slot->host;
1516 
1517 	/*
1518 	 * Low power mode will stop the card clock when idle.  According to the
1519 	 * description of the CLKENA register we should disable low power mode
1520 	 * for SDIO cards if we need SDIO interrupts to work.
1521 	 */
1522 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1523 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1524 		u32 clk_en_a_old;
1525 		u32 clk_en_a;
1526 
1527 		clk_en_a_old = mci_readl(host, CLKENA);
1528 
1529 		if (card->type == MMC_TYPE_SDIO ||
1530 		    card->type == MMC_TYPE_SD_COMBO) {
1531 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1532 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1533 		} else {
1534 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1535 			clk_en_a = clk_en_a_old | clken_low_pwr;
1536 		}
1537 
1538 		if (clk_en_a != clk_en_a_old) {
1539 			mci_writel(host, CLKENA, clk_en_a);
1540 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1541 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1542 		}
1543 	}
1544 }
1545 
1546 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1547 {
1548 	struct dw_mci_slot *slot = mmc_priv(mmc);
1549 	struct dw_mci *host = slot->host;
1550 	unsigned long irqflags;
1551 	u32 int_mask;
1552 
1553 	spin_lock_irqsave(&host->irq_lock, irqflags);
1554 
1555 	/* Enable/disable Slot Specific SDIO interrupt */
1556 	int_mask = mci_readl(host, INTMASK);
1557 	if (enb)
1558 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1559 	else
1560 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1561 	mci_writel(host, INTMASK, int_mask);
1562 
1563 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1564 }
1565 
1566 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1567 {
1568 	struct dw_mci_slot *slot = mmc_priv(mmc);
1569 	struct dw_mci *host = slot->host;
1570 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1571 	int err = -EINVAL;
1572 
1573 	if (drv_data && drv_data->execute_tuning)
1574 		err = drv_data->execute_tuning(slot, opcode);
1575 	return err;
1576 }
1577 
1578 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1579 				       struct mmc_ios *ios)
1580 {
1581 	struct dw_mci_slot *slot = mmc_priv(mmc);
1582 	struct dw_mci *host = slot->host;
1583 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1584 
1585 	if (drv_data && drv_data->prepare_hs400_tuning)
1586 		return drv_data->prepare_hs400_tuning(host, ios);
1587 
1588 	return 0;
1589 }
1590 
1591 static const struct mmc_host_ops dw_mci_ops = {
1592 	.request		= dw_mci_request,
1593 	.pre_req		= dw_mci_pre_req,
1594 	.post_req		= dw_mci_post_req,
1595 	.set_ios		= dw_mci_set_ios,
1596 	.get_ro			= dw_mci_get_ro,
1597 	.get_cd			= dw_mci_get_cd,
1598 	.hw_reset               = dw_mci_hw_reset,
1599 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1600 	.execute_tuning		= dw_mci_execute_tuning,
1601 	.card_busy		= dw_mci_card_busy,
1602 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1603 	.init_card		= dw_mci_init_card,
1604 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1605 };
1606 
1607 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1608 	__releases(&host->lock)
1609 	__acquires(&host->lock)
1610 {
1611 	struct dw_mci_slot *slot;
1612 	struct mmc_host	*prev_mmc = host->cur_slot->mmc;
1613 
1614 	WARN_ON(host->cmd || host->data);
1615 
1616 	host->cur_slot->mrq = NULL;
1617 	host->mrq = NULL;
1618 	if (!list_empty(&host->queue)) {
1619 		slot = list_entry(host->queue.next,
1620 				  struct dw_mci_slot, queue_node);
1621 		list_del(&slot->queue_node);
1622 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1623 			 mmc_hostname(slot->mmc));
1624 		host->state = STATE_SENDING_CMD;
1625 		dw_mci_start_request(host, slot);
1626 	} else {
1627 		dev_vdbg(host->dev, "list empty\n");
1628 
1629 		if (host->state == STATE_SENDING_CMD11)
1630 			host->state = STATE_WAITING_CMD11_DONE;
1631 		else
1632 			host->state = STATE_IDLE;
1633 	}
1634 
1635 	spin_unlock(&host->lock);
1636 	mmc_request_done(prev_mmc, mrq);
1637 	spin_lock(&host->lock);
1638 }
1639 
1640 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1641 {
1642 	u32 status = host->cmd_status;
1643 
1644 	host->cmd_status = 0;
1645 
1646 	/* Read the response from the card (up to 16 bytes) */
1647 	if (cmd->flags & MMC_RSP_PRESENT) {
1648 		if (cmd->flags & MMC_RSP_136) {
1649 			cmd->resp[3] = mci_readl(host, RESP0);
1650 			cmd->resp[2] = mci_readl(host, RESP1);
1651 			cmd->resp[1] = mci_readl(host, RESP2);
1652 			cmd->resp[0] = mci_readl(host, RESP3);
1653 		} else {
1654 			cmd->resp[0] = mci_readl(host, RESP0);
1655 			cmd->resp[1] = 0;
1656 			cmd->resp[2] = 0;
1657 			cmd->resp[3] = 0;
1658 		}
1659 	}
1660 
1661 	if (status & SDMMC_INT_RTO)
1662 		cmd->error = -ETIMEDOUT;
1663 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1664 		cmd->error = -EILSEQ;
1665 	else if (status & SDMMC_INT_RESP_ERR)
1666 		cmd->error = -EIO;
1667 	else
1668 		cmd->error = 0;
1669 
1670 	return cmd->error;
1671 }
1672 
1673 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1674 {
1675 	u32 status = host->data_status;
1676 
1677 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1678 		if (status & SDMMC_INT_DRTO) {
1679 			data->error = -ETIMEDOUT;
1680 		} else if (status & SDMMC_INT_DCRC) {
1681 			data->error = -EILSEQ;
1682 		} else if (status & SDMMC_INT_EBE) {
1683 			if (host->dir_status ==
1684 				DW_MCI_SEND_STATUS) {
1685 				/*
1686 				 * No data CRC status was returned.
1687 				 * The number of bytes transferred
1688 				 * will be exaggerated in PIO mode.
1689 				 */
1690 				data->bytes_xfered = 0;
1691 				data->error = -ETIMEDOUT;
1692 			} else if (host->dir_status ==
1693 					DW_MCI_RECV_STATUS) {
1694 				data->error = -EIO;
1695 			}
1696 		} else {
1697 			/* SDMMC_INT_SBE is included */
1698 			data->error = -EIO;
1699 		}
1700 
1701 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1702 
1703 		/*
1704 		 * After an error, there may be data lingering
1705 		 * in the FIFO
1706 		 */
1707 		dw_mci_reset(host);
1708 	} else {
1709 		data->bytes_xfered = data->blocks * data->blksz;
1710 		data->error = 0;
1711 	}
1712 
1713 	return data->error;
1714 }
1715 
1716 static void dw_mci_set_drto(struct dw_mci *host)
1717 {
1718 	unsigned int drto_clks;
1719 	unsigned int drto_ms;
1720 
1721 	drto_clks = mci_readl(host, TMOUT) >> 8;
1722 	drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1723 
1724 	/* add a bit spare time */
1725 	drto_ms += 10;
1726 
1727 	mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1728 }
1729 
1730 static void dw_mci_tasklet_func(unsigned long priv)
1731 {
1732 	struct dw_mci *host = (struct dw_mci *)priv;
1733 	struct mmc_data	*data;
1734 	struct mmc_command *cmd;
1735 	struct mmc_request *mrq;
1736 	enum dw_mci_state state;
1737 	enum dw_mci_state prev_state;
1738 	unsigned int err;
1739 
1740 	spin_lock(&host->lock);
1741 
1742 	state = host->state;
1743 	data = host->data;
1744 	mrq = host->mrq;
1745 
1746 	do {
1747 		prev_state = state;
1748 
1749 		switch (state) {
1750 		case STATE_IDLE:
1751 		case STATE_WAITING_CMD11_DONE:
1752 			break;
1753 
1754 		case STATE_SENDING_CMD11:
1755 		case STATE_SENDING_CMD:
1756 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1757 						&host->pending_events))
1758 				break;
1759 
1760 			cmd = host->cmd;
1761 			host->cmd = NULL;
1762 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1763 			err = dw_mci_command_complete(host, cmd);
1764 			if (cmd == mrq->sbc && !err) {
1765 				prev_state = state = STATE_SENDING_CMD;
1766 				__dw_mci_start_request(host, host->cur_slot,
1767 						       mrq->cmd);
1768 				goto unlock;
1769 			}
1770 
1771 			if (cmd->data && err) {
1772 				/*
1773 				 * During UHS tuning sequence, sending the stop
1774 				 * command after the response CRC error would
1775 				 * throw the system into a confused state
1776 				 * causing all future tuning phases to report
1777 				 * failure.
1778 				 *
1779 				 * In such case controller will move into a data
1780 				 * transfer state after a response error or
1781 				 * response CRC error. Let's let that finish
1782 				 * before trying to send a stop, so we'll go to
1783 				 * STATE_SENDING_DATA.
1784 				 *
1785 				 * Although letting the data transfer take place
1786 				 * will waste a bit of time (we already know
1787 				 * the command was bad), it can't cause any
1788 				 * errors since it's possible it would have
1789 				 * taken place anyway if this tasklet got
1790 				 * delayed. Allowing the transfer to take place
1791 				 * avoids races and keeps things simple.
1792 				 */
1793 				if ((err != -ETIMEDOUT) &&
1794 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1795 					state = STATE_SENDING_DATA;
1796 					continue;
1797 				}
1798 
1799 				dw_mci_stop_dma(host);
1800 				send_stop_abort(host, data);
1801 				state = STATE_SENDING_STOP;
1802 				break;
1803 			}
1804 
1805 			if (!cmd->data || err) {
1806 				dw_mci_request_end(host, mrq);
1807 				goto unlock;
1808 			}
1809 
1810 			prev_state = state = STATE_SENDING_DATA;
1811 			/* fall through */
1812 
1813 		case STATE_SENDING_DATA:
1814 			/*
1815 			 * We could get a data error and never a transfer
1816 			 * complete so we'd better check for it here.
1817 			 *
1818 			 * Note that we don't really care if we also got a
1819 			 * transfer complete; stopping the DMA and sending an
1820 			 * abort won't hurt.
1821 			 */
1822 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1823 					       &host->pending_events)) {
1824 				dw_mci_stop_dma(host);
1825 				if (data->stop ||
1826 				    !(host->data_status & (SDMMC_INT_DRTO |
1827 							   SDMMC_INT_EBE)))
1828 					send_stop_abort(host, data);
1829 				state = STATE_DATA_ERROR;
1830 				break;
1831 			}
1832 
1833 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1834 						&host->pending_events)) {
1835 				/*
1836 				 * If all data-related interrupts don't come
1837 				 * within the given time in reading data state.
1838 				 */
1839 				if (host->dir_status == DW_MCI_RECV_STATUS)
1840 					dw_mci_set_drto(host);
1841 				break;
1842 			}
1843 
1844 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1845 
1846 			/*
1847 			 * Handle an EVENT_DATA_ERROR that might have shown up
1848 			 * before the transfer completed.  This might not have
1849 			 * been caught by the check above because the interrupt
1850 			 * could have gone off between the previous check and
1851 			 * the check for transfer complete.
1852 			 *
1853 			 * Technically this ought not be needed assuming we
1854 			 * get a DATA_COMPLETE eventually (we'll notice the
1855 			 * error and end the request), but it shouldn't hurt.
1856 			 *
1857 			 * This has the advantage of sending the stop command.
1858 			 */
1859 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1860 					       &host->pending_events)) {
1861 				dw_mci_stop_dma(host);
1862 				if (data->stop ||
1863 				    !(host->data_status & (SDMMC_INT_DRTO |
1864 							   SDMMC_INT_EBE)))
1865 					send_stop_abort(host, data);
1866 				state = STATE_DATA_ERROR;
1867 				break;
1868 			}
1869 			prev_state = state = STATE_DATA_BUSY;
1870 
1871 			/* fall through */
1872 
1873 		case STATE_DATA_BUSY:
1874 			if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1875 						&host->pending_events)) {
1876 				/*
1877 				 * If data error interrupt comes but data over
1878 				 * interrupt doesn't come within the given time.
1879 				 * in reading data state.
1880 				 */
1881 				if (host->dir_status == DW_MCI_RECV_STATUS)
1882 					dw_mci_set_drto(host);
1883 				break;
1884 			}
1885 
1886 			host->data = NULL;
1887 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1888 			err = dw_mci_data_complete(host, data);
1889 
1890 			if (!err) {
1891 				if (!data->stop || mrq->sbc) {
1892 					if (mrq->sbc && data->stop)
1893 						data->stop->error = 0;
1894 					dw_mci_request_end(host, mrq);
1895 					goto unlock;
1896 				}
1897 
1898 				/* stop command for open-ended transfer*/
1899 				if (data->stop)
1900 					send_stop_abort(host, data);
1901 			} else {
1902 				/*
1903 				 * If we don't have a command complete now we'll
1904 				 * never get one since we just reset everything;
1905 				 * better end the request.
1906 				 *
1907 				 * If we do have a command complete we'll fall
1908 				 * through to the SENDING_STOP command and
1909 				 * everything will be peachy keen.
1910 				 */
1911 				if (!test_bit(EVENT_CMD_COMPLETE,
1912 					      &host->pending_events)) {
1913 					host->cmd = NULL;
1914 					dw_mci_request_end(host, mrq);
1915 					goto unlock;
1916 				}
1917 			}
1918 
1919 			/*
1920 			 * If err has non-zero,
1921 			 * stop-abort command has been already issued.
1922 			 */
1923 			prev_state = state = STATE_SENDING_STOP;
1924 
1925 			/* fall through */
1926 
1927 		case STATE_SENDING_STOP:
1928 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1929 						&host->pending_events))
1930 				break;
1931 
1932 			/* CMD error in data command */
1933 			if (mrq->cmd->error && mrq->data)
1934 				dw_mci_reset(host);
1935 
1936 			host->cmd = NULL;
1937 			host->data = NULL;
1938 
1939 			if (mrq->stop)
1940 				dw_mci_command_complete(host, mrq->stop);
1941 			else
1942 				host->cmd_status = 0;
1943 
1944 			dw_mci_request_end(host, mrq);
1945 			goto unlock;
1946 
1947 		case STATE_DATA_ERROR:
1948 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1949 						&host->pending_events))
1950 				break;
1951 
1952 			state = STATE_DATA_BUSY;
1953 			break;
1954 		}
1955 	} while (state != prev_state);
1956 
1957 	host->state = state;
1958 unlock:
1959 	spin_unlock(&host->lock);
1960 
1961 }
1962 
1963 /* push final bytes to part_buf, only use during push */
1964 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
1965 {
1966 	memcpy((void *)&host->part_buf, buf, cnt);
1967 	host->part_buf_count = cnt;
1968 }
1969 
1970 /* append bytes to part_buf, only use during push */
1971 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
1972 {
1973 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
1974 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
1975 	host->part_buf_count += cnt;
1976 	return cnt;
1977 }
1978 
1979 /* pull first bytes from part_buf, only use during pull */
1980 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
1981 {
1982 	cnt = min_t(int, cnt, host->part_buf_count);
1983 	if (cnt) {
1984 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
1985 		       cnt);
1986 		host->part_buf_count -= cnt;
1987 		host->part_buf_start += cnt;
1988 	}
1989 	return cnt;
1990 }
1991 
1992 /* pull final bytes from the part_buf, assuming it's just been filled */
1993 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
1994 {
1995 	memcpy(buf, &host->part_buf, cnt);
1996 	host->part_buf_start = cnt;
1997 	host->part_buf_count = (1 << host->data_shift) - cnt;
1998 }
1999 
2000 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2001 {
2002 	struct mmc_data *data = host->data;
2003 	int init_cnt = cnt;
2004 
2005 	/* try and push anything in the part_buf */
2006 	if (unlikely(host->part_buf_count)) {
2007 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2008 
2009 		buf += len;
2010 		cnt -= len;
2011 		if (host->part_buf_count == 2) {
2012 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2013 			host->part_buf_count = 0;
2014 		}
2015 	}
2016 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2017 	if (unlikely((unsigned long)buf & 0x1)) {
2018 		while (cnt >= 2) {
2019 			u16 aligned_buf[64];
2020 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2021 			int items = len >> 1;
2022 			int i;
2023 			/* memcpy from input buffer into aligned buffer */
2024 			memcpy(aligned_buf, buf, len);
2025 			buf += len;
2026 			cnt -= len;
2027 			/* push data from aligned buffer into fifo */
2028 			for (i = 0; i < items; ++i)
2029 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2030 		}
2031 	} else
2032 #endif
2033 	{
2034 		u16 *pdata = buf;
2035 
2036 		for (; cnt >= 2; cnt -= 2)
2037 			mci_fifo_writew(host->fifo_reg, *pdata++);
2038 		buf = pdata;
2039 	}
2040 	/* put anything remaining in the part_buf */
2041 	if (cnt) {
2042 		dw_mci_set_part_bytes(host, buf, cnt);
2043 		 /* Push data if we have reached the expected data length */
2044 		if ((data->bytes_xfered + init_cnt) ==
2045 		    (data->blksz * data->blocks))
2046 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2047 	}
2048 }
2049 
2050 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2051 {
2052 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2053 	if (unlikely((unsigned long)buf & 0x1)) {
2054 		while (cnt >= 2) {
2055 			/* pull data from fifo into aligned buffer */
2056 			u16 aligned_buf[64];
2057 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2058 			int items = len >> 1;
2059 			int i;
2060 
2061 			for (i = 0; i < items; ++i)
2062 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2063 			/* memcpy from aligned buffer into output buffer */
2064 			memcpy(buf, aligned_buf, len);
2065 			buf += len;
2066 			cnt -= len;
2067 		}
2068 	} else
2069 #endif
2070 	{
2071 		u16 *pdata = buf;
2072 
2073 		for (; cnt >= 2; cnt -= 2)
2074 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2075 		buf = pdata;
2076 	}
2077 	if (cnt) {
2078 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2079 		dw_mci_pull_final_bytes(host, buf, cnt);
2080 	}
2081 }
2082 
2083 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2084 {
2085 	struct mmc_data *data = host->data;
2086 	int init_cnt = cnt;
2087 
2088 	/* try and push anything in the part_buf */
2089 	if (unlikely(host->part_buf_count)) {
2090 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2091 
2092 		buf += len;
2093 		cnt -= len;
2094 		if (host->part_buf_count == 4) {
2095 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2096 			host->part_buf_count = 0;
2097 		}
2098 	}
2099 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2100 	if (unlikely((unsigned long)buf & 0x3)) {
2101 		while (cnt >= 4) {
2102 			u32 aligned_buf[32];
2103 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2104 			int items = len >> 2;
2105 			int i;
2106 			/* memcpy from input buffer into aligned buffer */
2107 			memcpy(aligned_buf, buf, len);
2108 			buf += len;
2109 			cnt -= len;
2110 			/* push data from aligned buffer into fifo */
2111 			for (i = 0; i < items; ++i)
2112 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2113 		}
2114 	} else
2115 #endif
2116 	{
2117 		u32 *pdata = buf;
2118 
2119 		for (; cnt >= 4; cnt -= 4)
2120 			mci_fifo_writel(host->fifo_reg, *pdata++);
2121 		buf = pdata;
2122 	}
2123 	/* put anything remaining in the part_buf */
2124 	if (cnt) {
2125 		dw_mci_set_part_bytes(host, buf, cnt);
2126 		 /* Push data if we have reached the expected data length */
2127 		if ((data->bytes_xfered + init_cnt) ==
2128 		    (data->blksz * data->blocks))
2129 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2130 	}
2131 }
2132 
2133 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2134 {
2135 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2136 	if (unlikely((unsigned long)buf & 0x3)) {
2137 		while (cnt >= 4) {
2138 			/* pull data from fifo into aligned buffer */
2139 			u32 aligned_buf[32];
2140 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2141 			int items = len >> 2;
2142 			int i;
2143 
2144 			for (i = 0; i < items; ++i)
2145 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2146 			/* memcpy from aligned buffer into output buffer */
2147 			memcpy(buf, aligned_buf, len);
2148 			buf += len;
2149 			cnt -= len;
2150 		}
2151 	} else
2152 #endif
2153 	{
2154 		u32 *pdata = buf;
2155 
2156 		for (; cnt >= 4; cnt -= 4)
2157 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2158 		buf = pdata;
2159 	}
2160 	if (cnt) {
2161 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2162 		dw_mci_pull_final_bytes(host, buf, cnt);
2163 	}
2164 }
2165 
2166 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2167 {
2168 	struct mmc_data *data = host->data;
2169 	int init_cnt = cnt;
2170 
2171 	/* try and push anything in the part_buf */
2172 	if (unlikely(host->part_buf_count)) {
2173 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2174 
2175 		buf += len;
2176 		cnt -= len;
2177 
2178 		if (host->part_buf_count == 8) {
2179 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2180 			host->part_buf_count = 0;
2181 		}
2182 	}
2183 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2184 	if (unlikely((unsigned long)buf & 0x7)) {
2185 		while (cnt >= 8) {
2186 			u64 aligned_buf[16];
2187 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2188 			int items = len >> 3;
2189 			int i;
2190 			/* memcpy from input buffer into aligned buffer */
2191 			memcpy(aligned_buf, buf, len);
2192 			buf += len;
2193 			cnt -= len;
2194 			/* push data from aligned buffer into fifo */
2195 			for (i = 0; i < items; ++i)
2196 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2197 		}
2198 	} else
2199 #endif
2200 	{
2201 		u64 *pdata = buf;
2202 
2203 		for (; cnt >= 8; cnt -= 8)
2204 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2205 		buf = pdata;
2206 	}
2207 	/* put anything remaining in the part_buf */
2208 	if (cnt) {
2209 		dw_mci_set_part_bytes(host, buf, cnt);
2210 		/* Push data if we have reached the expected data length */
2211 		if ((data->bytes_xfered + init_cnt) ==
2212 		    (data->blksz * data->blocks))
2213 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2214 	}
2215 }
2216 
2217 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2218 {
2219 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2220 	if (unlikely((unsigned long)buf & 0x7)) {
2221 		while (cnt >= 8) {
2222 			/* pull data from fifo into aligned buffer */
2223 			u64 aligned_buf[16];
2224 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2225 			int items = len >> 3;
2226 			int i;
2227 
2228 			for (i = 0; i < items; ++i)
2229 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2230 
2231 			/* memcpy from aligned buffer into output buffer */
2232 			memcpy(buf, aligned_buf, len);
2233 			buf += len;
2234 			cnt -= len;
2235 		}
2236 	} else
2237 #endif
2238 	{
2239 		u64 *pdata = buf;
2240 
2241 		for (; cnt >= 8; cnt -= 8)
2242 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2243 		buf = pdata;
2244 	}
2245 	if (cnt) {
2246 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2247 		dw_mci_pull_final_bytes(host, buf, cnt);
2248 	}
2249 }
2250 
2251 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2252 {
2253 	int len;
2254 
2255 	/* get remaining partial bytes */
2256 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2257 	if (unlikely(len == cnt))
2258 		return;
2259 	buf += len;
2260 	cnt -= len;
2261 
2262 	/* get the rest of the data */
2263 	host->pull_data(host, buf, cnt);
2264 }
2265 
2266 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2267 {
2268 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2269 	void *buf;
2270 	unsigned int offset;
2271 	struct mmc_data	*data = host->data;
2272 	int shift = host->data_shift;
2273 	u32 status;
2274 	unsigned int len;
2275 	unsigned int remain, fcnt;
2276 
2277 	do {
2278 		if (!sg_miter_next(sg_miter))
2279 			goto done;
2280 
2281 		host->sg = sg_miter->piter.sg;
2282 		buf = sg_miter->addr;
2283 		remain = sg_miter->length;
2284 		offset = 0;
2285 
2286 		do {
2287 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2288 					<< shift) + host->part_buf_count;
2289 			len = min(remain, fcnt);
2290 			if (!len)
2291 				break;
2292 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2293 			data->bytes_xfered += len;
2294 			offset += len;
2295 			remain -= len;
2296 		} while (remain);
2297 
2298 		sg_miter->consumed = offset;
2299 		status = mci_readl(host, MINTSTS);
2300 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2301 	/* if the RXDR is ready read again */
2302 	} while ((status & SDMMC_INT_RXDR) ||
2303 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2304 
2305 	if (!remain) {
2306 		if (!sg_miter_next(sg_miter))
2307 			goto done;
2308 		sg_miter->consumed = 0;
2309 	}
2310 	sg_miter_stop(sg_miter);
2311 	return;
2312 
2313 done:
2314 	sg_miter_stop(sg_miter);
2315 	host->sg = NULL;
2316 	smp_wmb(); /* drain writebuffer */
2317 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2318 }
2319 
2320 static void dw_mci_write_data_pio(struct dw_mci *host)
2321 {
2322 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2323 	void *buf;
2324 	unsigned int offset;
2325 	struct mmc_data	*data = host->data;
2326 	int shift = host->data_shift;
2327 	u32 status;
2328 	unsigned int len;
2329 	unsigned int fifo_depth = host->fifo_depth;
2330 	unsigned int remain, fcnt;
2331 
2332 	do {
2333 		if (!sg_miter_next(sg_miter))
2334 			goto done;
2335 
2336 		host->sg = sg_miter->piter.sg;
2337 		buf = sg_miter->addr;
2338 		remain = sg_miter->length;
2339 		offset = 0;
2340 
2341 		do {
2342 			fcnt = ((fifo_depth -
2343 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2344 					<< shift) - host->part_buf_count;
2345 			len = min(remain, fcnt);
2346 			if (!len)
2347 				break;
2348 			host->push_data(host, (void *)(buf + offset), len);
2349 			data->bytes_xfered += len;
2350 			offset += len;
2351 			remain -= len;
2352 		} while (remain);
2353 
2354 		sg_miter->consumed = offset;
2355 		status = mci_readl(host, MINTSTS);
2356 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2357 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2358 
2359 	if (!remain) {
2360 		if (!sg_miter_next(sg_miter))
2361 			goto done;
2362 		sg_miter->consumed = 0;
2363 	}
2364 	sg_miter_stop(sg_miter);
2365 	return;
2366 
2367 done:
2368 	sg_miter_stop(sg_miter);
2369 	host->sg = NULL;
2370 	smp_wmb(); /* drain writebuffer */
2371 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2372 }
2373 
2374 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2375 {
2376 	if (!host->cmd_status)
2377 		host->cmd_status = status;
2378 
2379 	smp_wmb(); /* drain writebuffer */
2380 
2381 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2382 	tasklet_schedule(&host->tasklet);
2383 }
2384 
2385 static void dw_mci_handle_cd(struct dw_mci *host)
2386 {
2387 	int i;
2388 
2389 	for (i = 0; i < host->num_slots; i++) {
2390 		struct dw_mci_slot *slot = host->slot[i];
2391 
2392 		if (!slot)
2393 			continue;
2394 
2395 		if (slot->mmc->ops->card_event)
2396 			slot->mmc->ops->card_event(slot->mmc);
2397 		mmc_detect_change(slot->mmc,
2398 			msecs_to_jiffies(host->pdata->detect_delay_ms));
2399 	}
2400 }
2401 
2402 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2403 {
2404 	struct dw_mci *host = dev_id;
2405 	u32 pending;
2406 	int i;
2407 
2408 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2409 
2410 	if (pending) {
2411 		/* Check volt switch first, since it can look like an error */
2412 		if ((host->state == STATE_SENDING_CMD11) &&
2413 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2414 			unsigned long irqflags;
2415 
2416 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2417 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2418 
2419 			/*
2420 			 * Hold the lock; we know cmd11_timer can't be kicked
2421 			 * off after the lock is released, so safe to delete.
2422 			 */
2423 			spin_lock_irqsave(&host->irq_lock, irqflags);
2424 			dw_mci_cmd_interrupt(host, pending);
2425 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2426 
2427 			del_timer(&host->cmd11_timer);
2428 		}
2429 
2430 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2431 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2432 			host->cmd_status = pending;
2433 			smp_wmb(); /* drain writebuffer */
2434 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2435 		}
2436 
2437 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2438 			/* if there is an error report DATA_ERROR */
2439 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2440 			host->data_status = pending;
2441 			smp_wmb(); /* drain writebuffer */
2442 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2443 			tasklet_schedule(&host->tasklet);
2444 		}
2445 
2446 		if (pending & SDMMC_INT_DATA_OVER) {
2447 			del_timer(&host->dto_timer);
2448 
2449 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2450 			if (!host->data_status)
2451 				host->data_status = pending;
2452 			smp_wmb(); /* drain writebuffer */
2453 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2454 				if (host->sg != NULL)
2455 					dw_mci_read_data_pio(host, true);
2456 			}
2457 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2458 			tasklet_schedule(&host->tasklet);
2459 		}
2460 
2461 		if (pending & SDMMC_INT_RXDR) {
2462 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2463 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2464 				dw_mci_read_data_pio(host, false);
2465 		}
2466 
2467 		if (pending & SDMMC_INT_TXDR) {
2468 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2469 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2470 				dw_mci_write_data_pio(host);
2471 		}
2472 
2473 		if (pending & SDMMC_INT_CMD_DONE) {
2474 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2475 			dw_mci_cmd_interrupt(host, pending);
2476 		}
2477 
2478 		if (pending & SDMMC_INT_CD) {
2479 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2480 			dw_mci_handle_cd(host);
2481 		}
2482 
2483 		/* Handle SDIO Interrupts */
2484 		for (i = 0; i < host->num_slots; i++) {
2485 			struct dw_mci_slot *slot = host->slot[i];
2486 
2487 			if (!slot)
2488 				continue;
2489 
2490 			if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2491 				mci_writel(host, RINTSTS,
2492 					   SDMMC_INT_SDIO(slot->sdio_id));
2493 				mmc_signal_sdio_irq(slot->mmc);
2494 			}
2495 		}
2496 
2497 	}
2498 
2499 	if (host->use_dma != TRANS_MODE_IDMAC)
2500 		return IRQ_HANDLED;
2501 
2502 	/* Handle IDMA interrupts */
2503 	if (host->dma_64bit_address == 1) {
2504 		pending = mci_readl(host, IDSTS64);
2505 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2506 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2507 							SDMMC_IDMAC_INT_RI);
2508 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2509 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2510 				host->dma_ops->complete((void *)host);
2511 		}
2512 	} else {
2513 		pending = mci_readl(host, IDSTS);
2514 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2515 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2516 							SDMMC_IDMAC_INT_RI);
2517 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2518 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2519 				host->dma_ops->complete((void *)host);
2520 		}
2521 	}
2522 
2523 	return IRQ_HANDLED;
2524 }
2525 
2526 #ifdef CONFIG_OF
2527 /* given a slot, find out the device node representing that slot */
2528 static struct device_node *dw_mci_of_find_slot_node(struct dw_mci_slot *slot)
2529 {
2530 	struct device *dev = slot->mmc->parent;
2531 	struct device_node *np;
2532 	const __be32 *addr;
2533 	int len;
2534 
2535 	if (!dev || !dev->of_node)
2536 		return NULL;
2537 
2538 	for_each_child_of_node(dev->of_node, np) {
2539 		addr = of_get_property(np, "reg", &len);
2540 		if (!addr || (len < sizeof(int)))
2541 			continue;
2542 		if (be32_to_cpup(addr) == slot->id)
2543 			return np;
2544 	}
2545 	return NULL;
2546 }
2547 
2548 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2549 {
2550 	struct device_node *np = dw_mci_of_find_slot_node(slot);
2551 
2552 	if (!np)
2553 		return;
2554 
2555 	if (of_property_read_bool(np, "disable-wp")) {
2556 		slot->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
2557 		dev_warn(slot->mmc->parent,
2558 			"Slot quirk 'disable-wp' is deprecated\n");
2559 	}
2560 }
2561 #else /* CONFIG_OF */
2562 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2563 {
2564 }
2565 #endif /* CONFIG_OF */
2566 
2567 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2568 {
2569 	struct mmc_host *mmc;
2570 	struct dw_mci_slot *slot;
2571 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2572 	int ctrl_id, ret;
2573 	u32 freq[2];
2574 
2575 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2576 	if (!mmc)
2577 		return -ENOMEM;
2578 
2579 	slot = mmc_priv(mmc);
2580 	slot->id = id;
2581 	slot->sdio_id = host->sdio_id0 + id;
2582 	slot->mmc = mmc;
2583 	slot->host = host;
2584 	host->slot[id] = slot;
2585 
2586 	mmc->ops = &dw_mci_ops;
2587 	if (of_property_read_u32_array(host->dev->of_node,
2588 				       "clock-freq-min-max", freq, 2)) {
2589 		mmc->f_min = DW_MCI_FREQ_MIN;
2590 		mmc->f_max = DW_MCI_FREQ_MAX;
2591 	} else {
2592 		mmc->f_min = freq[0];
2593 		mmc->f_max = freq[1];
2594 	}
2595 
2596 	/*if there are external regulators, get them*/
2597 	ret = mmc_regulator_get_supply(mmc);
2598 	if (ret == -EPROBE_DEFER)
2599 		goto err_host_allocated;
2600 
2601 	if (!mmc->ocr_avail)
2602 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2603 
2604 	if (host->pdata->caps)
2605 		mmc->caps = host->pdata->caps;
2606 
2607 	/*
2608 	 * Support MMC_CAP_ERASE by default.
2609 	 * It needs to use trim/discard/erase commands.
2610 	 */
2611 	mmc->caps |= MMC_CAP_ERASE;
2612 
2613 	if (host->pdata->pm_caps)
2614 		mmc->pm_caps = host->pdata->pm_caps;
2615 
2616 	if (host->dev->of_node) {
2617 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2618 		if (ctrl_id < 0)
2619 			ctrl_id = 0;
2620 	} else {
2621 		ctrl_id = to_platform_device(host->dev)->id;
2622 	}
2623 	if (drv_data && drv_data->caps)
2624 		mmc->caps |= drv_data->caps[ctrl_id];
2625 
2626 	if (host->pdata->caps2)
2627 		mmc->caps2 = host->pdata->caps2;
2628 
2629 	dw_mci_slot_of_parse(slot);
2630 
2631 	ret = mmc_of_parse(mmc);
2632 	if (ret)
2633 		goto err_host_allocated;
2634 
2635 	/* Useful defaults if platform data is unset. */
2636 	if (host->use_dma == TRANS_MODE_IDMAC) {
2637 		mmc->max_segs = host->ring_size;
2638 		mmc->max_blk_size = 65535;
2639 		mmc->max_seg_size = 0x1000;
2640 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2641 		mmc->max_blk_count = mmc->max_req_size / 512;
2642 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2643 		mmc->max_segs = 64;
2644 		mmc->max_blk_size = 65535;
2645 		mmc->max_blk_count = 65535;
2646 		mmc->max_req_size =
2647 				mmc->max_blk_size * mmc->max_blk_count;
2648 		mmc->max_seg_size = mmc->max_req_size;
2649 	} else {
2650 		/* TRANS_MODE_PIO */
2651 		mmc->max_segs = 64;
2652 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2653 		mmc->max_blk_count = 512;
2654 		mmc->max_req_size = mmc->max_blk_size *
2655 				    mmc->max_blk_count;
2656 		mmc->max_seg_size = mmc->max_req_size;
2657 	}
2658 
2659 	dw_mci_get_cd(mmc);
2660 
2661 	ret = mmc_add_host(mmc);
2662 	if (ret)
2663 		goto err_host_allocated;
2664 
2665 #if defined(CONFIG_DEBUG_FS)
2666 	dw_mci_init_debugfs(slot);
2667 #endif
2668 
2669 	return 0;
2670 
2671 err_host_allocated:
2672 	mmc_free_host(mmc);
2673 	return ret;
2674 }
2675 
2676 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2677 {
2678 	/* Debugfs stuff is cleaned up by mmc core */
2679 	mmc_remove_host(slot->mmc);
2680 	slot->host->slot[id] = NULL;
2681 	mmc_free_host(slot->mmc);
2682 }
2683 
2684 static void dw_mci_init_dma(struct dw_mci *host)
2685 {
2686 	int addr_config;
2687 	struct device *dev = host->dev;
2688 	struct device_node *np = dev->of_node;
2689 
2690 	/*
2691 	* Check tansfer mode from HCON[17:16]
2692 	* Clear the ambiguous description of dw_mmc databook:
2693 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2694 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2695 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2696 	* 2b'11: Non DW DMA Interface -> pio only
2697 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2698 	* simpler request/acknowledge handshake mechanism and both of them
2699 	* are regarded as external dma master for dw_mmc.
2700 	*/
2701 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2702 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2703 		host->use_dma = TRANS_MODE_IDMAC;
2704 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2705 		   host->use_dma == DMA_INTERFACE_GDMA) {
2706 		host->use_dma = TRANS_MODE_EDMAC;
2707 	} else {
2708 		goto no_dma;
2709 	}
2710 
2711 	/* Determine which DMA interface to use */
2712 	if (host->use_dma == TRANS_MODE_IDMAC) {
2713 		/*
2714 		* Check ADDR_CONFIG bit in HCON to find
2715 		* IDMAC address bus width
2716 		*/
2717 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2718 
2719 		if (addr_config == 1) {
2720 			/* host supports IDMAC in 64-bit address mode */
2721 			host->dma_64bit_address = 1;
2722 			dev_info(host->dev,
2723 				 "IDMAC supports 64-bit address mode.\n");
2724 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2725 				dma_set_coherent_mask(host->dev,
2726 						      DMA_BIT_MASK(64));
2727 		} else {
2728 			/* host supports IDMAC in 32-bit address mode */
2729 			host->dma_64bit_address = 0;
2730 			dev_info(host->dev,
2731 				 "IDMAC supports 32-bit address mode.\n");
2732 		}
2733 
2734 		/* Alloc memory for sg translation */
2735 		host->sg_cpu = dmam_alloc_coherent(host->dev, PAGE_SIZE,
2736 						   &host->sg_dma, GFP_KERNEL);
2737 		if (!host->sg_cpu) {
2738 			dev_err(host->dev,
2739 				"%s: could not alloc DMA memory\n",
2740 				__func__);
2741 			goto no_dma;
2742 		}
2743 
2744 		host->dma_ops = &dw_mci_idmac_ops;
2745 		dev_info(host->dev, "Using internal DMA controller.\n");
2746 	} else {
2747 		/* TRANS_MODE_EDMAC: check dma bindings again */
2748 		if ((of_property_count_strings(np, "dma-names") < 0) ||
2749 		    (!of_find_property(np, "dmas", NULL))) {
2750 			goto no_dma;
2751 		}
2752 		host->dma_ops = &dw_mci_edmac_ops;
2753 		dev_info(host->dev, "Using external DMA controller.\n");
2754 	}
2755 
2756 	if (host->dma_ops->init && host->dma_ops->start &&
2757 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2758 		if (host->dma_ops->init(host)) {
2759 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2760 				__func__);
2761 			goto no_dma;
2762 		}
2763 	} else {
2764 		dev_err(host->dev, "DMA initialization not found.\n");
2765 		goto no_dma;
2766 	}
2767 
2768 	return;
2769 
2770 no_dma:
2771 	dev_info(host->dev, "Using PIO mode.\n");
2772 	host->use_dma = TRANS_MODE_PIO;
2773 }
2774 
2775 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2776 {
2777 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
2778 	u32 ctrl;
2779 
2780 	ctrl = mci_readl(host, CTRL);
2781 	ctrl |= reset;
2782 	mci_writel(host, CTRL, ctrl);
2783 
2784 	/* wait till resets clear */
2785 	do {
2786 		ctrl = mci_readl(host, CTRL);
2787 		if (!(ctrl & reset))
2788 			return true;
2789 	} while (time_before(jiffies, timeout));
2790 
2791 	dev_err(host->dev,
2792 		"Timeout resetting block (ctrl reset %#x)\n",
2793 		ctrl & reset);
2794 
2795 	return false;
2796 }
2797 
2798 static bool dw_mci_reset(struct dw_mci *host)
2799 {
2800 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2801 	bool ret = false;
2802 
2803 	/*
2804 	 * Reseting generates a block interrupt, hence setting
2805 	 * the scatter-gather pointer to NULL.
2806 	 */
2807 	if (host->sg) {
2808 		sg_miter_stop(&host->sg_miter);
2809 		host->sg = NULL;
2810 	}
2811 
2812 	if (host->use_dma)
2813 		flags |= SDMMC_CTRL_DMA_RESET;
2814 
2815 	if (dw_mci_ctrl_reset(host, flags)) {
2816 		/*
2817 		 * In all cases we clear the RAWINTS register to clear any
2818 		 * interrupts.
2819 		 */
2820 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
2821 
2822 		/* if using dma we wait for dma_req to clear */
2823 		if (host->use_dma) {
2824 			unsigned long timeout = jiffies + msecs_to_jiffies(500);
2825 			u32 status;
2826 
2827 			do {
2828 				status = mci_readl(host, STATUS);
2829 				if (!(status & SDMMC_STATUS_DMA_REQ))
2830 					break;
2831 				cpu_relax();
2832 			} while (time_before(jiffies, timeout));
2833 
2834 			if (status & SDMMC_STATUS_DMA_REQ) {
2835 				dev_err(host->dev,
2836 					"%s: Timeout waiting for dma_req to clear during reset\n",
2837 					__func__);
2838 				goto ciu_out;
2839 			}
2840 
2841 			/* when using DMA next we reset the fifo again */
2842 			if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2843 				goto ciu_out;
2844 		}
2845 	} else {
2846 		/* if the controller reset bit did clear, then set clock regs */
2847 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2848 			dev_err(host->dev,
2849 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2850 				__func__);
2851 			goto ciu_out;
2852 		}
2853 	}
2854 
2855 	if (host->use_dma == TRANS_MODE_IDMAC)
2856 		/* It is also recommended that we reset and reprogram idmac */
2857 		dw_mci_idmac_reset(host);
2858 
2859 	ret = true;
2860 
2861 ciu_out:
2862 	/* After a CTRL reset we need to have CIU set clock registers  */
2863 	mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2864 
2865 	return ret;
2866 }
2867 
2868 static void dw_mci_cmd11_timer(unsigned long arg)
2869 {
2870 	struct dw_mci *host = (struct dw_mci *)arg;
2871 
2872 	if (host->state != STATE_SENDING_CMD11) {
2873 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2874 		return;
2875 	}
2876 
2877 	host->cmd_status = SDMMC_INT_RTO;
2878 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2879 	tasklet_schedule(&host->tasklet);
2880 }
2881 
2882 static void dw_mci_dto_timer(unsigned long arg)
2883 {
2884 	struct dw_mci *host = (struct dw_mci *)arg;
2885 
2886 	switch (host->state) {
2887 	case STATE_SENDING_DATA:
2888 	case STATE_DATA_BUSY:
2889 		/*
2890 		 * If DTO interrupt does NOT come in sending data state,
2891 		 * we should notify the driver to terminate current transfer
2892 		 * and report a data timeout to the core.
2893 		 */
2894 		host->data_status = SDMMC_INT_DRTO;
2895 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
2896 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2897 		tasklet_schedule(&host->tasklet);
2898 		break;
2899 	default:
2900 		break;
2901 	}
2902 }
2903 
2904 #ifdef CONFIG_OF
2905 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2906 {
2907 	struct dw_mci_board *pdata;
2908 	struct device *dev = host->dev;
2909 	struct device_node *np = dev->of_node;
2910 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2911 	int ret;
2912 	u32 clock_frequency;
2913 
2914 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2915 	if (!pdata)
2916 		return ERR_PTR(-ENOMEM);
2917 
2918 	/* find out number of slots supported */
2919 	of_property_read_u32(np, "num-slots", &pdata->num_slots);
2920 
2921 	if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2922 		dev_info(dev,
2923 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
2924 
2925 	of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2926 
2927 	if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2928 		pdata->bus_hz = clock_frequency;
2929 
2930 	if (drv_data && drv_data->parse_dt) {
2931 		ret = drv_data->parse_dt(host);
2932 		if (ret)
2933 			return ERR_PTR(ret);
2934 	}
2935 
2936 	if (of_find_property(np, "supports-highspeed", NULL)) {
2937 		dev_info(dev, "supports-highspeed property is deprecated.\n");
2938 		pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
2939 	}
2940 
2941 	return pdata;
2942 }
2943 
2944 #else /* CONFIG_OF */
2945 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2946 {
2947 	return ERR_PTR(-EINVAL);
2948 }
2949 #endif /* CONFIG_OF */
2950 
2951 static void dw_mci_enable_cd(struct dw_mci *host)
2952 {
2953 	unsigned long irqflags;
2954 	u32 temp;
2955 	int i;
2956 	struct dw_mci_slot *slot;
2957 
2958 	/*
2959 	 * No need for CD if all slots have a non-error GPIO
2960 	 * as well as broken card detection is found.
2961 	 */
2962 	for (i = 0; i < host->num_slots; i++) {
2963 		slot = host->slot[i];
2964 		if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
2965 			return;
2966 
2967 		if (mmc_gpio_get_cd(slot->mmc) < 0)
2968 			break;
2969 	}
2970 	if (i == host->num_slots)
2971 		return;
2972 
2973 	spin_lock_irqsave(&host->irq_lock, irqflags);
2974 	temp = mci_readl(host, INTMASK);
2975 	temp  |= SDMMC_INT_CD;
2976 	mci_writel(host, INTMASK, temp);
2977 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
2978 }
2979 
2980 int dw_mci_probe(struct dw_mci *host)
2981 {
2982 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2983 	int width, i, ret = 0;
2984 	u32 fifo_size;
2985 	int init_slots = 0;
2986 
2987 	if (!host->pdata) {
2988 		host->pdata = dw_mci_parse_dt(host);
2989 		if (IS_ERR(host->pdata)) {
2990 			dev_err(host->dev, "platform data not available\n");
2991 			return -EINVAL;
2992 		}
2993 	}
2994 
2995 	host->biu_clk = devm_clk_get(host->dev, "biu");
2996 	if (IS_ERR(host->biu_clk)) {
2997 		dev_dbg(host->dev, "biu clock not available\n");
2998 	} else {
2999 		ret = clk_prepare_enable(host->biu_clk);
3000 		if (ret) {
3001 			dev_err(host->dev, "failed to enable biu clock\n");
3002 			return ret;
3003 		}
3004 	}
3005 
3006 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3007 	if (IS_ERR(host->ciu_clk)) {
3008 		dev_dbg(host->dev, "ciu clock not available\n");
3009 		host->bus_hz = host->pdata->bus_hz;
3010 	} else {
3011 		ret = clk_prepare_enable(host->ciu_clk);
3012 		if (ret) {
3013 			dev_err(host->dev, "failed to enable ciu clock\n");
3014 			goto err_clk_biu;
3015 		}
3016 
3017 		if (host->pdata->bus_hz) {
3018 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3019 			if (ret)
3020 				dev_warn(host->dev,
3021 					 "Unable to set bus rate to %uHz\n",
3022 					 host->pdata->bus_hz);
3023 		}
3024 		host->bus_hz = clk_get_rate(host->ciu_clk);
3025 	}
3026 
3027 	if (!host->bus_hz) {
3028 		dev_err(host->dev,
3029 			"Platform data must supply bus speed\n");
3030 		ret = -ENODEV;
3031 		goto err_clk_ciu;
3032 	}
3033 
3034 	if (drv_data && drv_data->init) {
3035 		ret = drv_data->init(host);
3036 		if (ret) {
3037 			dev_err(host->dev,
3038 				"implementation specific init failed\n");
3039 			goto err_clk_ciu;
3040 		}
3041 	}
3042 
3043 	setup_timer(&host->cmd11_timer,
3044 		    dw_mci_cmd11_timer, (unsigned long)host);
3045 
3046 	setup_timer(&host->dto_timer,
3047 		    dw_mci_dto_timer, (unsigned long)host);
3048 
3049 	spin_lock_init(&host->lock);
3050 	spin_lock_init(&host->irq_lock);
3051 	INIT_LIST_HEAD(&host->queue);
3052 
3053 	/*
3054 	 * Get the host data width - this assumes that HCON has been set with
3055 	 * the correct values.
3056 	 */
3057 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3058 	if (!i) {
3059 		host->push_data = dw_mci_push_data16;
3060 		host->pull_data = dw_mci_pull_data16;
3061 		width = 16;
3062 		host->data_shift = 1;
3063 	} else if (i == 2) {
3064 		host->push_data = dw_mci_push_data64;
3065 		host->pull_data = dw_mci_pull_data64;
3066 		width = 64;
3067 		host->data_shift = 3;
3068 	} else {
3069 		/* Check for a reserved value, and warn if it is */
3070 		WARN((i != 1),
3071 		     "HCON reports a reserved host data width!\n"
3072 		     "Defaulting to 32-bit access.\n");
3073 		host->push_data = dw_mci_push_data32;
3074 		host->pull_data = dw_mci_pull_data32;
3075 		width = 32;
3076 		host->data_shift = 2;
3077 	}
3078 
3079 	/* Reset all blocks */
3080 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3081 		ret = -ENODEV;
3082 		goto err_clk_ciu;
3083 	}
3084 
3085 	host->dma_ops = host->pdata->dma_ops;
3086 	dw_mci_init_dma(host);
3087 
3088 	/* Clear the interrupts for the host controller */
3089 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3090 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3091 
3092 	/* Put in max timeout */
3093 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3094 
3095 	/*
3096 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3097 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3098 	 */
3099 	if (!host->pdata->fifo_depth) {
3100 		/*
3101 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3102 		 * have been overwritten by the bootloader, just like we're
3103 		 * about to do, so if you know the value for your hardware, you
3104 		 * should put it in the platform data.
3105 		 */
3106 		fifo_size = mci_readl(host, FIFOTH);
3107 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3108 	} else {
3109 		fifo_size = host->pdata->fifo_depth;
3110 	}
3111 	host->fifo_depth = fifo_size;
3112 	host->fifoth_val =
3113 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3114 	mci_writel(host, FIFOTH, host->fifoth_val);
3115 
3116 	/* disable clock to CIU */
3117 	mci_writel(host, CLKENA, 0);
3118 	mci_writel(host, CLKSRC, 0);
3119 
3120 	/*
3121 	 * In 2.40a spec, Data offset is changed.
3122 	 * Need to check the version-id and set data-offset for DATA register.
3123 	 */
3124 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3125 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3126 
3127 	if (host->verid < DW_MMC_240A)
3128 		host->fifo_reg = host->regs + DATA_OFFSET;
3129 	else
3130 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3131 
3132 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3133 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3134 			       host->irq_flags, "dw-mci", host);
3135 	if (ret)
3136 		goto err_dmaunmap;
3137 
3138 	if (host->pdata->num_slots)
3139 		host->num_slots = host->pdata->num_slots;
3140 	else
3141 		host->num_slots = 1;
3142 
3143 	if (host->num_slots < 1 ||
3144 	    host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3145 		dev_err(host->dev,
3146 			"Platform data must supply correct num_slots.\n");
3147 		ret = -ENODEV;
3148 		goto err_clk_ciu;
3149 	}
3150 
3151 	/*
3152 	 * Enable interrupts for command done, data over, data empty,
3153 	 * receive ready and error such as transmit, receive timeout, crc error
3154 	 */
3155 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3156 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3157 		   DW_MCI_ERROR_FLAGS);
3158 	/* Enable mci interrupt */
3159 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3160 
3161 	dev_info(host->dev,
3162 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3163 		 host->irq, width, fifo_size);
3164 
3165 	/* We need at least one slot to succeed */
3166 	for (i = 0; i < host->num_slots; i++) {
3167 		ret = dw_mci_init_slot(host, i);
3168 		if (ret)
3169 			dev_dbg(host->dev, "slot %d init failed\n", i);
3170 		else
3171 			init_slots++;
3172 	}
3173 
3174 	if (init_slots) {
3175 		dev_info(host->dev, "%d slots initialized\n", init_slots);
3176 	} else {
3177 		dev_dbg(host->dev,
3178 			"attempted to initialize %d slots, but failed on all\n",
3179 			host->num_slots);
3180 		goto err_dmaunmap;
3181 	}
3182 
3183 	/* Now that slots are all setup, we can enable card detect */
3184 	dw_mci_enable_cd(host);
3185 
3186 	return 0;
3187 
3188 err_dmaunmap:
3189 	if (host->use_dma && host->dma_ops->exit)
3190 		host->dma_ops->exit(host);
3191 
3192 err_clk_ciu:
3193 	if (!IS_ERR(host->ciu_clk))
3194 		clk_disable_unprepare(host->ciu_clk);
3195 
3196 err_clk_biu:
3197 	if (!IS_ERR(host->biu_clk))
3198 		clk_disable_unprepare(host->biu_clk);
3199 
3200 	return ret;
3201 }
3202 EXPORT_SYMBOL(dw_mci_probe);
3203 
3204 void dw_mci_remove(struct dw_mci *host)
3205 {
3206 	int i;
3207 
3208 	for (i = 0; i < host->num_slots; i++) {
3209 		dev_dbg(host->dev, "remove slot %d\n", i);
3210 		if (host->slot[i])
3211 			dw_mci_cleanup_slot(host->slot[i], i);
3212 	}
3213 
3214 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3215 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3216 
3217 	/* disable clock to CIU */
3218 	mci_writel(host, CLKENA, 0);
3219 	mci_writel(host, CLKSRC, 0);
3220 
3221 	if (host->use_dma && host->dma_ops->exit)
3222 		host->dma_ops->exit(host);
3223 
3224 	if (!IS_ERR(host->ciu_clk))
3225 		clk_disable_unprepare(host->ciu_clk);
3226 
3227 	if (!IS_ERR(host->biu_clk))
3228 		clk_disable_unprepare(host->biu_clk);
3229 }
3230 EXPORT_SYMBOL(dw_mci_remove);
3231 
3232 
3233 
3234 #ifdef CONFIG_PM_SLEEP
3235 /*
3236  * TODO: we should probably disable the clock to the card in the suspend path.
3237  */
3238 int dw_mci_suspend(struct dw_mci *host)
3239 {
3240 	if (host->use_dma && host->dma_ops->exit)
3241 		host->dma_ops->exit(host);
3242 
3243 	return 0;
3244 }
3245 EXPORT_SYMBOL(dw_mci_suspend);
3246 
3247 int dw_mci_resume(struct dw_mci *host)
3248 {
3249 	int i, ret;
3250 
3251 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3252 		ret = -ENODEV;
3253 		return ret;
3254 	}
3255 
3256 	if (host->use_dma && host->dma_ops->init)
3257 		host->dma_ops->init(host);
3258 
3259 	/*
3260 	 * Restore the initial value at FIFOTH register
3261 	 * And Invalidate the prev_blksz with zero
3262 	 */
3263 	mci_writel(host, FIFOTH, host->fifoth_val);
3264 	host->prev_blksz = 0;
3265 
3266 	/* Put in max timeout */
3267 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3268 
3269 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3270 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3271 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3272 		   DW_MCI_ERROR_FLAGS);
3273 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3274 
3275 	for (i = 0; i < host->num_slots; i++) {
3276 		struct dw_mci_slot *slot = host->slot[i];
3277 
3278 		if (!slot)
3279 			continue;
3280 		if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3281 			dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3282 			dw_mci_setup_bus(slot, true);
3283 		}
3284 	}
3285 
3286 	/* Now that slots are all setup, we can enable card detect */
3287 	dw_mci_enable_cd(host);
3288 
3289 	return 0;
3290 }
3291 EXPORT_SYMBOL(dw_mci_resume);
3292 #endif /* CONFIG_PM_SLEEP */
3293 
3294 static int __init dw_mci_init(void)
3295 {
3296 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3297 	return 0;
3298 }
3299 
3300 static void __exit dw_mci_exit(void)
3301 {
3302 }
3303 
3304 module_init(dw_mci_init);
3305 module_exit(dw_mci_exit);
3306 
3307 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3308 MODULE_AUTHOR("NXP Semiconductor VietNam");
3309 MODULE_AUTHOR("Imagination Technologies Ltd");
3310 MODULE_LICENSE("GPL v2");
3311